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Abstract

For static panel data models that include endogenous time-invariant variables corre-
lated with individual effects, exogenous averages over time of time-varying variables can
be internal instruments. To pretest their exogeneity, we first estimate a random effects
model that includes all averages over time of time-varying variables (Mundlak, 1978; Kr-
ishnakumar, 2006). Internal instruments are then selected if their parameter is statistically
different from zero (Mundlak, 1978; Hausman and Taylor, 1981). Finally, we estimate a
Hausman-Taylor (1981) model using these internal instruments. We then evaluate the bi-
ases of currently used alternative estimators in a Monte-Carlo simulation: repeated between,
ordinary least squares, two-stage restricted between, Oaxaca-Geisler estimator, fixed effect
vector decomposition, and random effects (restricted generalized least squares).
JEL classification numbers: C01, C22, C23.
Keywords: Time-invariant variables, panel data, pretest estimator, instrumental vari-

ables, Mundlak estimator, Hausman-Taylor estimator.

1 Introduction

Panel data have a time-series and a cross-sectional dimension, but in some studies one or several
relevant explanatory variables are time-invariant. Examples of key time-invariant variables are
geographical distance for cross-country data in gravity models of foreign trade and foreign
direct investments (Serlenga and Shin, 2007); years of schooling, gender, and race when testing
Mincer’s wage equation using survey data (Hausman and Taylor, 1981); colonial, legal, or
political systems; international conflicts; institutional and governance indicators; and initial
gross domestic product per capita when testing the convergence of incomes in growth regressions.
These variables are often highly relevant and have a high expected correlation with a cross-
sectional and time-varying dependent variable in the cross-sectional dimension.

For static panel data models that include endogenous time-invariant variables correlated
with individual effects, exogenous averages over time of time-varying variables can be internal
instruments. If the number of exogenous internal instruments is at least equal to the number of
endogenous time-invariant variables, Hausman and Taylor’s (1981) estimator can be applied (for
example, Goh and Tham, 2013; Bouvatier, 2014). This estimator assumes that the practitioner
knows which averages over time of time-varying explanatory variables are not correlated with
individual effects.
∗Acknowledgements: We thank two anonymous referees for very helpful comments. We thank William Greene

for helpful comments on a previous draft of this paper, see also Greene (2012), section 11.4.5. This paper is
forthcoming in Economic Modelling.
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However, practitioners rarely know whether a given time-varying explanatory variable is not
correlated with individual random effects. Without a pretest for the exogeneity of internal in-
struments, the Hausman-Taylor estimator faces potential endogeneity bias by wrongly assuming
that all internal instruments are exogenous.

Practitioners may also have too many sets of internal instruments available. For example,
Greene (2012, Chapter 11) evaluates the returns to schooling using Mincer’s wage equation.
The unique endogenous time-invariant variable (g2 = 1) is each individual’s years of education.
The baseline equation includes k = 9 time-varying explanatory variables. Their average over
time allows up to k = 9 internal instruments for the returns to schooling for the Hausman-
Taylor estimate. Without a pretest for selecting which subset of 1 ≤ k1 of internal instruments
includes variables that are not correlated with individual effects, the researcher is left with too
many choices of instruments sets. When varying the sets of internal instruments, there are no

fewer than
i=k1=9∑
i=g2=1

(
9
i

)
= 29 − 1 = 511 Hausman-Taylor estimates of the returns to schooling.

Therefore, this paper proposes an instrument selection procedure using Hausman (1978)
pretests of the endogeneity of each time-varying regressor. The practitioner computes the aver-
age over time of all time-varying variables. In the first step, he runs a random effects estimator
that includes all time-varying variables, all time-invariant variables, and, most importantly, all
averages over time of all time-varying variables (Mundlak, 1978; Krishnakumar’s (2006) esti-
mator). The practitioner selects as internal instruments the subset of 0 ≤ k1 ≤ k averages
over time of time-varying explanatory variables that do not reject the null hypothesis of exo-
geneity according to Hausman’s (1978) test. If the number of selected instruments is at least
equal to the number of endogenous time-invariant variables (k1 ≥ g2), the practitioner runs a
Hausman-Taylor (1981) estimation using these k1 internal instruments.

For the first regression, Mundlak (1978) proved that the estimator of the parameter related to
the average over time of time-varying variables corresponds to the difference between the within
estimator (which is not biased because of endogeneity) and the between estimator (which may
be biased because of endogeneity). Hausman and Taylor (1981) demonstrated that testing the
null hypothesis of the equality between the within estimator and the between estimator allows
us to test the null hypothesis of the correlation between individual random effects and a given
explanatory variable. Greene (2012, Section 11.5.6) presents an example of a Hausman (1978)
test using Mundlak’s (1978) estimator (p. 381). Hausman and Taylor (1981, p. 1382) and
Krishnakumar (2006, Section 5.2) confirms that Hausman specification tests are carried out in
the same manner whether time-invariant variables are present or not. Guggenberger (2010)
completed the theoretical analysis of the statistical properties of Hausman’s (1978) pretest for
fixed versus random effects in the case of a single instrument.

A robustness check may use an upward testing procedure for instrument selection (Andrews,
1999; Chatelain, 2007) that tests a sequence of joint null hypotheses of an increasing number of
parameters of the average over time of time varying variables. For example, if two parameters
are individually not statistically different from zero for each of their individual Hausman tests,
the upward testing procedure will also test the joint hypothesis that both parameters are simul-
taneously equal to zero. It is often the case that this joint null hypothesis will not be rejected if
each of the two individual null hypotheses has been rejected. The theoretical background that
justifies upward testing procedures for selecting instrumental variables can be found in Andrews
(1999).

We compute the theoretical determinants of the biases of the estimated parameters and
the estimated standard errors of several alternative estimators used by practitioners: repeated
between, ordinary least squares, two-stage restricted between, Oaxaca-Geisler estimator, fixed
effect vector decomposition, and restricted generalized least squares (random effects) (Greene,
2010, 2012). First, an omitted variable bias on the estimated parameter may occur due to an
omitted average over time of endogenous time-varying variables.
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Second, the estimator of the standard error of the parameters of time-invariant variables may
be biased because of an excessive weight on within-mean square error and on within-degrees of
freedom (depending on the time dimension T ). Since a time-invariant variable has no variance
in the time direction, it can only explain the variance of a time- and individual-varying variable
in its individual direction. The reason it matters for inference is because "the effect of a random
component can only be averaged out if the sample increases in the direction of that random (time
or individual) component" (Kelejian and Stephan, 1983; see also Greene, 2012, pp. 404-411;
Hsiao, 2014, pp. 58-64). For example, the pooled ordinary least squares (OLS) estimator
with time-invariant explanatory variables uses the dimension NT when drawing inferences on
time-invariant variables.

Finally, Guggenberger’s (2010) Monte Carlo design for evaluation of the Hausman (1978)
pretest for fixed versus random effects with a single instrument is extended to the case of the
Hausman (1978) pretest for Hausman and Taylor (1981) in this paper. It presents the results of
a Monte Carlo simulation that investigates the small-sample characteristics of the pretest and
compares them with other available estimators.

The paper proceeds as follows. Section 2 defines the pretest estimator and compares it
with alternative estimators used in panel data estimations. Section 3 describes the design of the
Monte Carlo simulation, and Section 4 presents the results of this simulation for nine estimators
including the pretest. Section 5 concludes.

2 A pretest estimator including time-invariant variables and
correlated individual effects

2.1 The model

The static model of time-series cross-section regression estimates the following equation:

y = Xβ + (IN ⊗ eT )Zγ + (IN ⊗ eT )α+ ε , (1)

where the NT × 1 vector y = [yit] denotes the endogenous variable. Observations are ordered
first by individual and then (in case of equality) by time. Subscripts indicate variation over
individuals (i = 1, ..., N) and time (t = 1, ..., T ). β is a k × 1 vector and γ is a g × 1 vector of
coeffi cients associated with time-varying and time-invariant observable variables, respectively.
X is a NT × k matrix of full rank with rows Xit of cross-sections time-series data. eT is T × 1
vector of ones and ⊗ is the Kronecker product. The vector (IN ⊗ eT )α and each column of
(IN ⊗ eT )Z are NT vectors having blocks of T identical entries within each individual i =
1, ..., N . Z is a N × g matrix of full rank with rows Zi for g time-invariant variables. The
constant can be included in the matrix of time-invariant variables, in which case Z1it = 1; it is
also individual invariant. The disturbances εit are assumed to be uncorrelated with the columns
of (X,Z, α) and have zero mean E (ε) = 0 and constant variance covariance matrix σ2εINT . The
individual effect α is a N × 1 matrix with rows αi assumed to be a time-invariant random
variable, distributed independently across individuals with zero mean E (α) = 0 and variance
covariance matrix σ2αIN and such that E (αi | Xit, Zi) 6= 0.

2.2 The pretest estimator based on the Mundlak-Krishnakumar unrestricted
GLS estimator

Although E (αi | Xit, Zi) 6= 0 need not be linear, Mundlak (1978) and Krishnakumar (2006)
introduce an auxiliary equation that assumes a linear relation between the individual random
effects and the explanatory variables:

α = X ·π + Zφ+ α
M , (2)
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where X · = 1
T

(
IN ⊗ e/T

)
X is a N × k matrix computing the average over time of each time-

varying and individual-varying variable for N individuals. π is a k vector of coeffi cients as-
sociated with the average over time of time-varying variables. φ is a g vector of coeffi cients
associated with the time-invariant observable variables. The N disturbance terms αM are nor-
mally distributed, αM ∼

(
0, σ2

αM
INN

)
.

