O. Adams, T. Cohn, G. Neubig, and A. Michaud, Phonemic transcription of low-resource tonal languages, Australasian Language Technology Association Workshop 2017, pp.53-60, 2017.
URL : https://hal.archives-ouvertes.fr/halshs-01656683

L. Besacier, E. Barnard, A. Karpov, and T. Schultz, Automatic speech recognition for under-resourced languages: A survey, Speech Communication, vol.56, pp.85-100, 2014.
DOI : 10.1016/j.specom.2013.07.008

URL : https://hal.archives-ouvertes.fr/hal-00953644

M. Brunelle, D. Chow, and T. N. Nguy?n, Effects of lexical frequency and lexical category on the duration of Vietnamese syllables, The Scottish Consortium for ICPhS 2015 Proceedings of 18th International Congress of Phonetic Sciences, pp.1-5, 2015.

L. Burget, P. Schwarz, M. Agarwal, P. Akyazi, K. Feng et al., Multilingual acoustic modeling for speech recognition based on subspace Gaussian Mixture Models, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.4334-4337, 2010.
DOI : 10.1109/ICASSP.2010.5495646

URL : http://www.clsp.jhu.edu/%7Esamuel/pdfs/sgmm_multiling.pdf

M. E. ?avar, D. Cavar, C. , and H. , Endangered Language Documentation: Bootstrapping a Chatino Speech Corpus, Forced Aligner, ASR, LREC, pp.4004-4011, 2016.

R. Collobert, J. Weston, K. , and M. , Natural Language Processing ( almost ) from Scratch, pp.1-34, 2011.

E. Cruz and T. Woodbury, El sandhi de los tonos en el Chatino de Quiahije, Las memorias del Congreso de Idiomas Indígenas de Latinoamérica-II. Archive of the Indigenous Languages of Latin America, 2006.

E. Cruz and T. Woodbury, Finding a way into a family of tone languages: The story and methods of the Chatino Language Documentation Project. Language Documentation and Conservation, pp.490-524, 2014.

E. Cruz, Phonology, tone and the functions of tone in San Juan Quiahije Chatino, Ph.D, 2011.

L. Deng, G. Hinton, and B. Kingsbury, New types of deep neural network learning for speech recognition and related applications: an overview, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.8599-8603, 2013.
DOI : 10.1109/ICASSP.2013.6639344

T. Do, A. Michaud, C. , and E. , Towards the automatic processing of Yongning Na (Sino- Tibetan): developing a 'light' acoustic model of the target language and testing 'heavyweight' models from five national languages, 4th International Workshop on Spoken Language Technologies for Under-resourced Languages, pp.153-160, 2014.
URL : https://hal.archives-ouvertes.fr/halshs-00980431

Y. Feng, L. Xu, N. Zhou, G. Yang, Y. et al., Sine-wave speech recognition in a tonal language, The Journal of the Acoustical Society of America, vol.131, issue.2, pp.133-138, 2012.
DOI : 10.1121/1.3670594

URL : http://asa.scitation.org/doi/pdf/10.1121/1.3670594

P. Ghahremani, B. Babaali, D. Povey, K. Riedhammer, J. Trmal et al., A pitch extraction algorithm tuned for automatic speech recognition, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2494-2498, 2014.
DOI : 10.1109/ICASSP.2014.6854049

R. Girshick, Fast R-CNN, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1440-1448, 2015.
DOI : 10.1109/ICCV.2015.169

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, Connectionist temporal classification, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.369-376, 2006.
DOI : 10.1145/1143844.1143891

N. Himmelmann, Language documentation: what is it and what is it good for, Essentials of language documentation, pp.1-30, 2006.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups, IEEE Signal Processing Magazine, vol.29, issue.6, pp.2982-97, 2012.
DOI : 10.1109/MSP.2012.2205597

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computation, vol.4, issue.8, pp.1735-1780, 1997.
DOI : 10.1016/0893-6080(88)90007-X

