Labor market effects of urban riots: an experimental assessment
Emmanuel Duguet, David Gray, Yannick l’Horty, Loïc Du Parquet, Pascale Petit

To cite this version:

HAL Id: halshs-01878480
https://halshs.archives-ouvertes.fr/halshs-01878480
Preprint submitted on 21 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
LABOR MARKET EFFECTS OF URBAN RIOTS:
AN EXPERIMENTAL ASSESSMENT

EMMANUEL DUGUET, DAVID GRAY, YANNICK L’HORTY,
LOIC DU PARQUET, PASCALE PETIT

www.tepp.eu

TEPP - Institute for Labor Studies and Public Policies
TEPP - Travail, Emploi et Politiques Publiques - FR CNRS 3435
Labor Market Effects of Urban Riots: an experimental assessment

Emmanuel DUGUET¹, David GRAY², Yannick L’HORTY³, Loïc du PARQUET⁴, Pascale PETIT⁵

May 2017

Abstract

We propose to measure the effects of urban riots on the labour market prospects of workers residing in affected areas through the channel of labour market discrimination based on locality. We investigate the case of the French riots of 2007, which were very geographically concentrated. The town of Villiers-le-Bel is selected as the treatment unit because it received a uniquely high degree of unfavourable exposure in the media. Two other towns serve control groups: i) Sarcelles, which is contiguous to Villiers-le-Bel, has a similar socio-economic-demographic profile, and did experience some rioting activity, and ii) Enghien-les-Bains, which is considered to be economically advantaged and did not experience rioting activity. Using the technique of correspondence testing, we are able to discern disparities in call-back rates for fictitious candidates who respond to actual job postings over four dimensions: gender, ethnic origin, locality of residence (advantaged vs. disadvantaged), and the degree of media exposure during the riots. We propose a new empirical approach to measure discrimination across several dimensions that integrates a set of relevant parameters into one unified system of equations with a compact and tidy structure. We decomposed the probability of receiving a callback for any candidate of given characteristics as a function of several parameters that are evaluated through difference-in-differences estimators. We find statistically significant negative effects of a pure media exposure effect. All other factors held constant, people residing in the area which received negative publicity were 3.2 percentage points less likely to receive a callback. The group of workers who tend to be the most associated with the riots, i.e. men of North African origin (at least in terms of perceptions), are the least affected by potential discrimination by region of residence, while women of French origin are the most affected.

Keywords: labour market discrimination, call-back rates, discrimination, urban riots,

JEL Codes: C93 ; J71 ; R23 ;

¹ Emmanuel DUGUET, Université Paris-Est Créteil, ERUDITE (EA 437), TEPP-CNRS (FR 3435), UPEC, UPEM, F-94010 Créteil cedex, France, emmanuel.duguet@u-pec.fr
² David GRAY, University of Ottawa, Ottawa-Carleton School of Economics, University of Ottawa, Ottawa, ON, Canada K1N 6N5, dmgray@uottawa.ca
³ Yannick L’HORTY, Université Paris-Est Marne la Vallée, ERUDITE (EA 437), TEPP-CNRS (FR 3435), UPEC, UPEM, F-77454 Marne-La-Vallée France, yannick.lhorty@u-pem.fr
⁴ Loïc du PARQUET, Université du Maine, GAINS et TEPP-CNRS, UFR Droit, Sciences Economiques, Gestion, Avenue Olivier Messiaen 72085 Le Mans cedex, loic.duparquet@univ-lemans.fr
⁵ Pascale PETIT, Université Paris-Est Marne la Vallée, ERUDITE (EA 437), TEPP-CNRS (FR 3435), UPEC, UPEM, F-77454 Marne-La-Vallée France. pascale.petit@u-pem.fr.
1. Introduction

In the aftermath of the wave of urban riots that occurred in the US in the late 1960s, a sizeable scientific literature dealing with the causes and consequences developed in the fields of political science and sociology. It was not until much later that economists such as Collins and Margo (2004, 2007) applied the tools and the conceptual approach of economics to that phenomenon. Since that eventful period of widespread civil unrest, major riots erupted in Miami in 1980 and Los Angeles in 1992. Much more recently violent riots broke out in the US cities of Ferguson, MO, Baltimore, MD, and Charlotte, NC in 2015 and 2016. France and the UK have also experienced major, sporadic civil unrest involving violence over the past three decades. The economic questions pertaining to this phenomenon remain quite relevant, and in the case of the US disturbances, the economic impact has yet to play out.

A common theme of the literature on the economic impact of riots is that the subsequent effects which impact the demand side of product, labour, and real estate markets far outweigh the immediate negative impact on the supply side in the form of physical reconstruction costs. Furthermore, the deleterious consequences for the economy are far more persistent. The closely-related literature dealing with the economic impact of political conflict draws similar conclusions (Besley and Mueller, 2012). Some of these articles have generated empirical evidence of the existence of negative impacts on observed employment outcomes in affected areas, such as higher unemployment rates, lower labour force participation rates, and lower employment rates. Nevertheless, less attention has been paid to the specific behavioural channels that could generate these unfavourable labor market impacts. One contributing cause is likely to be the emergence of depressed demand conditions in the local labour markets in affected neighborhoods. Other contributing causes could work on the supply side through social network effects operating in affected neighborhoods. Consequences such as ensuing out-migration, a grave deterioration in educational and social support services in the community, adverse peer effects, and other factors can hamper human capital development.
Our focus in this paper is on a specific behavioural mechanism operating on the demand side that would weigh heavily on the labour market prospects of workers residing in affected areas, namely labour market discrimination based on locality. Job applicants residing in those areas might be stigmatized by would-be employers who view that feature of job applicants as a negative signal of productivity. Such a perception would have the effect of shifting the apparent wage offer distribution facing the workers to the left and perhaps simultaneously lowering the wage offer arrival rate. In addressing the topic of labour market discrimination based on the geographical area of residence, and to its degree of prior exposure to urban unrest, we borrow from the literatures on labour market discrimination as well as urban economics. To our knowledge, this paper is the first within the strand of the economic literature dealing with violent political conflicts and riots that explicitly involves labour market discrimination.

The methodology that we utilize is an experimental evaluation following the event of riots that occurred in France in 2007. More specifically, we adopt the “correspondence testing” technique that is similar to that employed by Bertrand and Mullainathan (2004) in a US context and Oreopoulous (2011) in the Canadian context. The major discriminating attribute in the application examined by Bertrand and Mullainathan (2004) is the race of job applicants, but a secondary focus serves as the primary attribute for our study, namely the neighborhood of residence of the worker. Our design allows us to achieve randomization as far as the unobservable influences are concerned and to condition on some critical observable variables, such as the geographical distance and the attributes of gender and ethnic background. The experiment is structured such that the two different treatment effects are differentiated according to gender and to ethnicity (two categories), allowing us to condition our estimated effects on those two attributes as well as to estimate interacted effects. To our knowledge, our paper is the first within the literature on the economics of riots to employ an experimental methodology.

Another point of novelty is that our experiment involves two related but distinct treatments. The first one consists of the impact of the job applicant residing in an area where violent protest did occur but did not receive a high degree of coverage in the media. The second one consists of the
impact of the job applicant residing in an area where violent protest did occur that was heavily covered in the media. Whereas in the strand of economic literature dealing with urban riots impacts are typically identified by the severity or the scale of the civil unrest, we also include a measure of the degree of media coverage, which could play a role in shaping the perceptions of would-be employers searching for information regarding the suitability and riskiness of unknown job candidates.

This paper is based on an experimental data set that was first exploited in our earlier study (L’Horty et al., 2011). We extend that analysis along several dimensions. First, following Neumark (2012) when he exploited the data set originally from Bertrand and Mullainathan (2004) in order to propose a new measure of discrimination, we constructed a new empirical modeling of the probability of receiving a callback for any candidate. It is broken down into components representing the candidate’s characteristics and their interactions. We are able to discern the disparities in call back rates which originate from four sources: gender, ethnic origin, location, and the degree of media exposure following the 2007 riots. We estimate these parameters with the Asymptotic Least Squares (ALS) methods, which can be interpreted, in this paper, as a generalization of the difference-in-differences estimators to the over-identified case. Our model is tidy, compact, and unified in one system which is estimated in one command without generating excessive empirical detail. Second, we couch it within the conceptual framework of the economics of riots and political conflict and place it within that particular literature. We conclude that riots can have significant consequences on subsequent labor market outcomes that differ between demographic groups.