Let the projection matrix on the column space of a matrix Q is Q (Q′Q)−1Q′. The between
projection matrix on the subspace spanned by individual dummy variables stacked in the matrix

Q = IN ⊗ eT is B = IN ⊗
(
1
T eTe

/
T

)
. The within projection matrix isW = INT −B. One has

B′ = B, B2 = B,W2 =W and BW = 0. The auxiliary equation (which is an N vector) can
be repeated T times and written as an NT vector:

(IN ⊗ eT )α = BXπ + (IN ⊗ eT )Zφ+ (IN ⊗ eT )αM , (3)

where BX = (IN ⊗ eT )X · is a NT × k matrix that repeats T times the average over time of
each time-varying variable.

Combining the auxiliary equation as an NT vector with the initial equation (1) yields:

y = Xβ +BXπ + (IN ⊗ eT )Z (γ + φ) + (IN ⊗ eT )αM + ε, (4)

If φ 6= 0, Krishnakumar (2006) mentions that one can only estimate the sum γ + φ and one
cannot identify γ and φ separately with her estimator.

Using W + B = INT , one introduces the sum of the between and within transformed
dependent variables, explanatory variables and the disturbances W + B = INT in equation
(??). Using the property of the within and between as two orthogonal and complementary
projectorsWB = 0, one finds a system of two equations. In the within subspace of dimension
NT −N , the first equation is:

Wy =WXβ +Wε (5)

with a within estimator, usingW′W =W2 =W.

β̂W =
(
X ′WX

)−1
X ′Wy

The within estimator can be obtained running ordinary least squares (OLS) on within trans-
formed variables and correcting the degrees of freedom to be equal to NT −N − k.

In the between subspace of dimension N , the second equation includes the average over time
of time varying variables BX, so that Krisnakumar (2008) label this equation an "extended"
between model (one has B (IN ⊗ eT ) = (IN ⊗ eT )).

By = BX (π + β) + (IN ⊗ eT )Z (γ + φ) + (IN ⊗ eT )αM +Bε, (6)

The extended between estimator β̂B = β̂ + πB (which is potentially biased) and γ̂B =

γ̂ + φB (which is potentially biased) can be obtained running ordinary least squares on between
transformed variables and correcting the degrees of freedom to be equal to N −k−g−1 (taking
into account the intercept.

If φ = 0 for all the g time-invariant variables and if π 6= 0 for all the k average over time of
time-varying variables, Mundlak (1978) and Krisnakumar (2006) demonstrated that the best
linear unbiased estimator is an unrestricted generalized least-squares estimator (unrestricted
random effects) estimator, denoted MK-GLS:

β̂MK−GLS = β̂W , π̂MK−GLS = β̂B − β̂W , γ̂MK−GLS = γ̂B

Mundlak (1978) and Krisnakumar (2006) demonstrated that:
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var
(
β̂MK−GLS

)
= var

(
β̂W

)
, and var (γ̂MK−GLS) = var (γ̂B) , (7)

where β̂W and β̂B are the within and between estimators for time-varying variables. Because
the within and between estimator lie in orthogonal subspaces, the variance of their difference is
the sum of their variance:

var (π̂MK−GLS) = var
(
β̂B − β̂W

)
= var

(
β̂B

)
+ var

(
β̂W

)
,

For the time-invariant variables, the estimator γ̂MK−GLS and the estimator of the standard
deviations σ̂γ̂GLS are exactly the ones of the extended between estimator.

The usual GLS or random effects estimator is labeled “restricted" GLS estimator by Mundlak
(1978), since the vector of parameters of the averages over time of the time-varying variables
are restricted to be equal to zero: π = 0. It will be referred to as R-GLS.

The MK-GLS estimator deals with the endogeneneity of time-varying variables E (α | X) 6=
0. However, the problem of endogeneity of time-invariant variables E (α | Z) 6= 0 remains to be
solved.

Hausman and Taylor (1981) address the problem of endogeneity of time-invariant variables.
They assume that the practitioner has prior information, namely which columns of X and Z
are asymptotically uncorrelated with α and which are correlated. Then [Xit] = [X1it,X2it] and
[Zi] = [Z1i,Z2i] are split into two sets of variables such that X1 is NT ×k1, X2 is NT ×k2, Z1 is
NT × g1, Z2 is NT × g2 with k1 + k2 = k and g1 + g2 = g where k1 is the number of exogenous
variables and k2 the number of endogenous variables. X1 and Z1 are exogenous and neither
correlated with α nor with ε, while X2 and Z2 are endogenous due to their correlation with α,
but are not correlated with ε. If k > k1 ≥ g2, then the number k1 of internal instruments is
suffi cient to identify all g2 endogenous time-invariant variables.

The pretest estimator proposed in this paper combines Mundlak (1978) and Krishnakumar
(2006) approach with Hausman and Taylor (1981) approach when the practitioner has no prior
information on the exogenous the time-varying variables. It proceeds in two steps.

The practitioner computes the average over time of all time-varying variables. He runs
a random effects estimator including all time varying variables, all averages over time of all
time-varying variables and all time-invariant variables.

The practitioner selects as internal instruments the subset of 0 ≤ k1 ≤ k average over time
of time-varying explanatory variables which individually do not reject the null hypothesis of
exogeneity. Mundlak (1978) estimation provides the statistical information for Hausman (1978)
tests for the endogeneity of time-varying variables X. The MK-GLS regression (equation 4)
provides all individual Hausman tests which are equivalent to t-test of each null hypothesis of
the parameters of the average over time of time-varying variables:

H0,m : πm = βB,m − βW,m = 0, for each time varying variable indexed by m ∈ {1, ..., k}

The endogeneity of the single time-varying variable indexed by m corresponds to rejecting
the null hypothesis H0,m. The outcome of the individual tests is that for k1 cases, 0 ≤ k1 ≤ k,
the null hypothesis H0,m is not rejected. The related k1 average over time of time varying
variables can be selected as internal instruments.

Even though the estimator β̂B is biased due to endogeneity of all explanatory variables in
Mundlak-Krishnakumar estimator, this is not the case from the within estimator β̂W so that
the Hausman’s (1978) χ2 statistic evaluates the magnitude of this bias, which corresponds to
π̂MK−GLS in Mundlak (1978) and Krishnakumar (2006) approach.

Greene (2012, section 11.5.6) presents an example of this test (11.9, p.381). According to
Krishnakumar, (2006), section 5.2, “the Hausman specification tests are carried out in the same
manner whether time invariant variables are present or not”. Hausman and Taylor (1981),
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p.1382 consider specification tests of the null hypothesis H0 : E (α | X,Z) = 0 against the
alternative H1 : E (α | X,Z) 6= 0 . Under H0, plimN→+∞β̂B − β̂W = 0 and under H1,
plimN→+∞π̂MK−GLS = plimN→+∞β̂B − β 6= 0. Using π̂MK−GLS and var (π̂MK−GLS) in
Mundlak (1978) and Krishnakumar (2006) allows to compute a χ2 statistic of the Hausman test
denoted JN (c), similar to a Wald test statistic and, in the case of single variable, similar to the
square of a Student t-test statistic:

JN (c) =
(
β̂B,c − β̂W,c

)′ (
var

(
β̂B,c

)
+ var

(
β̂W,c

))−1 (
β̂B,c − β̂W,c

)
, (8)

where c ∈ Rk is an internal instrument selection vector, which corresponds to a selection of
parameters β̂B,c − β̂W,c in the statistic JN (c). The vector c is a vector of zeros and ones. If
the jth element of c is a one, then the jth column vector in the matrix X · is included in the
instrument set. If the jth element of c is a zero, then the jth column vector in the matrix X · is
not included in the instrument set. Let |c| =

∑j=k
j=1 cj denote the number of instrument selected

by c.
Mundlak (1978) and Krishnakumar (2006) regression instantly provides t-tests for each

parameter of the average over time of the k time varying variables. This tests each of the
k selection vectors c with a unique instrument such that |c| = 1. A fast selection procedure
selects |c| = k1 averages over time of all the time varying variables which did not reject the null
hypothesis for the t-test of their parameter π̂MK−GLS,m or, equivalently, for the Hausman test
with critical value δN,1 = χ21 (ξN ), where χ

2
q (ξN ) denotes the 1 − ξN quantile of a chi-squared

distribution with 1 degree of freedom:

JN (c) ≤ δN,1 = χ21 (ξN ) .

For this first step of the selection of internal instruments, if k1 > 1, a robustness check
may use an upward testing procedure for instrument selection. For example, if two parameters
πm and πn respectively related to two average over time of time-varying variables xm,. and
xn. are individually not statistically different from zero for each of their individual Hausman
tests, the upward testing procedure will also test the joint hypothesis that both parameters are
statistically different from zero for a Hausman test:

H0,m,n : πm = βB,m − βW,m = 0 = πn = βB,n − βW,n
This upward testing procedure may be time consuming with little gain for practitioners.

In practice, it is often the case that the joint hypothesis H0,m,n will not be rejected if each
of the two individual null hypothesis H0,m and H0,n have been rejected. In these cases, the
instruments selected with an upward testing procedure will be exactly the same than the k1
ones which did not reject the null hypothesis H0,m, ∀m ∈ {1, ..., k}.

More precisely, upward testing procedures are based on the statistic JN (c) and critical
values δN,q = χ2q (ξN ) where q is the degree of freedom equal to the number of joint hypothesis
q ∈ {1, ..., k1}. Starting with vectors c which did not rejected the null hypothesis for |c| = 1, we
carry out tests with progressively larger |c| until we find that all tests with the same value of
|c| = k̂UT +1 reject the null hypothesis H0,c that the set of |c| instruments is exogenous. Given
k̂UT , we take the upward testing estimator ĉUT to be the selection vector that minimizes JN (c)
for all c such that |c| = k̂UT .

The theoretical background for upward testing procedures selecting instrumental variables
can be found in Andrews (1999) and Chatelain (2007). Mundlak (1978) and Krishnakumar
(2006) linear endogeneity assumption (equation (2)) for a static panel data model grounds
Hausman (1978) test and the equivalent Hausman and Taylor (1981) within versus between
test.

