Classifying patents based on their semantic content

Abstract : In this paper, we extend some usual techniques of classification resulting from a large-scale data-mining and network approach. This new technology, which in particular is designed to be suitable to big data, is used to construct an open consolidated database from raw data on 4 million patents taken from the US patent office from 1976 onward. To build the pattern network , not only do we look at each patent title, but we also examine their full abstract and extract the relevant keywords accordingly. We refer to this classification as semantic approach in contrast with the more common technological approach which consists in taking the topology when considering US Patent office technological classes. Moreover, we document that both approaches have highly different topological measures and strong statistical evidence that they feature a different model. This suggests that our method is a useful tool to extract endogenous information.
Type de document :
Article dans une revue
PLoS ONE, Public Library of Science, 2017, 12 (4), 〈10.1371/journal.pone.0176310〉
Liste complète des métadonnées

Littérature citée [48 références]  Voir  Masquer  Télécharger

https://halshs.archives-ouvertes.fr/halshs-01788574
Contributeur : Juste Raimbault <>
Soumis le : mercredi 9 mai 2018 - 11:08:41
Dernière modification le : lundi 11 juin 2018 - 10:21:53
Document(s) archivé(s) le : lundi 24 septembre 2018 - 10:37:42

Fichier

journal.pone.0176310.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Antonin Bergeaud, Yoann Potiron, Juste Raimbault. Classifying patents based on their semantic content. PLoS ONE, Public Library of Science, 2017, 12 (4), 〈10.1371/journal.pone.0176310〉. 〈halshs-01788574〉

Partager

Métriques

Consultations de la notice

46

Téléchargements de fichiers

55