2. Empirical strategy: a tale of two cities

The riots were both intense and very geographically concentrated. They were triggered immediately after the accidental death of two adolescent boys who were both the sons of African immigrants. They were killed when their motorcycles hit a police car in November of 2007 in the town of Villiers-le-Bel, which is situated in the Northern suburbs of Paris. Over the next two nights, hundreds of masked youths participated in angry protests incinerating cars, stores, and public
buildings, notably including a school and a library. There were violently attacks against police officers, a few of which (for the first time in modern French history) involved firearms.\footnote{These were hardly the first wave of riots which occurred in France. Beginning in the late 1970s and continuing throughout the 1980s, social movements involving violence occurred in suburban neighborhoods of Lyon and elsewhere. These conflicts spurred the development and implementation of a new set of urban policy measures, including the creation of the “zones d’éducation prioritaires (ZEP)” (priority zones for education). The new wave of riots that broke out in October of 1990 led to the creation of a totally new Ministry of Cities. Despite this attention from governments, similar incidents recurred throughout the 1990s. That set of urban riots gave rise to new policy responses by the government, with the creation of the “zones urbaines sensibles (ZUS)” (sensitive urban zones) in 1996. In the new millennium, widespread riots broke out in many French cities in October of 2005. When the riots of 2007 first broke out, many feared that they would spread throughout France, but their scope remained limited to certain municipalities located in the Northern suburbs of Paris.}

In order to investigate the impact of the riots, we selected two towns that are located in the department of Val d’Oise (roughly analogous to an suburban county in the USA), to serve as control groups. They are called Sarcelles and Enghien-les-Bains. These three towns are equi-distant from Paris in terms of transportation, which allows us in our analysis to abstract from any effect tied to the physical distance between the places of residence and employment (see map 1). Furthermore, Sarcelles is contiguous to our treatment town of Villiers-le-Bel, and those two towns have very similar socio-economic-demographic profiles. Both are considered to be disadvantaged, whereas the other control-group town, Enghien-les-Bains, is viewed as advantaged. The unemployment rate and the percentage of adults without any diplomas whatsoever are high in both Sarcelles and Villiers-le-Bel but low in Enghien-les-Bains. More than 60 % of the inhabitants of Sarcelles and Villiers-le-Bel reside in designated neighborhoods, in contrast to 0 % in Enghien-les-Bains. In fact, the level of per-capita income in Enghien-les-Bains is one of the highest in the department of Val d’Oise.

The identifying hypothesis for our empirical analysis is that the primary difference between Sarcelles and Villiers-le-Bel involves the degree of media coverage of the riots. As mentioned in the paragraph above, Enghien-les-Bains is an advantaged, prosperous area, whereas the towns of Villiers-le-Bel and Sarcelles are similar in terms of socio-economic-demographic composition, the living standards of their inhabitants, and the distance to employment. In our experiment, we attribute the estimated differences in the testing outcomes between these two towns to effects tied to variation in the variable of media coverage. That choice of treatment indicator is based on evidence that is...
presented in graph 1, which displays times series data on the number of “Google hits” that were obtained since the year 2005 when the names of each town were inputted. All three curves reflect indices which are benchmarked such that the value for Villiers-le-Bel is equal to 100 in the month of November 2007 (the peak in the rioting activity). Note that this remarkable spike is mostly limited to November, although there are minor upticks appearing in the following two months reflecting subsequent arrests. Shortly thereafter, the series for “Google hits” regarding Villiers-le-Bel falls back to the level that existed before the riots. Neither Sarcelles nor Enghien-les Bains exhibit any such intertemporal pattern. The pattern for the latter town is very stable over the entire interval. Perhaps surprisingly, the magnitude for the relatively well-off town of Enghien-les-Bains is very close to the magnitude for the economically disadvantaged town of Villiers-le-Bel, with the exception of the short-lived spike.

We indicate on the timeline of Figure 1 the period during which we conducted the experiment and collected our data, which extended from mid-December 2008 to the end of January 2009. This interval is set a little over a year after the riots occurred, by which time the degree of media interest regarding these three towns had reached normal (i.e. low) levels.

[Here figure 1]

3. Survey of the Literature

3.1 The interface between labour market discrimination and the place of residence

There exists substantial and solid quantitative analysis of labour market statistics in France at a detailed level of aggregation which indicate the presence of sharp discrepancies in outcomes such as unemployment rates and jobless/unemployment durations, such as the paper by Gobillon et al. (2011), Gaschet and Gaussier (2004), and Duguet et al. (2008). These empirical patterns have led some authors to consider the possibility that labour market discrimination could be a contributing factor. Duguet et al. (2009) was one of the first papers to examine the hypothesis that employers might utilize the place of residence as a criterion for hiring in addition to the ‘usual suspects’ of ethnic origin and race. Indeed, the perception that widespread discrimination based on the place of residence was
sufficiently widespread such that the government passed a law in 2014 (No. 2014-173) that explicitly outlawed the practice.

First we discuss the spatial dimension of employment outcomes. According to Gobillon et al. (2007), there are a number of channels through which the location of the residence of the worker can influence the probability of gaining employment, any combination of which could generate a spatial, empirical pattern. Perhaps the most straightforward of them involves ‘local skill mismatch’, whereby within the confines of a spatial unit, either there is no demand on the part of employers for local workers possessing a given skill set, or there is no supply of workers possessing the skill sets sought by employers.

The approach of ‘spatial mismatch’ emphasizes the role of physical distance between the location of attractive jobs and the location of the residences of job searchers as well as the adequacy of the means of transportation linking the two spatial units. From a strictly cost-benefit perspective, the greater the distance, the higher the transportation costs, and the less attractive any given job offer becomes. Reinforcing the explicit costs of transportation are implicit costs associated with the existence of cheaper housing typically being available in distant residential neighborhoods, which further lower the returns to job search. Recent applications of this approach include papers by Gauthier and Zenou (2010) and Pattacchini and Zenou (2005).

Another behavioural channel through which access to employment can exhibit a strong spatial pattern is through neighborhood and social network effects which transmit information regarding job offers. The basic thrust of this approach is that in disadvantaged neighborhoods, these networks tend not to be extensive and not to convey useful information with respect to job market opportunities. The nefarious social network effects can be augmented by peer effects that might impose barriers to human capital formation. According to either of these two mechanisms, collective attributes of individuals
within a spatial unit are thought to hamper job search activities and lower the probability of receiving an offer for an attractive job.7

The conceptual underpinning for an observed empirical, spatial pattern of labour market outcomes that we focus on is labour market discrimination associated with preferences of employers with respect to factors that are unrelated to productive attributes. There are at least three conceptual approaches that are contained in the economic literature regarding labour market discrimination. According to the earliest approach set out by Becker (1957, 1971), its sources lie in the exogenous aversions of employers, co-workers, or the clientele - typically with respect to a visible attribute. According to the more recent alternative approach of statistical discrimination attributed to Phelps (1972) and Arrow (1973), given imperfect information regarding candidates’ productivity, firms resort to signaling in their recruitment procedures. In our particular context, the place of residence serves as a signal for desirable (or sometimes undesirable and risky) yet unobservable attributes based on employers’ perceptions regarding the spatial unit where the potential workers reside. The probability of being initially assigned a high score for expected performance is a direct function of the perceived average score for inhabitants of that spatial unit.

"Red-lining” is at third conceptual approach of labour market discrimination that not only can manifest itself empirically in a spatial pattern, but is explicitly oriented around spatial contours, as set out in Zenou (2002, 2006). As is the case with statistical discrimination, employers cannot accurately observe the productivity of their workers, and seek signals to fill the informational void. The hiring criterion becomes the physical distance between the workers’ residences and the workplace, or perhaps some composite measure of the costs of transportation. The employer draws an imaginary ‘red-line’ beyond which he/she perceives that the transportation costs for a potential recruit are sufficiently high to deter any would-be productive employee from applying. On the other hand, unproductive employees within that boundary might be less deterred. As a consequence, workers residing on the “wrong side of the tracks” are less likely to receive offers.

7 This approach is surveyed by Ioannides and Datcher- Loury (2004) and Galster (2012). Two papers by Hellerstein et al. (2008, 2014) consist of applications to urban labor markets in the USA with a heavy concentration of African-American workers. Fontaine (2006) applies this approach to the French labor market.
The objective of our research design is to control for any effect related to the physical distance between the place of residence and the place of employment in order to focus directly on locational effects, which we measure and model at a disaggregated level. By selection of the towns, this distance is roughly equivalent for all subjects, thus permitting us to exclude the pure spatial mismatch approach and red-lining as being relevant. We judiciously choose residential areas that are contiguous, rendering any line of demarcation between job applicants residing in the two regions infeasible for the employer in search of information on unobserved attributes. While we are able to disentangle the effects of physical distance from locational effects, we are unable to discern with certainty the sources of employers’ preferences or aversions regarding workers’ locations, i.e. whether they are shaped by classical discrimination or by information-based discrimination. Although we lean towards the latter interpretation, we cannot rule out the proposition of pure aversion based on our empirical analysis.

The field-experimental methodology that we employ is also called “correspondence testing”. It utilizes fictitious applications whose qualifications are presented as identical across groups. Every effort is made to eliminate differences in average characteristics across groups, barring the criterion on which the alleged discrimination is based. As pointed out in Neumark (2012), identification is based on the assumption that potential employers believe that there are no average differences in observable characteristics across groups. Our only outcome variable is the event of a callback, thus obviating the possibility that individual job applicants can influence the outcome of the experiment at stages subsequent to the initial point of contact. While it has been applied in the context of discrimination by researchers in other social science disciplines for decades, economists have not adopted this approach until relatively recently. An influential paper by Riach and Rich (2002) encouraged economic researchers to utilize this approach in their studies regarding discrimination.

