"Empty lands"? Social representations of contaminated brownfields in France
Marjorie Tendero, