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Abstract

We show in a large-scale field experiment that a brief exposure to female role models working
in scientific fields affects high school students’ perceptions and choice of undergraduate
major. While the classroom interventions generally reduce the prevalence of stereotypical
views on jobs in science and gender differences in abilities, the effects on educational
choices are concentrated among high-achieving girls in Grade 12. They are more likely
to enroll in selective and male-dominated STEM programs in college. The most effective
role model interventions are those that improved students’ perceptions of STEM careers
without overemphasizing women’s underrepresentation in science.
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Introduction

Women’s increasing participation in science and engineering in the U.S. has leveled off in the
past decade (National Science Foundation, 2017). This trend, which is common to almost all
OECD countries, is a source of concern for two main reasons. First, it exacerbates gender
inequality in the labor market, as Science, Technology, Engineering, and Mathematics (STEM)
occupations offer higher average salaries (Brown and Corcoran, 1997; Black et al., 2008; Blau
and Kahn, 2017) and show a smaller gender wage gap (Beede et al., 2011). Second, in a
context of heightened concern over a shortage of STEM workers in the advanced economies, this
trend is likely to represent a worsening loss of talent that could reduce aggregate productivity
(Weinberger, 1999; Hoogendoorn et al., 2013).

The underrepresentation of women in these traditionally male-dominated fields can also
constitute a self-fulfilling prophecy for subsequent generations, as girls have little opportunity
to interact with women working in these fields and who could inspire them. A large literature
has established that exposing female students to successful or admirable women can help break
this vicious circle. Most of the existing papers focus on potential role models that interact on a
regular basis with the individuals they may influence, such as teachers or instructors (Bettinger
and Long, 2005; Carrell et al., 2010), university advisors (Canaan and Mouganie, forthcoming),
or doctors (Riise et al., forthcoming). Recently, two studies have shown that a one-off exposure
to external female role models can also have large effects on female representation in male-
dominated fields of study. Porter and Serra (2020) document a positive impact of two female
role models who were carefully selected among the economics alumni of Southern Methodist
University in the U.S. on the likelihood of female students majoring in economics. Del Carpio
and Guadalupe (2018) demonstrate the effectiveness, relative to other types of interventions,
of virtual role models to reduce identity costs related to female participation in STEM and
to foster female applications to a software-coding program.! An attractive feature of these
light-touch interventions for identifying role model effects is that they remove the influences of
potential confounding factors such as gender differences in teaching practices (Lavy and Sand,
2018; Terrier, 2020; Carlana, 2019)

Although the literature provides compelling evidence that external role models have sizeable
effects on educational choices, little is known about how these effects are transmitted. Role
models could directly affect students’ preferences. They might change their expectations by

modifying their beliefs. By providing an inspirational and relatable model, they could also

'Related studies outside the context of STEM education include field experiments on exposure to women in
leadership positions in India (Beaman et al., 2012) and the provision of information on the returns to education
by role models of poor or rich background in Madagascar (Nguyen, 2008).



counteract the effects of gender norms on students’ social identity (Gladstone and Cimpian,
2020). Which of those channels are most affected by external role models? To what extent
do changes in students’ perceptions translate into changes in educational choices? Are all role
models equally able to influence students’ decision making?

This paper’s contributes to answering these questions by analyzing the effects of a one-hour
in-class exposure to external female scientists on female representation in STEM fields of study,
and by investigating how the effectiveness of such interventions depends on the characteristics
of the role models and the messages they convey. We use a large-scale randomized experiment
combined with a comprehensive post-intervention survey to directly measure how role models
affect students’ perceptions, beliefs, and enrollment outcomes. Compared to previous studies, a
strength of our research design is to involve a large number of role model participants—>56 in
total. We leverage the diversity of these women’s profiles to better understand what makes an
efficient role model. Building on the rapidly expanding literature on the use of machine learning
to analyze treatment effect heterogeneity (Athey and Imbens, 2016, 2017; Mullainathan and
Spiess, 2017; Wager and Athey, 2018; Chernozhukov et al., 2018), we propose a novel empirical
approach that relates the treatment effects on STEM enrollment outcomes to the treatment
effects on potential channels. This constitutes a methodological contribution that can be used
to investigate mechanisms in randomized controlled trials.

The program we evaluate is called “For Girls in Science” (Pour les Filles et la Science)
and was launched in 2014 by the L’Oréal Foundation—the corporate foundation of the world’s
leading cosmetics manufacturer—to encourage girls to explore STEM career paths. It consists of
one-hour in-class interventions by women with two very distinct profiles: half are young scientists
(either Ph.D. candidates or postdoctoral researchers) who were awarded the L’Oréal-UNESCO
“For Women in Science” Fellowship; the others are young professionals privately employed as
scientists in the Research and Innovation division of the L’Oréal group. In the main part of the
intervention, the role models share their experience and career path with the students. They
also provide information on science-related careers in general and on gender stereotypes using
two short videos.

The evaluation was conducted during the 2015/16 academic year in 98 high schools located
in the Paris region. It involved 19,451 students from Grade 10 and Grade 12 (science track),
two grade levels at the end of which irreversible educational choices are made by students. Half
of the classes were randomly selected to be visited by one of the 56 role model participants, who
were assigned to those classes through a registration process on a first-come, first-served basis.

We show that the role models’ interventions led to a significant increase in the share of
girls enrolling in STEM fields, but only in the educational tracks where they are strongly

underrepresented. In Grade 10, the classroom visits had no detectable impact on boys’ and



girls’ probability of enrolling in the science track in Grade 11, where girls are only slightly
underrepresented (47 percent of students). By contrast, the intervention induced a significant
2.4-percentage-point increase in STEM undergraduate enrollment among girls in Grade 12, or an
increase of 8 percent over the baseline rate of 29 percent, while the effect for boys was negligible.
This positive impact on female STEM enrollment is driven by high-achieving female students
shifting to selective STEM programs, which lead to the most prestigious graduate schools, and
male-dominated STEM programs (math, physics, computer science, and engineering). These
results constitute the first field evidence that in-person exposure to external female role models
affects STEM enrollment decisions at college entry. They complement the findings from previous
research on the effects of external role models on female representation in economics majors
(Porter and Serra, 2020), and of female teachers (e.g., Carrell et al., 2010) and virtual role
models (Del Carpio and Guadalupe, 2018) in STEM.

To explore the channels through which role models affect students’ enrollment outcomes, we
conducted a post-treatment student survey consisting of an eight-page questionnaire administered
in class one to six months after the classroom interventions. We also collected administrative
data on high school graduation exams (Baccalauréat) at the end of Grade 12. Our results show
that the role model interventions significantly improved students’ perceptions of science-related
jobs at both grade levels, with no indication of declining effects over a period of up to six months.
For girls in Grade 12, the interventions significantly increased aspirations for science-related
careers. They also helped mitigate some of the stereotypes typically associated with STEM
occupations (such as being hard to reconcile with family life) and heightened the perception
that these jobs pay better. By contrast, the intervention had no significant effect on students’
self-reported taste for science subjects or their academic performance, and only slightly increased
their math self-concept at both grade levels.

One of the most interesting—and least expected—findings concerns the effects on students’
perceptions of gender roles in science. The classroom interventions not only were effective in
debiasing students’ beliefs about gender differences in math aptitude, they also raised awareness
of the underrepresentation of women in science. The combination of these two effects triggered
an unintended ex-post rationalization by students of the gender imbalance in scientific fields and
occupations, making them more likely to agree with the statement that women dislike science
and that they face discrimination in science-related jobs. Explicitly correcting self-stereotyping
beliefs (Coffman, 2014) and misperceptions about women’s representation in science (Bursztyn
and Yang, 2021) thus appears to have generated more ambiguous perceptions among students
than the intervention’s gender-neutral messages about jobs and careers.

Building on the method proposed by Chernozhukov et al. (2018), we develop a novel approach

to relate the student-level treatment effects on enrolment outcomes to the treatment effects on



potential channels. Our results show that the interventions that had the greatest impact on
female enrollment in selective STEM programs are those that most improved girls’ perceptions
of science-related careers without reinforcing the perception that women are underrepresented
in science. By contrast, we find that the role models’ ability to steer girls towards selective
STEM programs is essentially uncorrelated with their effects on students’ perceptions of gender
differences in aptitude for science.

Overall, our exploration of the different channels provides consistent evidence that the
emphasis on gender issues is less important to the effectiveness of such interventions than the
ability of role models to project a positive and inclusive image of science-related careers, thus
embodying an attractive, attainable path to them.

Finally, we highlight the importance of the role model component of the intervention. First,
we argue that the provision of general information on STEM careers cannot explain alone the
effects of the interventions on enrollment outcomes. To test the sensitivity of students’ attitudes
and choices to the intensity of the information component of the treatment, we provided 36 of
the 56 role models with a set of slides that contained twice as much informational content
as the standard set, including information about wages and employment conditions in STEM
jobs. We find no evidence that the treatment effects on students’ choice of college major differ
significantly between the two sets of slides. Second, we document a high degree of heterogeneity
in treatment effects according to the role models’ professional background. Those employed by
the sponsoring firm had a significantly greater effect on girls’ probability of enrolling in selective
STEM programs than the young researchers, despite being exposed to students with similar
observable characteristics. Although the two groups were equally effective in debunking the
stereotype on gender differences in math aptitude, we find clear evidence that those with a
professional background were better able to improve girls’ perceptions of science-related jobs and
raise their aspirations for such careers. Conversely, they were less likely to reinforce students’
belief that women are underrepresented in science. Together, these results show that role model
interventions are not reducible to the provision of standardized information and that female role
models are not interchangeable. They confirm, in a real-life setting, results from lab experiments
in social psychology highlighting the importance of role models’ profiles (Lockwood and Kunda,
1997; Cheryan et al., 2011; Betz and Sekaquaptewa, 2012; O’Brien et al., 2016).

The remainder of the paper is organized as follows. Section 1 provides institutional back-
ground on the French educational system and the gender gap in STEM fields. Section 2 describes
the intervention and the experimental design. Section 3 presents the data and empirical strategy.
Section 4 analyzes the effects of role model interventions on student perceptions, self-concept, and
educational outcomes. Section 5 extends the analysis to the role of information, the persistence

of effects, and potential spillovers. Section 6 discusses mechanisms and Section 7 concludes.



1 Institutional Background

1.1 Structure of the French Education System

In France, education is compulsory from the age of 6 to the age of 16, with the academic
year running from September to June. The school system consists of five years of elementary
education (Grades 1 to 5) and seven years of secondary education, divided into four years of
middle school (collége, Grades 6 to 9) and three of high school (lycée, Grades 10 to 12). Students
complete high school with the Baccalauréat national exam, which they must pass for admission

to higher education.

High school tracks. The tracking of students occurs at two critical stages (see Figure 1). At
the end of middle school, about two-thirds of students are admitted to general and technological
upper secondary education (Seconde générale et technologique) and the remaining third are
tracked into vocational schools (Seconde professionnelle). After the first year of high school
(Grade 10), the general and technological track is further split: approximately 80 percent of the
students are directed to the general Baccalauréat program for the last two years of high school
(Grades 11 and 12), while the remaining 20 percent, who are mostly low-achieving students,
are directed towards a technological Baccalauréat, which is more geared towards the needs of
business and industry and leads to shorter studies.

In the Spring term of Grade 10, the students who have been allowed to pursue the general
track are required to choose among three sub-tracks in Grade 11: Science (Premiére S),
Humanities (Premiére L), and Social sciences (Premiére ES). This is an important choice, given
that the curriculum and high school examinations are specific to each Baccalauréat track and
thus directly impact students’ educational opportunities and career prospects. It is almost
impossible, for instance, for a student to be admitted to engineering or medical undergraduate
programs without a Baccalauréat in science. Students directed to the technological track after
Grade 10 are also required to choose among eight possible STEM and non-STEM sub-tracks,
which will affect their choice of field of study in higher education.

College entry. In the Spring term of Grade 12, students in their final year of high school apply
for admission to higher education programs through a centralized online admission platform. The
programs to which students can apply fall into two broad categories, each accounting for about
half of first-year undergraduate enrollment: (i) non-selective undergraduate university programs
(Licence), which are open to all students who hold the Baccalauréat; and (ii) selective programs,

which can select students based on their academic achievement. Both types of programs offer



specializations in STEM and non-STEM fields. Among selective programs, the most prestigious
are the two-year Classes préparatoires auz Grandes Ecoles (CPGE), which prepare students to
take the national entry exams to elite graduate schools (Grandes Ecoles). These programs are
specialized either in science, in economics and business or in humanities. Within the science
CPGE programs, the main fields of specialization are mathematics and physics (MPSI), physics
and chemistry (PCSI), and biology/geoscience (BCPST). The other selective undergraduate
programs (Section de technicien supérieur or STS) are mostly targeted to students holding a

vocational or technological Baccalauréat and prepare for technical/vocational bachelor’s degrees.

1.2 Female Underrepresentation in STEM

In France, the share of female students in STEM-oriented studies starts to decline after Grade 10
and drops sharply at entry into higher education. While 54 percent of the students in the general
and technological track in Grade 10 are girls, the share falls to 47 percent in the general science
track (Grades 11 and 12) and further to 30 percent in the first year of higher education.? Female
underrepresentation in STEM fields of study is more pronounced in the selective undergraduate
programs (shares of 18 percent in STS and 30 percent in CPGE) than in the non-selective
programs (35 percent). These proportions, which are computed from administrative data for
2016/17, are almost identical to those of a decade earlier. Within STEM fields of study, female
students tend to specialize in earth and life sciences (female share: 62 percent) rather than
mathematics, physics, or computer science (female share: 26 percent).

The underrepresentation of women in STEM fields accounts for a good part of the gender
pay gap among college graduates in France. Using a variety of administrative and survey
data sources, we show in Appendix A that across all majors, male graduates who obtained a
master’s degree in 2015 or 2016 earn a median gross annual starting salary of 32,122 euros,
compared to 28,411 euros for female graduates. This amounts to an overall gap of 3,711 euros
per year, or 11.6 percent of men’s pay (see Table A1). Using standard decomposition methods,
we find that the underrepresentation of female students in STEM accounts for approximately
25 percent of this gap (see Table A2). Additionally, almost half of the 9.1 percent gender pay
gap within STEM can be ascribed to the fact that female graduates are less likely than males
to be enrolled in the selective and male-dominated fields, which lead to the best-paying degrees.
These figures strongly suggest that in the French context, increasing the share of female students
in STEM—especially in selective and male-dominated programs—would narrow the gender pay

gap substantially.

2At the high school level, the gender imbalance in STEM is more severe in the technological track (female
share: 17 percent) than in the general science track (female share: 47 percent).



2 Program and Experimental Design

2.1 The “For Girls in Science” Program

The “For Girls in Science” (FGiS) program is an awareness campaign launched in 2014 by the
L’Oréal Foundation to encourage girls to explore STEM career paths. It consists of one-hour one-
off classroom interventions by female role models with a background in science. The interventions,
which take place in the presence of all students in the class, including boys, are carried out
by female role models of two distinct types: (i) Ph.D. candidates or postdoctoral researchers
who have been awarded a fellowship by the L’Oréal Foundation (the L’Oréal-UNESCO “For
Women in Science” Fellowship) and who participate in the program as part of their contract;
and (ii) young professionals employed as scientists in the Research and Innovation division of

the L’Oréal group who volunteer for the program.

Structure and content of the interventions. The classroom interventions last one hour
and are divided into four main sequences. Each role model was provided with a set of slides as a
support for the entire in-class conversation. During the first sequence, a small number of slides
highlight two facts: (1) the labor market is marked by high demand for STEM skills and there
is a shortage of graduates in the relevant fields of study; and (2) women are underrepresented
in STEM careers. To investigate the role of information provision, we provided 36 of the
56 role models with additional slides that they were free to use during this sequence. These
slides contained supplementary information about average earnings and employment conditions
in STEM jobs, and were illustrated with examples of career prospects in humanities versus
science. In Section 5, we discuss the sensitivity of our results to this more intensive provision of
standardized information.

The second sequence kicks off with two three-minute videos designed to illustrate and
deconstruct stereotypes about science-related careers and gender roles in science.? The first
video, entitled “Science, Beliefs or Reality?,” uses interviews with high school students to debunk
myths about careers in science (e.g., jobs in science are more challenging, they necessarily
require long studies), stereotypes about scientists (e.g., they are introverted, lonely), and gender
differences in science aptitude (e.g., women are naturally less talented in math). The second
video, entitled “Are we all Equal in Science?,” describes the common gender stereotypes about
aptitude for science while providing information on brain plasticity and on how interactions and
the social environment shape men’s and women’s abilities and tastes. This sequence aims at

stimulating class discussion based on students’ reactions to the videos.

3Screenshots of the two videos shown during the classroom interventions are displayed in Appendix Figure B1.



The third sequence centers on the female role model’s own experience as a woman with
a background in science and consists of an interactive question-and-answer session with the
students.* Topics addressed during this discussion include the role model’s typical day at work,
what she enjoys about her job, the biggest challenge she had to overcome, how she views her
professional future, her everyday interactions with co-workers, how much she earns, and her
work-family balance. Consistent with the program’s emphasis on the role model dimension,
this sequence was intended to be the longest and most important part of the intervention. In
order to convey this objective to the role models, a full-day training was organized to help
them share their experience with the students. The training also included a workshop on
the underrepresentation of women in science and a practice session aimed at enhancing oral
communication skills.

The intervention concludes with an overview of the diversity of STEM studies and careers,
illustrated by concrete examples such as jobs in graphic design, environmental engineering, and

computer science.

2.2 Experimental Design

Selection of schools and classes. The evaluation was conducted in the three education
districts (académies) of the Paris region (Paris, Créteil, and Versailles) during the 2015/16
academic year. Créteil and Versailles are the two largest education districts in France and the
three districts combined include 318,000 high school students in the general and technological
track, or 20 percent of all French high school enrollment.

Figure 2 provides a detailed timeline of the evaluation. In the spring of 2015, the French
Ministry for Education agreed to support a randomized evaluation of the program and designated
one representative for each district as intermediary between the schools and the evaluation
team. In June, official letters informed high school principals that they were likely to be
contacted to take part in the evaluation. All public and private high schools with at least four
classes in Grade 10 and two in Grade 12 (science track) were contacted by our team between
September and December 2015, accounting for 349 of the 489 high schools operating in the three
districts. Of these schools, 98 agreed to take part in the experiment, representing 28 percent of
Grade 10 enrollment and 29 percent of Grade 12 (science track) enrollment in the three districts
combined.® The participating schools tend to be larger and are less likely to be private or to
operate in the Paris education district than the non-participating ones (see Appendix Table E1).
Despite these differences, the experimental sample, which consists of 19,451 students (13,700 in
Grade 10 and 5,751 in Grade 12), closely resembles the relevant student population, both in

4Screenshots of the slides used during the discussion are displayed in Appendix Figure B2.
5The location of the participating schools is shown in Appendix Figure B3.



social composition and in average academic performance (see Appendix Table E2).

Randomization. In the fall of the 2015/16 school year, the principals were invited to select
at least six classes—four or more in Grade 10 and two or more in Grade 12 (science track)—and
to indicate a preferred time slot and day for the interventions.® In each school, half of the classes
selected by the principal (up to the nearest integer) were randomly assigned to the treatment
group (302 classes in total) and the other half to the control group (299 classes). Table 1
indicates that the random assignment successfully balanced the characteristics of students in

the treatment and control groups.

Role models. The experiment involved 56 female role models, of whom 35 were L’Oréal
employees and 21 were Ph.D. candidates or postdoctoral researchers. Table 2 provides summary
statistics of their characteristics. The researchers tend to be younger (30 vs. 36 years of age on
average) and are less often of foreign nationality (10 vs. 17 percent). Although both types have
very high levels of educational attainment, 39 percent having graduated from a Grande Ecole,
the researchers are more likely than the professionals to hold (or prepare for) a Ph.D. (100 vs.
38 percent) and to hold a degree in math, physics and engineering (38 vs. 14 percent). They are
also less likely to have children (19 vs. 58 percent) and to have been involved in the program
in the previous year (19 vs. 29 percent). The professionals working at L’Oréal are employed
in various activities: chemistry (development of new technologies for skin products), logistics
and supply chain management, statistics (consumer evaluation), immunology and toxicology.
Although we could not collect direct information on earnings for reasons of confidentiality, we
estimate based on aggregate information provided by the L’Oréal Group that the annual gross
wages of these young professionals is between 45,000 and 65,000 euros, compared to between
22,000 and 50,000 euros for the researchers. On average, each role model carried out five

classroom interventions in two different high schools.

Classroom interventions. The classroom visits took place between November 17, 2015, and
March 3, 2016.” The role models were asked to select two or three schools in which to carry
out an average of three classroom visits per school—in most cases, two in Grade 10 and one in
Grade 12. They were not assigned to the schools randomly but registered for the visits and time
slots during four registration sessions using an online system on a first-come, first-served basis.
Randomly assigning the role models to the schools was not a feasible option, since most were

participating on a voluntary basis and during regular working hours. We therefore identify the

SIn the vast majority of schools, principals selected exactly four Grade 10 and two Grade 12 classes.
717 percent of the visits took place in November, 26 percent in December, 39 percent in January, 17 percent
in February, and 1 percent in March.

10



causal impact of role models in a setting where they have some freedom to choose the schools
in which they intervene. The assignment process, however, did not involve any coordination
between the participants and was designed to limit their ability to select the schools they would

visit, as each registration session only concerned a subset of the participating schools.®

3 Data and Empirical Strategy

3.1 Data

To evaluate the program’s effects on student perceptions and educational choices, we combine
three main data sources: (i) a post-intervention survey of role models; (ii) a post-intervention

survey of students; and (iii) student-level administrative data.’

Role model survey. After each visit to a school, the role models were invited to complete an
online survey. Besides collecting general feedback, this survey served to monitor compliance with
random assignment, asking them to indicate each of the classes they visited. Summary statistics
are reported in Appendix Table E3. The interventions almost always (89 percent) took place
in the presence of the teacher and sometimes (35 percent) of another adult. The role models
reported organizational problems for only 16 percent of the visits (e.g. the intervention started
late, the slides could not be shown). According to the survey, researchers and professionals
were equally likely to cover the intended topics, such as “jobs in science are fulfilling”, “they
are for girls too”, and “they pay well”. Finally, when asked about their overall perception
of their classroom interventions, 93 percent said they went “well” (37 percent) or “very well”

(56 percent). Students were generally perceived to be responsive to the key messages.

Student survey. We conducted a paper-and-pencil student survey in classes assigned to the
treatment and control groups one to six months after the classroom visits, between January and
May 2016. Each questionnaire was assigned a unique identifier so that it could be linked with
student-level administrative data. The survey was designed to collect a rich set of information
on students’ preferences, beliefs and perceptions regarding science, self-concept and aspirations,
and was administered in exam conditions under the supervision of a teacher. It was presented
as a general survey on students’ attitudes about science and science-related careers so as to
minimize the risk that students would associate it with the FGiS program. It was eight pages

long and took about half an hour to complete.

8The role models were contacted four times to complete the schedule, on October 21, November 24, December 7,
2015, and February 3, 2016.

9Translated versions of the two surveys are available online at https://mycore.core-cloud.net/index.
php/s/L0aB9Kvpbot7sNh.
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The survey items investigate the effects of classroom interventions on students’ perceptions
along five dimensions: (i) general perceptions of science-related careers; (ii) perceptions of gender
roles in science; (iii) taste for science subjects; (iv) math self-concept; and (v) science-related
career aspirations. When conceptually related, we combine the survey items to construct a
synthetic index for each dimension using standardized z-score scales. Section 4 describes the
specific items that are used for each dimension of interest.!®

As shown in Appendix Table E5, the survey response rates are high both in Grade 10
(88 percent of students) and in Grade 12 (91 percent). They are slightly higher among Grade 10
students in the treatment than in the control group (by 2.6 percentage points). Despite this small
difference in response rates, the characteristics of survey respondents in Grade 10 are generally
balanced between the treatment and control groups (see Appendix Table E6). The opposite is
found in Grade 12: the survey response rates are similar in the two groups, but the respondents’

characteristics exhibit some small but statistically significant differences. In Section 4, we show

that the survey-based results are robust to controlling for these small imbalances.

Administrative data. We linked the student survey data to a rich set of individual-level
administrative data covering the universe of students enrolled in the high schools of the Paris
region over the period 2012/13 to 2016/17. These data provide detailed information on students’
socio-demographic characteristics and enrollment status every year, allowing us to identify the
high school track taken by Grade 10 students entering Grade 11.

The college enrollment outcomes of students in Grade 12 were obtained by matching the
survey and administrative data for high school students with administrative microdata covering
almost all students enrolled in selective and non-selective higher education programs in 2016,/17.11
These data are complemented with comprehensive individual examination results from the
Diplome National du Brevet (DNB), which is taken at the end of middle school, and from the
national Baccalauréat exam (for Grade 12 students). Specifically, we use students’ grades on
the final exams in French and math (converted into national percentile ranks), as these tests are
graded externally and anonymously. Further details about the data sources and the classification

of higher education programs can be found in Appendix C.

10To mitigate potential order bias, the order of several of the response items (e.g., math/French, man/woman)
was set randomly.

HPrograms not covered by these administrative data are those leading to paramedical and social care
qualifications. Available estimates suggest that among Grade 12 students who obtained a Baccalauréat in Science
in 2008, under 6 percent were enrolled in such programs the following year (Lemaire, 2018).
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3.2 Empirical Strategy

Compliance with random assignment was not perfect: about 5 percent of the classes assigned
to the treatment group were not visited by a role model, while 1 percent of the classes in the
control group were mistakenly visited (see Appendix Table E4).'? To deal with this marginal
two-way non-compliance, we follow the standard practice of using treatment assignment as
an instrument for treatment receipt, which allows us to estimate the program’s local average
treatment effect (LATE) instead of the average treatment effect (ATE). Specifically, we estimate

the following model using two-stage least squares (2SLS):
}/z'cs = O‘“"BDcs"i_Qs"i_Eics: (1)
Dics =7+ 5Tcs + )\s + Nics, (2)

where Y;.s denotes the outcome of student ¢ in class ¢ and high school s, D, is a dummy variable
indicating whether the student’s class received a visit, and T, is a dummy for assignment to
the treatment group. School fixed effects, 6, and Ay, are included to account for the fact that
the randomization was stratified by school and grade level.

The model described by Equations (1) and (2) is estimated separately by grade level and
gender, with standard errors clustered at the unit of randomization level (class). To account for
multiple hypotheses testing across the outcomes of interest, the treatment effect estimates are

accompanied by adjusted p-values (g-values) in addition to the standard p-values.'3

4 Effects of Classroom Interventions

We analyze the impact of the classroom interventions on three main sets of student outcomes:
(i) general perceptions of science-related careers and of gender roles in science; (ii) preferences,

aspirations and self-concept; and (iii) enrollment outcomes and academic performance.

4.1 Perceptions of STEM Careers and Gender Roles in Science

Students’ post-intervention survey responses show that the classroom interventions were effective

in challenging stereotyped views of science-related careers and gender roles.

12We are confident that non-compliance was mostly due to organizational and logistical issues and was not an
endogenous response to randomization. The few role models who carried out interventions in classes assigned
to the control group or in classes not selected to participate in the evaluation generally reported that their
interventions had been poorly organized at the school level, with the person in charge often not being aware
of the purpose of the visit. In some cases, classroom interventions were scheduled during another specialty
course involving multiple classes, meaning that only some of the students in the treatment group were effectively
treated.

13We use the False Discovery Rate (FDR) control, which designates the expected proportion of all rejections
that are type-I errors. Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al. (2006)
and described in Anderson (2008). See Appendix D for details.
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Perceptions of science-related careers. Students were asked to agree or disagree with five
statements on science-related careers relating to pay, the length of studies leading to these careers,
work-life balance, and the two prevalent stereotypes that science-related jobs are monotonous
and solitary. We build a composite index of “positive perceptions of science-related careers” by
re-coding the Likert scales so that higher values correspond to less stereotypical or negative
perceptions, before taking the average of each student’s responses to the five questions. To
facilitate interpretation, we normalize the index to have a mean of zero and a standard deviation
of one in the control group.'* For closer investigation of the various aspects that might be
captured by the overall index, we further construct binary variables taking value one if the
student agrees strongly or somewhat with each statement, and zero if he/she disagrees strongly
or somewhat.!®

One of the interventions’ objectives was to correct students’ beliefs about jobs and careers
in science through the provision of information specific to each role model’s experience as well
as standardized information. As shown in Table 3, students’ baseline perceptions indicate
relatively widespread negative stereotypes about careers in science (see columns 1 and 4), with
little difference between boys and girls or between grade levels. As an example, between 20
and 30 percent of students consider that science-related jobs are monotonous or solitary. The
role model interventions significantly improved girls’ and boys’ perceptions of such careers as
measured by the composite index, in both Grade 10 and Grade 12. The effects range from
15 percent of a standard deviation for boys to around 30 percent for girls, with significantly
greater effects for female students in both grades. A significant impact of the classroom visits
is observed for almost all the components of the index. The largest effects are found for the
statements “science-related jobs require long years of study” and “science-related jobs are rather
solitary,” which embody two stereotypes that were specifically debunked in the slides and videos.
Although the effects are not strikingly different between genders and grade levels, they tend
to be greater for girls in Grade 12. In particular, the interventions appear to have closed the
gender gap in Grade 12 students’ awareness of the earnings premium attached to science-related
jobs: while girls in the control group are less likely than boys to agree with the statement that
“jobs in science pay well” (53 vs. 58 percent), these proportions are comparable in the treatment
group (around 60 percent). Additionally, the interventions have reinforced girls’ perception
that science-related careers are compatible with a fulfilling family life, a message specifically

conveyed by the role models and in line with the evidence showing that jobs in science and

\We have checked that our results are robust to converting the item responses into binary variables before
computing the indices. See Appendix D for further details on the construction of the synthetic indices.

15Similar groupings are performed when using responses that are measured on a four-point Likert scale (usually
concerning perceptions or self-confidence) so that the outcome variables can be directly interpreted as proportions.
The results are not qualitatively affected by such grouping.
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technology enable women to work more flexibly (Goldin, 2014).

Perceptions of gender roles in science. Female underrepresentation in STEM can be
broadly attributed to three possible causes: gender differences in abilities, discrimination (on
the demand side), and differences in preferences and career choices (on the supply side). The
survey questions were designed to capture students’ views on these dimensions.

Table 4 reveals the striking fact that more than a third of Grade 10 students and a quarter
of Grade 12 students in the control group are not aware that women are underrepresented in
science-related careers. These proportions are similar by gender and by grade. For boys and girls
in both grades, we find that the interventions increased awareness of female underrepresentation
in STEM by 12 to 17 percentage points. This is one of the outcomes most strongly affected by
the interventions.

The classroom interventions were also effective in debiasing students’ beliefs about gender
differences in math aptitude. To capture this dimension, we asked students whether they
agreed with the statements that “men are more gifted than women in mathematics” and that
“men and women are born with different brains.” We used these two questions to construct a
composite index to gauge whether students believe that men and women have equal aptitude
for mathematics. The results show significant rises in this index for both genders in both grades,
with treatment effects ranging between 9.5 percent and 14.8 percent of a standard deviation.!

Interestingly, the classroom visits had more ambiguous, partially unintended effects regarding
the other two explanations. First, when asked about gender differences in preferences, the share
of students who agree with the statement that “women don’t really like science” is relatively
low in the control group (16 percent of girls and 20 percent of boys in Grade 10; 7 percent of
girls and 15 percent of boys in Grade 12), but it increases substantially due to the interventions
for both genders, by 4 to 10 percentage points. Second, the baseline shares of boys and girls
who declare that women face discrimination in science-related jobs are much larger (around
60 percent); these too increase for both genders, by 7 to 15 percentage points. These unintended
effects on students’ perceptions of gender roles in science could have arisen as an effort to
rationalize why there are so few women in science-related careers, making students more likely
to agree with the simplistic view that “women don’t really like science” and to subscribe to the

idea that women face discrimination in science careers.