Bertrand and Mullainathan (2004) published their influential application of labour market discrimination based on race and ethnicity set in Chicago and Boston. We structure our research design and protocols along the lines of theirs. We also follow their approach in modeling the impact of neighborhood of residence in addition to the impact of ethnic origin, as well as the interacted effect. In

8 Surveying results pertaining to ten different countries involving several types of markets, those authors conclude that there does exist pervasive discrimination against women and non-whites.
Bertrand and Mullainathan (2004), however, the locality effect is interpreted as indicative of the socio-economic status of the applicant, whereas in our study we interpret it as indicative of the degree of violence that ensued during a wave of riots in France that occurred in 2007. According to their findings, applicants with ‘white-sounding’ names are 50 percent more likely to receive a callback than is the case for candidates with ‘African-American sounding’ names. For our purposes an interesting result of that study is that while the trait of residing in a wealthier neighborhood increases callback rates, this advantage does not differ between the two racial groups.

Tunstall et al. (2014) is a British study utilizing the correspondence testing technique involving fictitious candidates to actual job postings (requiring relatively low skill levels) in England and Wales in search of discriminatory treatment against applicants residing in neighbourhoods with ‘poor and bland reputations’, which they label ‘postal code discrimination’. The outcome variable for the experimental component of their article is the event of a call-back at the initial stage. Unlike some other articles in this literature, they cannot reject the null hypothesis of equal treatments of the two classes of candidates.

Turning to the French literature, among the first papers employing this correspondence testing methodology in order to address the question of job discrimination against workers of immigrant origin is by Duguet et al. (2010) in an application involving accountants. While they find evidence of discrimination against candidates according to their ethnic origin, they discerned no difference in treatment according to neighborhood of residence. The study authored by L’Horty et al. (2011) was one of the first French studies to apply this methodology with an eye towards modeling the effects of locality as well as ethnic origin. They find that only women are affected. Irrespective of their ethnic origin, they are called back at a lower rate if they reside in a disadvantaged neighborhood. In the case of women with French-sounding names, it appears that those residing in a neighborhood that was subjected to a lot of unfavourable media coverage are disadvantaged. Petit et al. (2014) involves a field experiment conducted in the greater Paris area utilizing correspondence testing that varied the spatial contours of the workers’ localities. The research design is structured around six neighborhoods in total comprising three socio-economic levels within either a large “department” (like an urbanized
county) or an “arrondissement” of Paris (like a large city division). The neighborhoods are selected to reflect a continuum of socio-economic levels. They find that “a good address can triple the chances of being invited to a job interview” (p. 545), and that candidates residing in a disadvantaged county face a greater handicap that those residing in a localized disadvantaged neighborhood.

3.2 The economic impact of riots and political conflict

DiPasquale and Glaeser (1998) is an early and influential study with a descriptive title: “The Los Angeles Riot and the economics of urban unrest”. It is more focused on the causes of riots rather than on their impact. Those authors empirically examine riots within a neo-classical framework and try to differentiate between two types of explanatory variables: those capturing the purely private financial returns from rioting, and those measuring community and social conditions. Their data set contains information on international riots, cross-city US evidence of race riots from the 1990s, as well as the Los Angeles riots in 1992. One major finding is that holding city size constant, riot size as well as riot intensity are most closely linked to the size of the non-white community. Overall they assert that the neo-classical view of rioting in which individual benefits and costs play an important role is the most applicable.

The seminal, influential piece by Collins and Margo (2004) lays out basic approach for discerning the impact of riots on economic outcomes. It is based on a difference-in-difference methodology that compares blacks’ labour market outcomes in cities that had severe riots with their counterparts in cities which did not experience severe riots during the period of the late 1960s. Riots are viewed as a negative shock to labour market conditions. The immediate loss of productive capacity in the affected areas is thought to be immaterial. The essence of the medium and long-run impacts consists of depressed demand conditions in both input and output markets. Those authors estimate a riot effect that is identified by variation in the degree of severity of the disturbances across cities. They employ census data from 1960, 1970, and 1980. The first part of their empirical analysis assesses the impacts on the labour market outcomes of income, employment, and unemployment measured at the city level. The authors pay a lot of attention to addressing endogeneity concerns by arguing heuristically that variation in riot severity across locations was highly unpredictable and
spontaneous, and hence orthogonal to the socio-economic conditions in a community. While that conjecture is supported to some extent by DiPasquale and Glaeser (1998), the authors do instrument for the riot intensity variable with weather conditions. They are most interested in endogenously propagated indirect effects that unfold over a longer period taking the form of a vicious circle of “knock-on” effects.

The empirical findings derived from the city-level data indicate that the riots had negative effects on blacks’ incomes and employment rates that were economically significant, especially in the longer term. The ordinary least squares estimates yields underestimates, indicating that the riot intensity regressor is indeed endogenous.

The second component of Collins and Margo (2004) involves individual-level data. The outcome variables are income and employment status. They find evidence of a declining employment rate generated by both a decline in the labour force participation rate as well as a rise in the unemployment rate. Their empirical analysis abstracts from spillover or out-migration effects, as those who migrate out of the affected cities are not reflected in the data. By way of contrast, in our work we focus specifically on workers who seek employment outside of the affected areas and track them explicitly.

Another well-known piece by Collins and Margo (2007) focuses on the impact of the 1960s riots on property values. This article measures the riots’ impact on the value of central city residential property, and especially with respect to black-owned property. In this context the behavioural channels through which the riots occasion economic harm are different, as out-migration and spillover effects are absent. Although they do not quantify perceptions (in this context they refer to neighborhood amenities), they mention that they are an important demand-side influence. It is not the initial physical damage per se that negatively affects property values, but rather people’s perceptions of the event’s severity and implications. The results of this study indicate that there were relative losses of population and property value in tracts that were directly affected by riots compared with other tracts in the same cities. Their interpretation for the endogenous and persistent decline consists of negative external effects in the context of racially segregated housing markets. Proximity to riots is
viewed as a harbinger of persistently higher risk, which gives rise to a sustained negative shift in perceived local amenities.9

Abadie and Dermisi (2008) deal with a related topic, namely the economic impact of terrorism rather than urban riots. The approach and methodology is similar. The outcome variable for their study is real-estate vacancy rates in the central business district of Chicago. They utilize building-level data from downtown Chicago to investigate the economic impact of an increase in the perception of risk after the attacks in September 2001 by estimating a fixed-effects model. Their empirical results indicate that office vacancy rates increased in the wake of the attacks. Buildings with characteristics that caused them to be perceived as vulnerable to attacks experienced a particularly severe deterioration in real estate market outcomes. Like Collins and Margo, they are concerned that the mobility of subjects from ‘shadow areas’ located near the major skyscrapers to less prominent, ‘non-shadow’ areas could impart a bias understating the true impact.

Braakman (2012) consists of a more recent study regarding the impact of the London riots of 2011. While his primary focus is on subsequent criminal behavior, he does investigate the impact of riots on the local unemployment rate as a proxy for changes in economic conditions in affected areas. He concludes that the riots increased unemployment statistics; specifically, the levels of unemployment insurance claimants of both short and longer-term duration increased by sizeable magnitudes. Regarding the unemployment estimates, the author states that “…it seems possible that the riots led to some stigmatization of individuals from those areas in the labour market, which should also lower labour market prospects for people from affected areas” (p. 14). This interpretation is quite

9 Matheson and Baade’s (2004) brief piece deals with the economic impact of only the Los Angeles riot of 1992. A unique feature of their piece is that they employ a strictly time-series analysis to this particular case. The methodology consists of an ARIMA model of taxable sales that is estimated over a very large spatial unit, namely the city of Los Angeles. They determine that the riots had a long-lasting, negative impact on their outcome variable, which they interpret as a proxy for economic well-being.
germane to our paper, as both papers posit that negative labour market outcomes stem from labour market discrimination with a spatial dimension.¹⁰

The well-known paper by Besley and Mueller (2012) focuses not on the impact of riots *per se*, but rather on the impact of continual political violence and subsequently its absence - the so-called “peace dividend” that occurred in Northern Ireland. In the spirit of Collins and Margo (2007), they exploit variation in the degree of violence (measured as reported killings) within Northern Ireland to assess empirically the impact on house prices. This particular piece is more grounded in economic theory than is the case for most articles in this literature, as they develop a formal model linking house prices to violence. Their data set is also particularly rich as it has a longitudinal structure containing spatial variation as well as temporal variation. The results indicate that there tend to be larger peace dividends in regions of Northern Ireland where violence was more severe and more persistent. Another interesting finding is evidence on spillover effects across areas, suggesting that some kind of general equilibrium response to violence involving migration might be at work.¹¹

We cite Huet-Vaughn (2015) because it shares the attribute of using French data, albeit from an earlier period from 1980-1995. The context of his work is strikes, political demonstrations, and low-grade violence. Unlike our investigation, he does not focus on their economic impact (which would be extremely difficult to assess empirically), but rather on its political efficacy from a public choice perspective. One point of novelty is that he exploits a data set containing protest data with a daily frequency. The outcome variable is the likelihood that violent protest causes policy concessions. In terms of instrumental variables, he employs proxies for weather conditions and school holidays. He

¹⁰ In Braakman’s work it the number of workers claiming the basic UI benefit called the “Jobseeker’s allowance (JSA)”, which is reported over a pretty narrow census tract. In our study it is the response (or lack thereof) of an application to a posted job offer.

