Backtesting Expected Shortfall via Multi-Quantile Regression

Abstract : In this article, we propose a new approach to backtest Expected Shortfall (ES) exploiting the definition of ES as a function of Value-at-Risk (VaR). Our methodology jointly assesses the quality of VaRs along the tail distribution of the risk model, and encompasses the Basel Committee recommendation of verifying quantiles at risk levels 97.5%, and 99%. We introduce four easy-to-use backtests which regress the ex-post losses on the VaR forecasts in a multi-quantile regression model, and test the resulting parameter estimates. Monte-Carlo simulations show that our tests are powerful to detect various model misspecifications. We apply our backtests on S&P500 returns over the period 2007-2012. Our tests clearly identify misleading ES forecasts in this period of financial turmoil. Empirical results also show that the detection abilities are higher when the evaluation procedure involves more than two quantiles, which should accordingly be taken into account in the current regulatory guidelines.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://halshs.archives-ouvertes.fr/halshs-01909375
Contributeur : Jérémy Leymarie <>
Soumis le : mercredi 31 octobre 2018 - 10:00:30
Dernière modification le : samedi 10 novembre 2018 - 01:15:09

Fichier

Backtesting ES via Multi-Quant...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : halshs-01909375, version 1

Collections

Citation

Ophélie Couperier, Jérémy Leymarie. Backtesting Expected Shortfall via Multi-Quantile Regression. 2018. 〈halshs-01909375〉

Partager

Métriques

Consultations de la notice

134

Téléchargements de fichiers

53