16The detailed results for the two components of this index are reported in Appendix Table F1.
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4.2 Stated Preferences and Self-Concept

We now turn to the effects of the interventions on students’ stated preferences and self-perception.
Specifically, we investigate whether the interventions affected boys” and girls’ taste for science

subjects, their self-concept in math, and their science-related career aspirations.

Taste for science subjects. For both genders in Grade 10 and Grade 12, the interventions
had no sizeable impact on students’ enjoyment of science subjects at school (reported on a
0 to 10 Likert scale), i.e., math, physics-chemistry, and earth and life sciences, or on their
self-reported taste for science in general (see Table 4 for the composite index aggregating the
four relevant questionnaire items and Table F2 in the Appendix for the detailed results). These
findings are not particularly surprising, given that the interventions did not expose students to

science-related content and were not specifically designed to promote interest in science.

Math self-concept. To measure the impact of the classroom visits on students’ self-concept
in mathematics, we use a composite index that combines students’ responses to four questions:
(i) their self-assessed performance in math; (ii) whether they feel lost when trying to solve a math
problem; (iii) whether they often worry that they will struggle in math class; and (iv) whether
they consider that they can do well in science subjects if they make enough effort.

Consistent with the literature, our sample exhibits large gender differences in self-concept in
mathematics. In the control group, the value of the index is 43 percent of a standard deviation
lower for girls than for boys in Grade 10, and 37 percent lower in Grade 12. Large gender
differences are found for most of the items used in the construction of this index, in particular
those related to math anxiety (see Appendix Table F3).

Despite being a light-touch intervention, the interventions did have some positive effect
on students’ self-concept in math. Although these effects are only found to be statistically
significant for boys in Grade 12 when using the composite index, the interventions consistently
reduced the probability of students reporting worry that they will struggle in math class.!”
Point estimates tend to be higher for boys than for girls in both grades, implying that the

classroom interventions had no correcting effect on the substantial gender gap in this area.

Science-related career aspirations. The choice of a science-related career path does not

depend solely on students’ taste for the science subjects taught at school. It also depends on

"For each group of students, the correction of p-values for testing across multiple outcomes (see Appendix
Table F3) cannot rule out the possibility that the effects on math anxiety are due to chance alone. However,
finding a significant effect for the same variable across all four groups of students, which is not accounted for by
the multiple testing correction, is suggestive of a genuine effect.
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their perceptions of the relevant jobs and the amenities they may provide, such as earnings,
work/life balance, and the work environment, all of which were embodied by the role models.

To measure the effects on students’ aspirations for science-related careers, we use a composite
index combining the responses to four questions: (i) whether the students find that some jobs
in science are interesting; (ii) whether they could see themselves working in a science-related
job later in life; (iii) whether they report being interested in at least one of six STEM jobs out
of a list of ten STEM and non-STEM occupations;'® and (iv) whether they consider career and
earnings prospects as important factors in their choice of study.

Female students in Grade 12 are the only group of students for which we find significant
effects on these science-related career aspirations, the value of the composite index being
11 percent of a standard deviation higher in the treatment than in the control group (see the
last row of Table 4). The more detailed results reported in Appendix Table F4 show that the
interventions had significant positive effects on three of the four corresponding survey items
for girls in Grade 12. In particular, girls in the treatment group are more likely to report that
career and earnings prospects are important factors in their choice of study, which is consistent

with the interventions raising their awareness of the wage premium for STEM jobs.

4.3 Educational Choices and Academic Performance

High school track after Grade 10. Panel A of Table 5 shows that the classroom visits
had no significant impact on Grade 10 students’ choice of track in the academic year following
the intervention, i.e., 2016/17. For both genders, the treatment effect estimates are close to
zero, whether we consider enrollment in any STEM track or enrollment in the general and
technological STEM tracks separately.!® Consequently, the interventions did not alter the
20-percentage-point gender gap in the likelihood of pursuing STEM studies after Grade 10.
Several mechanisms can be put forward to interpret the lack of effects on the enrollment
status of Grade 10 girls in the following year. First, the interventions did not seem well suited
to increase the share of girls enrolling in the STEM technological tracks in Grade 10, where the
female share is particularly low (17 percent). As discussed below, the positive effects that we
find on the STEM enrollment decisions of girls in Grade 12 are concentrated among the high
achievers in math. In Grade 10, such students are unlikely to be directed to the technological
track, which could explain the lack of effects along this margin. Turning to the general science

track, female underrepresentation is only moderate in Grade 11 (in 2016/17, the female share was

18The STEM occupations in the list were: chemist, computer scientist, engineer, industrial designer, renewable
energy technician, and researcher in biology. The non-STEM occupations were lawyer, pharmacist, physician,
and psychologist.

The more detailed results presented in Appendix Table F5 show that the distribution of students across
non-STEM tracks (Humanities and Social sciences) did not change significantly either.
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47 percent) and this track is the most common (usually the default choice) for high-performing
students, including girls. Unlike the other high school tracks, it gives access to almost all fields
of study in higher education and hence does not signal a strong commitment to pursue a STEM
education or career in the future, limiting the potential of STEM role models to influence
enrollment in this track. Female students who turn away from the science track in high school
are unlikely to even consider a STEM career as a viable option, making their choices less easily

reversible.20

Field of study after Grade 12. A central finding of the study is that the role model
interventions had significant effects on the educational choices of girls in Grade 12, but not on
those of their male classmates.

Panel B of Table 5 shows that for girls in Grade 12, the interventions increased the probability
of enrolling in a STEM undergraduate program in 2016/17 by 2.4 percentage points (significant
at the 10 percent level), which corresponds to an 8.3 percent increase from the baseline of
28.9 percent. The effect for boys is negligible and not statistically significant, implying that the
gender gap in STEM enrollment narrowed from a baseline of 18.1 to 16.0 percentage points, i.e.,
an 11.6 percent reduction.?!

As emphasized in Section 1.2, female underrepresentation in selective and male-dominated
STEM fields account for approximately half of the STEM-related gender pay gap in France.
Importantly, our results show that the interventions’ positive impact on STEM enrollment is
driven by a significantly larger fraction of girls in Grade 12 enrolling in both types of programs.
The classroom interventions led to a highly significant 3.5 percentage-point increase in the
fraction of girls enrolling in selective STEM programs, which represents a 32 percent increase
from the baseline of 11.0 percent. The corresponding estimates for boys suggest that the
classroom visits may have slightly increased male enrollment in these programs as well (by
2.0 percentage points from a baseline of 23.2 percent), but the effect is not statistically significant.
Moreover, we show in Section 4.4 that the magnitude of this effect for boys is substantially
lessened when we control for students’ baseline characteristics, suggesting that it probably
depends on small residual imbalances in the male sample.??

Turning to the effects on enrollment in male-dominated STEM programs (mathematics,

20Consistent with this interpretation, the survey data indicate that among Grade 10 students in the control
group, only 24 percent of girls who did not enroll in the Grade 11 science track the following year declare that
they could see themselves working in a science-related job, compared to 87 percent among those who did.

21With the caveat that we lack the statistical power to detect a significant reduction in the gender gap in
STEM enrollment.

22Balancing tests performed separately by grade level and gender do not point to unusually large imbalances
between the treatment and control groups in any of the subsamples (results available upon request). However,
the predicted probability of being enrolled in a selective STEM program is marginally higher in the treatment
group than in the control group for boys in Grade 12 (by 0.8 percentage point from a baseline of 23.8 percent,
significant at the 5 percent level).
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physics, computer science, and engineering), we find that the proportion of girls enrolling in
such programs increased by a statistically significant 3.8 percentage points from a baseline of
16.6 percent (i.e., a 23 percent increase), compared to a non-significant 1.7-point increase for
boys from a baseline of 37.9 percent. These results are particularly striking given that selective
and male-dominated STEM programs are not only the most prestigious tracks but also those
where the gender gap in enrollment is greatest. A simple back-of-the-envelope computation
suggests that if our estimates could be extrapolated to the population of science-track Grade 12
students without considering general equilibrium effects, the female share would increase from 30
to 32 percent in STEM programs altogether, from 30 to 34 percent in selective STEM programs,
and from 26 to 29 percent in male-dominated STEM programs.

Our estimates indicate that, on average, the role model interventions induced one girl in
every two Grade 12 science-track classes to switch to a selective or a male-dominated STEM
program at entry into higher education.?® The more detailed results presented in Appendix
Table F6 indicate that these effects are driven by female students shifting from non-STEM
and female-dominated STEM programs. A significant decline in female enrollment is found for
non-selective undergraduate programs in earth and life sciences (—2.2 percentage points), while
small reductions in the range of 0.4 to 0.8 point are found for selective programs in humanities
and vocational non-STEM programs, as well as for non-selective programs in medicine, law and
economics, humanities and psychology, and sports.

Taken together, the results for Grade 12 students show that the interventions were only
effective in steering girls towards the STEM tracks in which they are heavily underrepresented,
even though two-thirds of the role models come from female-dominated STEM fields (earth and
life sciences) and that the interventions were designed to promote all types of STEM careers,
including those where women now outnumber men. These findings suggest that in the current

setting, the role models affect only the most stereotyped choices.

Academic performance. The effects of the classroom visits on academic performance can
be documented for students in Grade 12 based on the Baccalauréat exams, taken a few months
after the classroom interventions (see Appendix Table F7). The treatment effect estimates on
students’ performance on the math test and on the probability of obtaining the Baccalauréat
are close to zero and statistically insignificant for both genders. Although the role models could,
in principle, have strengthened students’ motivation to be admitted to the most selective STEM
programs, resulting in their dedicating more time to studying mathematics and other science

subjects, we find no evidence of any such effect. We can therefore rule out that the interventions’

Z3This computation is based on an average of 15 girls per class and an estimated 3.5 (respectively 3.8)
percentage-point increase in the probability of enrolling in a selective (respectively male-dominated) STEM
program.
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impact on the enrollment outcomes of girls in Grade 12 was driven by increased effort and

accordingly better academic performance.

4.4 Robustness Checks

We conducted a number of robustness checks for our main findings, which are reported in
Appendices G and H.

First, we investigated whether our estimates for the survey-based outcomes might not be
contaminated by the small imbalances in the response rates and observable characteristics
of the treatment and control groups (see Section 3). We show that the estimated effects on
students’ perceptions are barely affected when controlling for students’ observable characteristics
(Table G1).

Second, controlling for students’ observable characteristics hardly affects the estimated effects
on enrollment outcomes (see Table G2). If anything, the small positive (but not significant)
effect on selective STEM enrollment for boys in Grade 12 becomes negligible.

Third, we checked whether our results are robust to using non-parametric randomization
inference tests rather than model-based cluster-robust inference. The tests are performed by
comparing our I'TT estimates with the distribution of “placebo” ITT estimates obtained by
randomly re-assigning treatment 2,000 times among participating classes within each school
and grade level. The results yield empirical p-values that are generally close to the model-
based p-values (see Table H1). Although they tend to be slightly more conservative, they
confirm the interventions’ statistically significant effects on female enrollment in selective and

male-dominated STEM programs among Grade 12 students.

5 Information, Persistence, and Spillovers

In this section, we test the sensitivity of students’ attitudes and choices to the intensity of
information provision. We then extend the analysis to the persistence of effects on student
perceptions, the timing of the interventions, and investigate potential spillover effects on

enrollment outcomes.

Intensity of information provision. Any role model intervention intrinsically contains an
informational component on top of fostering self-identification. While our design does not
allow to fully disentangle these two mechanisms, we are able to test the sensitivity of students’
attitudes and choices to the intensity of the standardized information contained in the slides

that were provided to the role model participants.
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As described in Section 2, we initially sent a set of slides to the role models to assist them
during the in-class intervention. The first slides (six in total) highlighted a few stylized facts
about jobs in science and female underrepresentation in STEM careers, providing only limited
information on employment conditions in such careers, and no information on wages. Starting
on November 20, 2015, we sent six additional slides to 36 of the 56 role models. These new
slides presented more detailed information regarding wage and employment gaps between STEM
and non-STEM jobs, as well as differences between male and female students’ choice of studies.
The role models were free to integrate these slides into their final presentation or to only use
them as a support.?*

The results reported in Appendix 1.1 show that students’ characteristics are balanced
according to whether the role model received the regular set of slides or the “augmented”
version (Table 11).2> While the more information-intensive treatment had a larger impact on
the probability that female students agree with the statement that science-related jobs pay
higher wages, the effects on the probability of enrolling in selective STEM or male-dominated
STEM programs are not significantly different (Table 12). These findings provide suggestive
evidence that the purely informational component of the intervention does not in itself explain

the observed changes in college major decisions.

Persistence. The effects of the interventions on students’ perceptions could be short-lived.
We explore this issue by comparing the magnitude of treatment effects for different intervals
between the intervention and the post-treatment survey: 1-2 months, 3-4 months and 5-6
months (see Appendix Table 13). The limited sample for each interval and the possibility that
the quality of the interventions may have changed over time are two limitations that call for
caution in drawing firm conclusions about the persistence of effects. With these caveats in
mind, the results suggest that the treatment effects did not vanish quickly, insofar as they
remain statistically significant for most outcomes beyond the first two months. The effects were,

therefore, sufficiently persistent to affect students’ choice of study.

Timing of visits. Earlier interventions seem to have had greater effects on the college choices
of Grade 12 students, which could be made up to the end of May (see Appendix Figure 13). We
find that classroom visits that took place in November increased female enrollment in selective

or male-dominated STEM programs by 7 to 9 percentage points, compared with 3 to 6 points

24Screenshots of the two sets of slides are shown in Appendix Figures I1 and I2.

25We initially planned to randomly allocate the two sets of slides to the role models and were able to do so for
a subset of 14 participants. However, the L’Oréal Foundation requested that going forward, all remaining role
models were be provided with the “augmented” version of the slides. The role models who had already started
the visits kept the regular version. To ensure sufficient statistical power, we present results for the entire sample
of role models, controlling for month-of-visit fixed effects. Our results are qualitatively similar when we restrict
our sample to the subset of role models for whom the slides were randomly assigned.
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for visits in December-January and non-significant effects for visits in February-March.?® These
findings provide suggestive evidence that interventions made when many students are still
undecided about their field of study and career plans may be more effective than those on the

eve of irreversible choices.

Spillovers. An important issue is whether the interventions could have influenced the educa-
tional choices of students in the control group. These students may have heard about the visits
directly, through their schoolmates in treatment group classes, or indirectly, through regular
social interactions. If the direction of such effects is the same for students in the treatment and
control groups, ignoring spillovers would cause us to underestimate the treatment effects.

On the last page of the post-intervention survey questionnaire, the students in the treatment
group were asked whether they had discussed the classroom intervention with their classmates,
with schoolmates from other classes, or with friends outside of school, as a way of assessing
possible spillover effects. Students in the control group received a slightly different version of
this final section, asking whether they had heard of classroom visits by male or female scientists
in other classes, with no explicit mention of the FGiS program.

The survey evidence suggests that the scope for spillover effects was limited, which is
consistent with the notion that in the French school system most peer interactions take place
within the class (Avvisati et al., 2014). In the treatment group, 58 percent of Grade 10 students
and 63 percent of Grade 12 students report having talked about the classroom intervention
with their classmates, but they are only 24 percent and 27 percent to report having talked with
schoolmates from other classes, respectively (see Appendix Table J1). In the control group,
only 14 percent of students in Grade 10 report having heard of the classroom visits, mostly
in a vague manner (12 percent). In Grade 12, students in the control group are more likely
(34 percent) to report being at least vaguely aware of the visits, but under 5 percent of boys
and girls have a precise recollection. Overall, these summary statistics suggest that spillover
effects were quite limited.

We complement this survey evidence by investigating more formally whether the interventions
affected the higher education choices of Grade 12 students whose classes were not assigned to the
treatment group—either classes not selected by principals for the interventions or participating
classes randomly assigned to the control group. Our empirical strategy, described in detail in
Appendix J, builds on the following intuition: for schools that participated in the evaluation,

the random assignment of treatment to participating classes makes it possible to estimate

26The difference between the effects of visits before and after February 1 is statistically significant at the
5 percent level for girls and is robust to controlling for possible improvement or decline in the quality of role
models’ interventions over time, through the inclusion of fixed effects for the chronological order of the role
models’ classroom visits, i.e., first, second, etc.
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the average outcome that would have resulted if all students had only been exposed to the
spillover effects of classroom interventions without being directly exposed to a role model. This
unobserved “spillover-only” counterfactual can be estimated at the school level by computing
an appropriately weighted average of the outcome of students in the non-participating classes
and in the participating classes that were assigned to the control group. Students in the
control group classes are given a greater weight as they are used to account for both their own
outcome and for the outcome that would have been observed in the treatment group classes, had
their students only been indirectly exposed to a role model.?” The spillover effects of the role
model interventions are then estimated by comparing the “spillover-only” counterfactual to a
“no-treatment” counterfactual. This second counterfactual is constructed using non-participating
schools, which we observe in the administrative data, that have similar observable characteristics
as the participating ones over the period 2012-2015. Having verified that trends in student
enrollment outcomes were parallel between the two groups of schools in the pre-treatment period,
we implement a difference-in-differences estimator to identify the interventions’ spillover effects
on students’ STEM enrollment outcomes at college entry.

The results based on this difference-in-differences approach show no evidence of significant
spillover effects of classroom visits on non-treated Grade 12 students (see Table J2 in the
Appendix). Together with the survey evidence, they suggest that spillovers between treatment

and control classes were at most limited.

6 How Do Role Models Affect Student Behavior?

This section inquires into how light-touch classroom interventions by female role models with a
background in science can affect girls’ choice of study at university. Our insights are derived from
comparison of groups of students who were exposed to different role models or who responded
differently to a given role model.

We proceed in three steps. First, we show that the treatment effects on STEM enrollment
outcomes vary widely according to the two most salient dimensions of heterogeneity in the current
setting, namely students’ academic performance and role models’ background (professionals
employed by L’Oréal vs. young researchers). We then provide a more systematic analysis of the
heterogeneity of treatment effects using machine learning techniques. Following the approach

developed by Chernozhukov et al. (2018), we identify the characteristics of the students and

27For instance, in a school with two participating classes, one treated and one control, and one non-participating
class, the “spillover-only” counterfactual is computed by assigning a weight of 1 to the non-participating class
and a weight of 2 to the control group class (if all classes have the same number of students). By virtue of
randomization, mean outcomes in the control group classes provide unbiased estimates of the counterfactual
“spillover-only” outcomes in the treatment group classes.
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role models for whom we observe particularly large (or small) treatment effects on students’
choice of study, i.e. the final or behavioral outcome, as well as on their perceptions, self-concept
and interest for science, i.e. the possible channels of influence. Finally, we extend the approach
of Chernozhukov et al. (2018) to estimate the correlations between individual-level treatment
effects on different outcomes conditional on exogenous observable characteristics. In doing so,
we seek to determine whether the students who were particularly receptive or unreceptive to
some of the messages conveyed during the interventions are also those whose choice of study

was most or least affected by the interventions.

6.1 Heterogeneous Treatment Effects on STEM Enrollment

We start by investigating how the treatment effects on STEM enrollment vary with math
performance and role model background. Our analysis focuses on Grade 12 students, as we find

no evidence of significant effects on STEM enrollment for Grade 10 students.?®

High vs. low achievers in math. Applicants’ performance in mathematics is the single most
important admission criterion of selective undergraduate STEM programs. Using Grade 12 stu-
dents’ national percentile rank on the Baccalauréat math test to proxy for academic performance,
we find that the interventions’ positive impact on selective STEM enrollment is driven by female
students in the top quartile (see Figure 3).%° For these students, the probability of enrolling
in a selective STEM program after high school increases by 12.9 percentage points, which
corresponds to a 53 percent increase from the baseline of 24.3 percent. While the interventions
also appear to have induced some male students in the top quartile to enroll in selective STEM
programs, the effect is much smaller (6.5 percentage points, or a 14 percent increase over the
baseline of 45 percent) and is not statistically significant. Especially striking is the fact that
among the top quartile of achievers in math, the gender gap in the probability of enrolling in a
selective STEM program is the largest (20.7 percentage points) and the treatment reduces it by

6.4 percentage points, which corresponds to a 31 percent reduction from the baseline.

Role model background: researchers vs. professionals. It is unclear, a priori, how the
different types of role models differ in their effects on students’ attitudes and behavior. As

shown in Table 2, role models with a research background are, on average, younger than the

28The results of the heterogeneity analysis by level of performance in math and role model background for
Grade 10 students can be found in Panel A of Appendix Tables K1 and K2.

29 As discussed in Section 4.3, we find no significant impact of the interventions on students’ performance on
the math test of the Baccalauréat exam, which mitigates concerns about potential endogenous selection bias
when conditioning on this variable.

30The differences in treatment effects between high and low achievers in math are qualitatively similar for
enrollment in male-dominated STEM programs (Figure 3, Panel B) as well as in all types of STEM programs
(Appendix Table K1, Panel B).
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professionals employed by the sponsoring firm, which may foster a stronger sense of identification
by the students. But because they work in highly specialized fields and in very competitive
environments, it is not clear how attainable students might think their achievements are. On
the other hand, the professionals tend to have higher pay and more experience, and come less
often from a purely academic background. They also hold permanent positions, unlike Ph.D.
candidates and postdocs. Finally, their working environment could be perceived as particularly
attractive by students, given the firm’s commitment to promote diversity and gender equality.

We find clear evidence that the two groups of role models had contrasting effects on STEM
enrollment outcomes for girls in Grade 12. The left panel of Figure 4 shows that the professionals
increased female students’ probability of enrolling in a selective STEM program by a significant

5.3 percentage points, whereas researchers had no detectable effect.3!

The contrast is qualitatively
similar, although less pronounced, when we consider enrollment in male-dominated STEM
programs (right panel of Figure 4) or across all STEM programs (see Appendix Table K2).
While the estimates also point to larger effects for boys who were exposed to role models with a
professional background, they are not statistically significant at conventional levels.

Even though the role models were not randomly assigned to schools, the characteristics of
the schools and students that they visited appear to be reasonably balanced between the two
types of role model participants, with only few statistically significant differences (see Appendix
Tables E7 and E8). Moreover, we show that the significantly larger impact of professionals on
selective STEM enrollment for Grade 12 girls is robust to controlling for a full set of interactions
between the treatment group dummy and a rich set of observable characteristics of students
and schools (see Appendix Table K3). We therefore find no evidence that the heterogeneous

treatment effects by role models’ background are confounded by differences in the characteristics

of the classes they visited.3?

6.2 Machine Learning to Uncover Sources of Heterogeneity

Investigating treatment effect heterogeneity by splitting the sample into subgroups inevitably
entails the risk of data mining. To address this concern, we carry out a systematic exploration
of treatment effect heterogeneity using machine learning (ML) methods (see Athey and Imbens,

2017, for a review). Specifically, we adopt the approach recently developed by Chernozhukov et

31The difference between the treatment effects of the two groups of role models on Grade 12 girls’ probability
of enrolling in a selective STEM program is significant at the 5 percent level.

32We also explored whether the effects of the role model interventions could be mediated by the subsequent
interactions between the students and the teacher who was present during the visit. For instance, science teachers
could be inclined to reiterate the role model’s messages about science-related careers while female teachers could
amplify the effects of the interventions for female students. Using data from the post-intervention role model
survey, we do not find support for these hypotheses (results available upon request): the treatment effects on
female enrollment in selective or male-dominated STEM do not vary significantly according to the teacher’s
gender or taught subject.
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al. (2018) to estimate conditional average treatment effects (CATE). A brief description is given

below; a more detailed discussion can be found in Appendix L.

General description of Chernozhukov et al. (2018)’s approach. Let Y (1) and Y (0)
denote the potential outcomes of a student when her class is and is not visited by a role model,
respectively. Let Z be a vector of covariates that characterize the student and the role model
who visited the class. The conditional average treatment effect (CATE), denoted by s¢(Z2), is
defined as:

s0(Z) = E[Y(1) - Y (0)]2].

Because it is hard to obtain uniformly valid inference on the CATE without making strong
assumptions, the approach in Chernozhukov et al. (2018) consists in conducting inference on
specific features of the CATE, such as the expectation of so(Z) in groups defined using a given
ML predictor S(Z).

The first feature examined is the Best Linear Predictor (BLP) of s¢(Z) given S(Z). The
authors show that the BLP can be identified from the following weighted linear projection:

Y =ao+aB(Z2) + /(T = p(2)) + 5T — p(2))(5(2) = E[S(Z)]) + 6, Elw(Z2)eX], (3)

where T is a dummy for treatment assignment; B(Z) is an ML predictor of Y (0) obtained
from the training sample; p(Z) is the probability of being treated conditional on the covari-
ates Z; w(Z) = {p(Z)(1 — p(Z))} ! is the weight; and X denotes the vector of all regressors
(X =[1,B(2), T —p(Z),(T —p(Z))(S(Z) —E[S(Z)])]). This projection identifies the parame-
ters 51 = E[so(Z)] and 5y = Cov(so(Z), S(Z))/Var(S(Z)), which can both be estimated using
the empirical analog of Equation (3). We refer to $; and 3, in the tables as the average treatment
effect (ATE) and heterogeneity loading (HET) parameters, respectively. The key parameter of
interest, (s, is informative about the correlation between the true and the predicted CATE. It is
equal to one if the prediction is perfect and to zero if there is no treatment effect heterogeneity
or if S(Z) has no predictive power.

The main purpose of estimating [, is to check if the trained ML methods are able to detect
heterogeneity in the treatment effect. If so, the ML predictor of the CATE can be used to
identify groups of individuals with the smallest and largest treatment effects. Heterogeneity
groups are constructed by sorting students in the estimation sample based on the value of S(Z;),
the predicted value of each student’s treatment effect given his/her observable characteristics Z;.
We consider the bottom and top quintiles of S(Z;) and report ITT estimates for both groups of
students—a feature of the CATE called Sorted Group Average Treatment Effects (GATESs) in

Chernozhukov et al. (2018). We then compare the distribution of observable characteristics in
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the two groups—a feature called Classification Analysis (CLAN).

Practical Implementation. We consider five alternative ML methods to estimate the predic-
tor S(Z): Elastic Net, Random Forest, Boosted Trees, Neural Network with feature extraction,
and a simple linear model. To train these methods, we use as covariates Z three indicators for the
education districts of Paris, Créteil, and Versailles, four indicators for students’ socioeconomic
background (high, medium-high, medium-low, and low), their age, their overall percentile rank
in the Baccalauréat exam, their percentile ranks in the French and math tests of the exam, and
a vector of 56 role model fixed effects.>® We limit ourselves to only a few exogenous student
characteristics because our main objective is to document treatment effect heterogeneity across
the role models participants. For each outcome, the best ML method for either the BLP or
the GATEs targeting of the CATE is selected using the performance measures proposed by
Chernozhukov et al. (2018).

To avoid overfitting, we estimate the features of the CATE given an ML predictor S(Z) on
an estimation sample that is distinct from the training sample used to obtain S(Z). We follow
Chernozhukov et al. (2018) in iterating this data-splitting process and reporting the medians of
estimates and p-values over several splits. The nominal levels of p-values are further adjusted to

guarantee uniform validity, which leads to conservative inference.

Heterogeneous treatment effects on enrollment outcomes. We use the above procedure
to estimate the different features of the CATE on enrollment in selective or male-dominated

STEM programs for girls in Grade 12.34

The results are reported in Table 6.

In Panel A, the estimated ATEs of the interventions on Grade 12 girls’ enrollment in
selective or male-dominated STEM are very close to those reported in Table 5 by virtue of
the randomization of the sample splits. Turning to heterogeneity, the coefficients on the HET
parameter indicate that the ML predictors are strongly and significantly correlated with the
CATE on enrollment in selective STEM but not in male-dominated STEM.

Estimates of the sorted group average treatment effects (GATEs) for the top and bottom
quintiles of the predicted treatment effects S(Z) are reported in Panel B. They confirm the
considerable heterogeneity of treatment effects on selective STEM enrollment among Grade 12
girls, GATEs ranging from a small negative effect in the bottom 20 percent to a large and
significant 13.9 percentage point effect in the top 20 percent. The lesser heterogeneity in the

effects on enrollment in male-dominated STEM is also confirmed, with no statistically significant

difference between the top and bottom quintiles of treatment effects.

33Fach student in the control group is assigned to the role model who visited his or her school, so the role
model fixed effects are defined for students in both the treatment and control groups.
34The machine learning results for boys in Grade 12 are reported in Appendix Table L2.
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Panel C describes the characteristics of the 20 percent most and least affected students
(CLAN). The main takeaway is that the ML agnostic approach strongly confirms that the
treatment effects on selective STEM enrollment are greater for high-achieving girls in math and
for those who were exposed to a professional rather than a researcher role model. Between the
20 percent most and least affected female students, the average gap in math performance rank
is as much as 63 percentile ranks; the difference in the probability that the class was visited
by a professional is 14.8 percentage points. The results are qualitatively similar for enrollment
in male-dominated STEM, but the differences between groups are smaller, which is consistent
with the previous finding of less heterogeneous treatment effects for this outcome.

The results in Panel C disclose heterogeneous effects along other dimensions. The 20 percent
of girls with the largest treatment effects on selective STEM enrollment perform significantly
better in French and are from higher socioeconomic backgrounds, compared with the least
affected 20 percent. They are also less likely to have been exposed to role models who have
children or who graduated in a male-dominated STEM field (math, physics, engineering), and
more likely to have been exposed to role models who participated in the FGiS program the year
before. However, the fact that these characteristics are correlated both with students’ math
performance and with the role model being either a professional or a researcher makes it difficult
to determine their specific contribution to treatment effect heterogeneity. As suggestive evidence,
we performed a “horse race” by regressing enrollment in selective STEM on the interactions
between the treatment group indicator and each of the student and role model characteristics
listed in Panel C. The results, which are reported in Appendix Table K3 are consistent with the
conclusion that math performance and role models’ professional background are the two main
observable dimensions of heterogeneity in the treatment effects on selective STEM enrollment.?>
Heterogeneous treatment effects on potential channels. To help identify the mecha-
nisms behind the heterogeneity of effects on selective STEM enrollment among Grade 12 girls,
we start by comparing the characteristics of those with the largest and smallest treatment effects
for each of the potential channels of influence studied in Section 4, namely general perceptions of
science-related careers and gender roles in science, taste for science subjects, math self-concept,
and science-related career aspirations. The results are reported in Table 7. For each potential
channel, we compare the characteristics of students in the top and bottom quintiles of predicted
treatment effects. We focus on the two main sources of heterogeneity in the effects on enrollment

in selective STEM, i.e., student performance in math and exposure to a role model with a

35The effect of the interventions on selective STEM enrollment remains significantly greater for high-achieving
girls in math and for those who were exposed to role models with a professional background when we interact
the treatment group indicator with other student and role model characteristics.
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professional background.?%

The first key finding is that professionals and researchers were equally effective in debunking
stereotypes on gender differences in math aptitude, while they reinforced students’ perceptions
that “women don’t really like science” and that “women face discrimination in science-related
jobs” to a comparable extent. These results suggest that the “gender debiasing” component
of the classroom interventions, which emphasized men’s and women’s equal predisposition for
science, cannot explain, alone, why the interventions increased girls’ enrollment in selective
STEM; otherwise the two groups of role models would be expected to have similar effects for
this outcome, which is not what we find.

By contrast, Table 7 reveals that the professionals were better than the researchers at
improving female students’ perceptions of science-related jobs and stimulating their aspirations
for such careers, while emphasizing less the underrepresentation of women. Regarding perceptions
of science-related careers, girls in the top quintile of treatment effects are 19.2 percentage
points more likely to have been visited by a professional compared to girls in the bottom
quintile, the difference being statistically significant at the 1 percent level. Professionals are
similarly overrepresented among the role models who had the greatest effects on girls’ taste for
science subjects (22.7 percentage-point gap between the top and bottom quintile of treatment
effects), and even more so among those who raised science-related career aspirations the most
(38.9 percentage-point gap). The opposite holds for heterogeneous treatment effects on the
importance of female underrepresentation in STEM: compared to the 20 percent of girls least
affected for this outcome, the 20 percent most affected are 11.2 percentage points more likely to
have been visited by a researcher.