¹¹ A study conducted by Arbel *et al.* (2010) based on Israeli data is in the same spirit as Besley and Mueller (2012). These authors analyse changes in house prices in the Gilo neighborhood of Jerusalem following the 2000 Second Palestinian Intifada, which was subjected to sporadic gunfire from a nearby Palestinian village. They find that the shooting events caused a short-run 12% reduction in values, but these values tended to recover within 18 months of the terror event. Another set of results indicate that “frontline” dwellings were negatively impacted relative to “non-frontline” dwellings in a persistent fashion. Their primary conclusion is that there exists substantial negative residential property value effects stemming from terrorism, and that households living in conflict areas would benefit from conflict resolution.
discerns a significant and negative relationship between property destruction associated with the protests and the chance of near-term success in changing policy.

What our paper shares with most of the papers mentioned above is the objective of assessing the economic impact of protest or riot violence in the causal sense. We also adopt a spatial perspective in order to achieve empirical identification. Those papers deal with an assortment of economic outcomes, including home values, commercial building vacancy rates, and labour market statistics such as unemployment, employment, and participation rates – usually at a fairly aggregated level. They all utilize non-experimental econometric methodologies such as fixed-effects or difference-in-difference strategies in efforts to identify these effects. We focus our attention on a more specific and individualized outcome of access to employment opportunities, namely potential labour market discrimination on the part of employers. Our methodological approach differs from that which has typically been employed in this literature, as we carry out an event-based, experimental investigation.

4. Data collection

The basic empirical strategy for any field experiment which seeks to discern discriminatory behavior on the part of would-be employers is to ensure that all candidates have identical productivity-related attributes, as indicated in explicit terms on their applications. These specifications should capture observable human capital attributes such as formal training and education, on-the-job-training, and cognitive skills. Factors such as non-cognitive skills cannot be observed by would-be employers at this initial stage of the hiring process, and are thus irrelevant for this experiment. Fluctuations in the exogenous variables that are the focus of this study, namely gender, ethnic background, and the town of residence are generated by design. While other aspects of their CVs, particularly with respect to how they are viewed by the recruiting firms, necessarily vary across candidates, ideally the expected values of these variables are equal to zero via the process of randomization. This means that the conditional independence condition should apply if the selection of job offers in our sample is representative of the population of firms which hire workers in this occupation in the greater Paris region.
In our earlier study (L’Horty et al. 2011), we conduct a robustness check in order to assess the validity of that critical assumption. There exists a slew of other control variables that are unrelated to the job applicant but potentially have some influence on our outcome variable of receiving a call back. They are grouped into five categories, and detailed data are available from the authors. These categories are i) variables related to the testing procedure, ii) variables related to the job offer, iii) characteristics of the firm, iv) characteristics of the towns where the position is located, and v) characteristics related to the potential commute for that candidate and the job in question. When these (approximately) 25 supplementary regressors are included in the basic specifications from which the estimated coefficients of discrimination are derived, the results are qualitatively identical and quantitatively very similar. We interpret these findings as evidence that these variables are not highly correlated with the included regressors of the trunk of the estimating equations. The omission of these variables from the specification contained in this paper, therefore, should not impart biases for the estimates of the various components of discrepancies in call-back rates.

We now turn to a detailed description of the protocol that was followed. The sampling took place over the six-week period from mid-December 2008 to the end of January 2009. This window occurred during the Great Recession of 2008-2009 when employment was falling at a rapid pace. A total of 307 positions were selected for the sending of our responses for the fictitious candidates. Because the experiment involves two ethnic origins (French and Moroccan), three towns (Enghien les Bains, Sarcelles, and Villiers-le-bel), and two genders, a total of 12 distinct applications were sent out to each offered post. The total sample size is thus 3,684 (12 * 307).

As far as the applications are concerned, the ethnic origins are not explicitly stated on the CVs, nor are any photographs included. Such practices would not only violate French labour law, but they would also invalidate the experiment. Instead, as is common in the literature, the origins are indicated by common surnames and given names that are either French-sounding (e.g. Emilie Durand) or Moroccan-sounding (e.g. Yasmina Brahim). All of them are 25 year-old singles of French nationality. The CVs indicate that they have a driver’s license, which is often viewed as an indicator of mobility. While by design two-thirds of our profiles reside in towns having relatively low socio-
economic status (Sarcelles and Villiers-le-bel), none of them declare their residence in a neighborhood classified as disadvantaged and targeted for governmental assistance. It should be noted that all three towns are with commuting distance of central Paris and approximately equidistant from Central Paris.

In regards to their productive characteristics, we solicited the advice of professional recruiters within the occupation in order to validate that the credentials which we specify are realistic, credible, and relevant. They also ascertained that the CVs were devoid of peculiarities, salient features, and potential “red flags”. All candidates have the same academic background commencing with a high-school diploma with a scientific orientation (“BAC – science”). That was followed by the successful completion of a three-year undergraduate degree in information technology (“Licence – informatique”), which in turn was followed by the successful completion of a two-year master’s degree in IT (“M1 plus M2 en informatique”). The nomenclature for the entire academic itinerary is ”Bac + 5” (“high school plus five”). They all did internships in conjunction with both years of their master’s degrees, which are similar to co-op programs in North America. After completing the second placement, they were hired on as full-time, salaried workers at the firm where they worked during their second internship. Thereafter they have two years of work experience in IT design and development at that particular firm. They all list the same set of more specific skills: programming, operating systems, web development, data bases, project management, and protocols. They are still employed at this firm at the time of the application, and there are no gaps in the timeline that could be attributed to a bout of unemployment or absence from the labour force.

The occupation of information technology was chosen according to two criteria. First, we sought a labour market that was sufficiently tight such that a firm practicing severe discrimination would incur high costs. Furthermore, given such labour market conditions, there would not be a wide margin for refusals based on other reasons that would confound discriminatory hiring. The indicator that we adopted to ensure this condition was a high exit rate from unemployment for workers in the

12 This designations, made for public policy purposes, were labelled “Zone urbaine sensible”, or ZUS. It is likely that most employers were aware of the broad outlines of this governmental program, and some might have been aware of the boundaries for these neighborhoods.

13 These master's level courses are in different universities in the Ile-de-France (Greater Paris Region), but they are of similar reputation and confer computer skills comparable to the twelve candidates.
occupation. Second, we sought a labour market that was thick and of large scale such that the experiment would not be detected by the recruiters. We wanted our batch of applications to be diluted in the labour market in order to reduce the chances of the occurrence of the Hawthorne effect. To this end, we selected an occupation characterized by a large stock of unemployed workers giving rise to a large recruitment pool. Data for these two indicators are drawn from Pôle Emploi administrative data over the period from 2003-2006.

Turning to the selection of the job offers, we responded to postings for full-time jobs from three different categories of employers: ‘head hunters’, downstream users of IT, and IT firms. All of our applications were filed on the same day that the offer was posted. The matching from our set of CVs to the job posting was done by algorithm in order to ensure randomization with respect to specific features such as the particular university attended or the particular firm that currently employed the candidate. The sequence in which the twelve CVs were sent out alternated across job postings.

We aim to have a representative sample of firms that recruit from this labour market without an undue concentration of anomalous firms. To this end we calculated a histogram of the number of positive responses per offer over the nodes of 1 through 12, with 12 being the maximum possible number of responses. If our sample were composed of a significant number of atypical firms, we would not expect to receive multiple positive responses at a high frequency. We did not discern that empirical pattern, however. Among the job offers for which we received at least one positive response, there were two or more responses in 83 % of the cases.

As mentioned above, we are concerned about the risk of detection, given that we send out 12 fake CVs to every job offer, which is more than what is typical in this strand of the literature. According to the administrative database for the “pole d’emploi”, in the fourth quarter of 2008, for every IT job posted in France, the average number of responses across all 95 departments was 32. The figure for the Paris metropolitan region is far greater, and so hopefully our particular group of 12 CVs

14 The indicator for the first criterion is the Pole Employment Index for Tension, which divides the number of Registered Job Offers (Offres d’Emploi Enregistrées –OEE) by the number of End of Month Job Applications (Demandes d’Emploi en Fin de Mois – DEFM) at the level of each detailed occupation. The indicator for the second criterion is the sum of OEE plus DEFM.
would not appear to be conspicuous. To address this issue, we calculated a histogram of the success rate (or the call-back rate) as a function of the sequence in which the 12 applications were sent out. If we were sending out too many applications, then we would expect to see a decreasing pattern indicative of diminishing returns – the ones that were sent last receiving fewer call-backs. The empirical pattern that we do discern, however, appears to be slightly uniform.