Andrews (1999) key assumption for the existence of an upward testing procedure estimator
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is that there exist a suffi cient number of "correct" instrumental variables corresponding to a
selection vector c0 such that |c0| = kUT ≥ g2.

Andrews (1999) assumption "T" is that the critical values δN,q = χ2q (ξN ) → ∞ (∀q ∈
{1, ..., k1} where q is the number of joint hypothesis) and δN,q = o (N), where χ2q (ξN ) denotes
the 1 − ξN quantile of a chi-squared distribution with q degrees of freedom. Andrews (1999)
mentions that assumption "T" holds with the significance level ξN satisfying ξN → 0 and
ln (ξN ) = o (N). Assumption "T" avoids that, when N tends to infinity, all Hausman tests
rejects the null hypothesis.

In the second and final step, the choice of the estimation procedure depends on the num-
ber of exogenous time-varying variables found in the first step with respect to the number of
endogenous time-invariant variables:

- If k1 < g2, the number k1 of internal instruments is not suffi cient to identify all g2 en-
dogenous time-invariant variables. If there are not enough internal instruments and no g2 − k1
external instruments available, it is not possible to identify γ and φ. In this case, we cannot go
further than the first step MK-GLS estimate. Unfortunately, this first step MK-GLS leads to
potentially biased parameters for endogenous time-invariant variables.

- If g2 ≤ k1 < k, then the number k1 of internal instruments is suffi cient to identify all g2
endogenous time-invariant variables, and then the pretest estimates for time-invariant variables
are the ones obtained running an unrestricted Hausman-Taylor (denoted U-HT k1) estimation
using the k1 averages over time of exogenous time-varying variables as internal instruments and
including the averages over time of the k2 = k − k1 endogenous time-varying variables in the
regression. The usual restricted Hausman-Taylor (denoted R-HT) may face a bias because of
omitting k2 endogenous variables of the matrix X · as compared to the unrestricted Hausman-
Taylor estimator of pretest proposed here.

- If k1 = k, all time-varying variables are exogenous, the Hausman-Taylor approach is not
applicable, and a R-GLS estimation should be done.

The properties of this pretest estimator are investigated in a Monte-Carlo simulation, in-
cluding the R-GLS estimator, the U-HT estimator, and the MK-GLS estimator since the pretest
chooses among these three possibilities. But first, in the next section, the theoretical properties
of alternative estimators and their ability to draw inference are discussed.

2.3 Alternative estimators of time-invariant variables

2.3.1 Unrestricted and restricted OLS estimators (U-OLS and R-OLS)

The first approach to estimate equations (1) and (3) is to use a standard ordinary least-squares
estimator. As defined before an estimator is restricted if the parameter values of the averages-
over-time of the time-varying variables have to be equal to zero and unrestricted otherwise.

The unrestricted pooled OLS estimator, denoted U-OLS, however, ignores the random effects
αi: it is the best linear unbiased estimator when αi = 0. It leads to the same parameter
estimates as the MK-GLS estimator, but not to the same standard error estimates since it uses
the irrelevant NT − k − g − 1 degrees of freedom for the time-invariant variables. The RMSE
is larger because it includes the sum of squares of the error of the within model:

σ̂U−OLSγ̂ =

√
T ·SSEB+SSEW
NT−k−g−1√
T · CSS(zi)

1√
1−R2A (Zj)

=

√
1 +

SSEW
T · SSEB

√
N − k − g − 1
NT − k − g − 1 σ̂

B
γ̂ ,

where subscripts W and B refer again to the within and between estimations. R2A (Zj) is the
coeffi cient of determination of the U-OLS auxiliary regression of the variable Zj on all the other
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regressors: it is the same for the between and U-OLS estimators.

The restricted pooled OLS (R-OLS) estimator faces an omitted variables bias,X·
(
β̂B − β̂W

)
,

on the estimated parameters when estimating the Mundlak Krishnakumar model (equation 4).
For details see e.g. Oaxaca and Geisler [2003] who evaluate the consistency of the R-OLS
estimator of a parameter of a time-invariant explanatory variable.

Both OLS and R-OLS estimators are included in the Monte Carlo simulation.

2.3.2 Restricted random effects (R-GLS) and restricted Hausman Taylor (R-HT)
estimators

The restricted random effect estimator (R-GLS) is one of the most used estimators by applied
econometricians when their variables of interest are time-invariant variables in panel data. It
uses the same weight θ̂ for computing quasi demeaned variables as the MK-GLS, when it is
based on the Swamy and Arora method (1972):

yit − yi· + θ̂yi· with θ̂ =
RMSEW√
T ·RMSEB

.

The between regression includes the averages-over-time of all explanatory variables. Hence,
the root mean squared error of the between estimator RMSEB is the same in both cases. R-
GLS, however, faces an omitted variable bias when the null hypothesis β̂B = β̂W is rejected for at
least one time-varying variable. In this case, the bias of the random effect estimator γ̂R−GLS as
compared to the Mundlak-Krishnakumar γ̂B estimator (which is equal to the between estimator)
is:

γ̂R−GLS = γ̂B +

j=k∑
j=1

(
β̂B − β̂W

)
β̂
θ̂xj·/θ̂zj

with β̂
θ̂xj·/θ̂zj

given by the auxiliary regression using OLS on quasi demeaned variables:

θ̂xi· = β
θ̂xj·/θ̂zj

θ̂zi + βxi·/xit

(
θ̂xi· + xit − xi·

)
+ θ̂β0 + εit.

The restricted Hausman and Taylor estimator (R-HT) uses different weights θ̂R−HT in the
term yit−yi·+θ̂R−HT yi· because of the choice of internal instrumental variables. A bias similar to
the bias of the R-GLS due to the omission of the average-over-time of endogenous time-varying
variables may offset the correction of the endogeneity bias of the time-invariant variables using
internal instrumental variables.

Both estimators are included in the Monte Carlo simulation.

2.3.3 T times repeated-between estimator (T-BE)

Another widely used estimator is the T -times-between estimator which is not a good choice. We
present it because repeating T times the time-invariant observations turns out to be the major
component of the increase of the t-statistic of time-invariant variables using panel data for several
other estimators. Kelejian and Stephan (1983), however, argue that “the effect of a random
component can only be averaged out if the sample increases in the direction of that random (time
or individual) component”. By contrast, Oaxaca and Geisler (2003) assume that the consistency
of the estimator of a parameter of a time-invariant explanatory variable “depends on the time
series observations approaching infinity”. The estimated parameters of time-invariant variables
are the same for the repeated-between and the between estimator (γ̂B = γ̂T−BE), (the subscript
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for this estimator is T -BE). The estimator of the standard error is equal to:

σ̂T−BEγ̂ =

√
T ·SSEB

NT−k−g−1√
T · CSS(zj)

1√
1−R2A (Zj)

=

√
N − k − g − 1
NT − k − g − 1 σ̂

B
γ̂ .

Inference uses NT − k − g − 1 degrees of freedom instead of N − k − g − 1. The coeffi cient of
determination of the auxiliary between regression R2A (Zzj) of the variable Zj on all the other
regressors does not change in the between or repeated-between samples. As the parameter
estimator is the same as γ̂B, the repeated-between tT−BE-statistic amounts to multiply the
between tB statistics by the following factor:

tT−BE =
γ̂B

σ̂T−BEγ̂

=

√
NT − k − g − 1
N − k − g − 1

γ̂B

σ̂Bγ̂
=

√
NT − k − g − 1
N − k − g − 1 t

B.

When N is large, the t-statistic of the repeated-between model is multiplied by around
√
T

as compared to the between model. Due to these shortcomings the estimator is not included in
the Monte-Carlo simulations.

2.3.4 Two-stage restricted between (R-BE) and Oaxaca Geisler (2003) estimator

A common practice consists of using a two-stage restricted between (denoted R-BE) esti-
mator of time-invariant variables regress the average over time of the first stage residuals of the
within estimation. For a N vector of group means estimated from the within group residuals,
one expands this expression:

y· −X ·β̂W = Zγ + α+ εi. +X ·
(
β − β̂W

)
with plimN→+∞β̂W − β = 0 when T is finite. This equation can be used for estimating γ

because the last two terms can be treated as unobservable mean zero disturbances. For example,
the last two terms can be written as the following NT vector:

(IN ⊗ eT )
[
εi. +X ·

(
β − β̂W

)]
=
[
B +BX· (XWX)−1X ′W

]
ε

This common practice sets the restriction β̂B = β̂W for the average-over-time of time-
varying variables in the extended between regression. Because of this restriction, the estimated
standard error of the parameter of the time-invariant variables is necessarily smaller than the
estimated standard error of the between estimator:

σ̂γ̂R−BE =

√
SSER−BE
N − g − 1

1√
CSS(Zi)

√
1−R2A,R−BE (Zj)

6=

σ̂γ̂B =

√
SSEB

N − k − g − 1
1√

CSS(Zi)
√
1−R2A (Zj)

.

This stems from the fact that the sum of squares of errors SSER−BE is larger than the SSEB
because the model constrains the parameters of the time-varying variables to their within es-
timate which may not minimize the between sum of squares of errors. On the other hand,
the increase of the estimated standard error may be offset for two reasons due to the fact the
averages of k time-varying variables are on the left hand side of the equation. First, the degrees
of freedom increase by k. This decreases the root mean squared error. Second, the variance
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inflation factor decreases because R2A,R−BE (Zj) < R2A (Zj). R
2
A (Zj) is the coeffi cient of de-

termination of an auxiliary regression where the time-invariant variable is correlated with the
other g − 1 time-invariant explanatory variables on the right hand side of the equation. In the
between estimator, R2A (Zj) is the coeffi cient of determination of an auxiliary regression where
the time-invariant variable is correlated with the other g−1 time-invariant explanatory variables
and k averages of time-varying explanatory variables. As the number of explanatory variables
increases by k, one has R2A,R−BE (Zj) < R2A (Zj).