Together, these results provide a first description of the role models who were the most
effective in changing female students’ stereotyped behaviors. In addition to conveying positive
information on career paths, these role models succeeded in sparking genuine interest in science
and science-related jobs without overemphasizing the consequences of gender stereotyping. These
features are in line with the main mechanisms usually considered necessary for role models to
work: generating a sense of fit while moderating the effects of stereotype threat.

The analysis of treatment effect heterogeneity by student math performance tends to
confirm that the messages conveyed by professionals were more effective at influencing female
students’ choice of study. Indeed, the students who were particularly receptive to these

messages are also those for whom we find the strongest impact on STEM enrollment, i.e.,

36The heterogeneity loading parameter of the BLP and the GATEs associated with the best ML method are
reported separately for each outcome in Appendix Table L1. For the sake of completeness, Appendix Tables K1
and K2 show the results obtained via a more traditional heterogeneity analysis, i.e., comparing the LATEs for
different subgroups of female students based on math performance and on the background of the role model.
The conclusions are consistent with those deriving from the ML procedure.
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high achievers in mathematics. Average math performance is significantly higher among the
students whose perceptions of science-related careers and taste for science subjects improved
the most. Conversely, we find fewer high achievers among the girls whose awareness of female
underrepresentation in STEM and perception of gender discrimination increased the most.
While these comparisons on the basis of role model background and student math performance
cannot be given a causal interpretation, they are consistent with the notion that gender-neutral
messages about careers in science are more effective than gender-related messages to steer
girls towards STEM studies. The next section provides additional evidence supporting this

interpretation.

6.3 Correlation between Treatment Effects

So far, our discussion of the channels of influence has sought to identify the main dimensions of
treatment effect heterogeneity on STEM enrollment outcomes and investigated how the impact
on student perceptions varies along these dimensions. We now develop a more general approach
to directly estimate the correlation between the treatment effects on different outcomes. This
constitutes a methodological contribution that can be used in other randomized controlled trials
to relate treatment effects on different outcomes. In our context, the proposed method allows
us to answer the following question: given their observable characteristics, are the students with
the largest treatment effects for a potential channel of influence Y4 the same ones who exhibit

the largest treatment effects on enrollment outcome Y 2?

A new feature of the CATE. Because treatment effects for a given student are never
observed, the correlation between individual-level treatment effects on outcomes Y4 and Y7
cannot be estimated without making strong assumptions. Instead, our approach takes advantage
of the predicted heterogeneity in treatment effects by student and role model characteristics
to recover the correlation py pz = Corr(s{(Z), s¥(Z)) between the true CATEs on the two
outcomes Y4 and Y2, which we denote by s{(Z) and s¥(Z), respectively.

A detailed description of our approach is provided in Appendix L. To estimate the correlation
between s3'(Z) and s¥(Z), we first define a new feature of the CATE as a simple adaptation of
Chernozhukov et al. (2018)’s method. Instead of estimating the Best Linear Predictor of s§ (Z)
based on the ML predictor S4(Z), we estimate the BLP of s{'(Z) based on S2(Z), i.e., the ML

predictor of the heterogeneity in treatment effects on outcome Y 2. The heterogeneity loading

parameter of the BLP we are interested in is

2" = Cov(si(2),57(2))/Var(5”(2)). (4)
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This parameter is identified and can be estimated using a variant of Equation (3). By switching
the roles of Y4 and Yp in Equation (4), one can similarly estimate the heterogeneity loading

parameter from the BLP of sF(Z) based on S4(2), i.e.,
2 " = Cov(s (2), 84(2)) /Var(5(Z)).

Writing S4(Z) = s{{(Z) +na and SB(Z) = s8(Z) + np and assuming that the prediction errors
na and np are independent of both predicted functions s3(Z) and s(Z) in the estimation
sample, we show that 554 B and Bf 4 have the same sign, which is indicative of whether the
treatment effects on Y4 are positively or negatively correlated with the treatment effects on Y7,

Under these assumptions, the correlation between the true CATEs on Y4 and Y&, pu. B|Z>

can be estimated using the following formula:37

AB ,B|A
AlB 2 P2

paBlz = Sign(p; )Wa (5)
2 2

where 35 4 and B B are the heterogeneity loading parameters in the BLPs of s{'(Z) and s§(2)

on their respective predictors S4(Z) and SB(Z).

Practical implementation. As in the previous section, we split the data into a training
and an estimation sample. We obtain predictors S4(Z) and SB(Z) of s{/(Z) and s¥(Z) in the
training sample and use them to estimate the four parameters 554 A f ‘B, 554 B and 55 4 in
the estimation sample. We then plug these parameter estimates in Equation (5) to obtain an
estimate p4 gz of the correlation between the CATEs on outcomes YA and YB. We use a
bootstrap procedure, also performed in the estimation sample, to obtain a 95 percent confidence
interval for p4 p, 2.3% As in the previous section, we follow the procedure of Chernozhukov et al.
(2018) so that our final estimate of ps p|z and its confidence interval are computed as medians

of estimates obtained from several estimation samples, with nominal level of confidence intervals

adjusted to guarantee uniform validity.

Results. The correlations between treatment effects for girls in Grade 12 are reported in

Table 8, where the covariates that we use to predict treatment effect heterogeneity are the

3TWhile it is not possible to prove that the out-of-sample prediction error of a ML predictor is independent from
the predicted outcome for any predictor, this assumption seems reasonable when using efficient ML algorithms
such as those considered in this paper. As suggestive evidence, we have checked in Monte Carlo simulations that
this assumption holds for a large set of simulated functions of Z, which are generated manually and predicted
on subsamples of our data. We further checked that the correlation p p|z is successfully recovered for various
data-generating processes using the formula in Equation (5).

38We report confidence intervals rather than p-values because the former are highly skewed, implying that the
p-values obtained from bootstrap under normality assumptions are misleading.
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same as in Table 6. They suggest that some channels were more important than others in
steering female students towards STEM studies. The treatment effects on girls’ enrollment in
selective STEM exhibit a strong positive and significant correlation with the improvement in
their perceptions of science-related careers (p = 0.96) and with the improvement in their taste
for science subjects (p = 0.71).%°

While not statistically significant at the 5 percent level, the remaining correlations give some
indication on the role of other candidate channels.*® They confirm in particular that debiasing
girls” attitudes towards gender differences in aptitude for math is not associated with increased
enrollment in selective STEM programs (p = 0.19 with a 95 percent confidence interval of
[—1.24,2.05]) and that, if anything, reinforcing the belief that women are discriminated in science
careers tends to deter girls from enrolling in selective STEM programs (p = —0.34 [—2.22, 0.56]).
By contrast, raising girls’ aspirations for careers in science is associated with an increased
probability that they enroll in such programs (p = 0.36 [—0.51,2.01]).

Overall, the results based on correlations between treatment effects are in line with and
extend those obtained in the previous section. They suggest that the most effective role models
were those who managed to convey a positive image of science careers without overemphasizing

women’s underrepresentation and its possible causes.

7 Conclusion and Discussion

Based on a large-scale randomized field experiment involving 56 female role models and nearly
20,000 high school students in Grade 10 and Grade 12, this paper shows that a one-hour
in-class exposure to a female scientist can improve students’ perceptions of science careers
and significantly increase female participation in STEM fields of study at college enrollment.
Remarkably, the positive enrollment effects are observed only in the tracks with the most
severe gender imbalance, which are the most prestigious and selective, and those that are most
math-intensive. These effects can be expected to increase the future earnings of the target
population, since the selective and male-dominated STEM programs offer high wage premia
relative to other programs.

)

In our empirical setting, the role model interventions had no discernable effects on students

academic performance and only slightly improved their math self-concept, thus ruling out

39The positive correlation between the treatment effects on taste for science and on enrollment in selective
STEM suggests that students whose preferences were affected by the intervention also changed their choice of
study. These effects, however, are highly heterogeneous (see Appendix Table L1): while the treatment effects
on taste for science are positive for the 20 percent most affected girls in Grade 12, they are negative for the
20 percent least affected, resulting in an average treatment effect close to zero (see Appendix Table F2).

40We report in Table 8 the lower and upper bounds for the lower and upper limits of the actual 95 percent
confidence interval associated with each estimated correlation. Note that the (unknown) true confidence intervals
are likely to be smaller than suggested by the bounds reported in this table.
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these factors as primary causes of the observed effects on STEM enrollment. By contrast, the
classroom visits significantly challenged students’ stereotyped views of science careers and gender
differences in aptitude for science. These effects, however, are observed for both genders in both
grades, suggesting that by themselves they cannot explain why the role model interventions
only affected the educational choices of girls in Grade 12.

Our results offer substantial evidence that female students’ behavioral response to the role
model interventions was mediated by their ability to identify with the female scientists to whom
they were exposed. On the verge of important decisions about their future education and
career pathways, girls in Grade 12 were more receptive than the other groups of students to the
appealing image of science-related careers embodied by the role models. Consistent with this,
we find that their improved perceptions of science careers translated into stronger aspirations for
such careers. This process of identification was less likely to occur among Grade 10 girls, who
are further away from career choices, and for boys in both grade levels, who may have found it
more difficult to identify with women scientists. To confirm this latter hypothesis and, more
generally, to improve our understanding of role model effects, an interesting avenue for future
research would be to compare the impact of male and female role models in a similar context.

Another important insight from the study is that by heightening awareness of the underrep-
resentation of women in STEM, while at the same time emphasizing men’s and women’s equal
aptitude for science, the interventions may have unintentionally reinforced students’ beliefs that
women dislike science and face discrimination in STEM careers. That is, there is suggestive
evidence that excessive stress on gender can be counter-productive and that gender-neutral
messages might be more effective in steering girls towards STEM fields. In our setting, the role
models who most reinforced the perception that women are underrepresented and discriminated
against in science had the least effect on selective STEM enrollment for female students in
Grade 12, whereas those who most improved girls’ perceptions of science careers had the greatest
impact. These findings suggest that role model interventions need to be carefully designed to
limit the potential discouragement effect of overemphasis on gender imbalances.

More generally, our heterogeneity analysis warns against the temptation to view role models
as a one-size-fits-all remedy against female underrepresentation in STEM fields. Like Carrell
et al. (2010), we find that role model effects on enrollment outcomes are concentrated among
high-achieving girls in math. The effectiveness of this type of intervention in increasing female
participation in STEM among lower-performing students remains an open question. Our study
also highlights the importance of role models’ profile in generating a sense of fit among students,
as the effects on educational choices varied markedly across the participating female scientists.
These results point to the need for further research on how the matching between role models

and students can be optimized to make this particular type of intervention more effective.
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Figure 3 — Grade 12 Students: Enrollment in Selective and Male-Dominated STEM Under-
graduate Programs, by Gender and Quartiles of Baccalauréat Performance in Math

Notes: The figure shows the fraction of Grade 12 (science track) students enrolled in selective (Panel A) and in male-dominated
(Panel B) STEM undergraduate programs in the year following high school graduation, separately for girls and boys. The filled bars
indicate the baseline enrollment rates among students in the control group, both overall and separately by quartile of Baccalauréat
performance in math. The solid circles show the estimated treatment effects (added to the control group means), with 95 percent
confidence intervals denoted by vertical capped bars. The local average treatment effects are estimated from a regression of the
outcome of interest on interactions between a classroom visit indicator and the quartile of math performance, using treatment
assignment (interacted with the quartiles of math performance) as an instrument for treatment receipt. The regression controls for
school fixed effects to account for the fact that randomization was stratified by school. Standard errors are adjusted for clustering
at the unit of randomization (class).
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Figure 4 — Grade 12 Students: Enrollment in Selective and Male-Dominated STEM Under-
graduate Programs, by Gender and Role Model Background

Notes: The figure shows the fraction of Grade 12 (science track) students enrolled in selective (Panel A) and in male-dominated
(Panel B) STEM undergraduate programs after graduating from high school, separately for girls and boys. The filled bars indicate
the baseline enrollment rates among students in the control group, both overall and separately by type of female role model who
visited the classroom (researcher or professional). The solid dots show the estimated treatment effects (added to the control group
means), with 95 percent confidence intervals denoted by vertical capped bars. The local average treatment effects are estimated
from a regression of the outcome of interest on interactions between a classroom visit indicator and two indicators for role model
type, using treatment assignment (interacted with role model type) as an instrument for treatment receipt. The regression controls
for school fixed effects to account for the fact that randomization was stratified by school. Standard errors are adjusted for clustering
at the unit of randomization (class).
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Table 1 — Treatment-Control Balance

‘Within school

Control Treatment Difference p-value
group group T-C of diff.
(1) (2) (3) (4)
Panel A. Grade 10
Student characteristics
Female 0.535 0.522 —0.010 0.309
Age (years) 15.13 15.12 —0.01 0.180
Non-French 0.059 0.061 0.002 0.652
High SES 0.377 0.386 0.008 0.321
Medium- high SES 0.131 0.125 —0.007 0.168
Medium-low SES 0.248 0.235 —0.012 0.064
Low SES 0.244 0.254 0.012 0.085
Number of siblings 1.485 1.486 0.003 0.904
Class size 33.22 33.27 0.07 0.476
At least one science elective course 0.389 0.398 0.005 0.820
At least one standard elective course 0.770 0.737 —0.031 0.138
DNB percentile rank in math 58.61 58.35 —0.35 0.533
DNB percentile rank in French 57.79 57.91 0.12 0.829
Test of joint significance F-stat: 0.798 (p-value: 0.653)
Predicted track in Grade 11
Grade 11: Science track 0.449 0.452 0.001 0.922
Grade 11: Science - general track 0.373 0.375 0.001 0.920
Grade 11: Science - technological track 0.077 0.077 —0.000 0.989
N 6,801 6,899 13,700
Panel B. Grade 12 (science track)
Student characteristics
Female 0.499 0.484 —0.014 0.292
Age (years) 17.14 17.11 —0.04 0.000
Non-French 0.053 0.048 —0.006 0.275
High SES 0.453 0.474 0.029 0.009
Medium-high SES 0.136 0.135 —0.001 0.829
Medium-low SES 0.216 0.201 —0.015 0.023
Low SES 0.195 0.190 —0.012 0.140
Number of siblings 1.510 1.487 —0.032 0.127
Class size 31.75 32.19 0.39 0.196
DNB percentile rank in math 74.17 73.95 0.20 0.699
DNB percentile rank in French 69.31 69.90 0.89 0.122
Test of joint significance F-stat: 0.983 (p-value: 0.459)
Predicted undergraduate major
Major: STEM 0.382 0.384 0.003 0.352
Major: selective STEM 0.175 0.178 0.006 0.081
Major: male-dominated STEM 0.273 0.276 0.004 0.279
N 2,853 2,898 5,751

Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left, separately for students in
Grade 10 (Panel A) and in Grade 12 (Panel B). Columns 1 and 2 show the average value for students in the control and treatment
groups, respectively. Column 3 reports the coefficient from the regression of each variable on the treatment group indicator, with
the p-value reported in column 4. The regression controls for school fixed effects to account for the fact that randomization was
stratified by school, and standard errors are adjusted for clustering at the unit of randomization (class). The F-statistic is from a
test of the joint significance of the coefficients in a regression of the treatment group indicator on all student characteristics. High
school tracks (Panel A) and undergraduate majors (Panel B) are predicted for each student using the coefficients from a linear
regression of the corresponding binary variable (e.g., enrollment in a STEM major) on all student characteristics listed in the table.
This model is fitted separately by grade level on the sample of students in the control group.
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Table 2 — Female Role Models: Summary Statistics

All role Researchers Professionals
models (Ph.D./ (employed by
Postdoc) sponsoring firm)
(1) (2) (3)
Age (N=51) 33.3 30.0 35.6
(5.7) (3.1) (6.0)
Non-French 0.14 0.10 0.17
holds/prepares for a Ph.D. (N=55) 0.62 1.00 0.38
Graduated from a Grande Ecole 0.39 0.33 0.43
Field: Math, Physics, Engineering 0.23 0.38 0.14
Field: Earth and Life Sciences 0.64 0.62 0.66
Field: Other 0.13 0.00 0.20
Has children (N=52) 0.42 0.19 0.58
Participated in the program the year before 0.25 0.19 0.29
Number of high schools visited 1.8 2.1 1.6
(0.8) (0.9) (0.7)
Number of classroom interventions 5.2 5.9 4.7
(2.3) (2.3) (2.1)
N 56 21 35

Notes: The summary statistics are computed based on information obtained from the L’Oréal Foundation and from the post-
intervention survey administered online to collect feedback about the classroom visits. Standard deviations are shown in parentheses
below the mean values. Where data are missing for some role models, the number of non-missing values N is indicated in parentheses.
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Table 3 — Perceptions of Science-Related Careers

Girls Boys
Control Treatment p-value Control Treatment p-value
group effect [g-value] group effect [g-value]
mean (LATE) mean (LATE)

(1) (2) 3) (4) () (6)

Panel A. Grade 10

Positive perceptions of science-related —0.020 0.245*** 0.000 0.023 0.167***  0.000
careers (index) (0.028) [0.001] (0.029) [0.001]
Science-related jobs require long years of study  0.839 —0.087***  0.000 0.849 —0.074***  0.000
(0.010) [0.001] (0.010) [0.001]
Science-related jobs are monotonous 0.290 —0.032***  0.006 0.318 —0.006 0.633
(0.012) [0.011] (0.013) [0.634]
Science-related jobs are solitary 0.325 —0.061***  0.000 0.303 —0.062***  0.000
(0.012) [0.001] (0.011) [0.001]
Science-related jobs pay higher wages 0.637 0.008 0.535 0.668 0.015 0.237
(0.014) [0.536] (0.013) [0.297]
Hard to maintain work-life balance 0.297 —0.026** 0.026 0.283 —0.029** 0.014
(0.012) [0.033] (0.012) [0.023]
N 6,475 5,751
Panel B. Grade 12 (science track)
Positive perceptions of science-related —0.003 0.312***  0.000 0.003 0.155***  0.000
careers (index) (0.034) [0.001] (0.033) [0.001]
Science-related jobs require long years of study  0.666 —0.110***  0.000 0.719 —0.091***  0.000
(0.015) [0.001] (0.014) [0.001]
Science-related jobs are monotonous 0.169 —0.019 0.141 0.233 —0.026 0.114
(0.013)  [0.141] (0.016)  [0.143]
Science-related jobs are solitary 0.228 —0.088***  0.000 0.206 —0.047*** 0.000
(0.012) [0.001] (0.013) [0.001]
Science-related jobs pay higher wages 0.531 0.059***  0.001 0.576 0.027* 0.093
(0.018) [0.002] (0.016) [0.143]
Hard to maintain work-life balance 0.225 —0.049***  0.001 0.167 —0.012 0.260
(0.015) [0.002] (0.011) [0.260]
N 2,600 2,636

Notes: This table reports estimates of the treatment effects of classroom interventions on students’ perceptions of science-related
careers, separately by grade level and gender. The sample is restricted to students who completed the post-intervention questionnaire.
Each row corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left.
Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the local average treatment
effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator, using
treatment assignment as an instrument for treatment receipt. The regression controls for school fixed effects to account for the
fact that randomization was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering at the unit of
randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets,
the p-value (g-value) adjusted for multiple hypotheses testing, using the False Discovery Rate (FDR) control method. Specifically,
we use the sharpened two-stage g-values introduced in Benjamini et al. (2006) and described in Anderson (2008). The g-values
associated with the synthetic index (highlighted in bold) are adjusted for multiple testing across the study’s nine main outcomes of
interest, separately by grade level and gender (see Appendix D for details). The g-values for the individual components of the index
are adjusted for multiple testing across the index components, separately by grade level and gender. *** p < 0.01, ** p < 0.05,
*p<0.1.
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Table 4 — Perceptions of Gender Roles in Science, Stated Preferences and Self-Concept

Girls Boys
Control Treatment p-value Control  Treatment p-value
group effect [g-value] group effect [g-value]
mean (LATE) mean (LATE)
(1) (2) (3) (4) (5) (6)
Panel A. Grade 10
Perceptions of gender roles in science
More men in science-related jobs 0.628 0.156***  0.000 0.629 0.168*** 0.000
(0.013) [0.001] (0.014) [0.001]
Equal gender aptitude for math (index) 0.115 0.109***  0.000 —0.134 0.148*** 0.000
(0.025) [0.001] (0.030) [0.001]
Women don’t really like science 0.157 0.059***  0.000 0.198 0.103*** 0.000
(0.011) [0.001] (0.013) [0.001]
W face discrimination in science-related jobs 0.603 0.127**  0.000 0.527 0.153*** 0.000
(0.013) [0.001] (0.014) [0.001]
Stated preferences and self-concept
Taste for science subjects (index) —0.169 —0.038 0.294 0.197 —0.019 0.533
(0.036) [0.442] (0.031) [0.685]
Math self-concept (index) —0.198 —0.008 0.806 0.231 0.039 0.217
(0.031) [0.807] (0.032) [0.326]
Science-related career aspirations (index) —0.103 0.012 0.695 0.120 0.007 0.801
(0.030) [0.807] (0.029) [0.902]
N 6,475 5,751
Panel B. Grade 12 (science track)
Perceptions of gender roles in science
More men in science-related jobs 0.712 0.125*** 0.000 0.717 0.149*** 0.000
(0.016) [0.001] (0.015) [0.001]
Equal gender aptitude for math (index) 0.158 0.095***  0.001 —0.161 0.132%** 0.001
(0.028) [0.002] (0.040) [0.002]
Women don’t really like science 0.074 0.044*** 0.000 0.146 0.073*** 0.000
(0.009) [0.001] (0.015) [0.001]
W face discrimination in science-related jobs  0.624 0.095***  0.000 0.600 0.072*** 0.000
(0.020) [0.001] (0.018) [0.001]
Stated preferences and self-concept
Taste for science subjects (index) —0.002 0.016 0.632 0.002 —0.000 0.998
(0.034) [0.633] (0.039) [0.999]
Math self-concept (index) —0.184 0.050 0.202 0.187 0.072** 0.041
(0.039) [0.228] (0.035) [0.062]
Science-related career aspirations (index) —0.045 0.113***  0.002 0.046 0.050 0.131
(0.037) [0.003] (0.033) [0.169]
N 2,600 2,636

Notes: This table reports estimates of the treatment effects of classroom interventions on students’ perceptions of gender roles in
science, taste for science subjects, math self-concept, and science-related career aspirations, separately by grade level and gender.
The sample is restricted to students who completed the post-intervention questionnaire. Each row corresponds to a different linear
regression performed separately by gender, with the dependent variable listed on the left. Columns 1 and 4 report the average
value for students in the control group. Columns 2 and 5 report the local average treatment effect (LATE) estimates. They are
obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment as an instrument
for treatment receipt. The regression controls for school fixed effects to account for the fact that randomization was stratified
by school. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomization (class). Columns 3
and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets, the p-value (¢g-value) adjusted for
multiple hypotheses testing, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage
g-values introduced in Benjamini et al. (2006) and described in Anderson (2008). The g-values are adjusted for multiple testing
across the study’s nine main outcomes of interest, separately by grade level and gender (see Appendix D for details). *** p < 0.01,
** p <0.05 *p<0.1.
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Table 5 — Enrollment Status the Following Year

Girls Boys
Control  Treatment p-value Control  Treatment p-value
group effect [g-value] group effect [g-value]
mean (LATE) mean (LATE)
(1) (2) (3) (4) (5) (6)
Panel A. Grade 10
All STEM tracks
Grade 11: Science track 0.355 —0.004 0.753 0.551 —0.002 0.910
(0.014) [0.807] (0.015) [0.910]
General vs. technological STEM track
Grade 11: Science - general track 0.328 0.001 0.942 0.416 0.007 0.613
(0.013)  [0.942] (0.014) [0.614]
Grade 11: Science - technological track 0.026 —0.005 0.128 0.135 —0.009 0.300
(0.003) [0.256] (0.008) [0.601]
Other tracks or repeater
Grade 11: Other tracks 0.545 0.006 0.642 0.324 0.018 0.191
(0.014) (0.014)
Repeater or dropout 0.101 —0.002 0.818 0.126 —0.016x% 0.070
(0.009) (0.009)
N 7,241 6,459
Panel B. Grade 12 (science track)
All undergraduate STEM majors
Major: STEM 0.289 0.024* 0.080 0.470 0.003 0.886
(0.014) [0.103] (0.020) [0.998]
Selective vs. non-selective STEM
Major: selective STEM 0.110 0.035***  0.002 0.232 0.020 0.200
(0.011) [0.004] (0.016) [0.283]
Major: non-selective STEM 0.178 —0.011 0.322 0.239 —0.017 0.212
(0.011)  [0.322] (0.014) [0.283]
Male- vs. female-dominated STEM
Major: male-dominated STEM 0.166 0.038***  0.002 0.379 0.017 0.387
(math, physics, computer science) (0.012) [0.004] (0.019) [0.388]
Major: female-dominated STEM 0.123 —0.015 0.158 0.091 —0.014 0.119
(earth and life sciences) (0.010) [0.211] (0.009) [0.283]
Other tracks or dropout
Other non-STEM programs 0.507 —0.032** 0.045 0.293 —0.005 0.717
(0.016) (0.014)
Not enrolled in a post-graduate curriculum 0.206 0.008 0.581 0.237 0.004 0.814
(0.015) (0.016)
N 2,827 2,924

Notes: This table reports estimates of the treatment effects of classroom interventions on students’ enrollment outcomes in the
academic year following the classroom interventions, i.e. 2016/17, separately by grade level and gender. The enrollment outcomes
are measured using student-level administrative data. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group.
Columns 2 and 5 report the local average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of
interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression controls
for school fixed effects to account for the fact that randomization was stratified by school. Standard errors (shown in parentheses)
are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated
treatment effect and, in square brackets, the p-value (g-value) adjusted for multiple hypotheses testing, using the False Discovery
Rate (FDR) control method. Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al. (2006) and
described in Anderson (2008). The g-values associated with the treatment effect estimates on “Grade 11: Science track” (Panel A)
and “Major: STEM” (Panel B) are adjusted for multiple testing across the study’s nine main outcomes of interest, separately by
grade level and gender (see Appendix D for details). The g-values associated with the treatment effect estimates for the different
STEM tracks (Panel A) or the different STEM majors (Panel B) are adjusted for multiple testing across these different STEM
tracks or majors, separately by grade level and gender. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6 — Heterogeneous Treatment Effects on Selective and Male-Dominated STEM Enrollment
for Girls in Grade 12: Estimates based on Machine Learning Methods

Panel A. Best linear predictor (BLP) of the CATE s¢(Z) given the ML proxy S(Z)

Parameters: ATE HET Best ML
(B1) (B2) method

Undergraduate major: selective STEM 0.038 0.762 Elastic Net

p-value [0.027] [0.031]

Undergraduate major: male-dominated STEM 0.036 0.088 Linear model

p-value [0.064] [0.731]

Panel B. Sorted group average treatment effects (GATEs): 20% most and least affected students

Heterogeneity group: 20% least 20% most Difference Best ML
affected affected most—least method

Undergraduate major: selective STEM —0.004 0.139 0.149 Elastic Net

p-value [1.000] [0.014] [0.026]

Undergraduate major: male-dominated STEM 0.026 0.061 0.038 Elastic Net

p-value [1.000] [0.464] [1.000]

Panel C. Average characteristics of the 20% most and least affected students (CLAN)

Heterogeneity group: 20% least 20% most Difference p-value
affected affected most—least  (upper bound)

Enrollment in selective STEM major
Student characteristics

Baccalauréat percentile rank in math 17.62 81.39 62.85 0.000
Baccalauréat percentile rank in French 41.45 73.44 32.74 0.000
High SES 0.344 0.637 0.302 0.000
Role model characteristics

Professional 0.494 0.638 0.148 0.001
Participated in the program the year before 0.141 0.233 0.093 0.015
Non-French 0.133 0.183 0.051 0.228
Has children 0.503 0.417 —0.095 0.064
Age 33.09 32.97 —0.11 1.000
Holds/prepares for a Ph.D. 0.692 0.606 —0.080 0.111
Field: math, physics, engineering 0.316 0.226 —0.099 0.021
Field: earth and life sciences 0.618 0.602 —0.004 1.000

Enrollment in male-dominated major

Student characteristics

Baccalauréat percentile rank in math 19.88 79.02 59.45 0.000
Baccalauréat percentile rank in French 41.22 72.10 31.10 0.000
High SES 0.335 0.628 0.296 0.000
Role model characteristics

Professional 0.530 0.606 0.078 0.170
Participated in the program the year before 0.142 0.240 0.091 0.021
Non-French 0.153 0.164 0.004 1.000
Has children 0.539 0.418 —0.126 0.010
Age 33.15 32.95 —0.17 1.000
Holds/prepares for a Ph.D. 0.705 0.601 —0.103 0.043
Field: math, physics, engineering 0.298 0.237 —0.065 0.186
Field: earth and life sciences 0.657 0.585 —0.075 0.170

Notes: This table reports heterogeneous treatment effects of the program on the undergraduate enrollment outcomes of girls in
Grade 12, using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional average treatment effect
(CATE) of role model interventions, so(Z), is predicted using five alternative ML methods: Elastic Net, Random Forest, Linear
Model, Boosting, and Neural Network. The covariates Z that are used to predict the CATE consist of three indicators for the
educational districts of Paris, Créteil, and Versailles, four indicators for students’ socioeconomic background (high, medium-high,
medium-low, and low), their age, their overall percentile rank in the Baccalauréat exam, their percentile ranks in the French and
math tests of the exam, and a vector of 56 role model fixed effects. For each outcome, Panel A reports the parameter estimates
and p-values (in square brackets) of the Best Linear Predictor (BLP) of the CATE using the best ML method. The coefficients 81
and B2 correspond to the average treatment effect (ATE) and heterogeneity loading (HET) parameters in the BLP, respectively.
Panel B reports the Sorted Group Average Treatment Effects (GATESs), i.e., the average treatment effects among students in the top
and bottom quintiles of the heterogeneous effects induced by the ML proxy predictor S(Z), using the best ML method. Panel C
performs a Classification Analysis (CLAN) by comparing the average characteristics of the 20 percent most and least affected
students defined in terms of the ML proxy predictor. The parameter estimates and p-values are computed as medians over 100
splits, with nominal levels adjusted to account for the splitting uncertainty. This adjustment implies that the reported p-values
should be interpreted as upper bounds for the actual p-values. Further details on the methods are provided in Appendix L.
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Table 7 — Heterogeneous Treatment Effects on Student Perceptions: Average Characteristics of
the Most and Least Affected Girls in Grade 12

20% least 20% most Difference p-value
affected affected most—least  (upper bound)

(1) (2) (3) (4)

Positive perceptions of science-related careers (index)

Mean Baccalauréat percentile rank in math 26.62 73.29 46.85 0.000
Class visited by professional 0.483 0.675 0.192 0.000
More men in science-related jobs

Mean Baccalauréat percentile rank in math 74.87 25.00 —51.03 0.000
Class visited by professional 0.614 0.511 —0.112 0.031
Equal gender aptitude for math (index)

Mean Baccalauréat percentile rank in math 42.77 50.58 7.89 0.003
Class visited by professional 0.622 0.563 —0.058 0.403
Women don’t really like science

Mean Baccalauréat percentile rank in math 44.47 50.57 5.07 0.090
Class visited by professional 0.592 0.540 —0.035 0.908
Women face discrimination in science-related jobs

Mean Baccalauréat percentile rank in math 52.15 42.79 —8.81 0.001
Class visited by professional 0.568 0.570 0.011 1.000
Taste for science subjects (index)

Mean Baccalauréat percentile rank in math 41.36 54.71 13.63 0.000
Class visited by professional 0.436 0.678 0.227 0.000
Math self-concept (indezx)