Table 1 shows the success rates for each profile for the same vacancies. Of the total number of applications sent, more than half (52.1%) received at least one favorable response, which reflects the high level of tension existing in this labor market (BAC + 5 computer scientists). Among French candidates, men residing in Sarcelles and women residing in Enghien and Sarcelles had the highest success rates (19.9%, 22.5% and 22.1%, respectively). Conversely, men who reside in Enghien or Villiers-le-Bel have lower success rates (16.9% and 18.6% respectively), as well as women in Villiers-le-Bel (17.9%). Among the candidates of Moroccan origin, women residing in Enghien had the highest success rate (19.5%), as did men in Enghien or Sarcelles (18.6% and 19.2%, respectively). Candidates of Moroccan origin with the lowest call-back rates are men residing in Villiers-le-Bel (17.3%) and women in Sarcelles (13.7%) and in Villiers-le-Bel (15%).

[Here Table 1]

5. The Empirical model

We seek to discern disparities in call-back rates over four dimensions: gender, ethnic origin, location, and degree of media exposure. We construct a probability components model for which the unit of observation is the cell into which candidates are grouped according to those criteria. The estimates for the disparities are generated as simple linear functions of the estimates of components and the interactions between them. Two of the components, origin and gender, reflect directly on the job seekers, while the other two pertain directly to the location. The first of these captures whether or not the neighborhood is advantaged or disadvantaged, while the second one consists of the media exposure or reputation effect. In order to express the probability for a worker characterized by ethnic

15 Details for both of these diagnostic histograms are provided in l’Horty et al. (2011).
origin \(o \), gender \(g \), location \(l \), and media exposure \(m \), we specify the following general equation with this nomenclature:

\[
P(o,g,l,m) = O(o) + G(g) + L(l) + M(m) + OG(o,g) + OL(o,l) + OM(o,m) + GL(g,l) + GM(g,m)
\]

The first four terms denote functions representing the first-order or direct effects: \(O \) for origin, \(G \) for gender, \(L \) for location, and \(M \) for media exposure. The remaining five terms denote functions representing the joint or the interacted effects: origin crossed with gender \((OG)\), origin crossed with location \((OL)\), origin crossed with media exposure \((OM)\), gender crossed with location \((GL)\), and gender crossed with media exposure \((GM)\). There are two codes for ethnic origin: French \((f)\) and Moroccan \((m)\). The codes for the gender attribute are \((m)\) for men and \((w)\) for women. The codes for the location attribute are advantaged \((a)\) and disadvantaged \((d)\), and for the degree of media exposure they are non-exposed \((n)\) and exposed \((e)\).

The three cities where the experiment was conducted have the following characteristics:

- Enghien-les-Bains: advantaged \((a)\) and no media exposure \((n)\). The total locational effect for this town is equal to: \(L(a) + M(n) \)

- Sarcelles: disadvantaged \((d)\) and no media exposure \((n)\). The total locational effect for this town is equal to: \(L(d) + M(n) \)

- Villiers-le-Bel: disadvantaged \((d)\) and considerable media exposure \((e)\) during the 2007 riots. The total locational effect for this town is \(L(d) + M(e) \)

The choice of the joint effects on which we focus is based on the following assertions. First, women of foreign origin could experience a degree of discrimination that is greater than the sum of the gender and origin discrimination coefficients (i.e. the \(OG \) effect, see Petit et al. (2013)). Second, it appeared that the media focused their coverage of the riots on events involving men of foreign origin residing in disadvantaged localities. In this context, the degree of discrimination that they face could be compounded by including the interacted effects of \(OL, OM, GL, \) and \(GM \) effects.

Given that the above equation is a fully saturated model, it is clear that the full model contains too many parameters to allow for an estimation of all of them. It is necessary to set identification constraints in order to estimate it - some of which can be tested. Some of these identification constraints are mere normalizations or conventions and thus do not raise concerns regarding
generality. For instance, since we are interested in estimating the degree of gender discrimination, the quantity $G(m) - G(w)$ will suffice. The individual components involving G need not be estimated separately; only one of these parameters needs to be estimated. On the other hand, there are instances in which constraints must be imposed on the data in order to attain identification, and not all the constraints can be tested for validity. Globally, however, we have more constraints than are required for the purposes of estimation, and thus our model is over-identified, and we can perform suitable over-identification tests.

The structure of our data set consists of a total of twelve distinct candidate profiles which we sent out to actual posted job offers, as mentioned above. These summary statistics are listed in Table 1, and they serve as our base values for estimating the following derived quantities of interest:

- gender discrimination: $\Delta G = G(m) - G(w)$
- origin discrimination: $\Delta O = O(f) - O(m)$
- location discrimination: $\Delta L = L(a) - L(d)$
- media exposure discrimination: $\Delta M = M(e) - M(n)$
- five interacted effects that reinforce or diminish the pure discrimination coefficients
 - women of Moroccan origin: $GO(w,m)$
 - Moroccan origin crossed with disadvantaged location: $OL(m,d)$
 - Moroccan origin crossed with media exposure: $OM(m,e)$
 - men residing in a disadvantaged location: $GL(m,d)$
 - men residing in an area exposed to the media: $GM(m,e)$.

Table 2 displays the structure of the probability components for each of the twelve distinct candidate profiles that are the subjects of our study. The total probability of receiving a callback for any candidate of given characteristics is equal to the sum all of the components which appear in that same row. For each one, the order is (origin, gender, neighborhood type, degree of media exposure).
and the nomenclature is as follows: f for French, m for Moroccan; w for woman, m for male; a for advantaged, d for disadvantaged; n for no media exposure, e for exposure. To give an example from the first row, the probability of a woman of French origin residing in Enghien of obtaining an interview is equal to \(P(f,w,a,n) = O(f) + G(w) + L(a) + M(n) \).

Based on the structure presented in Table 2, we are able to evaluate the parameters of interest employing either simple difference estimators or difference-in-differences estimators. The data values consist of the realized percentage of a group of candidates that received a call back. In order to estimate discrimination coefficients, we take the difference with our selected baseline case: French-origin males living in Enghien (i.e. advantaged French men with no media exposure, the case of \((f,m,a,n)\)). The relevant quantities consist of the differences in the success rates between the different groups and that baseline group. There are a total of eleven independent probability differences that can be related to the nine structural parameters as enumerated below.

1) \(\Delta(f,w,a,n) = p(f,m,a,n) - p(f,w,a,n) = G(m) - G(w) = \Delta G \) (French woman, advantaged town, no media exposure gives the pure gender effect).

2) \(\Delta(m,w,a,n) = p(f,m,a,n) - p(m,w,a,n) = O(f) - O(m) + G(m) - G(w) = \Delta O + \Delta G - OG(m,w) \) (Moroccan woman, advantaged town, no media exposure gives the gender effect compounded with the ethnicity effect).

3) \(\Delta(m,m,a,n) = p(f,m,a,n) - p(m,m,a,n) = O(f) - O(m) = \Delta O \) (Moroccan man, advantaged town, no media exposure gives the pure ethnicity effect)

4) \(\Delta(f,w,d,n) = p(f,m,a,n) - p(f,w,d,n) = G(m) - G(w) + L(a) - L(d) = \Delta G + \Delta L \) (French women, disadvantaged location gives gender effect compounded with location effect)

5) \(\Delta(f,m,d,n) = p(f,m,a,n) - p(f,m,d,n) = L(a) - L(d) + GL(m,d) = \Delta L - GL(m,d) \) (French man, disadvantaged location gives ethnicity effect compounded with the location effect)

6) \(\Delta(m,w,d,n) = p(f,m,a,n) - p(m,w,d,n) = O(f) - O(m) + G(m) - G(w) + L(a) - L(d) = \Delta O + \Delta G + \Delta L - OG(m,w) - OL(m,d) \) (Moroccan woman, disadvantaged location gives ethnicity effect compounded with the location effect and the gender effect)

7) \(\Delta(m,m,d,n) = p(f,m,a,n) - p(m,m,d,n) = O(f) - O(m) + L(a) - L(d) + OL(m,d) - GL(m,d) = \Delta O + \Delta L + OL(m,d) - GL(m,d) \) (Moroccan man, disadvantaged location gives ethnicity effect interacted with the location effect)

8) \(\Delta(f,w,d,e) = p(f,m,a,n) - p(f,w,d,e) = G(m) - G(w) + L(a) - L(d) + M(n) - M(e) = \Delta G + \Delta L + \Delta M \) (French women, disadvantaged location, media exposure gives gender effect compounded with the location effect compounded with the media exposure effect)
9) \[\Delta(f,m,d,e) = p(f,m,a,n) - p(f,m,d,e) = L(a) - L(d) + M(n) - M(e) - \Delta L + \Delta M - GL(m,d) - GM(m,e) \] (French man, disadvantaged location, media exposure gives location effect compounded with the media exposure effect)

10) \[\Delta(m,w,d,e) = p(f,m,a,n) - p(m,w,d,e) = O(f) - O(m) + G(m) - G(w) + L(a) - L(d) + M(n) - M(e) - OG(m,w) - OL(m,d) - OM(m,e) \] (Moroccan woman, disadvantaged location, media exposure gives ethnic effect compounded with gender effect compounded with location effect compounded with the media exposure effect)