Oaxaca and Geisler’s (2003) two-stage estimator deals with two-stage restricted between.
The second stage estimates the equation (??) with a generalized least-squares estimator using
a covariance matrix that takes into account that the disturbances of the restricted between
include the omitted term: X ·

(
β − β̂W

)
for a finite sample. They claim that the consistency of

their estimator (γ̂) "depends on time series approaching infinity so that Ti → +∞, ∀i" for fixed
N , which does not hold for an estimator of the parameters of time-invariant variables. This
suggest their estimator depends on observations repeated T times. For these reasons only the
two-stage restricted between estimator, but not the Oaxaca-Geisler estimator is included in the
Monte Carlo simulation.

2.3.5 Three-stage FEVD restricted estimator

As demonstrated by Greene (2011), the FEVD estimator (Plümper and Troeger (2007)) of
time-invariant variables is not valid. Nonetheless, we present this estimator because it turns
out to be the extreme case, where the root mean square error of the within regression is used for
doing inference on time invariant variables in panel data instead of the root mean square error
of the between regression as in the Mundlak-Krishnakumar estimator. Assuming exogeneity
(E (α | Z) = φ2 = 0 and E (α | X) = π = 0), a restricted FEVD estimator calculated the
time-invariant residuals of stage-two restricted-between, denoted η̂2R−BE :

η̂2R−BE = d̂− Zγ̂R−BE = y· −X ·β̂W − Zγ̂R−BE
= αM +

(
B−X ·

(
X ′WX

)−1
X ′W

)
ε.

The third stage of a restricted FEVD estimator is an OLS regression which includes the time-
invariant residuals of the second stage, η̂2R−BE , as an additional regressor with a parameter
δ:

y = Xβ + (IN ⊗ eT )Zγ + (IN ⊗ eT ) η̂2R−BE .δ + ηFEDV
where the third stage disturbances are denoted ηFEDV . This is equivalent to running OLS for
the following equation including only demeaned and time-invariant variables:

y − y· =
(
X −X .

)
β − (IN ⊗ eT )X ·

(
β − β̂W

)
+ (IN ⊗ eT )Z (γ − γ̂R−BE)

+ (IN ⊗ eT ) η̂2R−BE (δ − 1) + ηFEV D.

Because of the orthogonality of demeaned (within transformed) variables with time-invariant
variables (cov(y − y·, zi) = cov(y − y·, xi.) = cov(y − y·, η̂2,RBE .) = 0) and by definition of the
within estimator (OLS on demeaned variables), the OLS estimates of third stage FEVD equation
are δ̂FEV D = 1, β̂FEV D = β̂W , γ̂FEV D = γ̂RBE . Hence, the restricted third stage FEVD
estimator has the same parameter estimates as the two-stage restricted-between estimator. The
only difference is that the third stage residuals η̂3,FEV D are the within-regression residuals:

η̂FEV D = ε̂it − ε̂i. = y − y· −
(
X −X ·

)
β̂W .
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Hence, with respect to the two-stage restricted-between estimator, the only change of the
third stage restricted FEVD estimator is the estimated standard error of the parameters γ of
time-invariant variables Z which no longer depends on the mean squared error of the second-
stage time-invariant residuals of the restricted-between estimator η̂2R−BE (observed N times,
with MSERBE = SSERBE/ (N − k − g − 1)), but depends now on the mean square error of
the within residuals η̂FEV D, observed NT times, with MSEW = SSEW / (NT −N − k).

The estimated parameters γ̂R−BE are related to the projection in the between subspace of
observations, but their estimated standard errors are related to residuals in the within subspace
of observations, which is orthogonal to the between subspace. This contradicts the Frisch and
Waugh (1933) and Lovell (1963) theorem: the same orthogonal projection matrix has to be
used in the parameter estimator and in the estimator of the standard error of the estimated
parameter.

As observed by Breusch et al. (2011) in Monte Carlo simulations, the FEVD estimated
standard error of a time-invariant variable appears “abnormally" small. The restricted FEVD
estimator of the standard error of a parameter of a time invariant variable is related to one the
best (lowest variance) linear unbiased estimator (BLUE) of the unrestricted Mundlak Krish-
nakumar model (U-OLS) as follows:

σ̂γ̂FEVD =

√
SSEW

NT−N−k√
T · CSS(zi)

1√
1−R2A (zj)

=

√
N − k − g − 1
NT −N − k

√
SSEW
T · SSEB

σ̂BEγ̂ .

Therefore, σ̂γ̂FEVD is biased downward for two reasons:
- It uses NT −N − k degrees of freedom (with N the number of individuals, k the number

of time-varying explanatory variables, with T the number of periods) instead of N − k − g − 1
degrees of freedom.

- It multiplies the repeated-between estimator of the standard error by a positive factor√
SSEW
T ·SSEB which can be much smaller than one when T increases.
For these reasons the FEVD estimator has not been included in the Monte Carlo simulation.

Its large number of citations in google scholar database (around 900 citations during 11 years) is
correlated with the researchers’demand for statistically significant parameters for time-invariant
variable in panel data in order to be published in academic journals (Wasserstein and Lazar,
2016). In order to reach a large number of citations, theoretical econometricians may be tempted
to propose new computations of downward-biased standard errors of estimated parameters to
applied econometricians. By contrast, stating that the correct degrees of freedom that should
be used is N − k − g − 1 << NT −N − k for inference of the effect of time-invariant variables
is on the opposite side of this popular demand.

Using NT − N − k degrees of freedom instead N − k − g − 1 is a "magical solution" to
the following issue. If the full population is small (e.g. the cross-section of N = 35 OECD
countries), so that the sample size N is small with a p-value larger than 0.05 and nonetheless
the cross-section correlation of the dependent variable is large with a time-invariant variable,
then the p-value below 5% may not be a useful criterion with respect to a loss function of
decision makers (Wasserstein and Lazar (2016), Chatelain (2010) section 2). For a detailed
discussion of the FEVD estimator see also Pesaran and Zhou (2018).

3 A Monte Carlo simulation: The model

3.1 Design

To analyze the finite sample properties of the pretest estimator and compare it to the other meth-
ods mentioned in the previous section, our Monte Carlo simulations extend a Hausman-Taylor
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world using Guggenberger’s (2010) design. The reason why we selected Guggenberger’s (2010)
complete design of the correlation matrix between regressors is that Plümper and Troeger’s
(2007) FEVD Monte-Carlo simulations presented some surprising results that could only be
theoretically explained if some other correlations between variables where changing at the same
time they were changing one parameter in their simulations.

Guggenberger’s design controls the correlation matrix of all explanatory variables, including
the individual effect, while assuming multi-normality. Additional simulations assuming specific
cases of non-normality are available upon request from the authors. The simulated model
includes three time-varying exogenous variables (X1it,X2it,X3it), two time-invariant variables
(Z1,i and Z2,i) and an individual effect αi explaining an endogenous time-varying variable yit:

yit = β1X1it + β2X2it + β3X3it + γ1Z1,i + γ2Z2,i + αi + εit, t = 1 . . . T, i = 1 . . . N. (9)

The disturbance εit is independently normally distributed with mean 0 and standard deviation
σε > 0 uncorrelated with the other endogenous variables. The exogenous time invariant variable
Z1,i is a constant, Z1,i = 1; it is also individual invariant.

Following Guggenberger (2010), firstly, the time-varying explanatory variables, indexed by
m = 1, 2, 3 and denoted Xmit, t = 1, . . . T, and T = 5, follow an auto-regressive process of order
one, AR(1). Then, in the multi-normal setting, only the correlation matrix has to be defined:

R (Xm,it) =


1 r r2 r3 r4

r 1 r r2 r3

r2 r 1 r r2

r3 r2 r 1 r
r4 r3 r2 r 1


with r being the coeffi cient of autocorrelation between adjacent periods for a time varying
variable Xmit. It is the same for the three time varying variables.

Secondly, the correlation matrix of all variables corresponds to a Hausman-Taylor world. By
construction, the correlations of the regressors X1it, X2it, X3it, Z2i with the constant Z1i are
equal to zero. The full correlation matrixR without the constant variable Z1i is a 17×17 matrix
(block matrices are in bold and the matrix is symmetric so that the lower triangular matrix
is not reported). The constraint det(R) ≥ 0 restricts the range of values of simple correlation
coeffi cients.

R =


R (X1, r) 0 0 ρX1Z2 ρX1,α

R (X2, r) 0 ρX2Z2 ρX2,α
R (X3, r) ρX3Z2 ρX3α

1 ρZ2α
1


Thirdly, the time- and individual-varying variables Xmit, the time-invariant variable Z2i and

the individual random effects α are drawn from a standardized multi-normal distribution with
mean zero and standard deviations for all variables σXm,it = σZ2ii = 1 with the exception of
the individual random effects αi, for which we assume a variance σ2α. In the simulations, we
vary the share of the individual effect disturbances σ2α/

(
σ2α + σ

2
ε

)
. The overall variance of the

disturbances is fixed to 3 (σ2α + σ2ε = 3), as in Im, Ahn, Schmidt and Wooldridge (1999) and
Baltagi, Bresson and Pirotte (2003).

Finally, the parameter values of the regression equation are chosen as β1 = β2 = β3 = γ1 =
γ2 = 1. Setting these five parameters is equivalent to setting the simple correlations between the
dependent variable and the explanatory variables, once the correlation matrix and the variances
of explanatory variables are given.