Mean Baccalauréat percentile rank in math 52.22 42.10 —10.65 0.000
Class visited by professional 0.512 0.582 0.071 0.240
Science-related career aspirations (index)

Mean Baccalauréat percentile rank in math 44.70 47.78 2.36 0.712
Class visited by professional 0.375 0.762 0.389 0.000

Notes: This table reports the average characteristics of Grade 12 girls in the top and bottom quintile of predicted treatment
effects on student perceptions, using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional
average treatment effect (CATE) of role model interventions, so(Z), is predicted using five alternative ML methods: Elastic Net,
Random Forest, Linear Model, Boosting, and Neural Network. The covariates Z that are used to predict the CATE consist of three
indicators for the educational districts of Paris, Créteil, and Versailles, four indicators for students’ socioeconomic background (high,
medium-high, medium-low, and low), their age, their overall percentile rank in the Baccalauréat exam, their percentile ranks in the
French and math tests of the exam, and a vector of 56 role model fixed effects. For each outcome, the table compares the average
characteristics of the students in the top and bottom quintile of treatment effects, as predicted by the best ML proxy predictor
based on the Group average treatment effects (GATEs) targeting of the CATE. The characteristics reported in this table are the
students’ average percentile rank in math in the Baccalauréat exams and the share exposed to a role model with a professional
rather a research background. The parameter estimates and p-values are computed as medians over 100 splits, with nominal levels
adjusted to account for the splitting uncertainty. This adjustment implies that the reported p-values should be interpreted as upper
bounds for the actual p-values. The average treatment effects among the 20 percent most and least affected students can be found
in Panel B of Appendix Table L1. Further details on the methods are provided in Appendix L.
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Table 8 — Correlation between Conditional Average Treatment Effects (CATEs) for Girls in
Grade 12

Bivariate correlation with the CATE on
enrollment in a selective STEM program

Estimate 95% confidence
interval

(1) (2)

Conditional average treatment effect (CATE) on:

Positive perception of science-related careers (index) 0.96 [ 0.21, 5.30]
More men in science-related jobs —0.68 [—3.23, —0.01]
Equal gender aptitude for math (index) 0.19 [—1.24, 2.05]
Women don’t really like science 0.21 [—1.43, 3.23]
Women face discrimination in science-related jobs —0.34 [—2.22, 0.56]
Taste for science subjects (index) 0.71 [ 0.04, 3.96]
Math self-concept (index) —0.07 [—1.84, 1.40]
Science-related career aspirations (index) 0.36 [-0.51, 2.01]

Notes: This table reports, for girls in Grade 12, estimates of the bivariate correlation py p|z between the Conditional Average
Treatment Effect (CATE) on enrollment in a selective STEM program, denoted by ség (Z), and the CATE on each of the potential
channels listed in the table, denoted by s(‘;‘(Z). The proxy predictor of the CATE on selective STEM enrollment, denoted by
SB(Z), is estimated using the Elastic Net method, as it has the best performance based on the Best Linear Predictor (BLP)
targeting of the CATE for this outcome. The proxy predictor of the CATE on the potential mediator Y4, denoted by S4(Z%), is
estimated using the ML method that has the best performance based on the BLP targeting of the CATE on the corresponding
outcome. An indication of the quality of these predictions is provided by the heterogeneity loading (HET) parameter of the
BLP (see Appendix Table L1, Panel A). For each random split of the data, the correlation coefficient pa,B|z is estimated as

paBlz = Sign(ﬁ?‘B)(Bg‘B,é’zBlA)%/(B;\‘A)%( AQB‘B)%, where Bsu is the estimated heterogeneity loading parameter of the BLP
of sk(Z) based on S'(Z) (with k,l € {A, B}), using the methods in Chernozhukov et al. (2018). The covariates Z that are used
to predict the CATEs consist of three indicators for the educational districts of Paris, Créteil, and Versailles, four indicators for
students’ socioeconomic background (high, medium-high, medium-low, and low), their age, their overall percentile rank in the
Baccalauréat exam, their percentile ranks in the French and math tests of the exam, and a vector of 56 role model fixed effects. For
each pair of outcomes, columns 1 and 2 report the estimated correlation between the CATEs and its 95 percent confidence interval,
respectively. Estimates and confidence intervals are computed as medians over the first 100 random data splits for which p4 |z
can be computed. For each data split, the confidence intervals are obtained using a clustered bootstrap procedure. The nominal
level of the median of confidence intervals is adjusted to account for the splitting uncertainty, using the method of Chernozhukov
et al. (2018). This adjustment implies that the reported confidence intervals should be interpreted as lower and upper bounds for
the true lower and upper limits of the confidence intervals. Further details on the methods are provided in Appendix L.
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A  Gender Pay Gap Among College Graduates in France

This appendix provides descriptive evidence on the entry-level gender pay gap among French
college graduates holding a master’s degree and analyzes the contribution of gender segregation
in college majors to this gap. The objective of this analysis is to better understand whether the
effects of the role model interventions on female students’ choice of study can be expected to
reduce the gender pay gap. Section A.1 describes the data sources, while Section A.2 discusses
the empirical results.

A.1 Data

Unfortunately, we cannot rely exclusively on administrative data to provide empirical evidence
on the gender pay gap by field of study in France, as it is currently not possible to link
administrative data on students enrolled in higher education with administrative data on wages
and income tax returns. Instead, our analysis is based on the combination of aggregate statistics
on student enrollment by college major and gender with survey information on the starting
wages of recent cohorts of college graduates.

Data sources. In France, gender segregation and gender pay gaps by college major can
be analyzed for the population of college graduates who obtained their master’s degree (or
equivalent) in 2015 or 2016. For this purpose, we combine several administrative and survey
data sources.

SISE Résultats 2015. This individual-level administrative dataset covers all students enrolled
in public universities during the academic year 2015/16 and provides detailed information on
each student’s degree program and field of study.

Enquéte Professionnelle des Diplomés de Master 2015 (EPDM). This survey was conducted
in December 2017 by the Ministry of Higher Education to collect information on the transition
of master’s graduates to the labor market. The survey was targeted at students who obtained
their master’s degree in 2015 and who entered the labor market within one year after graduation,
with an overall response rate of 70 percent. As part of this survey, master’s graduates were
asked to report their annual earnings 18 months after graduation. Our analyses are based on
the survey’s public use files, which provide aggregate statistics by gender and college major.*-!

Enquéte sur l'Insertion des Diplomés des Grandes Ecoles 2018 (EIDGE). This survey was
conducted in 2018 by the Conférence des Grandes Ecoles (CGE), a not-for-profit association
representing French elite graduate schools. The Grandes Ecoles, which award a diploma
equivalent to a master’s degree, recruit their students through highly competitive national exams
taking place at the end of two-year undergraduate selective STEM and non-STEM preparatory
courses (Classes Préparatoires aur Grandes Ecoles or CPGE). The survey was targeted at
students who graduated between 2015 and 2017 from one of the 184 Grandes Ecoles that were
members of the CGE in 2018, with an overall response rate of 48 percent. Our analyses are
based on the aggregate statistics published by the CGE separately by gender and by type of
Grande Ecole (i.e., engineering schools, business schools, and other schools).*? We only consider
students who graduated from a Grande Ecole in 2016, since annual earnings 24 months after
graduation are only available for this cohort.

A'1ht‘cps ://data.enseignementsup-recherche.gouv.fr/explore/dataset/fr-esr-insertion_
professionnelle-master_donnees_nationales/information/ (accessed on August 2, 2019).

A2https://www.cge.asso.fr/themencode-pdf-viewer/?file=https://www.cge.asso.fr/up-content/
uploads/2018/06/2018-06-19-Rapport-2018.pdf (accessed on August 2, 2019).


https://data.enseignementsup-recherche.gouv.fr/explore/dataset/fr-esr-insertion_professionnelle-master_donnees_nationales/information/
https://data.enseignementsup-recherche.gouv.fr/explore/dataset/fr-esr-insertion_professionnelle-master_donnees_nationales/information/
https://www.cge.asso.fr/themencode-pdf-viewer/?file=https://www.cge.asso.fr/wp-content/uploads/2018/06/2018-06-19-Rapport-2018.pdf
https://www.cge.asso.fr/themencode-pdf-viewer/?file=https://www.cge.asso.fr/wp-content/uploads/2018/06/2018-06-19-Rapport-2018.pdf

Grouping of college majors. The above data sources can be combined to compute the
number of female and male master’s students who graduated from university in 2015 or from a
Grande Ecole in 2016, separately by college major.

The Ministry of Higher Education’s official classification comprises 54 college majors. For
the purpose of our analysis, we group these college majors into the following broad categories:

o Non-STEM majors (35 in total): this category includes master’s degree programs in law,
economics, management, humanities, psychology, social sciences, medicine, pharmacy,
sports studies as well as degrees from non-STEM Grande Ecoles (e.g., business schools,
schools of journalism, schools of architecture).

o STEM majors (19 in total): this category includes master’s degree programs in STEM
fields as well as degrees from engineering schools (Grande Ecoles d’ingénieurs).

o Among STEM majors, we distinguish between engineering schools (all of which are selective
and are classified as a single major) and non-selective STEM master’s degrees at university
(18 in total).

e Among non-selective STEM majors, we further distinguish between male-dominated
majors (16 in total) and female-dominated majors (2 in total: chemistry and earth and
life sciences), based on whether the share of female students among master’s graduates in
the corresponding field of study is below or above 50 percent. This distinction does not
apply to selective STEM majors, since almost all engineering schools are male-dominated.

Earnings information. The EPDM and EIDGE surveys provide information on graduates’
average median gross salary (salaire brut annuel médian) separately by gender and college major.
Starting wages are measured 18 months after graduation for master’s graduates and 24 months
after graduation for Grandes Ecoles graduates. Note that since we do not have access to the
individual-level survey data, median earnings by broad categories of college majors can only
be approximated as the average of the median earnings in each of the majors that form these
broad categories.

A.2 College Majors and the Gender Pay Gap

Combining the above data sources, we provide descriptive evidence on the median starting
wages of female and male graduates across the broad categories of college majors. We then
analyze the contribution of gender segregation in college majors to the overall entry-level gender

pay gap.

Gender composition of STEM and non-STEM majors. The first three columns of
Table A1 show the distribution of master’s-level graduates across the broad categories of college
majors defined above, along with the share of female graduates in each category. The summary
statistics indicate that while female students represent 52 percent of master’s level graduates,
they are strongly underrepresented in STEM majors (34 percent). Female underrepresentation
is more pronounced in selective (male-dominated) STEM majors (female share: 30 percent)
than in non-selective STEM majors (female share: 40 percent). Among non-selective STEM
majors, female students represent only 29 percent of graduates in male-dominated fields such
as mathematics, physics, or computer science, compared to 60 percent of graduates in female-
dominated fields such as chemistry and earth and life sciences.

Starting wages of STEM and non-STEM graduates. The comparison of starting wages
by broad college major category confirms that female graduates tend to be overrepresented
in lower-paying majors (see columns 3-5 of Table Al). Female graduates holding a STEM
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degree have a median starting wage of 29,984 euros, which is 7.4 percent higher than the median
starting wage of female graduates holding a non-STEM degree (27,913 euros). Strikingly, the
wage premium for female graduates in STEM appears to be almost entirely driven by selective
(male-dominated) STEM degrees (16.4 percent). By contrast, the wage premium attached
to non-selective STEM degrees is close to zero (—0.5 percent). The low apparent return to
non-selective STEM degrees masks substantially different returns between male-dominated and
female-dominated majors: while the wage premium attached to male-dominated non-selective
STEM majors is of 4.2 percent for female graduates compared to non-STEM majors, a wage
penalty of 4.7 percent is attached to female-dominated non-selective STEM majors.

Female underrepresentation in STEM: contribution to the gender pay gap. The
last three columns of Table A1l indicate that across all categories of programs, male graduates
earn a median annual starting wage of 32,122 euros, compared to 28,411 euros for female
graduates. This amounts to an overall gender pay gap of 3,711 euros per year, or 11.6 percent
of male pay.

Although the overrepresentation of female graduates in lower-paying non-STEM and female-
dominated STEM majors is a likely contributor to the overall gender pay gap, it is clearly not
the sole cause, as gender differences in median earnings are observed within each broad category
of college majors. Interestingly, however, the gender wage gap is lower in each category of STEM
majors than in non-STEM majors. This finding is consistent with similar evidence for the U.S.
(Beede et al., 2011).

To shed light on the contribution of gender segregation in fields of study to the overall
entry-level gender pay gap, we adopt a method similar to that used by McDonald and Thornton
(2007) in estimating what the overall female-male starting wage gap would be if female graduates
had the same distribution of college majors as male graduates.

Since our interest is in measuring the specific contribution of the different dimensions of
female underrepresentation in STEM majors (STEM vs. non-STEM, selective vs. non-selective
STEM, male-dominated vs. female-dominated non-selective STEM), we construct counterfactual
wage gaps by considering increasingly disaggregated groups of majors.

We start by estimating the counterfactual wage gap if female graduates had the same
distribution of STEM vs. non-STEM majors as male graduates, while keeping fixed females’
marginal distribution of majors within each of these two broad categories. Put differently,
we apply female median earnings in STEM vs. non-STEM degrees to the male distribution
of graduates in both categories of majors to recalculate the overall gender pay gap. This
counterfactual wage gap, which we denote by A, is constructed as follows:

Y (NP 4w N

where wj and N} denote the median earnings and the number of graduates of gender g (m:
males; f: females) in college major category k (s: STEM; ns: non-STEM), respectively. The
contribution of female underrepresentation in STEM programs to the gender pay gap is then
measured as A, — A, where A, denotes the observed overall pay gap between male and female
graduates.

To measure the contribution of gender segregation between selective and non-selective
STEM majors, we construct a second counterfactual wage gap in a similar manner, except
that college majors are now grouped into three categories: non-STEM, selective STEM, and
non-selective STEM. To measure the contribution of gender segregation between male-dominated
and female-dominated STEM majors, we repeat this exercise after grouping college majors
into four categories: non-STEM, selective STEM, non-selective male-dominated STEM, and
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non-selective female-dominated STEM. The contribution of gender segregation between majors
within both male- and female-dominated non-selective STEM is measured by ungrouping all
STEM majors. Finally, we ungroup all non-STEM majors to evaluate the contribution of gender
segregation between non-STEM majors. The corresponding counterfactual measures what the
overall gender gap would be if women had the same distribution as men across all 54 STEM
and non-STEM college majors.

Results. The results of this decomposition exercise are shown in Table A2 along with the
observed gender pay gap. The contributions of gender segregation between the different categories
of college majors to the gender pay gap are reported in column 1 and are expressed as percentages
of the total in column 2. We find that the gender imbalances across all college majors “explain”
40 percent of the gender pay gap among college graduates. Two-thirds of this explained part
(26.5 percent of the total wage gap) can be attributed to the unequal representation of female
and male graduates in STEM vs. non-STEM majors, on the one hand, and between the different
majors within STEM, on the other hand. The remain third of the explained part of the
gap (13.4 percent of the total) is due to gender segregation between non-STEM majors, the
lowest-paying majors (humanities) being typically more female-dominated (77 percent) than the
highest-paying ones (law and economics, where the female share is 59 percent).

The 26.5 percent STEM-related gender pay gap can be decomposed as follows. Increasing
the share of female graduates holding a STEM degree to that of males without changing females’
marginal distribution of STEM majors is associated with a 14.0 percent reduction in the gender
pay gap. In line with the evidence from Table A1, further reassigning female graduates from
non-selective STEM majors to (male-dominated) selective STEM majors in order to match
the relative shares of selective and non-selective STEM majors among male graduates would
reduce the gender gap by an additional 6.5 percent from the baseline. Finally, reassigning female
graduates from non-selective female-dominated STEM majors to non-selective male-dominated
STEM majors would trigger an extra 4.3 percent reduction in the gender pay gap, while further
reassigning female students between majors within male- and female-dominated programs would
result in an extra 1.8 percent reduction from the baseline.

Altogether, these findings suggest that the underrepresentation of female students in STEM
majors accounts for approximately 25 percent of the entry-level gender pay gap among college
graduates in France. Almost half of this STEM-related gender pay gap can be attributed to
the fact that within STEM majors, female graduates are relatively less likely than males to be
enrolled in those with the largest wage premium, i.e., the selective and male-dominated STEM
majors.
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Table A1l — Starting Wage Among College Graduates Holding a Master’s Degree or Equivalent, Classes of 2015/16

Graduates: classes of 2015/16 Wage 18/24 months after graduation (survey)
Female graduates Male graduates
Number of % of Female Median Relative Median Relative Gender
graduates total share wage Median wage Median pay gap
(%) (euros) wage (euros) wage (%)
(non-STEM (non-STEM
majors: 100) majors: 100)
(1) (2) (3) (4) (5) (6) (7) (8)
All majors (54) 166,600 100.0 51.5 28,411 - 32,122 - 11.6
Non-STEM majors (35) 106,997 64.2 61.1 27,913 100.0 31,302 100.0 10.8
STEM majors (19) 59,603 35.8 34.3 29,984 107.4 32,972 105.3 9.1
of which:
Selective (male-dominated) STEM 31,463 18.9 29.7 32,500 116.4 34,800 111.2 6.6
majors (Engineering schools)
Non-Selective STEM 28,140 16.9 39.6 27,767 99.5 30,530 97.5 9.1
majors (18)
of which:
Male-dominated majors (16) 18,874 11.3 29.4 29,077 104.2 31,371 100.2 7.3
Female-dominated majors (2) 9,266 5.6 60.3 26,596 95.3 27,581 88.1 3.6

Notes: This table reports summary statistics on gender segregation and gender pay gaps for the population of college graduates who obtained their master’s degree (or equivalent) in 2015 or 2016.
The 54 college majors are grouped into two broad categories: non-STEM majors (master’s degrees in economics, management, humanities, psychology, social sciences, sports studies, medicine,
pharmacy, and non-STEM Grandes Ecoles such as business schools or schools of journalism) and STEM majors (master’s degrees in STEM fields and degrees from engineering schools); STEM
majors are further broken down between selective (engineering schools) and non-selective majors (master’s degree at university); among non-selective majors, we distinguish between male-dominated
and female-dominated majors, based on whether the share of female graduates in the corresponding field of study is below or above 50 percent. Column 1 shows the number of graduates per broad
category of college majors using the administrative dataset SISE 2015/16 (for university graduates who obtained their master’s degree in 2016) and the EIDGE survey (for students who graduated
from Grandes Ecoles in 2016). Median gross annual wages (columns 4 and 6) are computed from aggregate statistics by gender and college major from the EPDM and EIDGE surveys. Entry-level
wages are measured 18 months after graduation for master’s graduates and 24 months after graduation for Grandes Ecoles graduates. Median wages by broad categories of college majors are
approximated as the average of the median wages in each of the majors that form these broad categories.

Sources: Columns 1-3: SISE 2015/16 and Enquéte sur 'Insertion des Diplémés des Grandes Ecoles 2018 (EIDGE); columns 4-8: Enquéte Professionnelle des Diplomés de Master 2015 (EPDM) and
EIDGE.



Table A2 — Contribution of Gender Segregation in College Majors to the Entry-Level Gender
Wage Gap Among College Graduates, Classes of 2015/16

Gender Share
pay gap of the
(relative to gender
male pay) wage gap
(1) (2)
Total wage gap 0.116 100.0%
Contribution of gender segregation in college majors to the wage gap:
Explained by unequal gender distribution between majors 0.046 40.0%
of which:
between STEM /non-STEM majors and between majors within STEM 0.031 26.5%
of which:
between STEM and non-STEM majors 0.016 14.0%
between selective and non-selective STEM majors 0.007 6.5%
between male- and female-dominated non-selective STEM majors 0.005 4.3%
between majors within male- and female-dominated non-selective STEM 0.002 1.8%
between majors within non-STEM 0.016 13.4%
Unexplained by unequal gender distribution between majors 0.069 60.0%

Notes: This table provides a decomposition of the total entry-level wage gap between male and female college graduates who
obtained their master’s degree or equivalent in 2015 (university graduates) or in 2016 (Grandes Ecoles graduates). Entry-level
wages are measured as median annual gross wages by gender and college major, 18 months after graduation for master’s graduates,
and 24 months after graduation for Grandes Ecoles graduates. To measure the contribution of the unequal gender representation
across college majors, counterfactual wage gaps are constructed using increasingly disaggregated groups of college majors. The
contribution of gender segregation between STEM and non-STEM majors is measured as the observed gender wage gap minus the
counterfactual wage gap that would be observed if female graduates had the same distribution of STEM and non-STEM majors
as male graduates, while keeping fixed females’ marginal distribution of majors within each of these two broad categories. The
contribution of gender segregation between selective and non-selective STEM majors is estimated in a similar manner, except that
the counterfactual gender wage gap is estimated by reassigning female graduates from non-selective STEM majors to selective STEM
majors to match the relative shares of selective and non-selective STEM majors among male graduates. The other components of
the gender wage gap are measured by sequentially ungrouping college majors to compute counterfactual gender wage gaps. The
contributions of gender segregation between the different categories of college majors to the gender wage gap are shown in column 1
and are expressed as percentages of the total in column 2.

Sources: See notes of Table Al.



B Program Details

(a) First Video: “Jobs in Science: Beliefs or Reality?”
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Figure B1 — Screenshots of the Two Videos Shown During the Role Model Interventions
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Notes: The thick lines represent the boundaries of the three education districts (académies) of the Paris region (Paris, Créteil and
Versailles). The solid circles show the location of the 98 high schools that participated in the program evaluation.
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C Student-Level Administrative Data

This appendix describes the administrative data that we use to complement the information
from the student survey (Section C.1) and provides details about the classification of STEM
undergraduate programs (Section C.2).

C.1 Data Sources

For the purpose of the empirical analysis, we matched the data from our post-intervention
student survey with three administrative datasets. These data were linked using an encrypted
version of the French national student identifier (Identifiant National Eléve).

High school enrollment data. Students’ socio-demographic characteristics and enrollment
status are obtained from the Bases Eléves Académiques (BEA) for academic years 2012/13
to 2016/17. These comprehensive administrative registers, which were provided by the three
education districts of the Paris region (Paris, Créteil, and Versailles), cover the universe of
students enrolled in the public and private high schools operating in the three districts. They
also cover students enrolled in selective undergraduate programs, i.e., Classes préparatoires auz
Grandes Ecoles (CPGE) and Sections de technicien supérieur (STS), as these programs are
located in high schools. The BEA data provide basic information on students’ demographics
(gender, date and country of birth, number of siblings), their parents’ two-digit occupation, and
detailed information on their enrollment status (school and class attended, elective courses taken).
Students’ socioeconomic status (SES) is measured using the French Ministry of Education’s
official classification, which uses the occupation of the child’s legal guardian to define four
groups of SES: high (company managers, executives, liberal professions, engineers, intellectual
occupations, arts professions), medium-high (technicians and associate professionals), medium-
low (farmers, craft and trades workers, service and sales workers), and low (manual workers and
persons without employment).

University enrollment data. To track Grade 12 (science track) students’ enrollment out-
comes in non-selective undergraduate programs (Licence), we use a separate administrative
data source, the Systéme d’Information sur le Swivi de I’Etudiant (SISE), which is managed by
the Statistical Office of the French Ministry of Higher Education (Sous-Direction des Systémes
d’Information et des Etudes Statistiques, MESRI-SIES). This dataset, which covers the academic
years 2012/13 to 2016/17, records all students enrolled in the French higher education system
outside of CPGE and STS, except for the small fraction of students enrolled in undergraduate
programs leading to paramedical and social care qualifications.

Data on student performance. The third dataset, the Organisation des Concours et
Ezamens Académiques et Nationauz (OCEAN), contains students’ individual exam results for
the Diplome national du brevet (DNB), which middle school students take at the end Grade 9,
and for the Baccalauréat, which high school students take at the end of Grade 12. Access to this
dataset, which covers the exams years 2010 to 2016, was provided by the Statistical Office of the
French Ministry of Education (Direction de I'Evaluation, de la Prospective et de la Performance,
MENJ-DEPP).

C.2 Classification of STEM Undergraduate Programs

The enrollment status of Grade 12 (science track) students in the year following the intervention,
i.e., 2016/17, is measured by combing the information from the BEA and SISE datasets. For the
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purpose of our analysis, we use two alternative classifications of STEM undergraduate programs,
based on whether they are (i) selective or non-selective, and (ii) male- or female-dominated.

Selective vs. non-selective STEM programs.

o Selective STEM: This category includes all CPGE programs with a specialization in
STEM, i.e., mathematics, physics and engineering science (MPSI), physics, chemistry and
engineering science (PCSI), biology, chemistry, physics and earth sciences (BCPST), and
physics, technology, and engineering science (PTSI). It also includes a small number of
selective programs in engineering schools that recruit their students directly after high
school graduation, as well as selective technical/vocational undergraduate programs (STS)
that specialize in STEM fields.

e Non-selective STEM: This category includes non-selective university bachelor’s degree
programs (Licence) that specialize in STEM fields: math, physics, chemistry, earth and
life sciences, and computer science. Undergraduate programs in medicine and pharmacy
are not included in this category.

Male- vs. female-dominated STEM programs.

e Male-dominated STEM: We consider as male-dominated STEM programs those in which
the share of female students is less than 50 percent. This category includes the selective
programs (CPGE and STS) and non-selective programs (Licence) that specialize in
mathematics, physics, chemistry, computer science, and engineering.

o Female-dominated STEM: This category includes both selective (CPGE and STS) and
non-selective programs (Licence) that specialize in earth and life sciences.

If a student is enrolled in multiple higher education programs, we only consider the most
selective among these programs, with CPGE taking precedence over STS, and STS taking
precedence over university undergraduate degree programs.
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D Construction of Synthetic Indices and Multiple Hy-
potheses Testing

This appendix discusses the construction of the synthetic indices that we use to measure the
effects of role model interventions on students’ perceptions (Section D.1) and provides further
details on the adjustment of p-values to correct for multiple hypotheses testing (Section D.2).

D.1 Construction of Synthetic Indices

The student survey questionnaire aimed at measuring the effects of role model interventions
on students’ perceptions and self-concept along five dimensions: (i) general perceptions of
science-related careers, (ii) perceptions of gender roles in science, (iii) taste for science subjects,
(iv) math self-concept, and (v) science-related career aspirations.

We use the survey items listed below to construct synthetic indices for each of these five
dimensions. When responses are measured on a Likert scale, i.e., when respondents specify their
level of agreement or disagreement with a statement on a symmetric agree-disagree scale, the
item responses are recoded so that higher values correspond to less stereotypical or negative
perceptions (see details below). We then take the average of each student’s responses to the
different questions.* We checked that the indices yield similar results if item responses are
converted to binary variables before taking the average across items. Finally, to facilitate
interpretation, we normalize each index to have a mean of zero and a standard deviation of one
in the control group.

Below is the list of the individual items that are included in each the five synthetic indices.
Unless otherwise specified, these items use a four-point Likert response scale such that 1=Strongly
agree, 2=Agree, 3=Disagree, and 4=Strongly disagree. Items marked with a * have been recoded
such that a value of 1 means “Strongly disagree” and 4 means “Strongly agree”.

1. Positive perceptions of science-related careers (5 items): “Science-related jobs require long

”, «

years of study”; “Science-related jobs are monotonous”; “Science-related jobs are rather
solitary”; “Science-related jobs pay higher wages*”; “It is difficult have a fulfilling family
life when working as a scientist”.

2. Equal gender aptitude for math (2 items): “Women and men are born with different
brains”; “Men are more gifted than women in mathematics”.

3. Taste for science subject (4 items): Enjoys math (on a scale from 0 “not at all” to 10
“very much”); Enjoys physics and chemistry (on a scale from 0 to 10); Enjoys earth and
life sciences (on a scale from 0 to 10); “I like science in general*”.

4. Math self-concept (4 items): Self-assessed performance in match (very weak/weak/average/
good/very good); “I feel lost when I try to solve a math problem”; “I often worry that I
will struggle in math class”; “If I make enough effort, I can do well in science subjects”.

5. Science-related career aspirations (4 items): “Some jobs in science are interesting*”; « I
could see myself working in a science-related job later in life*”; Interested in at least one
of six STEM job our of a list of ten STEM and non-STEM occupations®* (0/1 variable);
“Career and earnings prospects play an important role in my choice of study” (on a scale
from 0 “not at all” to 10 “very much”).

A-3This procedure is inspired from the KidIQol test used in the psychological literature to measure children’s
life satisfaction (Gayral-Taminh et al., 2005).

A4The STEM occupations in the list were: chemist, computer scientist, engineer, industrial designer, renewable
energy technician, and researcher in biology. The non-STEM occupations were lawyer, pharmacist, physician,
and psychologist.
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D.2 Multiple Hypotheses Testing

Consistent with the recent applied literature, we systematically use the False Discovery Rate
(FDR) control, which designates the expected proportion of all rejections that are type-I errors.
Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al. (2006) and
described in Anderson (2008).

We study nine main outcomes throughout the paper: (i) enrollment in a STEM track
(for Grade 10 students) or STEM major (for Grade 12 students); (ii) five synthetic indices
capturing positive perceptions of science-related careers, equal gender aptitude for math, taste
for science subjects, math self-concept, and science-related career aspirations (see Section D.1);
and (iii) three variables capturing different facets of gender role in science that cannot be
combined into a single index, which are based on the survey items asking students whether
they agree or disagree with the statements “There are more men than women in science-related
jobs”, “Women don’t really like science”, and “Women face discrimination in science-related
jobs”. These nine outcomes are our primary outcomes of interest and we therefore systematically
provide (along with standard p-values) p-values that are adjusted for multiple testing across
them (g-values), separately by grade level and gender.

For each of the five synthetic indices described in the previous section, we report separate
treatment effect estimates for the individual components of the index and provide standard
p-values for the corresponding estimates along with p-values adjusted for multiple testing across
the index components, separately by grade level and gender.

As we further split enrollment in STEM into different types of STEM tracks or majors (e.g.,
selective STEM, non-selective STEM, male-dominated STEM, and female-dominated STEM
in Grade 12), we provide adjusted p-values for multiple testing across these different STEM
tracks or majors, separately by grade level and gender. Given the importance of some of these
specific STEM majors in our analyses, it could also be justified to consider them jointly with the
primary outcomes described above. We have checked that, in practice, this alternative choice
has little effect on the reported g-values.