11) \[\Delta(m,m,d,e) = p(f,m,a,n) - p(m,m,d,e) = O(f) - O(m) + L(a) - L(d) + M(n) - M(e) - OL(m,d) - OM(m,e) - GL(m,d) - GM(m,e) \] (Moroccan man, disadvantaged location, media exposure gives ethnic effect compounded with location effect compounded with the media exposure effect)

The entire empirical model, including the set of identification constraints, can be written in matrix form as follows: \(D = C * B \). \(D \) is an 11*1 column vector whose elements are the percent differences that are enumerated just above (i.e., the auxiliary parameters). \(C \) is an 11*9 matrix that imposes the constraints, and \(B \) the 9*1 vector whose elements are the parameters reflecting the discrepancies for which we seek direct estimates (i.e., the parameters of interest). More precisely:

\[
D' = [\Delta(f,w,a,n), \Delta(m,w,a,n), \Delta(m,m,a,n), \Delta(f,w,d,n), \Delta(f,m,d,n), \Delta(m,w,d,n), \Delta(m,m,d,n), \Delta(f,w,d,e), \Delta(f,m,d,e), \Delta(m,w,d,e), \Delta(m,m,d,e)]
\]

\[
B' = [\Delta O, \Delta G, \Delta L, \Delta M, OG(m,w), OL(m,d), OM(m,e), GL(m,d), GM(m,e)]
\]

\[
C = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\
1 & 1 & 1 & 0 & -1 & -1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & -1 & 0 & -1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & -1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & -1 & -1 & -1 & -1 \\
\end{bmatrix}
\]
Since the number of derived parameters (11) exceeds the number of structural parameters, the order condition for identification is fulfilled. With regards to the rank condition, C must be of rank 9 in order to ensure that C'C is of full rank. Given the actual values for the elements of C'C, computation using the SAS procedure IML gives a value of 40 for the det (C'C), so that our rank condition is fulfilled.

The technique of asymptotic least squares estimation is applied to our model following an approach set out in Gouriéroux, Monfort and Trognon (1982, 1985) and Chamberlain (1982, 1984). More precisely, we estimate \(\hat{D} = CB + u \), where \(u = \hat{D} - D \) is derived by replacing the theoretical probabilities with their empirical counterparts. Let \(\hat{V} = V(\hat{D}) \) be the estimated variance-covariance matrix for \(\hat{D} \). The optimal estimator of B, the vector of derived probabilities, is given by the feasible generalized least squares expression:

\[
\hat{B} = (C' \hat{V}^{-1} C)^{-1} C' \hat{V}^{-1} \hat{D},
\]

for which the variance-covariance matrix can be estimated by:

\[
\hat{V}(\hat{B}) = (C' \hat{V}^{-1} C)^{-1}.
\]

The statistic for assessing the condition of over-identification can be computed from the empirical counterpart of \(u \). Letting \(\hat{u} = \hat{D} - C \hat{B} \), we can test for over-identification using the statistic \(S = \hat{u}' \hat{V}^{-1} \hat{u} \), which has a chi-squared distribution with 2 (= 11 - 9) degrees of freedom. The results, which are reported at the bottom of the following table, indicate that the over-identification tests have high P-values, which is interpreted as evidence that the model is appropriate. In practice, the estimator that we obtain generalizes the differencing estimators to the over-identified case, which we demonstrate in the appendix.

We first estimate the model including all nine of the discrepancy parameters (specification model 1, Table 3). In order to create additional constraints, we omit these parameters having the highest p-values and re-estimate to generate (specification model 2).

[Here table 3]
Turning to the results, we first address the estimates for the four direct, first-order discrepancy parameters. There is no evidence of discrimination with respect to ethnic origin or to location. On the other hand, the estimates for the pure gender effect (second row) and the pure media exposure effect (fourth row) are statistically significant. All other factors held constant, women are 4 percentage points more likely to receive a call-back, while those residing in the area with high media exposure are 3.2 percentage points less likely to receive a callback.

We now turn to the estimates for the interaction terms. The first two that are listed work to increase the degree of discrimination, as their sign is negative. The value of -0.033 listed in row five suggests that women of foreign origin experience a handicap such that the advantage that they hold by virtue of being a woman is mostly offset due to being of Moroccan origin. The value of -0.040 listed in row six indicates that being of foreign origin and living in a disadvantaged area worsens discrimination by 4 percentage points.

On the other hand, the estimates of the remaining two interaction terms work to decrease the degree of discrimination, as their signs are positive. Being of Moroccan origin and residing in an area with unfavourable media exposure would reduce the degree of discrimination by 3.1 percentage points (row 8), but this estimate must be interpreted in conjunction with pure media exposure effect already mentioned. Living in a media-exposed area increases the degree of discrimination for everyone by 3.2 percentage points, but this effect is effectively offset for workers of Moroccan origin. It appears as though the negative effect of unfavourable media coverage impacts primarily candidates of French origin. Men living in disadvantaged suburbs suffer less from discrimination to the tune of 3.8 percentage points (row 8), but this counter-intuitive discrepancy is interpreted in relation to the pure gender effect. Overall, men are less favored than women in the labor market (-4 percentage points), but this discrepancy is compensated for by the effect of residing in an underprivileged area (3.8 percentage points). The upshot of those two estimates is that women lose their overall advantage over men when they live in disadvantaged areas.
6. Conclusion

We investigated a specific channel for effects of urban riots effects operating on the demand side of the labour market that would weigh heavily on the prospects of workers residing in affected areas, i.e. labour market discrimination based on locality. We assess the degree of potential discrimination using the “correspondence testing” technique with an experimental design. Our analysis is centered on the event of the riots of 2007 in France, which were both intense and very geographically concentrated in certain municipalities situated in the department of Val d’Oise. The town of Villiers-le-Bel serves as our treatment unit, as it received a high degree of unfavourable media exposure. We selected two other nearby towns, Sarcelles and Enghien-les-Bains, to serve as control groups. Sarcelles is contiguous to Villiers-le-Bel, has a similar socio-economic-demographic profile, and was affected by the violence without attracting much media attention. Like Villiers-le-bel, it is considered to be disadvantaged, whereas Enghien-les-Bains is viewed as very advantaged and was isolated from riot activity.

We discerned disparities in call-back rates over four dimensions: gender, ethnic origin, location, and the degree of media exposure during the riots. We decomposed the probability of receiving a callback for any candidate of given characteristics as the sum of several components, some of which reflect simple, one-way effects and others reflecting interacted effects. Those parameters measuring the degree of discrimination have been evaluated through simple difference estimators as well as difference-in-differences estimators computed by the estimation technique of asymptotic least squares.

Our findings confirm that riots can have significant consequences on the labor market outcomes in the form of discrimination for workers having certain characteristics, and that these effects differ according to gender and ethnic origin. Specifically, we uncovered statistically significant negative effects related to pure media exposure effect. All other factors held constant, people residing in the area affected by riots and who were the subject of negative media coverage are 3.2 percentage points less likely to receive a callback. There is an empirical pattern underlying this discrepancy, namely that men of Moroccan origin, who incidentally are featured the most in the media coverage of
the riots, are the least affected by the pure media-coverage effect. On the other hand, it is women of French origin residing in that town that have been the most negatively affected by it.
References

This appendix shows another approach to deal with the over-identification issue that is inherent in our estimation procedure. Instead of computing the rank of the identification matrix, we derive an explicit way to get at the parameters of interest. This approach relies heavily on calculating differences in differences, which have an intuitive interpretation.

Gender discrimination. This particular quantity can be measured by comparing the call-back rates of men and women residing in the town of Enghien, which serves as our reference case, i.e. an advantaged town that did not experience unfavourable media coverage, netting out the effect of ethnic origin. Based on the assumption that there is no joint effect for the workers of French origin living in Enghien, we obtain the following estimator for the degree of gender discrimination:

\[(1) \ p(f,m,a,n) – p(f,w,a,n) = G(m) – G(w)\]

Origin discrimination. Enghien can also serve as a suitable benchmark for deriving the direct effect related to ethnic origin. A comparison of the male candidates (holding the other three factors constant) yields a measure of the degree of discrimination by ethnic origin.

\[(2) \ p(f,m,a,n) – p(m,m,a,n) = O(f) – O(m)\]

Origin-gender joint discrimination. Comparing the female candidates of both ethnic origins, while holding the other three factors constant, we obtain:

\[\begin{align*}
p(m,w,a,n) – p(f,w,a,n) &= O(m) – O(f) + OG(m,w) \\
p(m,w,a,n) – p(f,w,a,n) &= p(f,m,a,n) - [p(m,m,a,n) – p(f,m,a,n)] \\
&= p(f,m,a,n) - p(f,w,a,n) - [p(m,m,a,n) - p(m,w,a,n)]
\end{align*}\]

The joint effect of being a Moroccan-origin women is estimated by comparing the difference of treatment between men and women of French origin with the difference of treatment between men and women of Moroccan origin.