Guggenberger’s (2010) multi-normal design has four advantages:
Firstly, it controls all the correlations between the four explanatory variables and the random

individual term for all periods.
Secondly, it is checked that the correlation matrix has a strictly positive determinant
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(det(R) ≥ 0), so that the matrix is positive definite for all simulations.
Thirdly, in the benchmark simulation, the time-invariant variables are not drawn from a

uniform distribution instead of a normal distribution (the distributions of regressors do not
have excess kurtosis in the between space). We nevertheless controlled for non-normality of the
individual effect and the random disturbance term in an additional simulation.

Fourthly, and most importantly, this design allows to separate the distinct effects of two
deviations from the classical model of uncorrelated variables on the size of the Hausman pretest
as detailed in Guggenberger (2010). A first deviation is the correlation ρZ2α between the ran-
dom individual effect and the endogenous time-invariant variable. A second deviation is the
relative variance of the individual random term with respect to the variance of the time-varying
disturbances σ2α/

(
σ2α + σ

2
ε

)
. In the design of Im at al. (1999) and of Plümper and Troeger

(2007), it is not possible to change σ2α/
(
σ2α + σ

2
ε

)
without changing ρZ2α and ρX3α at the same

time. Furthermore, in the multi-normal design, the simulations allows to check the theoretical
result that the OLS endogeneity bias is a linear function of σα when ρZ2α is fixed.

3.2 Parameter values and estimation

In the benchmark simulation, the variance of random effects is σ2α = 1.5 so that it represents
50% of the overall variance: σ2α/

(
σ2α + σ

2
ε

)
= 1.5/3 = 1/2. The correlation coeffi cients are

ρX1Z2 = ρX2Z2 = ρX3Z2 = 0.4, ρX1,α = 0, ρX2,α = 0, ρX3α = 0.75, ρZ2α = 0.52.
We have k1 = 2 exogenous time-varying variables, k2 = 1 endogenous time-varying variable,

g1 = 1 exogenous time-invariant variable, and g2 = 1 endogenous time-invariant variable. In
the first step of the pretest procedure, the following Mundlak-Krishakumar model is estimated
using GLS:

yit = β1X1it + β2X2it + β3X3it + π1X1i· + π2X2i· + π3X3i· + γ1Z1i + γ2Z2i + αi + εit. (10)

According to the estimated values of π1, π2, and π3, the second step chooses one of the
following 8 estimators:

(1) MK-GLS: the outcome of individual tests is that π1, π2, and π3 are statistically different
from zero. Then the pretest stops at the first step with the MK-GLS estimator.

(2) U-HT1: π1 is not different from zero and π2, and π3 are different from zero. Then we
use an unrestricted Hausman-Taylor (U-HT1) estimator with X1 as the exogenous variable and
X2 and X3 as endogenous variables.

(3) U-HT2: π2 is not different from zero and π1, and π3 are different from zero. Then we
use the U-HT2 estimator, with X2 as the exogenous variable and X1 and X3 as endogenous
variables.

(4) U-HT3: π3 is not different from zero and π1, and π2 are different from zero. Then we
use the U-HT3 estimator, with X3 as the exogenous variable and X1 and X2 as endogenous
variables.

(5) U-HT12: π1 and π2 are not different from zero and and π3 is different from zero. Then
we use the U-HT12 estimator with both X1 and X2 as exogenous variables and X3 as the
endogenous variable.1

(6) U-HT13: π1 and π3 are not different from zero and π2 is different from zero. Then we use
the U-HT13 estimator with both X1 and X3 as exogenous variables and X2 as the endogenous
variable.

(7) U-HT23: π2 and π3 are not different from zero and π1 is different from zero. Then we use
the U-HT23 estimator with both X2 and X3 as exogenous variables and X1 as the endogenous

1Additionally, a pooled Hausman test for the contrast of within versus between parameters of (X1it, X2it)
could be carried out. If this pooled Hausman test rejects the null joint hypothesis, we revert to the U-HT1 or
U-HT2 taking as internal instrument the variable among (X1it, X2it) which has the lowest p-value of the test
π1 = 0 and π2 = 0 (both p-values being below the 5% threshold).
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variable.
(8) R-GLS: π1, π2, and π3 are all not different from zero. Then we simply run a R-GLS

estimation.
Given the above parameterization of our model, the pretest procedure should choose the

U-HT12 estimator and use both X1 and X2 as exogenous internal instruments. Alternative
U-HT1 and U-HT2 estimators are not that bad since at least one of the variables X1 and X2
is chosen as an exogenous variables. The Baltagi et al. (2003) pretest considers three possible
options instead of the 8 cases dealt with the above pretest (1, 5 and 8): (1) fixed effects (FE) for
β but no estimator for γ (this paper pretest reports the Between estimator using MK-GLS), (5)
with restricted Hausman Taylor (R-HT12) (this paper pretest reports the unrestricted Hausman
Taylor (U-HT12)) and (8) R-GLS (same choice for Baltagi et al. (2003 pretest and for this paper
pretest). The simulations report the results of four restricted estimators (R-OLS, R-GLS, R-BE,
R-HT12), of four unrestricted estimators (U-OLS, MK-GLS, BE, U-HT12) and finally of the
pretest estimator. Following the advice of Greene (2011) and Breusch et al. (2011), the FEVD
estimator is not reported.

The number of individuals N was chosen to be equal to 100, the number of periods T equal
to 5, and the experiment war repeated 1000 times. For each estimator, we report the bias of
the parameter β3 and γ2, the corresponding simulated root mean square error, and the 5%
size, which is the frequency of rejections in 1000 replications of the null hypotheses β3 = 1
and γ2 = 1, respectively at the 5% significance level. The Monte-Carlo simulation then aims
at answering two questions: How does the pretest perform as compared to other methods, i.e.
how biased are the results? And does the pretest find the correct alternative, i.e. does it choose
both, X1 and X2 as endogenous internal instruments?

3.3 Theoretical results for the bias

Before the simulation results are presented, some theoretical issues are discussed. For the OLS
estimator the bias can be calculated as follows:

lim β̂OLS = lim

(
X ′X

NT

)−1(X ′Y
NT

)
= lim

(
X ′X

NT

)−1(X ′ [Xβ + α]
NT

)
= β + lim

(
X ′X

NT

)−1
lim

(
X ′α

NT

)
that is, in our case with βi = 1 and γ2 = 1:

β̂1 − 1
β̂2 − 1
β̂3 − 1
γ̂2 − 1

 =
σα

1− ρ2X1Z − ρ
2
X2Z
− ρ2X3Z


ρX1Z (ρZX3ρX3α − ρZα)
ρX2Z (ρZX3ρX3α − ρZα)(

1− ρ2X1Z − ρ
2
X2Z

)
ρX3α − ρX3ZρZα

ρZα − ρZX3ρX3α

 .

The biases of the OLS estimator due to endogeneity increase linearly with σα for all para-
meters. The bias for γ increases with ρZα and decreases with ρX3α when ρZX3 > 0. The bias for
βm increases with ρX3α and decreases with ρZα when ρZXm > 0. In what follows, we vary only
one parameter with respect to the benchmark case, keeping the other parameters unchanged.
We focus on the coeffi cients of the endogenous regressors X3 and Z, i.e. β3 and γ2, respectively.
Results on the other coeffi cients are available upon request from the authors.
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4 Results of the simulation

4.1 Changing the variance σ2α of the individual effect

In a first set of simulations we changed the variance of the individual effect keeping the overall
variance constant. The values of σα were chosen as in Baltagi et al. (2003, p.368, table 4),
namely σ2α varying from 0 to 2.75 which corresponds to a variation of σ2α/(σ

2
α + σ2ε ) from 0

to 11/12. Table 1a (all results are reported in appendix B) reports the choice of the pretest
estimator for these different values of σα. With σ2α = 0 the pretest estimator chooses the
R-GLS (RE) estimator in 87.4% of all replications and the U-HT12 estimator (unrestricted
Hausman Taylor estimator with X1 and X2 as internal instruments, the correct choice given
the parametrization of the model) in 3.4% of all replications. With 0.5 ≤ σ2α ≤ 2.75, the pretest
procedure chooses the U-HT12 estimator in at least 54.4% and at most 86.8% replications.

Table 1b reports the bias, the RMSE, and the 5% size for various estimators of β3 and γ2.
For σ2α between 0 and 1, the restricted OLS estimator has the lowest RMSE for β3. Increasing
σα reduces the RMSE for the restricted and unrestricted Hausman Taylor estimator, the within
estimator (used at the first step of the two-step restricted-between estimator), and the pretest
for β3. For γ2, R-OLS and R-GLS have the lowest RMSE (0.112), but their value is questionable
as they use NT observations in their degrees for freedom. By contrast, between (U-OLS) and
restricted and unrestricted Hausman and Taylor estimators have the largest RMSE (0.178),
but they use N instead of NT in their degrees of freedom. When σα increases, the restricted
Hausman Taylor RMSE for γ2 increases, whereas the between RMSE decreases, as well as the
unrestricted Hausman Taylor (U-HT12), because more variance of the dependent variable is
explained when including the average-over-time of endogenous time-varying variables.

The R-OLS, between and R-between biases for β̂3 and γ̂2 are linear increasing functions
of σα, see figure 1a and figure 1b. The R-GLS (the usual “random effect" model) bias for β̂3
increases for value of σα ≤ 2 and then decreases as in Baltagi et al. (2003, p.368). The between
estimator has the largest bias for β̂3 and the smallest bias for γ̂2 of those 3 estimators. The
endogeneity bias for β̂3 is fully corrected when includingX3i. in the three unrestricted estimators
(U-OLS, MK-GLS, U-HT12). The unrestricted OLS and GLS provide the between estimate for
the parameter γ̂2. The restricted between is related to a large omitted variable bias for γ̂2.
The biases for β̂3 and for γ̂2 using the restricted Hausman Taylor are negligible. However,
they are between 4 to 10 times larger than the one obtained when using the three unrestricted
estimators: OLS, GLS and Hausman Taylor. The bias for γ2 of the pretest estimator increases
first because it selects the R-GLS (RE) estimator for σα = 0.5 in 14.5% of replications, then it
falls and increases again when σα > 1.41, because it increasingly selects the MK-GLS estimator
(between estimator for γ2), up to 16.8% of replications with σα = 1.66.