Finally, treatment effects on other outcomes, such as the probabilities of being enrolled in
a non-STEM major or of not being enrolled in an education program in the year following
the classroom interventions, are also reported in the paper for the sake of completeness and
clarity. Since these are not outcomes of direct interest in our study or are complements of other
outcomes of interest, we do not consider them in the multiple testing corrections.
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E Summary Statistics and Balancing Tests

Table E1 — Experimental Sample: Summary Statistics (School-Level)

High schools operating Participating
in the Paris region high schools
(1) (2)
Number of high schools 489 98
Share private 0.339 0.173
Education district: Paris 0.243 0.153
Education district: Créteil 0.348 0.296
Education district: Versailles 0.409 0.551
Number of students 644 924
Share of female students 0.524 0.526
Share of high SES students 0.423 0.391
Share of medium-high SES students 0.116 0.128
Share of medium-low SES students 0.243 0.239
Share of low SES students 0.218 0.241
Pass rate on Baccalauréat exam in 2015 0.913 0.910

Notes: This table compares the characteristics of high schools that participated in the program evaluation in 2015/16 to the
characteristics of all general-track high schools operating in the Paris region. The summary statistics are computed from the Bases
Eléves académiques of the three education districts of Paris, Créteil, and Versailles for the academic year 2015/16. The Baccalauréat
pass rate is computed for students who were enrolled in Grade 12 in 2014/15, i.e., in the year before the intervention, and who
took the exams in the general or technological tracks.
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Table E2 — Experimental Sample: Summary Statistics (Student-Level)

High schools Participating high schools
Oziiangism Classes selected Classes not selected
resion for random for random

& assignment assignment

(1) (2) (3)
Panel A. Grade 10
Number of students 115,720 13,700 19,147
Number of classes 3,627 416 592
Female 0.525 0.529 0.525
Non-French 0.063 0.060 0.068
Age 15.14 15.13 15.14
High SES 0.403 0.381 0.361
Medium-high SES 0.118 0.128 0.127
Medium-low SES 0.239 0.241 0.248
Low SES 0.240 0.249 0.265
Number of siblings 1.44 1.49 1.50
Class size 32.22 33.25 32.48
DNB percentile rank in math 57.69 58.48 55.10
DNB percentile rank in French 57.23 57.85 55.75
Panel B. Grade 12 (science track)
Number of students 38,582 5,751 5,623
Number of classes 1,267 185 179
Female 0.459 0.492 0.417
Age 17.11 17.12 17.10
Non-French 0.045 0.051 0.037
High SES 0.527 0.464 0.535
Medium-high SES 0.115 0.136 0.126
Medium-low SES 0.198 0.209 0.180
Low SES 0.160 0.192 0.160
Number of siblings 1.43 1.50 1.44
Class size 31.43 31.97 32.08
DNB percentile rank in math 76.25 74.06 76.20
DNB percentile rank in French 70.78 69.61 69.78

Notes: This table compares the characteristics of Grade 10 and Grade 12 (science track) students enrolled in the high schools
that participated in the program evaluation to the characteristics of all Grade 10 and Grade 12 (science track) students enrolled
in general-track high schools in the Paris region. In participating schools, the classes that were selected by principals for random
assignment to treatment are compared to classes that were not selected. The summary statistics are computed from the Bases
Eléves académiques of the three education districts of Paris, Créteil, and Versailles for the academic year 2015/16. French and
math scores are from the exams of the Diplome national du brevet (DNB) that middle school students take at the end of Grade 9.
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Table E3 — Post-Intervention Role Model Survey: Summary Statistics

Role model background

All Profes- Resear-  Difference p-value
sionals chers (3)—(2) of diff.

(1) (2) (3) (4) (5)
A. Adults present during the intervention
Teacher was present 0.890 0.883 0.896 0.014 0.773
Teacher’s subject: science® 0.600 0.596 0.603 0.007 0.922
Teacher’s gender: female 0.551 0.533 0.565 0.032 0.653
Teacher showed interest 0.696 0.634 0.745 0.111 0.098
Other adult present beside teacher 0.348 0.392 0.315 —0.077 0.236
B. General atmosphere during the intervention
Students were very interested 0.423 0.425 0.422 —0.004 0.963
Students were very engaged in the discussion 0.386 0.378 0.392 0.014 0.838
Students were inattentive 0.134 0.165 0.110 —0.055 0.259
Powerpoint worked well 0.963 0.938 0.982 0.045 0.172
Videos worked well 0.888 0.891 0.886 —0.004 0.940
Logistical problems 0.160 0.185 0.140 —0.044 0.487
Talk interrupted due to discipline problems 0.068 0.079 0.060 —0.018 0.652
C. Topics addressed during the intervention
“Science is everywhere” 1.000 1.000 1.000 0.000 -
“Jobs in science are fulfilling” 0.990 1.000 0.982 —0.018 0.080
“Jobs in science are for girls too” 1.000 1.000 1.000 0.000 -
“Jobs in science pay well” 0.866 0.890 0.849 —0.040 0.516
Short videos 0.980 0.969 0.988 0.019 0.436

D. Students’ responsiveness to topics addressed during the intervention

Very responsive to “science is everywhere” 0.430 0.378 0.470 0.092 0.360
Very responsive to “jobs in science are fulfilling” 0.352 0.402 0.313 —0.088 0.333
Very responsive to “jobs in science are for girls too” 0.375 0.354 0.392 0.037 0.674
Very responsive to “jobs in science pay well” 0.387 0.263 0.476 0.213 0.042
Very responsive to the short videos 0.546 0.488 0.590 0.102 0.339

E. Overall impression of the role model

Were gender stereotypes strong among students?

Yes, very much 0.089 0.039 0.128 0.089 0.057
Rather yes 0.313 0.276 0.341 0.066 0.337
Rather no/not at all 0.598 0.685 0.530 —0.155 0.074
How did the classroom intervention go?
Very well 0.556 0.535 0.572 0.037 0.670
Well 0.369 0.386 0.355 —0.030 0.716
Average /not so well/not well at all 0.075 0.079 0.072 —0.006 0.821
Was the intervention well suited to the students?
Yes, very much 0.474 0.449 0.494 0.045 0.661
Rather yes 0.471 0.504 0.446 —0.058 0.574
Rather no/not at all 0.055 0.047 0.060 0.013 0.592
Number of role models 56 21 35
Number of classroom interventions 290 124 166

Notes: The summary statistics are computed from the post-intervention role model survey that was administered online to collect
feedback about the classroom visits. The unit of observation is a classroom intervention. ¢ The science subjects taught in high
school are mathematics, physics and chemistry, and earth and life sciences.
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Table E4 — Compliance with Random Assignment

Classes assigned to

All Control Treatment
classes group group
(1) (2) (3)
Panel A. Grade 10
Number of classes visited by a role model 199 2 197
Number of classes not visited by a role model 217 205 12
Number of students 13,700 6,301 6,899
Student-level compliance with random assignment 0.97 0.99 0.94
Panel B. Grade 12 (science track)
Number of classes visited by a role model 91 2 89
Number of classes not visited by a role model 94 90 4
Number of students 5,751 2,853 2,898
Student-level compliance with random assignment 0.97 0.98 0.95

Notes: This table reports compliance with the random assignment of Grade 10 and Grade 12 (science track) classes to the treatment
and control groups. Two-way non-compliance was due to either classes in the treatment not being visited by a role model or to
classes in the control group being visited by a role model.

Table E5 — Student Post-Treatment Survey: Response Rates

Within school

Control Treatment Difference p-value
group group T-C of diff.

(1) (2) (3) (4)

Panel A. Grade 10

Survey response rate 0.879 0.905 0.026 0.026
(0.012)
Number of students 6,801 6,899 13,700

Panel B. Grade 12 (science track)

Survey response rate 0.909 0.912 0.005 0.693
(0.012)
Number of students 2,853 2,898 5,751

Notes: This table reports the student survey response rate for students in the Grade 10 and Grade 12 (science track) classes that
participated in the program. The response rates are computed based on the list of all students who were recorded in the Bases
Eléves académiques as being enrolled in the participating classes during the academic year 2015/16. Columns 1 and 2 show the
response rate of students in the control and treatment groups, respectively. Column 3 reports the coefficient from the regression
of survey participation on the treatment group indicator, with p-values reported in column 4. The regression controls for school
fixed effects to account for the fact that randomization was stratified by school. Standard errors (in parentheses) are adjusted for
clustering at the unit of randomization (class).
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Table E6 — Treatment-Control Balance: Survey Respondents

‘Within school

Control Treatment Difference p-value
group group T-C of diff.
(1) (2) (3) (4)
Panel A. Grade 10
Student characteristics
Female 0.538 0.521 —-0.014 0.160
Age (years) 15.12 15.11 —0.01 0.248
Non-French 0.057 0.060 0.003 0.528
High SES 0.382 0.389 0.005 0.496
Medium- high SES 0.133 0.127 —0.006 0.248
Medium-low SES 0.245 0.235 —0.009 0.200
Low SES 0.240 0.248 0.010 0.158
Number of siblings 1.483 1.482 —0.001 0.954
Class size 33.23 33.25 0.02 0.837
At least one science elective course 0.394 0.402 0.009 0.693
At least one standard elective course 0.773 0.738 —0.032 0.132
DNB percentile rank in math 59.09 59.04 —0.18 0.760
DNB percentile rank in French 58.14 58.41 0.08 0.893
Test of joint significance F-stat: 0.634 (p-value: 0.813)
Predicted track in Grade 11
Grade 11: Science track 0.454 0.459 0.004 0.577
Grade 11: Science - general track 0.381 0.385 0.003 0.666
Grade 11: Science - technical track 0.073 0.074 0.001 0.670
N 5,981 6,245 12,226
Panel B. Grade 12 (science track)
Student characteristics
Female 0.504 0.489 —0.014 0.319
Age (years) 17.13 17.09 —0.05 0.001
Non-French 0.053 0.046 —0.008 0.129
High SES 0.446 0.481 0.038 0.001
Medium-high SES 0.138 0.138 —0.000 0.979
Medium-low SES 0.219 0.196 —0.022 0.001
Low SES 0.197 0.184 —0.016 0.086
Number of siblings 1.502 1.487 —0.021 0.355
Class size 31.69 32.12 0.30 0.314
DNB percentile rank in math 74.52 74.00 —-0.09 0.874
DNB percentile rank in French 69.59 70.00 0.68 0.248
Test of joint significance F-stat: 1.218 (p-value: 0.282)
Predicted undergraduate magjor
Major: STEM 0.395 0.395 0.001 0.807
Major: selective STEM 0.181 0.184 0.005 0.189
Major: male-dominated STEM 0.283 0.284 0.002 0.561
N 2,594 2,642 5,236

Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left, separately for students
in Grade 10 (Panel A) and in Grade 12 (Panel B). The sample is restricted to students who answered the post-intervention
survey. Columns 1 and 2 show the average value for students in the control and treatment groups, respectively. Column 3 reports
the coefficient from the regression of each variable on the treatment group indicator, with the p-value reported in column 4. The
regression controls for school fixed effects to account for the fact that randomization was stratified by school, and standard errors are
adjusted for clustering at the unit of randomization (class). The F-statistic is from a test of the joint significance of the coefficients
in a regression of the treatment group indicator on all student characteristics. High school tracks (Panel A) and undergraduate
majors (Panel B) are predicted for each student using the coefficients from a linear regression of the corresponding binary variable
(e.g., enrollment in a STEM major) on all student characteristics listed in the table. This model is fitted separately by grade level
on the sample of students in the control group.
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Table E7 — Balancing Test: High Schools Visited by Professionals and Researchers, Grade 10
Students

High school visited by  Difference  p-value
(2)—(1) of diff.

Researcher Professional

(1) (2) 3) (4)
School characteristics
Education district: Paris 0.165 0.167 0.002 0.958
Education district: Créteil 0.273 0.317 0.044 0.321
Education district: Versailles 0.562 0.516 —0.046 0.348
Private school 0.092 0.224 0.132 0.000
Share of female students 0.523 0.527 0.005 0.627
Pass rate on Baccalauréat exam in 2015% 0.904 0.916 0.012 0.041
Grade 10 students: science track in Grade 11° 0.405 0.412 0.006 0.597
Grade 10 students: general science track in Grade 11° 0.341 0.337 —0.005 0.672
Grade 10 students: technological science track in Grade 11° 0.064 0.075 0.011 0.135
Student characteristics
Female 0.525 0.531 0.007 0.623
Non-French 0.065 0.057 —0.008 0.185
High SES 0.345 0.410 0.064 0.002
Medium- high SES 0.132 0.125 —0.007 0.322
Medium-low SES 0.250 0.235 —0.015 0.124
Low SES 0.272 0.231 —0.042 0.013
Number of siblings 1.482 1.488 0.007 0.862
At least one science elective course 0.416 0.376 —0.040 0.250
At least one standard elective course 0.772 0.738 —0.034 0.197
Age (years) 15.12 15.13 0.01 0.598
DNB percentile rank in math 57.80 59.02 1.22 0.380
DNB percentile rank in French 56.77 58.71 1.93 0.120
Class size 33.38 33.14 —0.25 0.343
Predicted track in Grade 11
Grade 11: Science track 0.448 0.454 0.006 0.668
Grade 11: Science - general track 0.374 0.375 0.002 0.915
Grade 11: Science - technological track 0.074 0.079 0.005 0.517
N 6,059 7,641 13,700

Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left for students enrolled in
Grade 10 in 2015/16. Columns 1 and 2 show the average value for students whose high school was visited by a role model with
a professional or a research background, respectively. Column 3 reports the coefficient from the regression of each variable on an
indicator that takes the value one if the school was visited by a professional and zero if the school was visited by a researcher, with
the p-value reported in column 4. Standard errors are adjusted for clustering at the class level. High school tracks in Grade 11 are
predicted for each student using the coefficients from a linear regression of the corresponding binary variable (e.g., enrollment in
the general science track) on all the school and student characteristics listed in the table. This model is fitted on the sample of
students in the control group. * The Baccalauréat pass rate is computed for students who were enrolled in Grade 12 in 2014/15,
i.e., in the year before the intervention, and who took the exams in the general or technological tracks. ® The share of students
enrolled in the science track in Grade 11 is computed for students who were enrolled in Grade 10 in 2014/15.
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Table E8 — Balancing Test: High Schools Visited by Professionals and Researchers, Grade 12
Students

High school visited by  Difference  p-value
(2)—(1) of diff.

Researcher Professional

(1) (2) (3) (4)
School characteristics
Education district: Paris 0.164 0.163 —0.001 0.985
Education district: Créteil 0.223 0.321 0.098 0.138
Education district: Versailles 0.614 0.517 —0.097 0.195
Private school 0.096 0.244 0.148 0.007
Share of female students 0.533 0.543 0.010 0.379
Pass rate on Baccalauréat exam in 2015% 0.911 0.912 0.002 0.849
Grade 12 (science track) students: STEM major in higher ed.? 0.409 0.384 —0.025 0.050
Grade 12 (science track) students: selective STEM in higher ed.’ 0.191 0.202 0.010 0.484
Grade 12 (science track) students: male-dom. STEM in higher ed.” 0.309 0.299 —0.010 0.431
Student characteristics
Female 0.474 0.505 0.032 0.114
Non-French 0.057 0.046 —0.010 0.272
High SES 0.437 0.484 0.046 0.169
Medium- high SES 0.146 0.128 —0.018 0.138
Medium-low SES 0.213 0.205 —0.009 0.544
Low SES 0.203 0.184 —0.019 0.428
Number of siblings 1.454 1.532 0.079 0.100
Age (years) 17.14 17.11 —0.03 0.323
DNB percentile rank in math 72.96 74.90 1.94 0.213
DNB percentile rank in French 68.00 70.83 2.83 0.057
Class size 32.67 31.44 —1.22 0.026
Predicted undergraduate major
Major: STEM 0.392 0.378 —0.013 0.062
Major: selective STEM 0.170 0.181 0.011 0.347
Major: male-dominated STEM 0.277 0.274 —0.003 0.731
N 2,492 3,259 5,751

Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left for students enrolled
in Grade 12 (science track) in 2015/16. Columns 1 and 2 show the average value for students whose high school was visited by a
role model with a professional or a research background, respectively. Column 3 reports the coefficient from the regression of each
variable on an indicator that takes the value one if the school was visited by a professional and zero if the school was visited by
a researcher, with the p-value reported in column 4. Standard errors are adjusted for clustering at the class level. Undergraduate
majors are predicted for each student using the coefficients from a linear regression of the corresponding binary variable (e.g.,
enrollment in a STEM major) on all the school and student characteristics listed in the table. This model is fitted on the sample
of students in the control group. ® The Baccalauréat pass rate is computed for students who were enrolled in Grade 12 in 2014/15,
i.e., in the year before the intervention, and who took the exams in the general or technological tracks. ® The share of students
enrolled in a STEM undergraduate major in higher education is computed for students who were enrolled in Grade 12 (science
track) in 2014/15.
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F Effects of Role Model Interventions: Additional Re-
sults

F.1 Student Perceptions

Table F1 — Gender Differences in Aptitude for Mathematics

Girls Boys
Control Treatment p-value Control Treatment p-value
group effect [g-value] group effect [g-value]
mean (LATE) mean (LATE)
(1) (2) 3) (4) (5) (6)
Panel A. Grade 10
Equal gender aptitude for math (index) 0.115 0.109*** 0.000 —0.134 0.148*** 0.000
(0.025) [0.001] (0.030) [0.001]
M and W are born with different brains 0.211 —0.050*** 0.000 0.209 —0.048™** 0.000
(0.010) 0.001] (0.011) 0.001]
Men are more gifted in math than women 0.186 —0.026™" 0.015 0.299 —0.048*** 0.001
(0.011) [0.016] (0.014) [0.001]
N 6,475 5,751
Panel B. Grade 12 (science track)
Equal gender aptitude for math (index) 0.158 0.095*** 0.001 —0.161 0.132*** 0.001
(0.028) [0.002] (0.040) [0.002]
M and W are born with different brains 0.143 —0.023** 0.026 0.180 —0.038*** 0.006
(0.010) [0.026] (0.014) [0.013]
Men are more gifted in math than women 0.163 —0.038™"* 0.002 0.266 —0.028" 0.072
(0.012) [0.005] (0.015) [0.073]
N 2,600 2,636

Notes: This table reports estimates of the treatment effects of the role model interventions on students’ perceptions regarding
the aptitude of men and women for mathematics, separately by grade level and gender. The sample is restricted to students
who completed the post-intervention questionnaire. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group.
Columns 2 and 5 report the local average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of
interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression controls
for school fixed effects to account for the fact that randomization was stratified by school. Standard errors (shown in parentheses)
are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated
treatment effect and, in square brackets, the p-value (g-value) adjusted for multiple hypotheses testing, using the False Discovery
Rate (FDR) control method. Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al. (2006) and
described in Anderson (2008). The g-values associated with the synthetic index (highlighted in bold) are adjusted for multiple
testing across the study’s nine main outcomes of interest, separately by grade level and gender (see Appendix D for details). The
g-values for the individual components of the index are adjusted for multiple testing across the index components, separately by
grade level and gender. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table F2 — Taste for Science Subjects

Girls Boys
Control  Treatment  p-value Control ~ Treatment  p-value
group effect [g-value] group effect [g-value]
mean (LATE) mean (LATE)
(1) 2) 3) (4) (5) (6)
Panel A. Grade 10
Taste for science subjects (index) —0.169 —0.038 0.294 0.197 —0.019 0.533
(0.036) [0.442] (0.031) [0.685]
Enjoys math (z-score) —0.147 —0.002 0.961 0.186 —0.002 0.935
(0.034) [0.961] (0.031) [0.935]
Enjoys physics-chemistry (z-score) —0.170 —0.040 0.289 0.223 —0.022 0.505
(0.038) [0.578] (0.033) [0.935]
Enjoys earth and life sciences (z-score) —0.042 —0.058 0.137 0.086 —0.027 0.443
(0.039) [0.548] (0.035) [0.935]
Enjoys science in general 0.661 —0.011 0.444 0.790 0.003 0.804
(0.015) [0.593] (0.012) [0.935]
N 6,475 5,751
Panel B. Grade 12 (science track)
Taste for science subjects (index) —0.002 0.016 0.632 0.002 —0.000 0.998
(0.034) [0.633] (0.039) [0.999]
Enjoys math (z-score) —0.097 0.067* 0.089 0.100 0.075* 0.063
(0.040) [0.357] (0.040) [0.203]
Enjoys physics-chemistry (z-score) —0.089 —0.001 0.984 0.102 —0.021 0.598
(0.044) [0.984] (0.040) [0.599]
Enjoys earth and life sciences (z-score) 0.203 —0.030 0.435 —0.215 —0.059 0.318
(0.038) [0.871] (0.059) [0.424]
Enjoys science in general 0.918 —0.001 0.887 0.930 0.013 0.101
(0.009) [0.984] (0.008) [0.203]
N 2,600 2,636

Notes: This table reports estimates of the treatment effects of the role model interventions on students’ taste for science subjects
taught at school, separately by grade level and gender. The sample is restricted to students who completed the post-intervention
questionnaire. Each row corresponds to a different linear regression performed separately by gender, with the dependent variable
listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the local
average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a classroom visit
indicator, using treatment assignment as an instrument for treatment receipt. The regression controls for school fixed effects to
account for the fact that randomization was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering
at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and,
in square brackets, the p-value (g-value) adjusted for multiple hypotheses testing, using the False Discovery Rate (FDR) control
method. Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al. (2006) and described in Anderson
(2008). The g-values associated with the synthetic index (highlighted in bold) are adjusted for multiple testing across the study’s
nine main outcomes of interest, separately by grade level and gender (see Appendix D for details). The g-values for the individual
components of the index are adjusted for multiple testing across the index components, separately by grade level and gender.
*** p < 0.01, ¥** p<0.05, * p<O0.1.
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Table F3 — Math Self-Concept

Girls Boys
Control Treatment p-value Control Treatment p-value
group effect [g-value] group effect [g-value]
mean (LATE) mean (LATE)

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Math self-concept (index) —0.198 —0.008 0.806 0.231 0.039 0.217
(0.031) [0.807] (0.032) [0.326]
Self-assessed math performance (z-score) —0.127 —0.016 0.634 0.168 0.021 0.502
(0.034) [0.634] (0.032) [0.642]
Lost in front of a math problem 0.553 0.010 0.478 0.344 —0.007 0.610
(0.014) [0.634] (0.013) [0.642]
Worried when thinking about math 0.617 —0.025* 0.052 0.420 —0.032** 0.028
(0.013) [0.109] (0.015) [0.111]
Can succeed in science subjects if puts in effort 0.843 0.018* 0.054 0.883 —0.004 0.642
(0.009) [0.109] (0.008) [0.642]
N 6,475 5,751
Panel B. Grade 12 (science track)
Math self-concept (index) —0.184 0.050 0.202 0.187 0.072** 0.041
(0.039) [0.228] (0.035) [0.062]
Self-assessed math performance (z-score) —0.126 0.039 0.304 0.123 0.079** 0.038
(0.038) [0.406] (0.038) [0.077]
Lost in front of a math problem 0.486 —0.028 0.168 0.325 —0.028* 0.072
(0.020) [0.336] (0.016) [0.096]
Worried when thinking about math 0.560 —0.037** 0.048 0.384 —0.051***  0.002
(0.019) [0.193] (0.016) [0.007]
Can succeed in science subjects if puts in effort ~ 0.942 —0.005 0.512 0.949 0.006 0.384
(0.007) [0.512] (0.007) [0.385]
N 2,600 2,636

Notes: This table reports estimates of the treatment effects of the role model interventions on students’ math self-concept, separately
by grade level and gender. The sample is restricted to students who completed the post-intervention questionnaire. Each row
corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left. Columns 1
and 4 report the average value for students in the control group. Columns 2 and 5 report the local average treatment effect (LATE)
estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment
as an instrument for treatment receipt. The regression controls for school fixed effects to account for the fact that randomization
was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomization (class).
Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets, the p-value (g-value)
adjusted for multiple hypotheses testing, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened
two-stage g-values introduced in Benjamini et al. (2006) and described in Anderson (2008). The g-values associated with the
synthetic index (highlighted in bold) are adjusted for multiple testing across the study’s nine main outcomes of interest, separately
by grade level and gender (see Appendix D for details). The g-values for the individual components of the index are adjusted for
multiple testing across the index components, separately by grade level and gender. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table F4 — Science-Related Career Aspirations

Girls Boys
Control Treatment p-value Control Treatment p-value
group effect  [g-value]  group effect  [g-value]
mean  (LATE) mean (LATE)

(1) (2) 3) (4) () (6)

Panel A. Grade 10

Science-related career aspirations (index) —0.103 0.012 0.695 0.120 0.007 0.801
(0.030) [0.807] (0.029) [0.902]
Some jobs in science are interesting 0.845 0.019**  0.050 0.854  —0.000 1.000
(0.009) [0.200] (0.010) [1.000]
Would consider a job in science 0.466  —0.004 0.776 0.587 0.023* 0.089
(0.015) [0.776] (0.014) [0.358]
Interested in at least one STEM job? 0.642 0.005 0.696 0.849 0.013 0.181
(0.013) [0.776] (0.010) [0.363]
Wage prospects important in career choice (z-score) —0.045  —0.012 0.682 0.038 0.007 0.792
(0.029) [0.776] (0.027) [1.000]
N 6,475 5,751
Panel B. Grade 12 (science track)
Science-related career aspirations (index) —0.045 0.113*** 0.002 0.046 0.050 0.131
(0.037) [0.003] (0.033) [0.169]
Some jobs in science are interesting 0.961 0.013**  0.013 0.940 0.021***  0.005
(0.005) [0.026] (0.008) [0.022]
Would consider a job in science 0.721 0.031**  0.019 0.762 0.030**  0.029
(0.013) [0.026] (0.014) [0.058]
Interested in at least one STEM job* 0.817 0.000 0.964 0.899 —0.001 0.946
(0.011) [0.964] (0.009) [0.947)
Wage prospects important in career choice (z-score) —0.043 0.119***  0.002 0.037 0.049 0.111
(0.038) [0.007] (0.031) [0.149]
N 2,600 2,636

Notes: This table reports estimates of the treatment effects of the role model interventions on students’ self-reported science-related
career aspirations, separately by grade level and gender. The sample is restricted to students who completed the post-intervention
questionnaire. Each row corresponds to a different linear regression performed separately by gender, with the dependent variable
listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the local
average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a classroom visit
indicator, using treatment assignment as an instrument for treatment receipt. The regression controls for school fixed effects to
account for the fact that randomization was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering
at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and,
in square brackets, the p-value (g-value) adjusted for multiple hypotheses testing, using the False Discovery Rate (FDR) control
method. Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al. (2006) and described in Anderson
(2008). The g-values associated with the synthetic index (highlighted in bold) are adjusted for multiple testing across the study’s
nine main outcomes of interest, separately by grade level and gender (see Appendix D for details). The g-values for the individual
components of the index are adjusted for multiple testing across the index components, separately by grade level and gender.
¥k p < 0.01, ¥* p < 0.05, * p < 0.1. ®“ The STEM occupations in the list were chemist, computer scientist, engineer, industrial
designer, renewable energy technician, and researcher in biology. The non-STEM occupations were lawyer, pharmacist, physician,
and psychologist.
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F.2 Educational Choices

Table F5 — Grade 10 Students: Enrollment Status the Following Year (Detailed)

Grade 10 students

Girls Boys
Control Treatment p-value  Control Treatment p-value
group effect [g-value]  group effect [g-value]
mean  (LATE) mean  (LATE)

(1) (2) 3) (4) () (6)

Panel A. Grade 11 STEM tracks

All STEM tracks

Science track 0.355 —0.004 0.753 0.551 —0.002 0.910
(0.014) [0.807] (0.015) [0.910]

General vs. technological STEM track

Science - general track 0.328 0.001 0.942 0.416 0.007 0.613
(0.013) [0.942] (0.014) [0.614]

Science - technological track 0.026 —0.005 0.128 0.135 —0.009 0.300
(0.003) [0.256] (0.008) [0.601]

Panel B. Grade 11 non-STEM tracks

All non-STEM tracks

Non-STEM tracks 0.545 0.006 0.642 0.324 0.018 0.191
(0.014) (0.014)

General vs. technological non-STEM tracks

Humanities track 0.121 —0.002 0.846 0.028 0.005 0.284
(0.010) (0.005)

Social sciences track 0.252 0.011 0.323 0.163 0.013 0.211
(0.012) (0.010)

Non-STEM technological tracks 0.171 —0.003 0.759 0.133 0.001 0.944
(0.010) (0.009)

Repeater or dropout 0.101 —0.002 0.818 0.126 —0.016* 0.070
(0.009) (0.009)

N 7,241 6,459

Notes: This table reports estimates of the treatment effects of the role model interventions on Grade 10 students’ enrollment
outcomes in the academic year following the classroom interventions, i.e. 2016/17, separately by gender. The enrollment outcomes
are measured using student-level administrative data. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group.
Columns 2 and 5 report the local average treatment effect (LATE) estimates. They are obtained from a regression of the outcome
of interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression
controls for school fixed effects to account for the fact that randomization was stratified by school. Standard errors (shown in
parentheses) are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value
of the estimated treatment effect and, in square brackets, the p-value (g-value) adjusted for multiple hypotheses testing, using the
False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al.
(2006) and described in Anderson (2008). The g-values associated with the treatment effect estimates on the probability of being
enrolled in the science track in Grade 11 (Panel A) are adjusted for multiple testing across the study’s nine main outcomes of
interest, separately by gender (see Appendix D for details). The g-values associated with the treatment effect estimates for the
different STEM tracks (general vs. technological) are adjusted for multiple testing across these two tracks, separately by gender.
*** p < 0.01, ** p < 0.05, * p<O0.1.
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Table F6 — Grade 12 Students: Enrollment Status the Following Year (Detailed)

Grade 12 (science track) students

Girls Boys
Control  Treatment p-value Control  Treatment p-value
group effect [g-value] group effect [g-value]
mean (LATE) mean (LATE)
(1) (2) (3) (4) (5) (6)
Panel A. STEM undergraduate programs
All undergraduate STEM majors
Major: STEM 0.289 0.024* 0.080 0.470 0.003 0.886
(0.014) [0.103] (0.020) [0.988]
Selective STEM magjors
Math, physics, engineering, computer science (CPGE) 0.084 0.026™**  0.006 0.211 0.023 0.123
(0.009) [0.032] (0.015) [0.206]
Earth and life sciences (CPGE) 0.020 0.008 0.137 0.010 0.002 0.617
(0.005) [0.230] (0.003) [0.771]
Sciences - vocational (STS) 0.006 0.002 0.474 0.011 —0.005 0.110
(0.003) [0.474] (0.003) [0.206]
Non-selective STEM magjors
Math, physics, computer science 0.077 0.010 0.209 0.157 —0.002 0.884
(0.008) [0.262] (0.012) [0.885]
Earth and life sciences 0.103 —0.022** 0.014 0.081 —0.015" 0.053
(0.009) [0.035] (0.008) [0.206]
Panel B. Non-STEM undergraduate programs
All undergraduate non-STEM majors
Major: non-STEM 0.507 —0.032** 0.045 0.293 —0.005 0.717
(0.016) (0.014)
Selective non-STEM majors
Business and economics (CPGE) 0.021 0.003 0.566 0.017 0.005 0.219
(0.004) (0.004)
Humanities (CPGE) 0.014 —0.004 0.225 0.003 —0.001 0.470
(0.003) (0.001)
Other vocational (STS) 0.011 —0.008"**  0.006 0.008 —0.005"" 0.036
(0.003) (0.002)
Non-selective non-STEM majors
Medicine and pharmacy 0.259 —0.005 0.722 0.108 0.006 0.573
(0.015) (0.011)
Law and economics 0.107 —0.008 0.478 0.079 0.002 0.758
(0.011) (0.008)
Humanities and psychology 0.080 —0.008 0.339 0.040 —0.006 0.296
(0.009) (0.006)
Sports studies 0.018 —0.004 0.396 0.036 —0.005 0.377
(0.004) (0.006)
Not enrolled in higher education 0.206 0.008 0.581 0.237 0.004 0.814
(0.015) (0.016)
N 2,827 2,924

Notes: This table reports estimates of the treatment effects of the role model interventions on science track Grade 12 (science track)
students’ enrollment outcomes in the academic year following the classroom interventions, i.e. 2016/17, separately by gender. The
enrollment outcomes are measured using student-level administrative data. Each row corresponds to a different linear regression
performed separately by gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for students
in the control group. Columns 2 and 5 report the local average treatment effect (LATE) estimates. They are obtained from a
regression of the outcome of interest on a classroom visit indicator, using treatment assignment as an instrument for treatment
receipt. The regression controls for school fixed effects to account for the fact that randomization was stratified by school. Standard
errors (shown in parentheses) are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report the cluster-
robust p-value of the estimated treatment effect and, in square brackets, the p-value (g-value) adjusted for multiple hypotheses
testing, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage g-values introduced
in Benjamini et al. (2006) and described in Anderson (2008). The g-values associated with the treatment effect estimates on the
probability of enrolling in a STEM undergraduate major (Panel A) are adjusted for multiple testing across the study’s nine main
outcomes of interest, separately by gender (see Appendix D for details). The g-values associated with the estimates for the different
selective and non-selective STEM majors (Panel A) are adjusted for multiple testing across these different STEM majors, separately
by gender. *** p < 0.01, ** p < 0.05, * p < 0.1.
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F.3 Academic Performance