M. Jacobson, B. Michailovsky, and J. B. Lowe, Linguistic documents synchronizing sound and text, Speech Communication, vol.33, issue.1-2, pp.79-96, 2001.
DOI : 10.1016/S0167-6393(00)00070-4

URL : https://hal.archives-ouvertes.fr/hal-00005544

V. Le and L. Besacier, Automatic speech recognition for under-resourced languages: application to Vietnamese language. Audio, Speech, and Language Processing, IEEE Transactions on, issue.8, pp.171471-1482, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00953718

T. Lee, W. Lau, Y. W. Wong, C. , and P. C. , Using tone information in Cantonese continuous speech recognition, ACM Transactions on Asian Language Information Processing, vol.1, issue.1, pp.83-102, 2002.
DOI : 10.1145/595576.595581

B. Michailovsky, M. Mazaudon, A. Michaud, S. Guillaume, A. François et al., Documenting and researching endangered languages: the Pangloss Collection. Language Documentation and Conservation, pp.119-135, 2014.
URL : https://hal.archives-ouvertes.fr/halshs-01003734

A. Michaud, Tone in Yongning Na: lexical tones and morphotonology. Number 13 in Studies in Diversity Linguistics, 2017.
URL : https://hal.archives-ouvertes.fr/halshs-01094049

D. R. Mortensen, P. Littell, A. Bharadwaj, K. Goyal, C. Dyer et al., PanPhon: A Resource for Mapping IPA Segments to Articulatory Feature Vectors, Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp.3475-3484, 2016.

M. Müller, S. Stüker, and A. Waibel, Language Adaptive Multilingual CTC Speech Recognition, 2017.
DOI : 10.1109/ICASSP.1994.389311

O. Niebuhr and A. Michaud, Speech data acquisition: the underestimated challenge, KALIPHO -Kieler Arbeiten zur Linguistik und Phonetik, pp.1-42, 2015.
URL : https://hal.archives-ouvertes.fr/halshs-01026295

S. Ruder, An Overview of Multi-Task Learning in, Deep Neural Networks. jun, 2017.

M. Schuster and K. K. Paliwal, Bidirectional recurrent neural networks, IEEE Transactions on Signal Processing, vol.45, issue.11, pp.2673-2681, 1997.
DOI : 10.1109/78.650093

URL : https://maxwell.ict.griffith.edu.au/spl/publications/papers/ieeesp97_schuster.pdf

F. Gary and . Simons, Ethnologue: languages of the world, SIL International, 2017.

N. Thieberger, Documentary Linguistics: Methodological Challenges and Innovatory Responses, Applied Linguistics, vol.1, issue.2, pp.88-99, 2016.
DOI : 10.1017/CBO9780511975981.009

N. T. Vu, D. Imseng, D. Povey, P. Motlicek, T. Schultz et al., Multilingual deep neural network based acoustic modeling for rapid language adaptation, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.7639-7643, 2014.
DOI : 10.1109/ICASSP.2014.6855086

URL : http://infoscience.epfl.ch/record/198446/files/Vu_ICASSP_2014.pdf

P. Xu and P. Fung, Cross-lingual language modeling for low-resource speech recognition, IEEE Transactions on Audio, Speech and Language Processing, vol.21, issue.6, pp.1134-1144, 2013.

H. Xu, H. Su, C. Ni, X. Xiao, H. Huang et al., Semi-Supervised and Cross-Lingual Knowledge Transfer Learnings for DNN Hybrid Acoustic Models Under Low-Resource Conditions, Interspeech 2016, pp.1315-1319, 2016.
DOI : 10.21437/Interspeech.2016-1099

D. Cavar, M. Cavar, and H. Cruz, Chatino Speech Corpus Archive Dataset, ELRA, 2016.

A. Michaud and D. Latami, Housebuilding 2. Pangloss Collection: http://lacito.vjf.cnrs.fr/pangloss, 2017.

Y. and N. Corpus, Pangloss Collection