The 5% size columns in tables 1b report the frequency of rejections in 1000 replications
of β3 = 1 and γ2 = 1, respectively at the 5% significance level. Since the null hypothesis is
always true, this represents the empirical size of the test. As expected, R-OLS and R-GLS (RE)
estimators perform badly; they reject the (true) null hypothesis frequently, especially when σα
is large. On the other hand, R-HT12 and U-HT12 perform well for β3 and γ2, giving the
required 5% size, while MK-GLS (FE for β3 and BE for γ2) do well for β3 and not so well for
γ2, with 5% size increasing steadily from around 6% for σα = 0.5 to 59% for σα = 1.66. The
MK-GLS (BE) for γ2 5% sizes are nonetheless smaller than R-OLS, R-GLS and R-BE with 5%
size at 100% when σα > 1. The pretest exceeds the 5% size (reaching 11.2%) for small values
of σα = 0.5 (when it selects the R-GLS (RE) in 14.5% of replications) and then for large values
of σα > 1.41 (reaching 8.5% to 19.8%) because it selects the MK-GLS (BE for γ2) in 6.2% to
16.8% of replications.
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4.2 Changing the degree of endogeneity of the time invariant variable ρZ2α

The correlation between the time-invariant variable and the individual error term indicating
the presence of endogeneity has to be contained in the interval 0.426 < ρZ2α < 0.597 so that
det(R) ≥ 0. Table 2a shows that in our simulations the pretest never selected the wrong
internal instrument X3. The pretest chooses the correct alternative U-HT12 in 88.6% of all cases
for ρZ2α = 0.5. For large correlations or small correlations also the Mundlak/Krishnakumar
estimator is chosen.

The biases, RMSE and 5% size are presented in table 2b and the biases are shown in
figures 2a and 2b. The restricted OLS estimator, the between estimator and the restricted GLS
estimator for β3 are biased and the bias is decreasing when the correlation increases. The other
estimators for β3 are performing well with a RMSE and 5% size approximately the same. The
bias for γ2 increases linearly for R-OLS, R-between, between and non-linearly for R-GLS and
the pretest. Restricted and unrestricted Hausman Taylor estimators perform best, even though
the unrestricted estimator is slightly better. The less good performance of the pretest comes
from the fact that MK-GLS is sometimes chosen. The 5% size of the pretest remains below
19%.

4.3 Shifting from weak to strong internal instruments

Results when increasing simultaneously ρX1Z2 and ρX2Z2 (−0.461 < ρX1Z2 = ρX2Z2 < 0.461,
so that det(R) ≥ 0)) are presented in tables 3a and 3b. Since the problem is symmetric only
the results for positive values, 0 < ρX1Z2 = ρX2Z2 < 0.461, are stated.

The percentage of times the pretest selects the different alternatives when moving from weak
to strong internal instruments is shown in table 3a. With the given parametrization the pretest
never chooses the wrong instrument. With increasing correlation, however, the pretest chooses
also the MK-GLS estimator on takes only one of the averages of the time- and individual varying
variables as instrument. This is due to the fact that the overall correlation matrix is nearly
non-invertible because of near multi-collinearity. This will be also reflected in the biases.

Biases of the estimators, their RMSE and 5% size are shown in table 3b and figures 3a and 3b.
When the internal instruments are weak (ρX1Z2 = ρX2Z2 = 0), the restricted Hausman Taylor
bias is identical to the restricted between bias for γ̂ (0.62) which is an intermediate step in the
restricted Hausman Taylor estimator. By contrast, the unrestricted Hausman bias for γ̂ (0.12)
is closer to the bias (0.05) of the between estimator. As a consequence, the pretest estimator
has a smaller bias than the restricted Hausman Taylor for weak instruments up to the level:
ρX1Z2 = ρX2Z2 = 0.25. For large levels of these correlation coeffi cients (ρX1Z2 = ρX2Z2 = 0.45),
whose square terms also decrease the denominator of the R-OLS bias, the overall correlation
matrix R is close to be non invertible because of near-multicollinearity. Then, the bias for γ2
tends to increase faster (non linearly) up to the level of the restricted between (0.62) for R-OLS,
R-GLS and between, except for the unbiased R-HT12 and U-HT12 estimators which benefit
from strong internal instruments. It is unfortunately also the case for the bias for β1 and β2
in R-OLS, R-GLS and BE, so that the pretest rejects both null hypothesis π1 = β1,BE − 1 and
π2 = β2,BE − 1 and selects the MK-GLS (BE for γ) estimator in 24.9% of replications. Its bias
is then 0.238 with a 5% size equal to 27% in this limit case.

4.4 Other simulations

To test the robustness of our results, different levels of significance and different population
size were simulated. Furthermore, the assumptions of normality were relaxed, first a uniform
distribution for the time-varying error was assumed and secondly a uniform distribution for the
individual random disturbance, keeping the overall variance constant.

Results when increasing the size of the sample and the significance threshold are presented
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in table 4. The number of individuals went from N = 100 to 500 to 1000. When the sample
increases, the absolute value of the t-statistics increases, so that the null hypothesis is more
easily rejected, which is also the case when the significance threshold increases from 2% to 5%
and to 10%. Then, the pretest selects more often the MK-GLS estimator. In these simulations,
the endogenous variable X3 was never selected as exogenous. We can therefore conclude that
the pretest performs well for relatively small samples.

When changing the distribution of the disturbances εit from normal to uniform (with iden-
tical variance but more kurtosis) the results are almost the same. Details are available from
the authors upon request. Chatelain and Ralf (2010) used these various estimators on a wage
equation evaluating the returns to schooling on the data set used by Greene (2012), section
11.4.5.

5 Conclusion

When a researcher does not know which are the exogenous internal instruments in order to cor-
rect the endogeneity bias of some time-invariant regressors, a pretest estimator based upon the
Mundlak-Krishnakumar and an unrestricted Hausman-Taylor estimator is a viable alternative
to other estimators in terms of bias, RMSE and inference. The procedures are easy to program
since it is only required to compute the average over time of time-varying variables and merge
them with the initial data set, and then to use random effects and Hausman-Taylor procedures
available e.g. in STATA.

An alternative to Hausman and Taylor (1981) estimator is the FEF-IV estimator for the two-
way error component model (Chen, Yue and Wong (2020)) and for the one-way error component
(Pesaran and Zhou (2018)). Further research may consider pre-tests for instrument selection
for these estimators.

Further research may consider the case where the econometricain does not know which time-
invariant variables are endogenous. A final cross-section instrumental variables (IV) Hausman
test upward testing procedure can be tried. In a first step, the pre-test Hausman and Taylor
(1981) estimator including the best selection of a number of internal instruments at least equal
to the number of all time-invariant variables if one first assume all of time-invariant variables
are endogenous. Hausman and Taylor (1981) provides IV estimates for the set of parameters
γHT of all time-invariant variables. We have the set of parameters (γ + φ)MK−GLS of all time-
invariant variables with MK-GLS estimator which may be biased because it assumes that all
time-invariant variables are exogenous: φ = 0. If the null hypothesis of an IV Hausman test
H0 : φ = 0 (if and only if H0 : γHT = (γ + φ)MK−GLS) is not rejected, then all time-invariant
variables are exogenous and MK-GLS is the best linear unbiased estimator. Else, a more precise
upward testing procedure (Andrews (1999)) of IV Hausman tests may find out if a subset of
time-invariant variables are nonetheless exogenous. The remaining subset may have driven the
rejection of the null hypothesis when pooling the estimates for all the time-invariant variables
in the Hausman (1978) test statistics.
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Appendix A. Unrestricted Hausman and Taylor (U-HT) estima-
tor

If k2 ≥ 1, to obtain consistent estimators for both β and γ in the second stage, let

d̂ = y· −X ·β̂W =
(
B−X ·

(
X ′WX

)−1
X ′W

)
y

be the NT vector of group means estimated from the within-groups residuals. The only differ-
ence of the unrestricted Hausman and Taylor with respect to the usual restricted Hausman and
Taylor is to keep the average over time of the endogenous time varying variables X2· in each of
the steps derived by Hausman and Taylor (1981). Expanding this expression using equation 4
including only X2·leads to:

d̂ = Z1γ1 + Z2 (γ2 + φ2) +X2·π3 + α
M +

(
B −X ·

(
X ′WX

)−1
X ′W

)
ε. (11)

Treating the last two terms as an unobservable mean zero disturbance, we estimate γ from the
above equation using N observations. If α is correlated with the columns of Z2, E (α | Z2) =
φ2 6= 0, according to prior information, both OLS and GLS will be inconsistent estimators for γ.
Consistent estimation is possible, however, if the columns of X1, uncorrelated with α according
to the non rejection of the null hypothesis of preliminary tests, provide suffi cient instruments
for the columns of Z in equation (11). The two stage least squares (2SLS) estimator for γ in
equation (11) is:

γ̂II =
([
Z ′, X2·

]
PA
[
Z ′, X2·

])−1 [
Z ′, X2·

]′
PAd̂ (12)

where A =
[
X1·, Z1

]
and PA is the orthogonal projection operator onto its column space. The

sampling error is given by

γ̂II − γ =
([
Z ′, X2·

]
PA
[
Z ′, X2·

])−1 [
Z ′, X2·

]′
PA

(
αM +

(
B −X ·

(
X ′WX

)−1
X ′W

)
ε
)

and under the usual assumptions governing X and Z, the 2SLS estimator is consistent for γ,
since for fixed T , plimN→∞

1
NA

′
α = 0 and plimN→∞

1
NX

′
ε = 0.