Table F7 — Grade 12 Students: Performance in Baccalauréat Exams

Grade 12 (science track) students

Girls Boys
Control  Treatment p-value Control  Treatment p-value
group effect [g-value] group effect [g-value]
mean (LATE) mean (LATE)
(1) (2) (3) (4) (5) (6)
Baccalauréat percentile rank in math 46.21 0.693 0.469 47.47 1.661 0.105
(0.957) [0.626] (1.024) [0.210]
Baccalauréat percentile rank in French 54.37 —0.051 0.964 43.51 —0.331 0.680
(1.113) [0.964] (0.803) [0.680]
Baccalauréat percentile rank 53.52 —1.121 0.293 47.29 1.712* 0.100
(1.066) [0.626] (1.040) [0.210]
Obtained the Baccalauréat 0.928 —0.010 0.334 0.877 —0.005 0.623
(0.010) [0.626] (0.010) [0.680]
N 2,827 2,924

Notes: This table reports estimates of the treatment effects of the role model interventions on Grade 12 (science track) students’
performance on the Baccalauréat exams, separately by gender. The Baccalauréat outcomes are measured using student-level
administrative data. Each row corresponds to a different linear regression performed separately by gender, with the dependent
variable listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the
local average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a classroom
visit indicator, using treatment assignment as an instrument for treatment receipt. The regression controls for school fixed effects to
account for the fact that randomization was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering
at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and,
in square brackets, the p-value (g-value) adjusted for multiple hypotheses testing, using the False Discovery Rate (FDR) control
method. Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al. (2006) and described in Anderson
(2008). The g-values are adjusted for multiple testing across the four Baccalauréat outcomes, separately by gender. *** p < 0.01,
** p < 0.05, * p<0.1.
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G Robustness Checks

Table G1 — Treatment Effects on Student Perceptions: Controlling for Baseline Characteristics

Girls Boys
Control ~ Treatment p-value Control ~ Treatment p-value
group effect [g-value] group effect [g-value]
mean (LATE) mean (LATE)
(1) (2) (3) (4) (5) (6)
Panel A. Grade 10
Positive perceptions of science-related careers (index) —0.020 0.245%** 0.000 0.023 0.162*** 0.000
(0.027) [0.001] (0.027) (0.001]
More men in science-related jobs 0.628 0.154*** 0.000 0.629 0.170*** 0.000
(0.013) [0.001] (0.014) [0.001]
Equal gender aptitude for math (index) 0.115 0.111*** 0.000 —-0.134 0.142%** 0.000
(0.024) [0.001] (0.030) (0.001]
Women don’t really like science 0.157 0.056*** 0.000 0.198 0.101*** 0.000
(0.011) [0.001] (0.013) [0.001]
W face discrimination in science-related jobs 0.603 0.126*** 0.000 0.527 0.154*** 0.000
(0.013) [0.001] (0.014) [0.001]
Taste for science subjects (index) —0.169 —0.033 0.275 0.197 —0.021 0.431
(0.031) [0.414] (0.026) [0.555]
Math self-concept (index) —0.198 —0.001 0.981 0.231 0.033 0.250
(0.028) [0.982] (0.029) [0.375]
Science-related careers aspirations (index) —0.103 0.005 0.851 0.120 0.004 0.871
(0.029) [0.970] (0.027) [0.872]
N 6,475 5,751
Panel B. Grade 12 (science track)
Positive perceptions of science-related careers (index) —0.003 0.296*** 0.000 0.003 0.171*** 0.000
(0.032) [0.001] (0.033) [0.001]
More men in science-related jobs 0.712 0.122%** 0.000 0.717 0.149*** 0.000
(0.016) [0.001] (0.015) [0.001]
Equal gender aptitude for math (index) 0.158 0.078*** 0.004 —0.161 0.124*** 0.003
(0.028) [0.007] (0.042) [0.006]
Women don’t really like science 0.074 0.042*** 0.000 0.146 0.073*** 0.000
(0.009) [0.001] (0.015) (0.001]
W face discrimination in science-related jobs 0.624 0.085*** 0.000 0.600 0.074*** 0.000
(0.020) [0.001] (0.018) [0.001]
Taste for science subjects (index) —0.002 0.018 0.583 0.002 0.014 0.733
(0.033) [0.583] (0.040) [0.825]
Math self-concept (index) —0.184 0.051 0.139 0.187 0.068** 0.038
(0.035) [0.157] (0.033) [0.057]
Science-related careers aspirations (index) —0.045 0.106*** 0.004 0.046 0.068* 0.055
(0.037) [0.007] (0.035) [0.071]
N 2,600 2,636

Notes: This table reports estimates of the treatment effects of the role model interventions on students’ perceptions, separately by
grade level and gender, and controlling for students’ baseline characteristics. The sample is restricted to students who completed
the post-intervention questionnaire. Each row corresponds to a different linear regression performed separately by gender, with
the dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2
and 5 report the local average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of interest
on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression controls for
school fixed effects to account for the fact that randomization was stratified by school. The regression further controls for the
student characteristics listed in Table 1 in the main text. Standard errors (shown in parentheses) are adjusted for clustering at the
unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in square
brackets, the p-value (g-value) adjusted for multiple hypotheses testing, using the False Discovery Rate (FDR) control method.
Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al. (2006) and described in Anderson (2008). The
g-values are adjusted for multiple testing across the study’s nine main outcomes of interest, separately by grade level and gender
(see Appendix D for details). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table G2 — Treatment Effects on Enrollment Outcomes: Controlling for Baseline Characteristics

Girls Boys
Control  Treatment  p-value Control  Treatment  p-value
group effect [g-value] group effect [g-value]
mean (LATE) mean (LATE)

(1) (2) (3) (4) () (6)

Panel A. Grade 10
All STEM tracks

Grade 11: Science track 0.355 —0.002 0.862 0.551 —0.006 0.640
(0.011) [0.970] (0.012) [0.720]

General vs. technological STEM track

Grade 11: Science - general track 0.328 0.003 0.794 0.416 0.004 0.710
(0.010) [0.794] (0.011) [0.710]

Grade 11: Science - technological track 0.026 —0.005 0.188 0.135 —0.010 0.234
(0.004) [0.377] (0.008) [0.468]

N 7,241 6,459

Panel B. Grade 12 (science track)

All undergraduate STEM majors

Major: STEM 0.289 0.020 0.139 0.470 —0.002 0.925
(0.014) [0.157) (0.019) [0.926]
Selective vs. non-selective STEM
Major: selective STEM 0.110 0.031***  0.006 0.232 0.008 0.575
(0.011) [0.012] (0.015) [0.575]
Major: non-selective STEM 0.178 —0.011 0.333 0.239 —0.010 0.445
(0.012) [0.333] (0.013) [0.575]
Male- vs. female-dominated STEM
Major: male-dominated STEM 0.166 0.034***  0.004 0.379 0.013 0.485
(math, physics, computer science) (0.012) [0.012] (0.019) [0.575]
Major: female-dominated STEM 0.123 —0.015 0.169 0.091 —0.015 0.119
(earth and life sciences) (0.011) [0.226] (0.009) [0.477]
N 2,827 2,924

Notes: This table reports estimates of the treatment effects of the role model interventions on students’ enrollment outcomes in the
academic year following the classroom interventions, i.e., 2016/17, separately by grade level and gender, and controlling for student
baseline characteristics. The enrollment outcomes are measured using student-level administrative data. Each row corresponds to
a different linear regression performed separately by gender, with the dependent variable listed on the left. Columns 1 and 4 report
the average value for students in the control group. Columns 2 and 5 report the local average treatment effect (LATE) estimates.
They are obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment as an
instrument for treatment receipt. The regression controls for school fixed effects to account for the fact that randomization was
stratified by school. The regression further controls for the student characteristics listed in Table 1 in the main text. Standard
errors (shown in parentheses) are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report the cluster-
robust p-value of the estimated treatment effect and, in square brackets, the p-value (g-value) adjusted for multiple hypotheses
testing, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage g-values introduced in
Benjamini et al. (2006) and described in Anderson (2008). The g-values associated with the treatment effect estimates on “Grade 11:
Science track” (Panel A) and “Major: STEM” (Panel B) are adjusted for multiple testing across the study’s nine main outcomes
of interest, separately by grade level and gender (see Appendix D for details). The g-values associated with the treatment effect
estimates for the different STEM tracks (Panel A) or the different STEM majors (Panel B) are adjusted for multiple testing across
these different STEM tracks or majors, separately by grade level and gender. *** p < 0.01, ** p < 0.05, * p < 0.1.
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H Randomization Inference

This appendix evaluates the robustness of our results to computing p-values using non-parametric
randomization inference tests rather than model-based cluster-robust inference.

Randomization inference, which was first proposed by Fisher (1935) and was later developed
by Rosenbaum (2002), has been used in a number of recent RCT studies in economics and
political science as an alternative to model-based inference The intuition behind this approach
is relatively straightforward. In RCTs, researchers know exactly how the randomization was
performed. Randomization inference uses this knowledge to assess whether observed outcomes
in a given sample are likely to have occurred by chance even if the treatment had no effect.
This can be obtained numerically through Monte Carlo methods, by computing the treatment
effects for varying random draws of the treatment assignment, whose data-generating process is
known. This test is non-parametric since it does not make distributional assumptions.*-®

In our setting, the ITT effect under the observed assignment to treatment is estimated using
the following reduced-form specification:

Y;cs =a+ ﬁTcs + Qs + €ics) (Al)

where Y;.s denotes the observed outcome of student ¢ in class ¢ and high school s; T, denotes
the observed treatment assignment of the student’s class; and 6, are school fixed effects. The
ITT estimate under the observed treatment assignment is denoted by B .

To conduct randomization inference, we proceed as follows. Taking into account the
fact that randomization was stratified by school and grade level, we first re-assign treatment
R =2,000 times among participating classes using the exact same stratified procedure.*® Let
{Pr}2 | denote the set of R random placebo assignments from the randomization process. We
then re-estimate the I'TT effects of these placebo treatments using the following reduced-form
specification, which is estimated separately by grade level and gender:

Y;cs :ar+ﬂrp(;+)\s+nicsa r= 17"'7R7 (AQ)

where P’ indicates assignment to a placebo treatment group for random draw r. School fixed
effects, Ay, are included to account for the fact that the randomization is stratified by school.
Since P, is a randomly generated placebo, E(3,) = 0. Let F’ (Br) denote the empirical c.d.f. of
all elements of { P} ;. We test the null hypothesis that the program had no effect on outcome Y’
by checking if the I'TT estimate that we obtain for the observed treatment assignment is in the

A

tails of the distribution of placebo treatments. We can reject Hy: = 0 with a confidence level

of 1 —aif f < F! (5) or f>F! (1 — %) Since the placebo assignments only vary across
randomization units (here classes), this method accounts for correlation within units. Following
Davison and Hinkley (1997), we compute the p-values from a two-sided randomization inference
test of zero treatment effects as p = (1 4+ X%, 1(|5.| > |8]))/(1 + R).

Table H1 presents the results of randomization inference tests of the hypotheses that the role
model interventions had no effect on student perceptions and enrollment outcomes, separately by
grade level and gender. The ITT estimates 3 are shown in columns 1 and 4. The cluster-robust
model-based p-values are reported and columns 2 and 5, while those based on randomization
inference are in columns 3 and 6. The results of the randomization inference tests yield p-values
that are generally close to the cluster-robust model-based p-values. Although they tend to
be slightly more conservative, they confirm the program’s statistically significant effects on

enrollment in selective and male-dominated STEM programs for girls in Grade 12.

A-5For more details on randomization inference, see Rosenbaum (2010) and Imbens and Rubin (2015).
A-6See Paz and West (2019) for the number of draws to be used.
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Table H1 — Randomization Inference for Intention-to-Treat Estimates

Girls Boys
ITT p-value: p-value: ITT p-value:  p-value:
model- rand. model- rand.
based inference based inference
(1) (2) (3) (4) (5) (6)

Panel A. Grade 10
Student perceptions
Positive perceptions of science-related careers (index)  0.226 0.000 0.000 0.156 0.000 0.000
More men in science-related jobs 0.145 0.000 0.000 0.157 0.000 0.000
Equal gender aptitude for math (index) 0.101 0.000 0.000 0.138 0.000 0.000
Women don’t really like science 0.054 0.000 0.000 0.096 0.000 0.000
Women face discrimination in science-related careers 0.118 0.000 0.000 0.143 0.000 0.000
Taste for science subjects (index) —0.035 0.298 0.340 —0.018 0.537 0.560
Math self-concept (index) —0.007 0.808 0.820 0.037 0.221 0.280
Science-related career aspirations (index) 0.011 0.697 0.720 0.007 0.803 0.830
Enrollment outcomes
Grade 11: Science track —0.004 0.755 0.780  —0.002 0.911 0.920
Grade 11: Science - general track 0.001 0.942 0.950 0.007 0.617 0.660
Grade 11: Science - technological track —0.005 0.131 0.190 —0.008 0.306 0.350
N 7,241 6,459
Panel B. Grade 12 (science track)
Student perceptions
Positive perceptions of science-related careers (index)  0.293 0.000 0.000 0.145 0.000 0.000
More men in science-related jobs 0.118 0.000 0.000 0.140 0.000 0.000
Equal gender aptitude for math (index) 0.090 0.001 0.020 0.124 0.002 0.020
Women don’t really like science 0.042 0.000 0.000 0.069 0.000 0.000
Women face discrimination in science-related careers 0.090 0.000 0.000 0.068 0.000 0.000
Taste for science subjects (index) 0.015 0.640 0.740  —0.000 0.998 1.000
Math self-concept (index) 0.047 0.214 0.360 0.068 0.044 0.140
Science-related career aspirations (index) 0.106 0.003 0.020 0.047 0.141 0.270
Enrollment outcomes
Undergraduate major: STEM 0.022 0.091 0.220 0.003 0.889 0.920
Undergraduate major: selective STEM 0.033 0.002 0.030 0.019 0.208 0.360
Undergraduate major: non-selective STEM —0.010 0.328 0.480 —0.016 0.220 0.370
Undergraduate major: male-dominated STEM 0.035 0.002 0.020 0.016 0.397 0.530
Undergraduate major: female-dominated STEM —0.014 0.162 0.320 —0.013 0.128 0.270
N 2,827 2,924

Notes: This table presents the results of randomization inference tests of the hypotheses that the program had no effect on student
perceptions and enrollment outcomes. We randomly re-assign treatment 2,000 times among participating classes within each school
and grade level, and re-estimate the ITT effects of these placebo treatments. The ITT estimates under the observed assignment
are reported in columns 1 and 4 separately by gender. The associated cluster-robust model-based p-values are shown in columns 2
and 5. The randomization inference p-values are reported in columns 3 and 6. They are computed from a two-sided randomization
inference test of zero treatment effects as p = (1 + Z:il (8| > \B|)) /(1 + R), where {ﬁr}f:l is the set of R placebo ITT

estimates, ,3 is the ITT estimate under the observed assignment, and 1(-) is the indicator function.
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I Information, Persistence, Timing: Additional Results
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Figure I1 — Screenshots of the Slides Providing General Information on STEM Careers (“Regular
Slides”)
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Figure 12 — Screenshots of the Additional Slides Providing General Information on STEM
Careers (“Augmented Slides”)
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Table I1 — Balancing Test: Classrooms Assigned to Role Models who were Provided with the
Regular vs. Augmented Sets of Slides

Set of slides Difference p-value
Regular Augmented 2)-) of diff.
(1) (2) (3) (4)

Panel A. Grade 10
Student characteristics
Girl 0.532 0.526 —0.006 0.651
Non-French 0.052 0.067 0.015 0.014
High SES 0.396 0.369 —0.027 0.193
Medium- high SES 0.136 0.122 —0.014 0.059
Medium-low SES 0.238 0.244 0.006 0.559
Low SES 0.229 0.265 0.035 0.030
Number of siblings 1.467 1.500 0.033 0.383
At least one science elective course 0.387 0.399 0.012 0.722
At least one standard elective course 0.746 0.759 0.012 0.648
Age (years) 15.10 15.14 0.04 0.002
DNB percentile rank in math 58.37 58.57 0.20 0.886
DNB percentile rank in French 56.79 58.69 1.90 0.122
Number of classmates 33.86 32.76 —-1.10 0.000
Predicted track in Grade 11
Grade 11: Science track 0.443 0.457 0.014 0.248
Grade 11: Science - general track 0.366 0.380 0.014 0.326
Grade 11: Science - technical track 0.077 0.077 0.000 0.923
N 6,047 7,653 13,700
Panel B. Grade 12 (science track)
Student characteristics
Girl 0.491 0.492 0.001 0.951
Non-French 0.044 0.057 0.014 0.133
High SES 0.475 0.453 —0.022 0.519
Medium- high SES 0.140 0.132 —0.008 0.517
Medium-low SES 0.209 0.208 —0.001 0.936
Low SES 0.176 0.207 0.031 0.197
Number of siblings 1.479 1.516 0.037 0.454
Age (years) 17.12 17.13 0.01 0.673
DNB percentile rank in math 74.19 73.94 —0.25 0.870
DNB percentile rank in French 69.45 69.75 0.30 0.843
Number of classmates 32.13 31.83 —-0.29 0.602
Predicted undergraduate major
Major: STEM 0.384 0.382 —0.002 0.735
Undergraduate major: male-dominated STEM 0.276 0.274 —0.001 0.856
Undergraduate major: selective STEM 0.179 0.175 —0.004 0.684
N 2,748 3,003 5,751

Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left for students enrolled in
Grade 10 in 2015/16 (Panel A) and in Grade 12 (Panel B). Columns 1 and 2 show the average value for students whose high school
was visited by a role model provided with the regular or augmented set of slides, respectively. Column 3 reports the coefficient
from the regression of each variable on an indicator that takes the value one if the school was visited by a role model who received
the augmented slides and zero if the school was visited by a role model who received the regular slides, with the p-value reported
in column 4. Standard errors are adjusted for clustering at the class level. High school tracks in Grade 11 are predicted for each
student using the coefficients from a linear regression of the corresponding binary variable (e.g., enrollment in the general science
track) on all the student characteristics listed in the table. This model is fitted on the sample of students in the control group.
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Table 12 — Treatment Effects (ITT) for Grade 12 Students: Regular vs. Augmented Slides

Girls Boys
(1) (2) (3) (4)
Major: STEM
Treatment group indicator (7") 0.022 0.003 0.013 0.007
(0.019) (0.021) (0.030) (0.031)
T*Augmented slides 0.001 0.036 —0.018 0.008
(0.026) (0.031) (0.037) (0.042)
Undergraduate major: male-dominated STEM
Treatment group indicator (77) 0.044*** 0.030* 0.017 0.007
(0.016) (0.018) (0.031) (0.030)
T*Augmented slides —0.015 0.006 —0.002 0.024
(0.023) (0.026) (0.037) (0.040)
Undergraduate major: selective STEM
Treatment group indicator (17) 0.041** 0.033* 0.025 0.018
(0.017) (0.017) (0.024) (0.025)
T*Augmented slides —0.018 —0.001 —0.012 0.010
(0.022) (0.024) (0.030) (0.035)
Science-related jobs pay higher wages
Treatment group indicator (T') 0.005 0.017 0.003 0.040*
(0.026) (0.031) (0.023) (0.021)
T*Augmented slides 0.097*** 0.069 0.041 —0.040
(0.034) (0.044) (0.031) (0.030)
Positive perceptions of science-related careers (index)
Treatment group indicator (T°) 0.254*** 0.294*** 0.154*** 0.184***
(0.055) (0.054) (0.046) (0.048)
T*Augmented slides 0.078 0.022 —0.013 —0.061
(0.069) (0.077) (0.064) (0.077)
Equal aptitudes of M and W for science (index)
Treatment group indicator (77) 0.060 0.077* 0.060 0.054
(0.038) (0.042) (0.049) (0.055)
T*Augmented slides 0.056 0.026 0.112 0.117
(0.055) (0.064) (0.074) (0.085)
Month of Visit FE No Yes No Yes
Month of Visit FE * treatment group indicator No Yes No Yes
N 2,827 2,827 2,924 2,924

Notes: This table reports estimates of the treatment effects (ITT) of the role model interventions on student outcomes for Grade 12
students, separately by gender and by the type of slides (regular or augmented) that were provided to the female role model who

visited the classroom. For each outcome of interest, the reported coefficients are obtained from a regression of the outcome of
interest on a treatment group indicator (7') and the interaction between this indicator and an indicator that takes the value one if
the role model was provided with the augmented set of slides. The specification in columns 1 and 3 includes school fixed effects to
account for the fact that randomization was stratified by school. Columns 2 and 4 further include month-of-visit fixed effects to
account for the fact that the additional slides were provided slightly later in the experiment. Standard errors (shown in parentheses)

are adjusted for clustering at the unit of randomization (class). *** p < 0.01, ** p < 0.05, * p < 0.1.
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I.2 Persistence of the Effects and Timing of Visits

Table I3 — Persistence of Effects on Student Perceptions

Girls Boys
Months since intervention Months since intervention
1to2 3to4d 5to 6 1to2 3to4 5to6
months  months months months months months
(1 &) (3) (4) (5) (6)
Panel A. Grade 10
Positive perceptions of science-related careers (index)  0.413™**  0.200***  0.143" 0.192***  0.168"**  0.049
(0.057)  (0.037)  (0.077)  (0.053)  (0.036)  (0.083)
More men in science-related jobs 0.170*** 0.154™** 0.164™* 0.209"** 0.163**"  0.116™*"
(0.021)  (0.017)  (0.033)  (0.022)  (0.018)  (0.039)
Equal gender aptitude for math (index) 0.179™** 0.101*** 0.019 0.244*** 0.122"**  0.090
(0.047)  (0.032)  (0.065)  (0.053)  (0.040)  (0.069)
Women don’t really like science 0.047** 0.067***  0.041 0.131***  0.107***  0.017
(0.022)  (0.014)  (0.026)  (0.020)  (0.016)  (0.040)
W face discrimination in science-related careers 0.158*** 0.135*** 0.081**  0.162*** 0.174** 0.110"**
(0.022)  (0.017)  (0.039)  (0.026)  (0.017)  (0.036)
Taste for science subjects (index) 0.088  —0.035  —0.053 0.043  —0.008 0.043
(0.075)  (0.043)  (0.075)  (0.058)  (0.041)  (0.072)
Math self-concept (index) —0.029 0.006 0.044  —0.041 0.103***  0.088
(0.057)  (0.039)  (0.080)  (0.063)  (0.039)  (0.090)
Science-related career aspirations (index) 0.088  —0.002 0.010  —0.000 0.022 0.010
(0.057)  (0.036)  (0.062)  (0.051)  (0.038)  (0.072)
N 1,729 3,716 831 1,677 3,318 693
Panel B. Grade 12 (science track)
Positive perceptions of science-related careers (index)  0.442***  0.253***  0.353*** 0.182"** 0.169"**  0.003
(0.053)  (0.043)  (0.118)  (0.061)  (0.044)  (0.095)
More men in science-related jobs 0.128***  0.107***  0.208™** 0.114™** 0.159™**  0.208**~
(0.031)  (0.019)  (0.060)  (0.023)  (0.021)  (0.046)
Equal gender aptitude for math (index) 0.077 0.138***  0.020 0.218***  0.106™* 0.044
(0.067)  (0.033)  (0.094)  (0.081)  (0.051)  (0.123)
Women don’t really like science 0.067*** 0.040"**  0.032" 0.042 0.077"**  0.144™**
(0.021)  (0.011)  (0.018)  (0.029)  (0.019)  (0.032)
W face discrimination in science-related jobs 0.104***  0.102***  0.087 0.083"**  0.085"** —0.011
(0.038)  (0.023)  (0.072)  (0.027)  (0.024)  (0.062)
Taste for science subjects (index) —0.063  —0.028 0.258™**  0.030 0.010  —0.090
(0.071)  (0.045)  (0.060)  (0.079)  (0.049)  (0.111)
Math self-concept (index) 0.043 0.001 0.169  —0.022 0.114*  0.126
(0.065)  (0.053)  (0.122)  (0.054)  (0.046)  (0.149)
Science-related career aspirations (index) —0.005 0.123***  0.231"** 0.007 0.048 0.098
(0.077)  (0.045)  (0.077)  (0.046)  (0.046)  (0.118)
N 689 1,468 394 v 1,514 370

Notes: This table reports estimates of the treatment effects of the role model interventions on student perceptions, separately
by grade level, gender, and intervals of elapsed time between the classroom intervention and the student survey. The sample is
restricted to students who completed the post-intervention questionnaire. Each coefficient is obtained from a linear regression of
the outcome of interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The
regression controls for school fixed effects to account for the fact that randomization was stratified by school. Standard errors
(shown in parentheses) are adjusted for clustering at the unit of randomization (class).
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(a) Enrollment in selective STEM
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(b) Enrollment in male-dominated STEM
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Figure 13 — Grade 12 Students: Enrollment in Selective and Male-Dominated STEM Under-
graduate Programs, by Gender and Month of Classroom Intervention

Notes: The figure shows the fraction of Grade 12 (science track) students who enrolled in selective (Panel A) and in male-dominated
(Panel B) STEM undergraduate programs after graduating for high school, separately for girls (left panel) and for boys (right panel).
The filled bars indicate the baseline enrollment rates among students in the control group, both overall and separately by month
of classroom intervention. The solid dots show the estimated treatment effects (added to the control group means) with 95 percent
confidence intervals denoted by vertical capped bars. The treatment effects are estimated from separate regressions of the outcome
of interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression
controls for school fixed effects to account for the fact that randomization was stratified by school. Standard errors are adjusted
for clustering at the unit of randomization (class).
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J Spillover Effects

This appendix investigates whether the program could have had spillover effects for students
who were not exposed to the role model interventions in participating schools. Section J.1
provides survey evidence suggesting that the scope for spillover effects was relatively limited.
Section J.2 describes the difference-in-differences (DiD) approach that we use to estimate the
magnitude of spillovers, the results of which point to non-statistically significant effects.

J.1 Survey Evidence

To get some sense of the scope for spillover effects in the context of our study, we included in the
last section of the survey a series of questions asking students in the treatment group whether
they had talked about the classroom interventions with their classmates, with schoolmates from
other classes, or with friends from other schools. We also asked students in the control group
whether they had heard about a science-related awareness-raising program and, more specifically,
whether they knew about other classes in the school being visited by a female or male scientist.
Overall, the summary statistics from the survey data suggest relatively limited opportunities
for spillover effects (see Table J1). In the treatment group, 58 percent of Grade 10 students
and 63 percent of science track Grade 12 students report having talked about the classroom
intervention with their classmates, but only 24 percent (27 percent) with schoolmates from
other classes, and 20 percent with students from other schools. Interestingly, these proportions
are higher for girls than for boys: in Grade 10, 66 percent of girls in the treatment group report
having discussed the program with their classmates and 28 percent with schoolmates from other
classes vs. respectively 50 percent and 20 percent among boys; in Grade 12, 70 percent of girls in
the treatment group report having discussed the program with their classmates and 33 percent
with schoolmates from other classes vs. respectively 56 percent and 21 percent among boys.
In the control group, only 14 percent of students in Grade 10 report having heard of classroom
visits in other classes, mostly in a vague manner (12 percent). In Grade 12, students in the
control group are more likely to report being at least vaguely aware of such visits (34 percent),
but less than 5 percent of boys and girls have a precise recollection. Gender differences in these
proportions are small and barely statistically significant. The fact that students in Grade 12 are
more likely to report being aware of classroom visits could be at least partly due to the fact that
the share of students assigned to the treatment group among all students from the same grade
level was typically larger in Grade 12 than in Grade 10, on average 32 percent vs. 25 percent.
Despite these differences, the overall picture that emerges from the survey is that students in
the control group had only limited awareness of the classroom interventions in other classes.

J.2 Differences-in-Differences Estimates of Spillover Effects

We complement the survey evidence by investigating more formally whether the role model
interventions could have affected the higher education choices of Grade 12 students whose classes
were not assigned to the treatment group. These students are either in the classes that were not
selected by school principals to participate in the program evaluation or in the participating
classes that were randomly assigned to the control group.

Our experimental design does not include a “super control” group composed of students
enrolled in schools randomly chosen to have zero probability of assignment to the treatment
among the classes selected by school principals. Spillover effects cannot, therefore, be identified
by comparing the control group classes in participating schools with such supercontrol group
classes, as in the design pioneered by Duflo and Saez (2003).A47 Instead, our approach builds on

ATVazquez-Bare (2018) develops a potential-outcome-based nonparametric framework to identify spillover
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the following intuition: for schools that participated in the evaluation, the random assignment
of treatment to participating classes makes it possible to estimate the average outcome that
would have been observed if all students from these schools had only been exposed to the
spillover effects of role model interventions, without being directly exposed to a female role
model. This unobserved “spillover-only” counterfactual can be estimated at the school level
using an appropriately weighted average of non-treated classes: it suffices to compute the
weighted average outcome of students in the non-participating classes and in the participating
classes that were randomly assigned to the control group, with respective weights equal to the
share of participating and of non-participating classes in the school. Average spillover effects
can then be estimated by comparing this “spillover-only” counterfactual to a “no-treatment”
counterfactual. This second counterfactual is constructed under the assumption that absent
treatment, mean outcomes in participating school would have followed the same evolution as in
non-participating schools. Having verified that this common trends assumption is satisfied in
the pre-treatment period 2012-2014, we implement a difference-in-differences estimator that
identifies the difference between the “spillover-only” and the “no-treatment” counterfactuals.
This approach, which is graphically illustrated in Figure J1, enables us to estimate the average
spillover effects of role model interventions in the participating schools.

Notations. We are interested in measuring the spillover effects of classroom visits. We denote
by D, a binary indicator for a student’s school s being visited by a female role model and by
D, a binary indicator for a role model intervention taking place in the student’s class c. We
consider two time periods, represented by a binary indicator 7' € {0, 1}, with classroom visits
taking place in period 1 only. For a given realization of the treatment assignment (d, d.s), the
potential outcome for student 7 in school s, class ¢, and time ¢ is denoted by Yjes;(ds, des).

We use the binary indicator G to indicate whether school s participated in the experiment
and we denote the sets of participating and non-participating schools by &; and Sy, respectively.
The number of participating (non-participating) schools is denoted by M; (M;). Only a subset of
the classes in participating schools were (non-randomly) selected by the principals to participate
in the experiment in period 1. The participation status of class ¢ in school s is denoted by
the binary indicator G.s. Among participating classes (G.s = 1), the binary indicator R,
indicates whether the class was randomly assigned to the treatment group (R.s = 1) or to the
control group (R, = 0). The experimental setting therefore implies that Dy = G x T" and
D., = R.s x T. A student’s observed outcome can then be written

Yvicst = Ds : Dcs : Y;cst(L 1) + Ds : (1 - Dcs) : Yvicst(L O) + (1 - Ds) : Y;cst(ov 0) (Ag)

To simplify notation, we assume that each school has the same number of students, N, and
that the number of students is the same in both periods.

Let Y;,(0,0) denote the average potential outcome of students in school s and year ¢ under
no treatment. This average potential outcome corresponds to the case in which no student from
school s in year t is exposed to either the direct or spillover effects of classroom visits, i.e.,

N

Y..4(0,0) Z st (0, 0). (A.4)

Let Y;4(1,0) denote the average potential outcome of students in school s and year ¢ in the
(non-feasible) scenario in which all students in school s are only exposed to the spillover effects

effects in randomized experiments where units are clustered, without requiring a specific experimental design.
This approach, however, cannot be easily adapted to our setting since it requires that the treatment is assigned
at the individual level within clusters (schools), not at the group level (classes), in order to exploit variation in
all the possible configurations of own and neighbors’ observed treatment assignments.
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of role model interventions in other classes, without themselves being visited by a female role
model. This “spillover-only” average potential outcome is defined as follows:

N
Y..(1,0) Zszt (1,0). (A.5)
z:l

Our parameter of interest is the expected average spillover effect of classroom visits for the
students in participating schools in period 1, i.e.,

A=E (]\21 > (Var(1,0) - YSJ(O,O))) | (A.6)

SES]

This parameter can be interpreted as the average effect for students in participating schools
of being only exposed to the indirect effects of classroom visits compared to the counterfactual
of no classroom visit in the school.

