Cue weighting after a tone-split in Tamang (Tibeto-Burman, Nepal) A perception study of stop initial words
Martine Mazaudon, Jiayin Gao

To cite this version:

HAL Id: halshs-01822307
https://halshs.archives-ouvertes.fr/halshs-01822307
Submitted on 24 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright
Introduction

- Tamang: close to Tibetan. = 2000K speakers.
- A transphonologization: Tone split (general pattern) [+voiced] > H (+ modal) vs. L (+ breathy)

<table>
<thead>
<tr>
<th>Initial C</th>
<th>Old > modern</th>
<th>Height</th>
<th>Tone split</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, pʰ</td>
<td>s</td>
<td>*m > m, *n > l</td>
<td>high</td>
</tr>
<tr>
<td>*p > p [p–b–b]</td>
<td>*s > s</td>
<td>m, l</td>
<td>low</td>
</tr>
</tbody>
</table>

NB: Voicing contrast totally disappeared on continuants in Tamang: [l, n, r, j] always voiced [s] always voiceless

(FIGURED SLOPES AT TIME OF SPLIT ARE SYMBOLIC: PHONETIC VALUE UNKNOWN)
- Cessychrony consequence in Risiangku Tamang (a conservative Tamang dialect): multiple cues used in production of tones
- Production data using electrolaryngograph (Mazaudon & Michaud 2008): (higher open quotient (OQ) => breathier voice)
 - 20% token plosives Ci prevoicing on low tones (0% on high tones)
 - lower F0 and breathier voice on low tones
 - some inter-speaker tradeoff relation between low F0 and breathiness

<table>
<thead>
<tr>
<th>Fig1. F0 curves</th>
<th>Fig2. OQ curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average across the 5 speakers</td>
<td>Average across the 5 speakers</td>
</tr>
</tbody>
</table>

This study

Research question

- What is the contribution of the older cues in tone perception?
 - CI prevoicing: marginal in production of plosive CI
 - Breathiness: secondary/enhancing cue of low F0 (see Kuang & Liberman 2015)

Method

- Who: 28 participants (14M + 14F, mean age: 49, from 33 to 79)
- Where: Kathmandu and Risiangku village of Nepal
- What: synthesized stimuli
 - Carrier sentence /tsu X-psi/ ‘This is X’ (A) or ‘Someone X’s this’ (V)
 - Forced choice among 4 pictures
 - ‘pa-pa ‘thin’; ‘pa-pa ‘harsh’; ‘pa-pa ‘bring’; ‘pa-pa ‘pile up’
 - NB: Perfect quadruplet with a plain stop => target words have a vowel length difference (ambiguous vowel duration was used in all stimuli)
- Variables: 4 * 2 * 3 * 2 * 2 = 96 stimuli (already too long for some older villagers)
- Synthesized parameters
 - F0 onset
 - Prevoiced
 - Voice quality of V1
 - V1 slope
 - V2 slope
 - 115 Hz
 - 130 Hz
 - 145 Hz
 - 160 Hz
 - Yes/prevoiced +modal
 - H (H1-H2 = 2.5dB)
 - No/standing
 - H (H1-H2 = 7dB)
 - Rising (+10Hz)
 - Falling (−20Hz)
 - Rising (+5Hz)
 - Falling (−15Hz)

Based on glottal opening degree settings in VocalTractLab (Birkholz)

Results

- Ci prevoicing, although rare in production, carries the decision for Low tone in perception (>50%) whatever the associated feature (H/L pitch or Voice quality)
- RT > if high F0 contradicts Ci prevoicing
- Fastest RT for lowest F0+breathy, whatever Ci prevoicing
- Modal voice has become associated with high tone (congruent H + Modal => fastest RT); clashing L + Modal => 60% H responses
- Breathy voice does not prevent high tone identification in %, but slows down the RT, esp. if the pitch if not Highest

Discussion

- Old features/cues continue to be used in production
- H/L emphasized in this study, because of historical perspective, but each of the 4 tones has its profile: e.g., T3 is breathier and has higher pitch than T4. (Hence, perception results are also influenced by properties other than the 4 tones has its profile: e.g., T3 is breathier and has higher pitch than T4. (Hence, perception results are also influenced by properties other than H/L pitch or Voice quality)
- CI prevoicing: very important in perception, although de-phonologized, and currently marginal in production
- Voice quality: important, esp. when the other two cues are conflicting

Ci prevoicing: most important in perception, main component of the tone

F0: most important in perception, main component of the tone

<table>
<thead>
<tr>
<th>F0 onsets</th>
<th>CI prevoiced</th>
<th>Voice Quality of V1</th>
<th>CI prevoiced</th>
<th>Voice Quality of V1</th>
</tr>
</thead>
<tbody>
<tr>
<td><=130 Hz</td>
<td>yes</td>
<td>rising</td>
<td>yes</td>
<td>rising</td>
</tr>
<tr>
<td>>130 Hz</td>
<td>no</td>
<td>falling</td>
<td>no</td>
<td>falling</td>
</tr>
</tbody>
</table>

Based on glottal opening degree settings in VocalTractLab (Birkholz)

1. Lacito (CNRS-LabEx EFL), 2Sophia University, 3JSPS

Figure 1. F0 curves

Figure 2. OQ curves