Having consistent estimators of β and, under the condition k1 ≥ g2, γ, we can construct
consistent estimators for the variance components. A consistent estimator of σ2ε can be derived
from the within-group residuals in the first step σ̂2ε = MSEW . Whenever we have consistent
estimators for both β and γ, a consistent estimator for σ2α can be obtained. Let

s2 = (1/N)
(
y· −X ·β̂W − Zγ̂II −X2·π̂2,II

)′ (
y· −X ·β̂W − Zγ̂II −X2·π̂2,II

)
then

plim
N→∞

s2 = plim
N→∞

1

N
(α+ ε)′ (α+ ε) = σ2α +

1

T
σ2ε

so that s2a = s2 − (1/T ) s2ε is consistent for s2a.

20



Appendix B 

Table 1a: Percentage of times the pretest selects the internal instruments when changing σα 

𝜎𝛼
2/(𝜎𝛼

2 + 𝜎𝜀
2) σα MK-GLS U-HT1 U-HT2 U-HT12 R-GLS U-HT13 U-HT23 

0 0 0 0.3 0.2 3.4 87.4 3.2 4.7 

1/12 0.5 0.5 3.7 3.3 75.1 14.5 1.2 1.6 

1/6 0.71 0 5 5.2 88.1 0.3 0.3 - 

1/4 0.87 1 6.1 5.6 86.8 - - - 

1/3 1 1.5 7.7 6.5 84.1 - - - 

1/2 1.22 1.7 8.2 8.6 79.8 - - - 

2/3 1.41 3.4 10.8 10.3 72.7 - - - 

3/4 1.5 6.2 12.4 11.4 68.2 - - - 

10/12 1.58 11.2 13.6 12.1 63.1 - - - 

11/12 1.66 16.8 16.2 12.6 54.4 - - - 

 

Figure 1a: Bias of �̂�𝟑 when changing σα 

 

Figure 1b: Bias of �̂�𝟐 when changing σα 

 



Table 1b: Bias. RMSE and 5% size test for �̂�𝟑 and  �̂�𝟐  in a Hausman-Taylor world, 1000 replications, N=100 and T=5, changing the 

variance of the individual effect 
 

                    
  

R-OLS 
  

R-OLS 
  

R-GLS 
  

R-GLS 
  

R-Between 
  

R-Between 
  σ²α σα �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size 

0 0 0.0020 0.094 6.2% -0.0089 0.112 4.8% 0.0020 0.093 5.7% -0.0090 0.112 4.2% -0.0005 0.124 4.30% -0.0064 0.120 18.1% 

0.25 0.5 0.2889 0.093 91.2% 0.2035 0.111 49% 0.2792 0.094 88% 0.2060 0.111 47% -0.0005 0.119 4.30% 0.2522 0.122 75% 

0.5 0.71 0.4077 0.093 99.1% 0.2917 0.109 79% 0.3894 0.094 99% 0.2965 0.110 79% -0.0005 0.113 4.30% 0.3594 0.124 91% 

0.75 0.87 0.4988 0.092 99.9% 0.3595 0.108 93% 0.4687 0.095 100% 0.3674 0.108 93% -0.0005 0.108 4.30% 0.4418 0.127 97% 

1 1 0.5756 0.092 100.0% 0.4168 0.107 99% 0.5287 0.097 100% 0.4290 0.108 99% -0.0004 0.101 4.30% 0.5114 0.129 99% 

1.5 1.22 0.7044 0.091 100.0% 0.5131 0.104 100% 0.6025 0.100 100% 0.5387 0.107 100% -0.0004 0.088 4.30% 0.6282 0.134 100% 

2 1.41 0.8129 0.090 100.0% 0.5946 0.101 100% 0.6078 0.100 100% 0.6432 0.107 100% -0.0003 0.072 4.30% 0.7269 0.139 100% 

2.25 1.5 0.8620 0.089 100.0% 0.6317 0.099 100% 0.5729 0.098 100% 0.6970 0.109 100% -0.0003 0.062 4.30% 0.7717 0.141 100% 

2.5 1.58 0.9084 0.089 100.0% 0.6669 0.098 100% 0.4948 0.091 100% 0.7543 0.113 100% -0.0002 0.051 4.30% 0.8142 0.144 100% 

2.75 1.66 0.9524 0.089 100.0% 0.7007 0.096 100% 0.3378 0.071 100% 0.8183 0.123 100% -0.0002 0.036 4.30% 0.8549 0.146 100% 

  
U-OLS 

  
U-OLS 

  
MK-GLS 

  
MK-GLS 

  
Between 

  
Between 

  σ²α σα �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size 

0 0 -0.0005 0.124 4.4% -0.014 0.177 5.9% -0.0005 0.124 4.60% -0.0140 0.177 5.5% 0.0070 0.159 6.3% -0.0140 0.177 6.1% 

0.25 0.5 -0.0005 0.119 4.2% 0.0623 0.172 8% -0.0005 0.119 4.60% 0.0623 0.172 7% 0.5677 0.154 97% 0.0623 0.172 8% 

0.5 0.71 -0.0005 0.113 4.1% 0.0943 0.167 11% -0.0005 0.113 4.60% 0.0943 0.167 10% 0.7998 0.150 100% 0.0943 0.167 10% 

0.75 0.87 -0.0005 0.108 3.9% 0.1190 0.162 14% -0.0005 0.108 4.60% 0.1190 0.162 12% 0.9778 0.145 100% 0.1190 0.162 12% 

1 1 -0.0004 0.101 3.8% 0.1400 0.157 18% -0.0004 0.101 4.50% 0.1400 0.157 15% 1.1277 0.140 100% 0.1400 0.157 15% 

1.5 1.22 -0.0004 0.088 3.7% 0.1756 0.146 32% -0.0005 0.124 4.60% 0.1756 0.15 23% 1.3791 0.130 100.0% 0.1756 0.146 23% 

2 1.41 -0.0003 0.072 3.3% 0.2061 0.134 51% -0.0005 0.119 4.60% 0.2061 0.13 35% 1.5908 0.120 100% 0.2061 0.134 35% 

2.25 1.5 -0.0003 0.062 2.9% 0.2202 0.128 62% -0.0005 0.113 4.60% 0.2202 0.13 42% 1.6865 0.114 100% 0.2202 0.128 42% 

2.5 1.58 -0.0002 0.051 2.1% 0.2338 0.122 73% -0.0005 0.108 4.60% 0.2338 0.12 51% 1.7769 0.108 100% 0.2338 0.122 51% 

2.75 1.66 -0.0002 0.036 1.0% 0.2471 0.116 85% -0.0004 0.101 4.50% 0.2471 0.12 59% 1.8627 0.102 100% 0.2471 0.116 59% 

  
R-HT12 

  
R-HT12 

  
U-HT12 

  
U-HT12 

  
Pretest 

  
Pretest 

  σ²α σα �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size 

0 0 0.0001 0.124 4.4% -0.0053 0.178 3.5% -0.0003 0.124 4.4% -0.0056 0.176 4.0% 0.0014 0.100 6.20% -0.0090 0.118 3.9% 

0.25 0.5 0.0030 0.119 4.7% -0.0095 0.186 4.5% -0.0003 0.119 4.4% -0.0047 0.169 3.9% 0.0265 0.152 16.80% 0.0461 0.185 11.2% 

0.5 0.71 0.0036 0.114 4.7% -0.0111 0.193 4.4% -0.0003 0.114 4.4% -0.0041 0.164 3.6% 0.0006 0.115 4.70% 0.0224 0.164 3.2% 

0.75 0.87 0.0037 0.108 4.7% -0.0123 0.199 4.6% -0.0003 0.108 4.4% -0.0036 0.155 3.8% -0.0002 0.108 4.50% 0.0268 0.155 3.3% 

1 1 0.0035 0.102 4.6% -0.0132 0.205 4.4% -0.0003 0.102 4.2% -0.0032 0.148 3.7% -0.0003 0.102 4.30% 0.0326 0.149 3.8% 

1.5 1.22 0.0029 0.088 4.7% -0.0146 0.217 4.1% -0.0003 0.088 4.3% -0.0023 0.133 3.8% -0.0003 0.088 4.40% 0.0467 0.148 5.6% 

2 1.41 0.0019 0.072 4.7% -0.0156 0.228 4.2% -0.0002 0.072 4.4% -0.0013 0.115 3.8% -0.0003 0.072 4.50% 0.0633 0.141 8.5% 

2.25 1.5 0.0014 0.062 4.5% -0.0160 0.234 4.3% -0.0002 0.062 4.4% -0.0008 0.106 3.9% -0.0002 0.062 4.50% 0.0716 0.139 10.6% 

2.5 1.58 0.0009 0.051 4.6% 0.0162 0.239 4.8% 0.0001 0.051 4.4% 0.0002 0.095 3.8% 0.0002 0.051 4.50% 0.0846 0.143 13.8% 

2.75 1.66 0.0004 0.036 4.5% -0.0162 0.244 5.1% -0.0001 0.036 4.3% 0.0006 0.083 3.7% -0.0001 0.036 4.30% 0.1052 0.150 19.8% 

 

 



Table 2a: Percentage of times the pretest selects the internal instruments when changing  𝝆
𝒁𝟐𝜶

 

𝜌𝑍2𝛼 MK-GLS U-HT1 U-HT2 U-HT12 R-GLS U-HT13 U-HT23 

0.45 4.2 10.7 11.4 73.74 - - - 

0.5 0.7 5.7 5 88.6 - - - 

0.52 3.4 8.2 8.6 79.8    

0.55 14.2 14.2 16.2 51.1 - - - 

 

Figure 2a: Bias of �̂�𝟑 when changing 𝝆𝒁𝟐𝜶 

 

Figure 2b: Bias of �̂�𝟐 when changing 𝝆𝒁𝟐𝜶 

 

 