Identification of spillover effects. Let Zyt denote the mean observed outcome for students
in school s and year t, i.e.,

1 N
— — Kcst' (A?)
N

For non-participating schools in periods 0 and 1 and for participating schools in period 0, this
mean observed outcome is in expectation equal to the expected average potential outcome under
no treatment. Indeed, Equations (A.3), (A.4), and (A.7) imply that

E(Yer) = E (Y.0(0,0)) if s € Soand t € {0,1} or if s € S; and t = 0. (A.8)

For each school s € §; that participated in the evaluation, we consider the following partition
of students in period 1: let C%, C¢, and CI denote respectively (i) the students in the classes
that did not participate in the evaluation (G5 = 0), (ii) the students in the participating classes
that were randomly assigned to the control group (Gs =1 and R.s = 0), and (iii) the students
in the participating classes that were randomly assigned to the treatment group (G, = 1 and
Res = 1). By definition, the number of students in each group, which we denote by N?, N¢ and
NT| respectively, is such that N = N? + N¢ + NT,

For the purpose of estimating spillover effects, we construct a mean counterfactual outcome
for participating schools in period 1, which we denote by 375,1- As shown in Proposition 1 below,
the expected value of }7571 coincides with the expected average potential outcome of students
in school s and period 1, had all of its students only been exposed to the spillover effects of
classroom visits in other classes, without being themselves directly exposed to a female role
model. This counterfactual outcome ignores classes in the treatment group and is defined as a
weighted average of the observed outcomes of students in the non-participating classes and the
control group classes (see Figure J1):

_ 1
)/s,l - N (Z Y;051+<

ieCY

) > szl) , s€S. (A.9)

5 iec¢

The intuition is as follows. The “spillover only” counterfactual measured at the school
level cannot be recovered from the non-participating classes only, since these classes were
not randomly selected by school principals. However, having noted that the mean observed
outcome of students in the control group is an unbiased estimator of the mean (unobserved)
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“spillover-only” outcome for students in the treatment group, one can reconstruct the school-level
“spillover-only” counterfactual by restricting the set of students to those in non-participating
classes and control group classes. To estimate the mean outcome that would have been observed
if all students had only been exposed to the spillover effects of classroom visits, it suffices to
reweight students in the control group so that they match the total number of students in the
participating classes (i.e., treatment and control), and then combine this reweighted sample
with the sample of students in non-participating classes to compute the average outcome.

Assumption 1. Random assignment of treatment to participating classes.
1 1
E W Z Ecsl(lao) = E W Z Ecsl(la()) ) ERS Sl-
s 4ecl s ieCy

Assumption 1 states that students in the treatment and control group classes of participating
schools have the same expected average potential outcome under the “spillover-only” treatment.
Our experimental design ensures that this assumption is satisfied.

Proposition 1. Under Assumption 1, the counterfactual 37;71 is an unbiased estimator of the
expected average potential outcome of students in participating school s and period 1 under the
“spillover-only” treatment, Y;1(1,0):

E(Y.)) =E(Y.1(1,0)), s€eS.

Proof. From the definition of the “spillover-only” counterfactual in Equation (A.9), we have

E(ﬁ,l) =K (]1/, (Z Y;Lcsl + < > Z Y;csl))
ieC? S ieC¢
(ZE es1(1,0)) + 3 E(Yiesa (1,0)) + xc 3 E(Yie (1, 0)))

1€CO iec¢ s eC¢

= \

= \

(ZE ies1(1,0)) + > E(Yies1 (1,0)) + > E(YViea (1, 0)))

ieCy ieC¢ ieCl

N
N; zcsl ]- 0
=& (Y.1(1,0)).

The second equality follows from Equation (A.3), the third equality follows from Assumption 1,
while the last equality follows from Equation (A.5). The key intuition for this result is that by
virtue of the random assignment of treatment to participating classes, the mean observed outcome
of students assigned to the control group is an unbiased estimator of the mean unobserved
“spillover-only” outcome of students assigned to the treatment group. O

Identifying spillover effects requires comparing the “spillover-only” counterfactual with the
“no-treatment” counterfactual. To this end, we define the following difference-in-differences
estimator, which we denote by A:

(Yer — Yso)- (A.10)

s€Sp

M, ’ VM,

This estimator compares the evolution of the mean outcome of students in participating schools
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between period 0 and period 1 (using the “spillover-only” counterfactual for period 1) with the
corresponding evolution in non-participating schools.

Assumption 2. Common trends between participating and non-participating schools.

E (1\2 > (a(0,0) —Y;,o(o,O))> —E (AZ > (¥21(0,0) = Yao (0, 0>)) :

sEST s€So

Assumption 2 states that in the absence of role model visits to the school, average outcomes
in participating and non-participating schools would have followed parallel trends. Although this
assumption cannot be directly tested, it can be indirectly assessed by comparing the evolution
of mean outcomes in participating and non-participating schools in the pre-intervention period.

Proposition 2. Under Assumptions 1 and 2, A is an unbiased estimator of the average spillover
effect, A:

E(A) = A.
Proof. From the definition of the difference-in-differences estimator in Equation (A.10), we
have
B(A) =& (- 3 (Vo —Yao) — 17 3 (Var — Vao)
1 8681 0 SESO
1 — — 1 — —
= E ﬁ Z (n,l(la O) - }/5,0(07 0)) - E (M Z (}/3,1(0, O) - }/570(0, 0)))
1 s€S 0 s€So
1 - - 1 — _
=E |57 > (Vaa(1.0) = ¥i0(0,0)) | ~E (M > (V2a(0,0) - Ys,o<o,0)))
1 s€S 1 sES
1 — —
=E|— Yi1(1,0) — Y51(0,0)
Ml SES1 ( )
=A.

The second equality follows from Equation (A.8) and from Proposition 1, the third equality
follows from Assumption 2 (common trends between participating and non-participating schools),
while the last equality follows from Equation (A.6). O

Empirical specification. In the context of our study, the spillover effects estimator (A.10)
can be conveniently implemented using a difference-in-differences regression specification. We
apply this estimator to investigate whether the classroom interventions affected the college
decisions of science track Grade 12 students whose classes were not visited by a female role
model.

In our empirical application, we consider the four cohorts of Grade 12 students that were
enrolled in the high schools of the Paris region in the year of the intervention (2015) and in the
three preceding years (2012, 2013, and 2014).

One complication is that the “For Girls in Science” program was first implemented on a small
scale in 2014, i.e., one year before the evaluation was conducted. As a result, some of the schools
that participated in the program evaluation in 2015, as well as some of the schools that did not
participate in the evaluation, could have been visited by female role models in 2014. Although
we cannot precisely identify these schools, the contamination effect is likely to be small since
the interventions were carried out by a small number of role models and were not specifically
targeted at students enrolled in Grade 10 and Grade 12 (science track). Nonetheless, to ensure
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that our difference-in-differences estimates are not biased due to these prior interventions, we use
2012 as the reference year. The baseline differences between participating and non-participating
schools are therefore measured at a point in time in which the program was not in place.

Let 757,5 denote the average outcome of Grade 12 students in school s and year t. For each
participating school s € &), we use Equation (A.9) to construct the “spillover-only” mean
counterfactual outcome in 2015, which we denote by }7;,,5. Our dependent variable, denoted by

Y* . is then defined as follows:

s,t)

st Yt otherwise

7 { Y., ifs€ S andt=2015
The spillover effects of classroom visits are then estimated using the following difference-in-
differences regression model:

2015
Yi=a+0,+60,+ > pi-1{se€S andt=Fk}+e,y, (A.11)

k=2013

where 6, are school fixed effects and 6, are year fixed effects (using 2012 as the reference
year); 1{s € & and t = k} is a dummy variable that takes the value one if the observation
corresponds to a participating school observed in year k; and €, is the error term. Under the
common trend assumption, the coefficient 32015 identifies the average spillover effects among the
non-treated students in participating schools. The coefficients 32013 and 32014 provide an indirect
test of this assumption: if it holds, the evolution of mean outcomes between 2012 and 2014
(pre-intervention period) should be parallel between participating and non-participating schools,
and the coefficients on the pre-interventions “placebos” should not be jointly significant.*®

Selection of non-participating schools. To ensure that non-participating schools are as
similar as possible to the participating schools, we use a nearest neighbor matching procedure
(with replacement) on the estimated propensity score. We consider all public and private high
schools operating in the Paris region that had at least two science track Grade 12 classes in
2015, as this restriction was used in our experimental design to select participating schools (see
Section 2 in the main text). We then estimate the probability that the school participated in the
experiment in 2015 given a vector of exogenous school characteristics X; (measured every year
between 2012 and 2015) and a vector of the pre-intervention outcomes Y (measured in 2012
and 2013) for which spillover effects are measured.* We then match each participating school
with the non-participating school having the closest propensity score among the schools with
the same status (public or private) and located in the same education district (Paris, Créteil or
Versailles) as that of the participating school.

A-8Gtrictly speaking, the parallel trend assumption only requires the coefficient 2913 to be non-statistically
significant since, as explained above, the comparison between participating and non-participating schools in 2014
could be contaminated by the classroom interventions that were carried on a small scale that year. As shown
below, the results show that the parallel trend assumption also holds between 2013 and 2014, suggesting that
the contamination effects of these prior interventions are negligible, if any.

A9The vector of exogenous school characteristics Xg; includes the school’s education district (Paris, Créteil or
Versailles), whether it is public or private, and the following time-varying characteristics every year between 2012
and 2015: the number of students in Grade 12 (science track), the fraction of female students, and the fraction
of high-SES students. The vector of pre-intervention outcomes Y; in 2012 and 2013 includes the fraction of
science track Grade 12 students who enrolled in a STEM program after graduating from high school, the fraction
who enrolled in a selective STEM program, and the fraction who enrolled in a male-dominated STEM program
(computed separately by year and gender). We do not control for pre-intervention outcomes in 2014 to avoid any
contamination by classroom interventions that could have been carried out that year.
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Results. We use Equation (A.11) to estimate the spillover effects of classroom visits on the
college enrollment outcomes of Grade 12 students in non-treated classes. The model is estimated
separately by gender and we consider the three main outcomes for which we document significant
direct effects of the interventions: enrollment in a STEM undergraduate program, enrollment
in a selective STEM program, and enrollment in a male-dominated STEM program. The
observations are school-by-year averages weighted by school size. Standard errors are clustered
at the school level to account for serial correlation across years.

The results are reported in Table J2. Panel A shows that the non-participating schools
selected by the nearest-neighbor matching procedure are reasonably similar to the participating
schools in terms of the average college enrollment outcomes of female and male students in the
pre-intervention period 2012-2013.

The estimates from the DiD regression are reported in Panel B. In all specifications, the
coefficients on (participating school x t=2013) and on (participating school x t=2014) are close
to zero and are neither individually nor jointly significant, which lends support to the assumption
of common trends between participating and non-participating schools. Overall, the results
provide no evidence of significant spillover effects from the classroom visits in participating
schools: for all considered outcomes, the coefficient §2015 on (participating school x ¢ = 2015) is
close to zero and not statistically significant for both female and male students.

It should, however, be noted that although our estimates are relatively precise, we cannot
rule out small to moderate spillover effects. In the presence of positive spillovers, the treatment
effects reported in the main text would under-estimate the true direct effect of classroom visits,
since the “contamination” of the control group would push the difference between treatment
and control classes towards zero. Denoting by ® the average direct effect of the classroom
interventions and by A (> 0) their average indirect effect (through spillovers), the treatment-
control difference in mean outcomes, denoted by B , estimates ® — A instead of ®. If we estimate
the spillover effects to be at most AUB, this implies that the size of spillover effects is at most
AUB /(3 + AUB) of the size of the direct effect. When we consider the effects on the probability
that female students enroll in a selective STEM program, the comparison of treatment and
control classes yields an estimated direct effect of B = 0.035 (see Table 5, Panel B, column 2).
Based on the results in column 2 of Table J2, the upper bound of the 95 percent confidence
interval for the spillover effects is estimated to be AUB = 0.017. Hence, in the case of selective
STEM enrollment, we cannot reject spillover effects that would be at most 33 percent of the
size of the “true” direct effect 3+ AUB, which in this case would be of 5.2 percentage points. A
similar calculation for the spillover effects on male-dominated STEM enrollment yields an upper
bound of AUB = (.025. Since the estimated direct effect is B = (0.038, we cannot reject spillover
effects of at most 40 percent of the size of the “true’” direct effect B + AUB, which in that case
would be of 6.3 percentage points.
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Figure J1 — Spillover Effects of Role Model Interventions: Empirical Strategy

Notes: This figure illustrates the difference-in-differences strategy we implement to estimate the spillover effects of role model
interventions for students who were enrolled in participating schools but whose classes were not assigned to the treatment group.
These students are either in the classes that were not selected by school principals to participate in the program evaluation or in the
participating classes that were randomly assigned to the control group. Our approach consists in comparing the evolution of mean
student outcomes (at the school level) in participating (s € S1) and non-participating schools (s € Sp), between the year before the
intervention (7" = 0) and the year of the intervention (T"= 1). For T' = 1, we use a weighted average of non-treated classes in each
participating school to estimate the counterfactual “spillover-only” outcome that would have been observed if all the students from
that school had only been exposed to the spillover effects of classroom interventions, without being directly exposed to a female
role model. Average spillover effects are then estimated by comparing this “spillover-only” counterfactual to a “no-treatment”
counterfactual. Under the assumption that absent treatment, mean outcomes in participating school would have followed the same
evolution as in non-participating schools, the average spillover effects can be estimated by comparing the evolution between 7' = 0
and T = 1 of the mean outcome of students in participating schools (using the “spillover-only” counterfactual for period 1) with
the corresponding evolution in non-participating schools.
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Table J1 — Scope for Spillover Effects: Summary Statistics from the Student Survey

Within class

All Boys Girls Difference  p-value
(3)—(2) of diff.
(1) (2) (3) (4) (5)
Panel A. Grade 10
Treatment Group
Discussed the classroom visit?
with classmates 0.580 0.498 0.656 0.145 0.000
with other students from the school 0.240 0.200 0.277 0.072 0.000
with other students outside the school 0.203 0.155 0.247 0.098 0.000
Exposed to other science outreach program?
this school year 0.128 0.138 0.120 —0.011 0.297
in the past 0.182 0.218 0.149 —0.059 0.000
N 6,245 2,989 3,256
Control Group
Heard of classroom visits in other classes?
Yes, definitely 0.018 0.017 0.020 0.001 0.862
Yes, vaguely 0.122 0.117 0.127 0.009 0.244
No 0.859 0.866 0.853 —0.010 0.271
Exposed to programs about science or jobs in science?
this school year 0.146 0.144 0.148 0.011 0.283
before the end of this school year 0.052 0.059 0.047 —0.014 0.019
in the past 0.322 0.309 0.333 0.025 0.066
N 5,981 2,762 3,219
Panel B. Grade 12 (science track)
Treatment Group
Discussed the classroom visit?
with classmates 0.629 0.556 0.705 0.131 0.000
with other students from the school 0.269 0.206 0.334 0.114 0.000
with other students outside the school 0.202 0.133 0.275 0.136 0.000
Exposed to other science outreach programs?
this school year 0.202 0.200 0.204 0.005 0.797
in the past 0.324 0.349 0.299 —0.053 0.025
N 2,642 1,350 1,292
Control Group
Heard of classroom visit in other classes?
Yes, definitely 0.047 0.049 0.045 —0.004 0.645
Yes, vaguely 0.292 0.275 0.308 0.037 0.048
No 0.661 0.676 0.646 —0.033 0.085
Exposed to programs about science or jobs in science?
this school year 0.287 0.291 0.284 0.011 0.515
before the end of this school year 0.096 0.104 0.088 —0.009 0.403
in the past 0.488 0.461 0.514 0.054 0.028
N 2,594 1,286 1,308

Notes: The summary statistics in this table are computed from the post-treatment student survey administered in all participating
classes between one and six months after the role model interventions. Columns 1, 2, and 3 report average values for all respondents
and for boys and girls, respectively, separately by grade level and treatment assignment. The within-class difference in the responses
of girls and boys, reported in column 4, is obtained from a regression of the variable of interest on a female dummy, controlling for
class fixed effects and clustering standard errors at the school level. The associated p-value is reported in column 5.
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Table J2 — Difference-in-Differences Estimates of the Spillover Effects of Role Model Interven-
tions on College Enrollment Outcomes, Grade 12 Students, Years 20122015

Grade 12 (science track) students

Girls Boys
Underg. Selective ~ Male-dom. Underg. Selective ~ Male-dom.
STEM STEM STEM STEM STEM STEM

(1)

(2)

()

(4)

()

(6)

Panel A. Baseline means (2012—-2013)

Participating schools

Mean 0.274 0.145 0.163 0.489 0.265 0.409
Number of schools 88 88 88 87 87 87
Average number of Grade 12 students 107 107 107 108 108 108
Non-participating schools
Mean 0.265 0.141 0.157 0.473 0.257 0.395
Number of schools 62 62 62 61 61 61
Average number of Grade 12 students 99 99 99 99 99 99
Panel B. Regression estimates
Pre-trends: participating vs. non-
particip. schools (relative to 2012)
B2013: Particip. school x (£=2013) 0.006 —0.001 0.013 0.003 —0.023 —0.015
(0.017) (0.014) (0.014) (0.022) (0.017) (0.021)
B2014: Particip. school x (£=2014) 0.015 0.001 0.014 0.002 —0.020 —0.017
(0.019) (0.014) (0.014) (0.018) (0.015) (0.017)
Spillover effects: mon-treated students
,32015: Particip. school x (t=2015) —0.011 —0.014 —0.009 0.008 —0.011 —0.018
(0.021) (0.016) (0.017) (0.022) (0.019) (0.024)
Year fixed effects (omitted: 2012) Yes Yes Yes Yes Yes Yes
School fixed effects Yes Yes Yes Yes Yes Yes
Number of observations (schoolxyear) 601 601 601 593 593 593
Test: common trends (Bgmgzﬁgom =0)
F-stat 0.33 0.01 0.67 0.01 1.22 0.51
p-value 0.72 0.99 0.52 0.99 0.30 0.60

Notes: This table reports the estimated spillover effects of the role model interventions for students in the non-treated classes of the
schools that participated in the program evaluation in 2015, separately for male and female students in Grade 12 (science track).
The outcomes we consider are those for which we document significant direct effects of the interventions, i.e., enrollment in a STEM
undergraduate program, enrollment in a selective STEM program, and enrollment in a male-dominated STEM program. The results
are based on a difference-in-differences specification that compares the outcomes of students in participating and non-participating
schools over the period 2012 to 2015, in which the first three years correspond to the pre-intervention period. Non-participating
schools are selected among high schools in the Paris region using a nearest neighbor matching procedure (with replacement) on
the estimated propensity score. The baseline mean outcomes in participating and non-participating over the pre-intervention
period 2012-2013 are reported in Panel A. The regression estimates are reported in Panel B. In all specifications, the dependent
variable is the school-by-year average outcome of non-treated students. For non-participating schools throughout the period and
for participating schools in the pre-intervention period, this mean outcome is simply the average outcome of all students enrolled
in Grade 12 (science track) in the considered year. For participating schools in 2015 (the year of the intervention), this variable is
computed as the weighted average outcome of students in the non-participating classes and in the participating classes that were
randomly assigned to the control group, with respective weights equal to the share of participating and of non-participating classes
(i-e., treatment and control) in the school. The dependent variable is regressed on school fixed effects, year fixed effects (using 2012
as the reference year) and three dummy variables that take the value one if the observation corresponds to a participating school
observed in 2013, 2014, and 2015, respectively. The coefficients on the first two dummy variables capture the differential pre-trends
between participating and non-participating schools whereas the coefficient on the third dummy variable measures the spillover
effects of role model interventions. All regressions are weighted by school size. Standard errors (in parentheses) are clustered at
the school level. The number of schools being used in the regressions for female and male students differs because one of the
participating schools and one of the non-participating schools are female-only. *** p < 0.01, ** p < 0.05, * p < 0.1.
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K Heterogeneous Treatment Effects: Subgroup Analysis

Table K1 — Heterogeneous Treatment Effects on Student Outcomes, by Math Performance

Girls Boys
Level of performance in math Level of performance in math
Below Above p-value Below Above p-value
median median of diff. median median of diff.
[g-value] [g-value]
(1) (2) () (4) (5) (6)
Panel A. Grade 10
Grade 11: Science track —0.018 0.008 0.272 —0.020 0.011 0.253
(0.015) (0.018) [0.362] (0.020) (0.018) [0.326]
Positive perceptions of science-related careers (index) 0.210*** 0.273%** 0.281 0.173*** 0.154*** 0.750
(0.043) (0.038) [0.362] (0.042) (0.040) [0.750]
More men in science-related jobs 0.169*** 0.144*** 0.336 0.188*** 0.153*** 0.148
(0.019) (0.017) [0.378] (0.020) (0.017) [0.252]
Equal gender aptitude for math (index) 0.048 0.168*** 0.017 0.098** 0.185*** 0.168
(0.037) (0.033) [0.078] (0.045) (0.042) [0.252]
Women don’t really like science 0.062*** 0.053*** 0.688 0.108*** 0.096*** 0.645
(0.016) (0.014) [0.689] (0.019) (0.017) [0.726]
W face discrimination in science-related jobs 0.171*** 0.085*** 0.001 0.177*** 0.133*** 0.111
(0.019) (0.017) [0.008] (0.020) (0.019) [0.252]
Taste for science subjects (index) —0.072 —0.010 0.274 —0.081** 0.041 0.016
(0.046) (0.041) [0.362] (0.041) (0.035) [0.141]
Math self-concept (index) —0.042 0.021 0.232 —0.016 0.080** 0.058
(0.038) (0.039) [0.362] (0.038) (0.038) [0.252]
Science-related career aspirations (index) —0.045 0.053 0.079 —0.035 0.044 0.162
(0.041) (0.040) [0.237] (0.042) (0.037) [0.252]
Panel B. Grade 12 (science track)
Undergraduate major: STEM 0.010 0.031 0.571 —0.041 0.016 0.163
(0.020) (0.026) [0.572] (0.026) (0.029) [0.490]
Undergraduate major: selective STEM 0.002 0.067*** 0.018 —-0.014 0.036 0.156
(0.013) (0.022) [0.037] (0.018) (0.027) (0.313]
Undergraduate major: male-dominated STEM 0.024 0.046** 0.513 —0.005 0.019 0.541
(0.018) (0.023) [0.514] (0.025) (0.028) [0.541]
Positive perceptions of science-related careers (index) 0.257*** 0.355%** 0.277 0.042 0.257*** 0.008
(0.054) (0.059) [0.454] (0.054) (0.051) (0.076]
More men in science-related jobs 0.153*** 0.079*** 0.050 0.155%** 0.144*** 0.722
(0.025) (0.024) [0.380] (0.024) (0.019) [0.813]
Equal gender aptitude for math (index) 0.061 0.135%** 0.274 0.063 0.211*** 0.091
(0.043) (0.046) [0.454] (0.060) (0.060) [0.412]
Women don’t really like science 0.028* 0.062*** 0.172 0.073*** 0.075%** 0.954
(0.015) (0.016) [0.454] (0.023) (0.021) [0.955]
W face discrimination in science-related jobs 0.116*** 0.088*** 0.489 0.090*** 0.050* 0.368
(0.027) (0.030) [0.551] (0.030) (0.028) [0.711]
Taste for science subjects (index) —0.054 0.025 0.342 —0.034 0.016 0.553
(0.051) (0.056) [0.454] (0.058) (0.052) [0.711]
Math self-concept (index) 0.061 —0.070 0.084 0.078* 0.032 0.488
(0.051) (0.053) [0.380] (0.046) (0.045) [0.711]
Science-related career aspirations (index) 0.061 0.137** 0.353 0.008 0.060 0.514
(0.049) (0.060) [0.454] (0.054) (0.050) [0.711]

Notes: This table reports estimates of the treatment effects of the role model interventions on student outcomes, separately by
grade level, gender, and level of academic performance in math. Each row corresponds to a different linear regression performed
separately by gender, with the dependent variable listed on the left. Students’ performance in math is measured from the grades
obtained on the final math exam of the Diplome national du Brevet at the end of middle school (for Grade 10 students) and on the
final math exam of the Baccalauréat (for science track Grade 12 students). Columns 1 and 2 (for girls) and columns 4 and 5 (for
boys) report the local average treatment effect (LATE) estimates for students below and above the median level of performance
in math, respectively. They are obtained from a regression of the outcome of interest on the interaction between a classroom visit
indicator and indicators for the student being below or above the median level of performance in math, using treatment assignment
(interacted with the math performance dummies) as an instrument for treatment receipt. The regression controls for school fixed
effects to account for the fact that randomization was stratified by school. Standard errors (shown in parentheses) are adjusted
for clustering at the unit of randomization (class). Columns 3 and 6 report both the cluster-robust model-based p-value for the
difference between the treatment effects estimates for students above vs. below the median performance in math and, in square
brackets, the p-value (g-value) adjusted for multiple hypotheses testing, using the False Discovery Rate (FDR) control method.
Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al. (2006) and described in Anderson (2008).
*** p < 0.01, ¥* p < 0.05, * p<O0.1.
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Table K2 — Heterogeneous Treatment Effects on Student Outcomes, by Role Model Background

Girls Boys
Role model background Role model background
Resear- Profes- p-value Resear- Profes- p-value
chers sionals of diff. chers sionals of diff.
[g-value] [g-value]
(1) (2) ®3) (4) (5) (6)
Panel A. Grade 10
Grade 11: Science track 0.011 —0.016 0.322 —0.023 0.015 0.210
(0.020) (0.018) [0.964] (0.024) (0.019) [0.492]
Positive perceptions of science-related careers (index) 0.227*** 0.258*** 0.570 0.136™** 0.192*** 0.342
(0.039) (0.040) [0.964] (0.047) (0.036) [0.513]
More men in science-related jobs 0.147*** 0.164*** 0.512 0.163*** 0.173*** 0.728
(0.019) (0.017) [0.964] (0.020) (0.019) [0.761]
Equal gender aptitude for math (index) 0.051 0.155*** 0.034 0.071 0.209*** 0.025
(0.035) (0.035) [0.303] (0.048) (0.038) (0.194]
Women don’t really like science 0.055*** 0.062*** 0.749 0.091*** 0.112%** 0.399
(0.017) (0.014) [0.964] (0.018) (0.018) [0.513]
W face discrimination in science-related jobs 0.127*** 0.127*** 0.990 0.135%** 0.168*** 0.218
(0.020) (0.016) [0.990] (0.021) (0.017) [0.492]
Taste for science subjects (index) 0.017 —0.081* 0.174 —0.093* 0.040 0.043
(0.054) (0.048) [0.782] (0.048) (0.042) [0.194]
Math self-concept (index) 0.008 —0.020 0.668 0.029 0.048 0.760
(0.046) (0.043) [0.964] (0.047) (0.043) [0.761]
Science-related career aspirations (index) 0.017 0.007 0.858 —0.028 0.035 0.276
(0.045) (0.038) [0.966] (0.043) (0.039) (0.497]
Panel B. Grade 12 (science track)
Undergraduate major: STEM 0.002 0.039** 0.185 —0.007 0.010 0.663
(0.022) (0.017) [0.297] (0.032) (0.024) [0.845]
Undergraduate major: selective STEM 0.008 0.053*** 0.046 0.008 0.029 0.503
(0.018) (0.014) [0.093] (0.025) (0.019) [0.504]
Undergraduate major: male-dominated STEM 0.025 0.046*** 0.379 —0.002 0.031 0.397
(0.019) (0.015) [0.379] (0.030) (0.025) [0.504]
Positive perceptions of science-related careers (index) 0.197*** 0.386*** 0.005 0.151*** 0.158*** 0.912
(0.055) (0.041) [0.024] (0.045) (0.047) [0.913]
More men in science-related jobs 0.150*** 0.110*** 0.213 0.158*** 0.142*** 0.608
(0.026) (0.021) [0.297] (0.023) (0.020) [0.845]
Equal gender aptitude for math (index) 0.124*** 0.077** 0.422 0.201%** 0.078 0.128
(0.047) (0.035) [0.475] (0.063) (0.051) [0.577]
Women don’t really like science 0.045*** 0.044*** 0.931 0.088*** 0.062*** 0.357
(0.014) (0.012) [0.931] (0.024) (0.017) [0.845]
W face discrimination in science-related jobs 0.126*** 0.076*** 0.222 0.083*** 0.064*** 0.581
(0.034) (0.024) [0.297] (0.028) (0.022) [0.845]
Taste for science subjects (index) —0.044 0.055 0.152 —0.014 0.010 0.750
(0.054) (0.044) [0.297] (0.056) (0.052) [0.845]
Math self-concept (index) 0.108* 0.013 0.231 0.173***  —0.006 0.010
(0.060) (0.051) [0.297] (0.055) (0.044) (0.089]
Science-related career aspirations (index) —0.093 0.246*** 0.000 0.028 0.068 0.546
(0.057) (0.044) [0.001] (0.052) (0.042) [0.845]

Notes: This table reports estimates of the treatment effects of the role model interventions on student outcomes, separately by
grade level, gender, and by background of the female role model who visited the classroom (professional or researcher). Each row
corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left. Columns 1
and 2 (for girls) and columns 4 and 5 (for boys) report the local average treatment effect (LATE) estimates for students whose
class was visited by a researcher or a professional, respectively. They are obtained from a regression of the outcome of interest on
the interaction between a classroom visit indicator and indicators for the role model being either a researcher or a professional,
using treatment assignment (interacted with the role model background indicator) as an instrument for treatment receipt. The
regression controls for school fixed effects to account for the fact that randomization was stratified by school. Standard errors
(shown in parentheses) are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report both the cluster-
robust model-based p-value for the difference between the treatment effects estimates for students visited by a professional vs. a
researcher and, in square brackets, the p-value (g-value) adjusted for multiple hypotheses testing, using the False Discovery Rate
(FDR) control method. Specifically, we use the sharpened two-stage g-values introduced in Benjamini et al. (2006) and described
in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table K3 — Treatment Effects (ITT) on Enrollment in a Selective STEM Program for Grade 12
Students: Heterogeneity by Student and Role Model Characteristics

Dependent variable: enrolled in a selective STEM program

Girls Boys
(1) (2) 3) (4) (5) (6)

Treatment group indicator (T') interacted
with student characteristics

T*Bac percentile rank in math (/100, demeaned) 0.136™*  0.139"**  0.145"**  0.054 0.030 0.026
(0.048) (0.056) (0.056) (0.056) (0.060) (0.060)
T*Bac percentile rank in French (/100, demeaned) —0.051 —0.045 0.094" 0.095"
(0.042) (0.043) (0.056) (0.056)
T*High SES, demeaned 0.030 0.029 —0.007 —0.008
(0.028) (0.028) (0.030) (0.030)
Treatment group indicator (T') interacted
with role model characteristics
T*Professional 0.055***  0.067***  0.095"**  0.047" 0.034 0.061"
(0.019) (0.020) (0.026) (0.028) (0.029) (0.036)
T*Participated in the program the year before —0.049™" 0.006
(0.024) (0.036)
T*Age (demeaned) 0.000 0.000
(0.003) (0.003)
T*Non-French 0.005 —0.011
(0.028) (0.045)
T*Has children 0.014 0.024
(0.025) (0.034)
T*Has a Ph.D. degree 0.066™* 0.057
(0.027) (0.041)
T*Field: math, physics, engineering —0.031 —0.021
(0.024) (0.033)
Other controls
Treatment group indicator (T") Yes Yes Yes Yes Yes Yes
Student characteristics Yes Yes Yes Yes Yes Yes
School fixed effects Yes Yes Yes Yes Yes Yes
T interacted with school characteristics No Yes Yes No Yes Yes
Observations 2,827 2,827 2,827 2,924 2,924 2,924
Adjusted R-squared 0.121 0.120 0.120 0.187 0.187 0.186

Notes: Each column corresponds to a separate regression. The sample is restricted to students in Grade 12 (science track).
The outcome variable is an indicator for being enrolled in a selective STEM undergraduate program in the year following high
school graduation, i.e., 2016/17. The models are estimated separately for girls (columns 1-3) and boys (columns 4-6). The
coefficients reported in columns 1 and 4 are from a regression of the outcome variable on a treatment group indicator (T), student
characteristics, school fixed effects, and the treatment group indicator interacted with the student’s Baccalauréat percentile rank in
math (between 0 and 1) and with an indicator for the role model being a professional. The specification in columns 2 and 5 includes
further interactions between the treatment group indicator and both student and school characteristics. Finally, the specification
in columns 3 and 6 adds interactions between the treatment group indicator and the characteristics of role models. The student
characteristics consist of an indicator for high-SES background and percentile ranks on the Baccalauréat final exams in math and
French. The role model characteristics consist of age and a set of indicators for being a professional, having participated in the
program the year before, being non-French, having children, holding a Ph.D. degree, and having graduated from a male-dominated
STEM field (math, physics, engineering). The school characteristics are dummies for the regional education authority where the
high school is located (Paris, Créteil and Versailles), whether the school is public or private, the share of female students in the
school, the Baccalauréat pass rate observed in the previous year (2014/15), and the shares of Grade 12 (science track) students
from the 2014/15 cohort who enrolled in STEM programs, selective STEM programs, and male-dominated STEM programs the
following year. School characteristics are only included through their interactions with the treatment group indicator, as these
characteristics are absorbed by the school fixed effects. Since each high school was visited by at most one role model, role model
fixed effects are also absorbed by the school fixed effects. Standard errors (in parentheses) are adjusted for clustering at the class
level. Observations with some missing characteristics (11 % of the sample) are included in the regressions. An arbitrary value is
assigned to all the missing characteristics and a set of dummy variables is created, with each variable being equal to one if the
corresponding information is missing. *** p < 0.01, ** p < 0.05, * p < 0.1.
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L. Heterogeneous Treatment Effects: Machine Learning
Methods

This appendix provides additional information on the machine learning methods we use to
(i) describe the heterogeneity in treatment effects and (ii) estimate the correlation between
treatment effects on different outcomes. Section L.1 gives an overview of the generic approach
recently developed by Chernozhukov et al. (2018) to estimate, and make inference about, key
features of heterogeneous effects in randomized experiments. Section L.2 provides further details
on how we implement this method in the context of our study. Section L.3 explains how we
extend this method to estimate the correlation between treatment effects.