Gender-Location joint discrimination. In order to assess this effect, we need to incorporate information about disadvantaged towns. We take the town of Sarcelles as the baseline case because it is considered to be disadvantaged, but it was not the subject of adverse media coverage. Comparing the French-origin candidates by gender, we first obtain:

\[\begin{align*}
p(f,m,d,n) – p(f,w,d,n) &= G(m) – G(w) + GL(m,d) \\
p(f,m,d,n) – p(f,w,d,n) &= p(f,m,a,n) – p(f,w,a,n)
\end{align*}\]

Making a substitution from equation (1), we obtain the following expression:

\[(4) \ GL(m,u) = p(f,m,d,n) – p(f,w,d,n) – [p(f,m,a,n) – p(f,w,a,n)]\]

In this case we rely on the difference between the advantaged towns (on the right) and the disadvantaged towns (on the left) in the gender treatment differences.

Origin-Location joint discrimination. In this instance we still take the town of Sarcelles as the baseline case, but we now compare the two male candidates in order to incorporate the ethnic origin information:

\[\begin{align*}
p(m,m,d,n) – p(f,m,d,n) &= O(m) – O(f) + OL(m,d)
\end{align*}\]
Substituting from equation (2) and rearranging, we obtain:

\[(5) \ OL(m,u) = p(f,m,a,n) - p(m,m,a,n) - [p(f,m,d,n) - p(m,m,d,n)]\]

This expression consists of a comparison of the ethnic origin treatment difference between advantaged and disadvantaged towns.

Location discrimination: The estimation of this effect can be obtained simply by comparing the success rates of the French-origin female candidates, since we assume that they are not affected by joint discrimination effects. Comparing the outcomes from the towns of Sarcelles and Enghien, we obtain:

\[(6) \ p(f,w,a,n) - p(f,w,d,n) = L(a) - L(d)\]

Media discrimination: In a process that is symmetric to the derivation of equation (6), we compare the callback rates for French-origin female candidates between the disadvantaged towns of Sarcelles (no unfavorable coverage) and Villiers (unfavorable coverage).

\[(7) \ p(f,w,d,e) - p(f,w,d,n) = M(e) - M(n)\]

We can now obtain the two remaining joint effects, namely ethnic origin-media exposure and gender-media exposure.

Origin-media exposure joint discrimination: We compare the call-back rates for Moroccan-origin females between the towns of Villiers and Sarcelles:

\[(8) \ p(m,w,d,e) - p(m,w,d,n) = M(e) - M(n) + OM(m,e)\]

Substituting from equation (7) and rearranging, we obtain:

\[OM(m,e) = p(m,w,d,e) - p(m,w,d,n) - [p(f,w,d,e) - p(f,w,d,n)]\]

In this equation we compare the difference of treatment among the Moroccan-origin women between the two towns with the difference of treatment among French-origin women between the same two towns.

Gender-media discrimination: The final measure that we derive involves the interacted effects of gender and unfavourable media exposure. To this end we carry out two comparisons, the first of which involves Moroccan male candidates in the towns of Villiers (unfavourable exposure) and Sarcelles:

\[(9a) \ p(m,m,d,e) - p(m,m,d,n) = M(e) - M(n) + OM(m,e) + GM(m,e)\]

Substituting from equation (8) for the first three terms on the right-hand side, we obtain:

\[GM(m,e) = p(m,m,d,e) - p(m,m,d,n) - [p(m,w,d,e) - p(m,w,d,n)]\]. This expression gives the difference in treatment between Moroccan-origin males in Villiers and Sarcelles with the treatment difference between Moroccan-origin females in the same two towns.

Now consider the corresponding effect for French-origin men:

\[p(f,m,d,e) - p(f,m,d,n) = M(e) - M(n) + GM(m,e)\]

Substituting from equation (7), the counterpart for equation (9a) is expressed as:

\[(9b) \ GM(m,e) = p(f,m,d,e) - p(f,m,d,n) - [p(f,w,d,e) - p(f,w,d,n)]\]
This equation creates an over-identification restraint.
Map 1. Geographical Location of the treatment area (Villiers-le-Bel) and the control areas (Sarcelles and Enghien-les-bains)

Source: Administrative map of the Paris region
Figure 1. Times series data on the number of “Google hits” for the three areas
Table 1: Call back rates

<table>
<thead>
<tr>
<th></th>
<th>Favourable response rate</th>
<th>t-statistic</th>
<th>90% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower bound</td>
</tr>
<tr>
<td>French Origin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>women:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enghien</td>
<td>22.5%**</td>
<td>9.39</td>
<td>18.6%</td>
</tr>
<tr>
<td>Sarcelles</td>
<td>22.1%**</td>
<td>9.31</td>
<td>18.2%</td>
</tr>
<tr>
<td>Villiers-le-Bel</td>
<td>17.9%**</td>
<td>8.23</td>
<td>14.3%</td>
</tr>
<tr>
<td>men:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enghien</td>
<td>16.9%**</td>
<td>7.95</td>
<td>13.4%</td>
</tr>
<tr>
<td>Sarcelles</td>
<td>19.9%**</td>
<td>8.76</td>
<td>16.3%</td>
</tr>
<tr>
<td>Villiers-le-Bel</td>
<td>18.6%**</td>
<td>8.40</td>
<td>15.0%</td>
</tr>
<tr>
<td>Moroccan Origin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>women:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enghien</td>
<td>19.5%**</td>
<td>8.71</td>
<td>16.0%</td>
</tr>
<tr>
<td>Sarcelles</td>
<td>13.7%**</td>
<td>6.96</td>
<td>10.4%</td>
</tr>
<tr>
<td>Villiers-le-Bel</td>
<td>15.0%**</td>
<td>7.31</td>
<td>11.7%</td>
</tr>
<tr>
<td>men:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enghien</td>
<td>18.6%**</td>
<td>8.45</td>
<td>15.0%</td>
</tr>
<tr>
<td>Sarcelles</td>
<td>19.2%**</td>
<td>8.58</td>
<td>15.6%</td>
</tr>
<tr>
<td>Villiers-le-Bel</td>
<td>17.3%**</td>
<td>7.96</td>
<td>13.7%</td>
</tr>
<tr>
<td>Global positive response rate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Percentage of offers for which fictitious candidates received at least positive response.

The t-statistics and the confidence intervals were calculated by the bootstrapping method executed over 10,000 trials; * significant at the 10% level; ** significant at the 5% level.
Table 2: Probabilities components

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Origin</th>
<th>Gender</th>
<th>Location</th>
<th>Media</th>
<th>Origin* gender</th>
<th>Origin* location</th>
<th>Origin* media</th>
<th>Gender* location</th>
<th>Gender* media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town of Enghien</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French, woman</td>
<td>O(f)</td>
<td>G(w)</td>
<td>L(a)</td>
<td>M(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (f,w,a,n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French, man</td>
<td>O (f)</td>
<td>G(m)</td>
<td>L(a)</td>
<td>M(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (f,m,a,n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morroccan, woman</td>
<td>O(m)</td>
<td>G(w)</td>
<td>L(a)</td>
<td>M(n)</td>
<td>OG(m,w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (m,w,a,n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morroccan, man</td>
<td>O(m)</td>
<td>G(m)</td>
<td>L(a)</td>
<td>M(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (m,m,a,n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Town of Sarcelles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French, woman</td>
<td>O(f)</td>
<td>G(w)</td>
<td>L(d)</td>
<td>M(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GL(m,d)</td>
</tr>
<tr>
<td>P (f,w,d,n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French, man</td>
<td>O (f)</td>
<td>G(m)</td>
<td>L(d)</td>
<td>M(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GL(m,d)</td>
</tr>
<tr>
<td>P (f,m,d,n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morroccan, woman</td>
<td>O(m)</td>
<td>G(w)</td>
<td>L(d)</td>
<td>M(n)</td>
<td>OG(m,w)</td>
<td>OL(m,d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (m,w,d,n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morroccan, man</td>
<td>O(m)</td>
<td>G(m)</td>
<td>L(d)</td>
<td>M(n)</td>
<td>OL(m,d)</td>
<td>GL(m,d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (m,m,d,n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Town of Villiers-le-Bel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French, female</td>
<td>O(f)</td>
<td>G(w)</td>
<td>L(d)</td>
<td>M(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (f,w,d,e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French, male</td>
<td>O (f)</td>
<td>G(m)</td>
<td>L(d)</td>
<td>M(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GL(m,d)</td>
</tr>
<tr>
<td>P (f,m,d,e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GM(m,e)</td>
</tr>
<tr>
<td>Morroccan, female</td>
<td>O(m)</td>
<td>G(w)</td>
<td>L(d)</td>
<td>M(e)</td>
<td>OG(m,w)</td>
<td>OL(m,d)</td>
<td>OM(m,e)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (m,w,d,e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morroccan, man</td>
<td>O(m)</td>
<td>G(m)</td>
<td>L(d)</td>
<td>M(e)</td>
<td>OL(m,d)</td>
<td>OM(m,e)</td>
<td>GL(m,d)</td>
<td>GM(m,e)</td>
<td></td>
</tr>
<tr>
<td>P(m,m,d,e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>Estimation</td>
<td>Standard error</td>
<td>P value</td>
<td>Estimation</td>
<td>Standard error</td>
<td>P value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ O</td>
<td>-0.011</td>
<td>0.022</td>
<td>0.614</td>
<td>-0.040</td>
<td>0.019</td>
<td>0.035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ G</td>
<td>-0.051</td>
<td>0.022</td>
<td>0.019</td>
<td>-0.040</td>
<td>0.019</td>
<td>0.035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ L</td>
<td>0.010</td>
<td>0.021</td>
<td>0.641</td>
<td>0.032</td>
<td>0.015</td>
<td>0.033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ M</td>
<td>0.031</td>
<td>0.019</td>
<td>0.109</td>
<td>0.031</td>
<td>0.020</td>
<td>0.127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OG (m,f)</td>
<td>-0.042</td>
<td>0.022</td>
<td>0.060</td>
<td>-0.033</td>
<td>0.017</td>
<td>0.059</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OL (m,u)</td>
<td>-0.040</td>
<td>0.024</td>
<td>0.088</td>
<td>-0.040</td>
<td>0.016</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM (m,e)</td>
<td>0.026</td>
<td>0.022</td>
<td>0.233</td>
<td>0.031</td>
<td>0.020</td>
<td>0.127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL (m,u)</td>
<td>0.045</td>
<td>0.026</td>
<td>0.083</td>
<td>0.038</td>
<td>0.022</td>
<td>0.079</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM (m,e)</td>
<td>0.005</td>
<td>0.022</td>
<td>0.836</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constraints</td>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1.73</td>
<td></td>
<td></td>
<td>2.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.42</td>
<td></td>
<td></td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17-2. Does practicing literacy skills improve academic performance in first-year university students? Results from a randomized experiment
Estelle Bellity, Fabrices Gilles, Yannick L'Horty