Table 2b: Bias. RMSE and 5% size test for �̂�𝟑 and  �̂�𝟐  in a Hausman-Taylor world. 1000 replications, N=100 and T=5, changing the variance of the 

individual effect 

 
R-OLS 

  
R-OLS 

  
R-GLS 

  
R-GLS 

  
R-Between 

  
R-Between 

  ρz2α �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size 

0.45 0.7694 0.095 100% 0.3483 0.108 95% 0.6555 0.107 100% 0.3903 0.111 97% -0.0004 0.088 4.3% 0.5411 0.137 98% 

0.5 0.7230 0.092 100% 0.4661 0.105 100% 0.6126 0.102 100% 0.4978 0.108 100% -0.0004 0.088 4.3% 0.6034 0.351 100% 

0.52 0.7044 0.091 100% 0.5131 0.104 100% 0.6025 0.100 100% 0.5387 0.107 100% -0.0004 0.088 4.3% 0.6282 0.134 100% 

0.55 0.6766 0.089 100% 0.5834 0.102 100% 0.5939 0.097 100% 0.5993 0.104 100% -0.0004 0.088 4.3% 0.6652 0.133 100% 

 

U-OLS 

  

U-OLS 

  

MK-GLS 

 

MK-GLS 

 

   

Between 

  

Between 

  ρz2α �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size 

0.45 -0.0004 0.088 3.6% 
-

0.2143 
0.147 40% -0.0004 0.088 4.3% -0.2143 0.147 34% 1.6329 0.129 100% -0.2143 0.147 34% 

0.5 -0.0004 0.088 3.7% 0.0643 0.147 12% -0.0004 0.088 4.4% 0.0643 0.147 8% 1.4516 0.131 100% 0.0643 0.147 8% 

0.52 -0.0004 0.088 3.7% 0.1756 0.146 32% -0.0005 0.124 4.6% 0.1756 0.146 23% 1.3791 0.130 100% 0.1756 0.146 23% 

0.55 -0.0004 0.088 3.7% 0.3425 0.142 76% -0.0004 0.088 4.4% 0.3425 0.142 69% 1.2703 0.128 100% 0.3425 0.142 69% 

 

R-HT12 

  

R-HT12 

  

U-HT12 

  

U-HT12 

  

Pretest 

  

Pretest 

  ρz2α �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size 

0.45 0.0028 0.088 4.3% 
-

0.0150 
0.022 4.4% -0.0004 0.088 4.2% -0.0026 0.131 3.5% -0.0004 0.088 4.4% -0.0635 0.156 6.7% 

0.5 0.0029 0.088 4.7% 
-

0.0146 
0.217 4.0% -0.0002 0.088 4.2% -0.0022 0.132 3.7% -0.0002 0.088 4.4% 0.0138 0.131 3.0% 

0.52 0.0029 0.088 4.7% 
-

0.0146 
0.217 4.1% -0.0003 0.088 4.3% -0.0023 0.133 3.8% -0.0003 0.088 4.4% 0.0467 0.148 5.6% 

0.55 0.0029 0.088 4.7% 
-

0.0149 
0.217 4.3% -0.0002 0.088 4.3% -0.0025 0.133 3.9% -0.0004 0.088 4.3% 0.1444 0.192 17.8% 

 

  



Table 3a: Percentage of times the pretest selects the internal instruments when changing  𝝆
𝑿𝟏𝒁𝟐

= 𝝆
𝑿𝟐𝒁𝟐

 

𝜌𝑋1𝑍2
= 𝜌𝑋2𝑍2

 MK-GLS U-HT1 U-HT2 U-HT12 R-GLS U-HT13 U-HT23 

0 0.3 4 5.1 90.6 - - - 

0.1 0.3 4.1 5.3 90.3 - - - 

0.25 0.4 4.7 5.7 89.2 - - - 

0.35 0.8 7 7 85.2 - - - 

0.4 3.4 8.2 8.6 79.8 - - - 

0.45 24.9 13.5 13.2 48.4 - - - 
 

Figure 3a: Bias of �̂�𝟑 when changing 𝝆𝑿𝟏𝒁𝟐
= 𝝆𝑿𝟐𝒁𝟐

 

 

Figure 3b: Bias of �̂�𝟐 when changing 𝝆𝑿𝟏𝒁𝟐
= 𝝆𝑿𝟐𝒁𝟐

 

 

  



Table 3: Bias. RMSE and 5% size test for �̂�𝟑 and  �̂�𝟐 in a Hausman Taylor world, 1000 replications, N=100 and T=5: changing from weak to strong 

internal instruments 

 

R-OLS 

  

R-OLS 

  

R-GLS 

  

R-GLS 

  

R-Between 

  

R-Between 

  𝝆𝑿𝟏𝒁𝟐
 �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size 

0 0.7791 0.091 100.0% 0.3207 0.090 98.3% 0.6561 0.105 100.0% 0.3694 0.097 99.3% -0.0004 0.088 4.3% 0.6283 0.126 99.8% 

0.1 0.7763 0.092 100.0% 0.3280 0.091 98.4% 0.6539 0.105 100.0% 0.3763 0.098 99.1% -0.0004 0.088 4.3% 0.6275 0.126 99.8% 

0.25 0.7582 0.092 100.0% 0.3749 0.096 99.3% 0.6398 0.104 100.0% 0.4200 0.101 99.4% -0.0004 0.088 4.3% 0.6272 0.129 99.8% 

0.35 0.7293 0.091 100.0% 0.4491 0.101 99.8% 0.6189 0.102 100.0% 0.4856 0.105 99.8% -0.0004 0.088 4.3% 0.6277 0.132 99.7% 

0.4 0.7044 0.091 100.0% 0.5131 0.104 99.8% 0.6025 0.100 100.0% 0.5387 0.107 99.9% -0.0004 0.088 4.3% 0.6282 0.134 99.6% 

0.45 0.6655 0.089 100.0% 0.6129 0.107 100.0% 0.5833 0.096 0.0% 0.6169 0.109 100.0% -0.0004 0.088 4.3% 0.6290 0.081 99.6% 

 

U-OLS 

  

U-OLS 

  

MK-GLS 

 

MK-GLS 

 

Between 

  

Between 

  𝝆𝑿𝟏𝒁𝟐
 �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size 

0 -0.0004 0.088 3.7% 0.0519 0.080 15.2% -0.0004 0.088 4.4% 0.0519 0.080 9.7% 1.4598 0.103 100.0% 0.0519 0.080 9.7% 

0.1 -0.0004 0.088 3.7% 0.0542 0.081 15.2% -0.0004 0.088 4.4% 0.0542 0.081 9.7% 1.4583 0.104 100.0% 0.0542 0.081 9.8% 

0.25 -0.0004 0.088 3.7% 0.0716 0.094 17.6% -0.0004 0.088 4.4% 0.0716 0.094 11.5% 1.4470 0.108 100.0% 0.0716 0.094 11.6% 

0.35 -0.0004 0.088 3.7% 0.1127 0.117 23.3% -0.0004 0.088 4.4% 0.1127 0.117 16.2% 1.4201 0.117 100.0% 0.1127 0.117 16.3% 

0.4 -0.0004 0.088 3.7% 0.1756 0.146 32.3% -0.0004 0.088 4.4% 0.1756 0.146 23.2% 1.3791 0.130 100.0% 0.1756 0.146 23.4% 

0.45 -0.0004 0.088 3.7% 0.4746 0.233 62.7% -0.0004 0.088 4.4% 0.4746 0.233 53.3% 1.1842 0.176 100.0% 0.4746 0.233 53.3% 

 

R-HT12 

  

R-HT12 

  

U-HT12 

  

U-HT12 

  

Pretest 

  

Pretest 

  𝝆𝑿𝟏𝒁𝟐
 �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size �̂�𝟑 bias RMSE 5% size �̂�𝟐 bias RMSE 5% size 

0 0.0015 0.088 44.0% 0.6170 2.498 1.7% -0.0004 0.088 4.2% 0.1207 1.949 0.1% -0.0004 0.088 4.3% 0.0702 2.165 0.1% 

0.1 0.0025 0.088 4.8% 0.1136 1.515 3.2% -0.0003 0.088 4.2% -0.0348 0.801 0.4% -0.0003 0.088 4.4% -0.0099 1.024 0.2% 

0.25 0.0028 0.088 4.6% -0.0239 0.364 3.8% -0.0002 0.088 4.2% -0.0047 0.218 2.8% -0.0003 0.088 4.4% 0.0191 0.207 1.6% 

0.35 0.0029 0.088 4.6% -0.0168 0.251 4.2% -0.0002 0.088 4.2% -0.0028 0.152 3.5% -0.0003 0.088 4.4% 0.0262 0.146 2.7% 

0.4 0.0029 0.088 4.7% -0.0146 0.217 4.1% -0.0002 0.088 4.3% -0.0023 0.133 3.8% -0.0003 0.088 4.4% 0.0467 0.142 5.6% 

0.45 0.0029 0.088 4.7% -0.0130 0.192 4.6% -0.0002 0.088 4.3% -0.0018 0.118 3.8% -0.0004 0.088 4.4% 0.2380 0.314 27.4% 

 
 

 

 

  



Table 4: Percentage of times the pretest selects the internal instruments when changing the level of significance (in %) and the size of the sample (N)  

 2% 2% 2% 5% 5% 5% 10% 10% 10% 

N 100 500 1000 100 500 1000 100 500 1000 

MK-GLS 1.1 11.4 34.7 3.4 23.1 52.9 6.9 33.3 68.8 

U-HT1 5.2 16 19.5 8.2 17.9 15.2 12.8 19.2 11.1 

U-HT2 4.9 17.8 20.4 8.6 20.6 17.6 13.8 21.7 12.5 

U-HT12 88.8 54.8 25.4 79.8 38.4 14.3 66.5 25.8 7.6 

 

 