L.1 Description of the Method of Chernozhukov et al. (2018)

Motivation. Reporting treatment effects for various subgroups of participants opens the
possibility of overfitting due to the large number of potential sample splits. To address this
issue, one option is to specify a certain number of groups ex ante in a pre-analysis plan and
to tie one’s hands to analyze treatment effect heterogeneity only across these groups, while
correcting standard errors for multiple testing.

This approach, however, has the drawback of restricting the analysis to a small number of
groups and bears the risk of missing important sources of heterogeneity. Machine Learning (ML)
methods provide an attractive alternative to explore treatment effect heterogeneity in a more
comprehensive manner (see Athey and Imbens, 2017, for a review). We adopt the approach
developed by Chernozhukov et al. (2018) as it appears well suited for our objective. First, this
approach makes it possible to conduct valid statistical inference on several objects of interest,
such as average treatment effects by heterogeneity groups or the characteristics of individuals
with large and small predicted treatment effects. Second, it can be implemented using any ML
algorithm, allowing us to test algorithms of different degrees of sophistication, ranging from
simple linear models to neural networks. Third, as described in Section L.3, this approach can
be extended to estimate the correlation between treatment effects on different outcomes.

Concepts and estimation procedure. Consider an outcome variable denoted by Y. Let
Y (1) and Y (0) denote the potential outcomes of a student when her class is and is not visited
by a role model, respectively. Let Z be a vector of covariates that characterize the student and
the role model who visited the class. The conditional average treatment effect (CATE), denoted
by so(Z), is defined as follows:

so(Z) = E[Y (1) — Y (0)|Z].
The approach developed by Chernozhukov et al. (2018) uses the following procedure:

1. Randomly split the data into a training sample and an estimation sample of equal size
(using stratified splitting to balance the proportions of treated and control units in each
subsample).

2. Use the training sample to predict the CATE using various ML algorithms. Obtain a ML
predictor proxy predictor S(Z).

3. Estimate and perform inference on features of the CATE on the estimation sample (see
the definition of the features below).

4. Repeat steps 1 to 3 n times and keep track of the estimates obtained for each feature as
well as their associated p-values and 95 percent confidence intervals.
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5. For each feature, compute the final estimate as the median of the n available estimates.
Compute the p-value for this final estimate as the median of the n available p-values
multiplied by two. Compute a 90 percent confidence interval for the final estimate as the
median of the n 95 percent confidence intervals.

Three features of the CATE. The CATE s5¢(Z) is a function for which it is difficult to
obtain uniformly valid inference without making strong assumptions. It is, however, possible to
obtain inference results on specific features of the CATE, such as the expectation of so(Z) for
heterogeneity groups induced by the ML proxy predictor S(Z).

The Best Linear Predictor (BLP). The first feature of the CATE s¢(Z) is its Best Linear
Predictor (BLP) based on the ML proxy predictor S(Z). It is formally defined as follows:

BLP[o(2)[S(2) = awgmin  Ejso(Z) ~ {(2)]"

Chernozhukov et al. (2018) show that one can identify the BLP of so(Z) given S(Z), as well
as the projection parameters 51 = E[so(Z)] and B2 = Cov(so(Z), S(Z))/Var(S(Z)), using the
following weighted linear projection:

Y = ag+aB(Z) + (T —p(2)) + Ba(T —p(Z))(S(2) ~EIS(Z)]) +¢, Elw(Z)eX] =0, (A.12)

where T is the treatment group indicator; B(Z) is a ML predictor of Y (0) obtained from the
training sample; p(Z) is the propensity score (i.e., the conditional probability of being assigned
to the treatment group); w(Z) = {p(Z)(1 — p(Z))} ! is the weight; and X is the vector of all
regressors (X = [1, B(Z),T — p(Z),(T — p(Z2))(S(Z) — E[S(Z)])]).

Equation (A.12) can be estimated using weighted least squares, after replacing E[S(Z)] by
its empirical expectation with respect to the estimation sample.

The coefficient (s is informative about the correlation between the true CATE, s¢(Z), and
the predicted CATE, S(Z). It is equal to one if the prediction is perfect and to zero if S(Z)
has no predictive power or if there is no treatment effect heterogeneity, that is if so(Z) = s.
The main purpose of estimating s is to check if the trained ML algorithms are able to detect
heterogeneity.* 1

Sorted Group Average Treatment Effects (GATEs). The ML predictor of the CATE, S(Z), can
be used to identify groups of individuals with small and large predicted treatment effects. In our
setting, this is achieved by sorting students in the estimation sample (indexed by i) according to
S(Z;), the predicted value of their treatment effect given their observable characteristics. We con-
sider the bottom and top quintiles of S(Z;) and provide ITT estimates for both groups of students.

Classification Analysis (CLAN). The third feature consists in comparing the distribution of
observable characteristics of students with the smallest and largest predicted treatment effects.

The three above features—the BLP, the GATEs, and the CLAN—all rely on the existence
of a ML predictor S(Z). The BLP provides a means to check if S(Z) detects significant
heterogeneity in treatment effects. If it fails to do so, the GATEs and CLAN are not particularly
relevant for the analysis, as these features would provide a description of students for whom the
predicted treatment effect only differs from the unobserved CATE because of a poor-quality

A-10The intuition behind the formula for 32 can be grasped by noting that Equation (A.12) is a variant of the
simpler equation Y = ag + aB(Z) + 5T - S(Z) + €. This simpler model implies that so(Z) = 855(Z), suggesting
that 35 provides an estimate for how close the machine learning predictor S(Z) is to the CATE s¢(Z).

A-51



prediction.

L.2 Implementation of the Method

This section provides details on the implementation of the method of Chernozhukov et al. (2018)
in our empirical setting.

Population of interest. In the main text, we focus on the sample of girls in Grade 12 (science
track), since this group of students is the only one for which we find significant treatment effects
on enrollment outcomes. We identify which of these female students were most affected by the
program and investigate the messages to which they were particularly responsive. Results for
boys in Grade 12 can be found in Table L2.

Sample splits and iterations. We perform n = 100 iterations of the procedure described in
the previous section, which consists in (i) splitting the sample into a training and an estimation
subsample of equal size; (ii) predicting the CATE on the training sample using ML methods;
and (iii) estimating the three features of the CATE (BLP, GATEs, and CLAN) in the estimation
sample.*!! The sample splits are stratified by class, which is the randomization unit in our
experimental setting: half of the girls in each Grade 12 class are randomly assigned to the
training sample, while the other half are assigned to the estimation sample.

Propensity score. For each student, we estimate the probability that his or her class was
randomly assigned to the treatment group. This propensity score p(Z) is equal to one half in
most cases, since the treatment was generally assigned to two Grade 10 classes out of four and
to one Grade 12 class out of two among the classes that were selected by the school principals.
In other cases, the propensity score is not exactly one half.

Machine learning methods. We consider five alternative machine learning methods to
estimate the proxy predictor S(Z): Elastic Net, Random Forest, Boosted Trees, Neural Network
with feature extraction, and a simple linear model estimated via OLS. These methods are
implemented in R using the caret package written by Kuhn (2008), while the general approach
of Chernozhukov et al. (2018) is implemented by adapting the codes made available online by
the authors.?'2

For each machine learning method, the predictor S(Z) is constructed in several steps. First,
the model is fitted separately on the treatment and control group students in the training
sample. The two fitted models are then applied to the estimation sample to obtain the predicted
outcomes Y;(0) and Y;(1) for each individual. Finally, S(Z) is obtained by taking the difference
between the two predictions.”!3

For each outcome, we estimate the BLP of the CATE based on the ML method whose
associated predictor S(Z) has the highest correlation with the CATE s¢(Z) in the estimation

AlThe medians of the estimated features of the CATE change little when we repeat the entire procedure using
a different seed number to randomly split the data into the training and estimation samples, suggesting that
100 iterations are sufficient for the purpose of empirical convergence.

Al2https://github. com/demirermert/MLInference (accessed on May 4, 2018).

A-B3Predicting outcomes for treatment and control individuals separately, before taking the difference as we do
here may not be the most efficient approach to predict the CATE at finite distance. In our setting, however,
alternative ML methods directly designed to detect heterogeneity in treatment effects, such as the causal forests
proposed by Wager and Athey (2018), did not improve performance. We therefore decided not to rely on these
ML methods for the main analysis.
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sample. In practice, the best ML method for the BLP targeting of the CATE is chosen in the
estimation sample by maximizing the following performance measure:

A = |Bs]*Var(S(Z)) = Corr*(so(Z), S(Z))Var(so(Z)).

The above equation shows that maximizing A is equivalent to maximizing the correlation
between the ML predictor S(Z) and the CATE s,(Z2).

The best method for the GATESs targeting of the CATE, and hence also for the CLAN, is
selected based on the following performance measure:

2

k=1

where K is the number of (equal-sized) heterogeneity groups, I = [lx_1,[;) are non-overlapping
intervals that divide the support of S into regions [l;_1, l;) with equal or unequal masses, and
v is the GATE for heterogeneity group k. In practice, both performance measures lead to a
similar ranking of MLL methods and the methods eventually selected to produce the BLP, the
GATEs/CLAN are almost always the same.

Predictors. The covariates we use to train the ML methods are three indicators for the
education districts of Paris, Créteil, and Versailles, four indicators for students’ socio-economic
background (high SES, medium-high SES, medium-low SES, and low SES), their age, their
overall percentile rank in the Baccalauréat exam, their percentile ranks in the French and math
tests of the exam, and a vector of 56 role model fixed effects.*'* Our motivation for including
only a few pre-determined covariates in addition to the role model indicators is that we are
mostly interested in the treatment effect heterogeneity that arises from the 56 role models
(which can be seen as different treatment arms).

L.3 Correlation Between Treatment Effects on Different Outcomes

In this section, we explain how the method of Chernozhukov et al. (2018) can be extended to
estimate the correlation between the treatment effects on different outcomes. We show that a
set of four linear projections of the CATEs for two outcomes Y4 and Y'# on the ML predictors
of the CATEs for these outcomes can be combined to estimate the correlation between the two
CATEs under a natural assumption about prediction errors. This approach offers a promising
alternative to other methods, such as causal mediation analysis, that are commonly used in
the medical and social sciences literature to identify what factors may be part of the causal
pathway between an intervention and an outcome. Indeed, our proposed method does not rely
on strong identifying assumptions and can be used in any experimental setting, as long as there
is a sufficiently large number of observed exogenous covariates.

A new feature: projecting a CATE on the predictor of another CATE. Let Y4
and YP denote two distinct outcomes and let s (Z) and sF(Z) denote the true CATEs of
a treatment T on these outcomes, given a vector of exogenous covariates Z characterizing
the observational units (indexed by 7). Let p4 pjz = Corr(sg (Z), s§(Z)) denote the bivariate
correlation between the CATEs on Y4 and Y? and consider the following weighted linear

A-lEach student in the control group is assigned to the role model who visited his or her high school to ensure
that the role model indicators are defined for students in both the treatment and control groups. Moreover, to
account for the fact that some Grade 12 students have missing Baccalauréat grades (less than 2 percent), we
include indicators for missing grades as controls.
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projection:

YA =ao+aBB(Z) + BT — p(2)) + BoT — p(2))(SP(Z) —E[SB(2)]) + ¢, Elw(Z)eX] =0,
(A.13)
where BP(Z) and SP(Z) are a ML predictor of outcome Y? for individuals in the control group
and a ML predictor of the CATE on Y ?, respectively. Both ML predictors are trained using a
separate independent sample and are taken as given functions in Equation (A.13). The functions
p(Z) and w(Z) and the vector X have the same meaning as in Equation (A.12). Equation (A.13)
is estimated using weighted least squares, after replacing E[SP(Z)] by its empirical expectation
with respect to the estimation sample.
Adapting the BLP equation of Chernozhukov et al. (2018) (Equation 2.1 p. 8) by replacing
the ML predictor of the CATE on outcome Y4 by the ML predictor of the CATE for outcome
Y®, we directly obtain that Equation (A.13) identifies

MB = Cov(s(2),SP(2))/Var(SP(Z)).

The sign of BQA 1B is informative of the extent to which the CATE on Y4 is positively or negatively
correlated with the CATE on Y 2. To show this formally, we denote by np the approximation
error in SP(Z) and we write SB(Z) = sf(Z) + ng. Assuming that np is independent of s§'(Z),
we get that 857 = Cov(sii(Z),s5(Z))/Var(SB(Z)), which implies that BMP and pa,B|z have
the same sign.

Combining BLPs to recover the correlation between treatment effects. For any pair
of indices (k,1) € {(A, A), (B, B),(A, B),(B,A)}, we can identify

2" = Cov(s((2), 5'(2))/Var(5'(2))

from the BLP of s§(Z) on SY(Z). Writing SA(Z) = si'(Z) + na, SB(Z) = sF(Z) + np, and

assuming that the prediction errors 14 and ng are independent of both the predicted functions

si{(Z) and sP(Z) in the estimation sample, we can write

! = Cov(sf(2), 50(2))/ (Var(sh(2)) + Var(y'(2))).
Combining the formulas for the four different possible BLPs, we obtain the following expression:

A|B ,B|A

2 . 62 62

PAB|Z = BB ,AJA°
2 2

which implies that the correlation pa gz is identified as

) AB JBJA
. B
papiz = Sign(By7) 22— (A.14)

Practical implementation. As explained in the main text, we use the method of Cher-
nozhukov et al. (2018) to estimate the four heterogeneity loading parameters 654 |A, f ‘B, 54 |B,
and 523 4 At each iteration of the data-splitting process, the bivariate correlation pa gz is
estimated by plugging the four parameter estimates into Equation (A.14). In theory, 554 4
and 55 5 should both be positive, while BQA B and Bf 4 should have the sign of p4 gz in each
iteration of the data-splitting process. However, it can happen that the estimates Bg‘ |A, AzB |B,

Af |B, and Bf 4 do not satisfy these conditions due to estimation error, in particular when the
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predictors S4(Z) and SP(Z) are very noisy. In such cases, we do not estimate p4 5|7 and discard
the corresponding iteration of the data-splitting procedure. We iterate until we reach a number
of 100 iterations for which p4 gz can be computed, so that our final estimates are medians
computed over an identical number of iterations.*

The estimates based on Equation (A.14) can become very large (well above one in absolute
value) when the estimates of 354 4 or 323 5 are close to 0, which can occur when either or both
of the predictors S4(Z) and SP(Z) are noisy. Reassuringly, we show in Table L4 that the
correlation estimates p4 gz are hardly affected when we exclude data splits that yield a poor
ML prediction of the CATEs on outcomes Y4 or Y2, by using only the first 100 iterations of
the data-splitting process for which the estimates of the heterogeneity loading parameters B;‘ 4
and Bf B are above a minimum threshold ¢.

In the absence of a closed-form formula for the standard error of p4 gz, we estimate its
95 percent confidence interval as follows. At each iteration m of the data-splitting process,
we compute ﬁ%ﬁ , (indexed by m) in the estimation sample. When ﬁfﬁ)gl , can be computed,
we estimate its 97.5 percent confidence interval using a clustered bootstrap procedure, which
accounts for the clustered nature of the treatment assignment (at the class level). This procedure
consists in creating B replications of the estimation sample m by drawing with replacement
N{™ female students from each Grade 12 class ¢, where N(™ is the number of female students
from class ¢ in the estimation sample m, and computing p4 p|z for this bootstrap sample. For
each estimation sample m, this operation is repeated 6,000 times to estimate the 97.5 percent
confidence interval of ﬁ(/ﬁ)ﬂ , using the bootstrap percentile confidence interval method (Davison
and Hinkley, 1997, chap. 5).%!6 The 95 percent confidence interval for p4 |z is then computed
as the median of the 97.5 percent confidence intervals over the first 100 iterations for which ﬁ%)gl P
could be computed—the price of the splitting uncertainty being reflected in the discounting of
the confidence level from 1 — a to 1 — 2a.

A-15For each pair of outcomes (Y4, Y P), Table L3 indicates the proportion of random data splits for which the
correlation between CATESs could be computed.
A16The 97.5 percent confidence interval of ﬁ;m])gl » is estimated using only the bootstrap samples for which

Pa,B|z can be computed.
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Table L1 — Heterogeneous Treatment Effect on Student Outcomes for Girls in Grade 12:
Estimates Based on Machine Learning Methods

Panel A. Best Linear Predictor (BLP) of the CATE s((Z) given the ML proxy S(Z)

Parameters: ATE HET Best ML
(81) (B2) method

(p-values in square brackets)

Undergraduate major: selective STEM 0.038 0.762 Elastic Net
[0.027] [0.031]

Undergraduate major: male-dominated STEM 0.036 0.088 Linear model
[0.064] [0.731]

Positive perceptions of science-related careers (index) 0.298 0.400 Elastic Net
[0.000] [0.555]

More men in science-related jobs 0.119 0.657 Elastic Net
[0.000] [0.593]

Equal gender aptitude for math (index) 0.117 0.324 Random Forest
[0.010] [0.108]

Women don’t really like science 0.044 0.095 Linear model
[0.002] [0.566]

Women face discrimination in science-related jobs 0.105 0.496 Random Forest
[0.000] [0.012]

Taste for science subjects (index) 0.008 0.170 Linear Model
[1.000] [0.137]

Math self-concept (index) 0.029 0.257 Linear Model
[0.988] [0.010]

Science-related career aspirations (index) 0.077 0.245 Linear Model
[0.263] [0.013]

Panel B. Average predicted treatment effects among the most/least affected groups (GATEs)

Heterogeneity group: 20% least 20% most Difference Best ML
affected affected most—least method

(p-values in square brackets)

Undergraduate major: selective STEM —0.004 0.139 0.149 Elastic Net
[1.000] [0.014] [0.026]

Undergraduate major: male-dominated STEM 0.026 0.061 0.038 Elastic Net
[1.000] [0.464] [1.000]

Positive perceptions of science-related careers (index) 0.316 0.400 0.104 Elastic Net
[0.037] [0.001] [1.000]

More men in science-related jobs 0.096 0.160 0.065 Elastic Net
[0.048] [0.022] [0.766]

Equal gender aptitude for math (index) 0.019 0.246 0.210 Random Forest
[1.000] [0.037] [0.332]

Women don’t really like science 0.026 0.073 0.039 Linear model
[0.758] [0.078] [0.772]

Women face discrimination in science-related jobs —0.007 0.195 0.197 Random Forest
[1.000] [0.003] [0.038]

Taste for science subjects (index) —0.112 0.138 0.251 Linear model
[0.594] [0.369] [0.196]

Math self-concept (index) —0.122 0.191 0.317 Linear model
[0.416] [0.063] [0.035]

Science-related career aspirations (index) —0.142 0.268 0.387 Linear model
[0.394] [0.047] [0.041]

Notes: This table reports heterogeneous treatment effects of the program on student outcomes for girls in Grade 12 (science track),
using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional average treatment effect (CATE)
of role model interventions, so(Z), is predicted using five alternative ML methods: Elastic Net, Random Forest, Linear Model,
Boosting, and Neural Network. The covariates Z that are used to predict the CATE consist of three indicators for the educational
districts of Paris, Créteil, and Versailles, four indicators for students’ socioeconomic background (high, medium-high, medium-low,
and low), their age, their overall percentile rank in the Baccalauréat exam, their percentile ranks in the French and math tests of
the exam, and a vector of 56 role model fixed effects. For each outcome, Panel A reports the parameter estimates and p-values
(in square brackets) of the Best Linear Predictor (BLP) of the CATE using the best ML method. The coefficients 1 and B2
correspond to the average treatment effect (ATE) and heterogeneity loading (HET) parameters in the BLP, respectively. Panel B
reports the Sorted Group Average Treatment Effects (GATESs), i.e., the average treatment effects among students in the top and
bottom quintiles of the heterogeneous effects induced by the ML proxy predictor S(Z), using the best ML method.
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Table L2 — Heterogeneous Treatment Effects on Selective and Male-Dominated STEM Enroll-
ment for Boys in Grade 12: Estimates based on Machine Learning Methods

Panel A. Best Linear Predictor (BLP) of the CATE s((Z) given the ML proxy S(Z)

Parameters: ATE HET Best ML
(B1) (B2) method

Undergraduate Major: selective STEM 0.005 0.211 Linear Model

p-value [1.000] [0.029]

Undergraduate Major: male-dominated STEM 0.015 0.090 Linear Model

p-value [1.000] [0.706]

Panel B. Sorted Group Average Treatment Effects (GATEs): 20% most and least affected students

Heterogeneity group: 20% least 20% most Difference Best ML
affected affected most—least method

Undergraduate Major: selective STEM —0.056 0.061 0.116 Linear Model

p-value [0.358] [0.283] [0.086]

Undergraduate Major: male-dominated STEM 0.051 0.010 —0.030 Boosting

p-value [0.771] [1.000] [1.000]

Panel C. Average characteristics of the 20% most and least affected students (CLAN)

Heterogeneity group: 20% least 20% most Difference p-value
affected affected most—least  (upper bound)

Enrollment in selective STEM major
Student characteristics

Baccalauréat percentile rank in math 48.64 53.26 4.03 0.194
Baccalauréat percentile rank in French 39.95 50.94 10.45 0.000
High SES 0.495 0.494 —0.004 1.000
Role model characteristics

Professional 0.395 0.600 0.214 0.000
Participated in the program the year before 0.200 0.275 0.070 0.112
Non-French 0.141 0.188 0.051 0.208
Has children 0.413 0.492 0.080 0.140
Age 32.08 33.73 1.58 0.001
Holds/prepares for a Ph.D. 0.707 0.664 —0.070 0.206
Field: Math, Physics, Engineering 0.359 0.236 —0.133 0.001
Field: Earth and Life Sciences 0.541 0.688 0.157 0.000

Enrollment in male-dominated major

Student characteristics

Baccalauréat percentile rank in math 54.72 50.21 —4.46 0.123
Baccalauréat percentile rank in French 45.41 47.25 1.38 1.000
High SES 0.465 0.527 0.068 0.248
Role model characteristics

Professional 0.484 0.531 0.052 0.436
Participated in the program the year before 0.191 0.172 —0.019 1.000
Non-French 0.154 0.124 —0.025 0.820
Has children 0.489 0.489 0.004 1.000
Age 33.32 34.34 0.16 1.000
Holds/prepares for a Ph.D. 0.660 0.682 0.020 1.000
Field: Math, Physics, Engineering 0.295 0.277 —0.015 1.000
Field: Earth and Life Sciences 0.576 0.654 0.074 0.167

Notes: This table reports heterogeneous treatment effects of the program on the undergraduate enrollment outcomes of boys in
Grade 12 (science track), using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional average
treatment effect (CATE) of role model interventions, sg(Z), is predicted using five alternative ML methods: Elastic Net, Random
Forest, Linear Model, Boosting, and Neural Network. The covariates Z that are used to predict the CATE consist of three indicators
for the educational districts of Paris, Créteil, and Versailles, four indicators for students’ socioeconomic background (high, medium-
high, medium-low, and low), their age, their overall percentile rank in the Baccalauréat exam, their percentile ranks in the French
and math tests of the exam, and a vector of 56 role model fixed effects. For each outcome, Panel A reports the parameter estimates
and p-values (in square brackets) of the Best Linear Predictor (BLP) of the CATE using the best ML method. The coefficients 81
and (2 correspond to the average treatment effect (ATE) and heterogeneity loading (HET) parameters in the BLP, respectively.
Panel B reports the Sorted Group Average Treatment Effects (GATEs), i.e., the average treatment effects among students in the top
and bottom quintiles of the heterogeneous effects induced by the ML proxy predictor S(Z), using the best ML method. Panel C
performs a Classification Analysis (CLAN) by comparing the average characteristics of the 20 percent most and least affected
students defined in terms of the ML proxy predictor. The parameter estimates and p-values are computed as medians over 100
splits, with nominal levels adjusted to account for the splitting uncertainty. This adjustment implies that the reported p-values
should be interpreted as upper bounds for the actual p-values. Further details on the methods are provided in Appendix L.
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Table L3 — Proportion of Random Data Splits for which the Correlation between Conditional
Average Treatment Effects (CATESs) can be Computed, Girls in Grade 12

Proportion of data splits such that

PA,B|z can AB|B AA|A 5A|B 5B|A
be computed* > >0 >0 By "By =0

) (2) (3) (4)

When outcome YB is enrollment in a selective
STEM program and outcome Y4 is:

Positive perception of science-related careers (index) 0.80 1.00 0.86 0.90
More men in science-related jobs 0.68 0.99 0.89 0.73
Equal gender aptitude for math (index) 0.35 1.00 0.98 0.36
Women don’t really like science 0.34 0.99 0.84 0.40
Women face discrimination in science-related jobs 0.62 1.00 1.00 0.62
Taste for science subjects (index) 0.81 0.99 0.97 0.83
Math self-concept (index) 0.39 0.99 1.00 0.40
Science-related career aspirations (index) 0.64 0.99 1.00 0.65
Number of data splits 3,000 3,000 3,000 3,000

Notes: This table reports, for the sample of girls in Grade 12 (science track), the proportion of random data splits (out of 3,000) for
which the correlation between the Conditional Average Treatment Effects (CATEs) on outcomes Y4 and YZ could be computed.
Outcome YB is always enrollment in selective STEM, while Y4 is the outcome listed in the corresponding row of the table.
Conditional on the covariates Z, the CATEs on outcomes Y4 and Y B are denoted by S(‘)A(Z) and ség(Z), respectively, whereas their
ML proxy predictors are denoted by SA(Z) and SB(Z), respectively. For each random split, the correlation coefficient PA,B|Z s
) R ai  AA|By,5A|B AB|A\L ,, 2A|A\L  AB|By 1 NI . . .
estimated as p4 gz = Sign(By ' )(By By )2 /(B 7)2(By )2, where B, is the estimated heterogeneity loading parameter
of the Best Linear Predictor (BLP) of sf(Z) based on S!(Z) (with k,I € {A, B}), using the methods in Chernozhukov et al. (2018).

Column 1 indicates the fraction of data splits for which p4 p|z could be computed. The next three columns report the fraction of
~B|B SA|A

sample splits for which each of the three conditions to compute p4 p|z is met, i.e., 5, > 0 (column 2), 85" > 0 (column 3),
and A2A|BBA§‘A > 0 (column 4). The proportion of random splits such that ﬁQB‘B > 0 varies slightly across rows because for each

pair of outcomes (YA,YB), the sample is restricted to observations with non-missing values for both outcomes (see Appendix L).
Table 8 in the main text reports the median and 95 percent confidence interval of p4 p|z over the first 100 random data splits for
which p4 p|z can be computed. Details are provided in Section 6.3 of the main text and in Appendix L.
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Table L4 — Correlation between Conditional Average Treatment Effects (CATEs) for Girls in
Grade 12: Sensitivity Analysis

Bivariate correlation with the CATE on
enrollment in a selective STEM program
(from first 100 valid iterations)

Estimate 95% confidence  Proportion of
(Pa,B|z) interval valid iterations

Panel A. Data splits such that AflA > 0.1, AQB‘B > (0.1 and A;‘B/}flA >0

Conditional average treatment effect (CATE) on:

Positive perception of science-related careers (index) 0.96 [ 0.21, 5.39] 0.73
More men in science-related jobs —0.68 [—3.33, —0.03] 0.65
Equal gender aptitude for math (index) 0.08 [—1.90, 2.11] 0.33
Women don’t really like science 0.26 [—0.64, 3.75] 0.19
Women face discrimination in science-related jobs —0.31 [—2.20, 0.61] 0.61
Taste for science subjects (index) 0.69 [ 0.07, 3.42] 0.66
Math self-concept (index) —0.06 [—1.85, 1.37] 0.38
Science-related career aspirations (index) 0.34 [-0.61, 1.95] 0.62
Panel B. Data splits such that AflA > 0.2, AQB‘B > 0.2 and BgﬂB AflA >0

Conditional average treatment effect (CATE) on:

Positive perception of science-related careers (index) 0.93 [ 0.21, 5.07] 0.64
More men in science-related jobs —0.68 [—3.26, —0.03] 0.65
Equal gender aptitude for math (index) 0.05 [—1.98, 1.90] 0.31
Women don’t really like science 0.31 [-0.51, 3.44] 0.05
Women face discrimination in science-related jobs —0.30 [—2.12, 0.64] 0.58
Taste for science subjects (index) 0.59 [ 0.07, 2.61] 0.34
Math self-concept (index) 0.05 [-1.68, 1.51] 0.29
Science-related career aspirations (index) 0.31 [-0.64, 1.79] 0.46

Notes: Similarly to Table 8 in the main text, this table reports, for girls in Grade 12 (science track), the estimates of the bivariate
correlation p 4 g|z between the Conditional Average Treatment Effect (CATE) on enrollment in a selective STEM program, denoted
by sg(Z), and the CATE on each of the potential channels listed in the table, denoted by sé‘(Z). The difference is that estimates
provided in this table are obtained using only iterations of the data-splitting process for which the estimates of the heterogeneity
loading parameters B;‘A and AQB‘B are above a certain threshold. This threshold is set at 0.1 in Panel A and at 0.2 in Panel B.
These restrictions are applied to check the sensitivity of the correlation estimates to excluding data splits that yield a poor ML
prediction of the CATEs on outcomes Y4 or YB. Column 3 indicates the proportion of data splits satisfying the restrictions
specified in each panel’s heading. The estimates and 95 percent confidence intervals reported in columns 1 and 2 are obtained using
the first 100 data splits satisfying these restrictions. Additional details are provided in the notes of Table 8 and in Appendix L.
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