17-1. Raising the take-up of social assistance benefits through a simple mailing: evidence from a French field experiment
Sylvain Chareyron, David Gray, Yannick L'Horty
16-8. Endogenous wage rigidities, human capital accumulation and growth
Ahmed Tritah

16-7. Harder, better, faster...yet stronger? Working conditions and self-declaration of chronic diseases
Eric Defebvre

16-6. The influence of mental health on job retention
Thomas Barnay, Eric Defebvre

16-5. The effects of breast cancer on individual labour market outcomes: an evaluation from an administrative panel
Thomas Barnay, Mohamed Ali Ben Halima, Emmanuel Duguet, Christine Le Clainche, Camille Regaert

16-4. Expectations, Loss Aversion, and Retirement Decisions in the Context of the 2009 Crisis in Europe
Nicolas Sirven, Thomas Barnay

16-3. How do product and labor market regulations affect aggregate employment, inequalities and job polarization? A general equilibrium approach
Julien Albertini, Jean-Olivier Hairault, François Langot, Thepthida Sopraseuth

16-2. Access to employment with age and gender: results of a controlled experiment
Laetitia Challe, Florent Fremigacci, François Langot, Yannick L'Horty, Loïc Du Parquet, Pascale Petit

16-1. An evaluation of the 1987 French Disabled Workers Act: Better paying than hiring
Thomas Barnay, Emmanuel Duguet, Christine Le Clainche, Yann Videau
Kory Kroft, Kavan Kucko, Etienne Lehmann, Johannes Schmieder

15-9. Search frictions and (in) efficient vocational training over the life-cycle
Arnaud Chéron, Anthony Terriau

15-8. Absenteeism and productivity: the experience rating applied to employer contributions to health insurance
Sébastien Ménard, Coralia Quintero Rojas

15-7. Take up of social assistance benefits: the case of homeless
Sylvain Chareyron

15-6. Spatial mismatch through local public employment agencies. Answers from a French quasi-experiment
Mathieu Bunel, Elisabeth Tovar

15-5. Transmission of vocational skills at the end of career: horizon effect and technological or organisational change
Nathalie Greenan, Pierre-Jean Messe

15-4. Protecting biodiversity by developing bio-jobs: A multi-branch analysis with an application on French data
Jean De Beir, Céline Emond, Yannick L'Horty, Laetitia Tuffery

Noélie Delahaie, Richard Duhautois

15_2. A meta-regression analysis on intergenerational transmission of education: publication bias and genuine empirical effect
Nicolas Fleury, Fabrice Gilles

15_1. Why are there so many long-term unemployed in Paris?
Yannick L'Horty, Florent Sari
14-14. Hiring discrimination based on national origin and the competition between employed and unemployed job seekers
Guillaume Pierné

Loïc Du Parquet, Emmanuel Duguet, Yannick L'Horty, Pascale Petit

14-12. Residential discrimination and the ethnic origin: An experimental assessment in the Paris suburbs
Emmanuel Duguet, Yannick L'Horty, Pascale Petit

14-11. Discrimination based on place of residence and access to employment
Mathieu Bunel, Yannick L'Horty, Pascale Petit

Claire Salmon, Jeremy Tanguy

14-9. Effects of immigration in frictional labor markets: theory and empirical evidence from EU countries
Eva Moreno-Galbis, Ahmed Tritah

Thomas Barnay

Philippe Adair, Youghourta Bellache

14-6. Does care to dependent elderly people living at home increase their mental health?
Thomas Barnay, Sandrine Juin

14_5. The Effect of Non-Work Related Health Events on Career Outcomes: An Evaluation in the French Labor Market
Emmanuel Duguet, Christine le Clainche

14_4. Retirement intentions in the presence of technological change: Theory and evidence from France
Pierre-Jean Messe, Eva Moreno – Galbis, Francois-Charles Wolff

14_3. Why is Old Workers’ Labor Market more Volatile? Unemployment Fluctuations over the Life-Cycle
Jean-Olivier Hairault, François Langot, Thepthida Sopraseuth

14_2. Participation, Recruitment Selection, and the Minimum Wage
Frédéric Gavrel

14_1. Disparities in taking sick leave between sectors of activity in France: a longitudinal analysis of administrative data
Thomas Barnay, Sandrine Juin, Renaud Legal
Nicolas Fleury, Fabrice Gilles

13_8. On the value of partial commitment for cooperative investment in buyer-supplier relationship
José de Sousa, Xavier Fairise

13-7. Search frictions, real wage rigidities and the optimal design of unemployment insurance
Julien Albertini, Xavier Fairise

13-6. Tax me if you can! Optimal non linear income tax between competing governments
Etienne Lehmann, Laurent Simula, Alain Trannoy

13-5. Beyond the labour income tax wedge: The unemployment-reducing effect of tax progressivity
Etienne Lehmann, Claudio Lucifora, Simone Moriconi, Bruno Van Der Linden

13-4. Discrimination based on place of residence and access to employment
Mathieu Bunel, Emilia Ene Jones, Yannick L’Horty, Pascale Petit

12-3. The determinants of job access channels: evidence from the youth labor market in Franc
Jihan Ghrairi

13-2. Capital mobility, search unemployment and labor market policies: The case of minimum wages
Frédéric Gavrel

13-1. Effort and monetary incentives in Nonprofit et For-Profit Organizations
Joseph Lanfranchi, Mathieu Narcy
The CNRS Institute for Labor Studies and Public Policies (the TEPP Institute, FR n°3435 CNRS) gathers together research centres specializing in economics and sociology:

- L’Equipe de Recherche sur l’Utilisation des Données Individuelles en lien avec la Théorie Economique (Research Team on Use of Individuals Data in connection with economic theory), ERUDITE, University of Paris-Est Créteil and University of Paris-Est Marne-la-Vallée
- Le Centre d’Etudes des Politiques Economiques de l’université d’Evry (Research Centre focused on the analysis of economic policy and its foundations and implications), EPEE, University of Evry Val d’Essonne
- Le Centre Pierre Naville (Research on Work and Urban Policies), CPN, University of Evry Val d’Essonne
- Le Groupe d’Analyse des Itinéraires et des Niveaux Salariaux (Group on Analysis of Wage Levels and Trajectories), GAINS, University of the Maine
- Le Centre de Recherches en Economie et en Management, (Research centre in Economics and Management), CREM, University of Rennes 1 et University of Caen Basse-Normandie
- Le Groupe de Recherche ANgevin en Économie et Management (Angevin Research Group in Economics and Management), GRANEM, University of Angers ;
- Le Centre de Recherche en Economie et Droit (Research centre in Economics and Law) CRED, University of Paris II Panthéon-Assas ;
- Le Laboratoire d'Economie et de Management Nantes-Atlantique (Laboratory of Economics and Management of Nantes-Atlantique) LEMNA, University of Nantes ;
- Le Laboratoire interdisciplinaire d'étude du politique Hannah Arendt – Paris Est, LIPHA-PE

The TEPP Institute brings together 190 researchers and research professors and 140 PhD students who study changes in work and employment in relation to the choices made by firms and analyse public policies using new evaluation methods.

www.tepp.eu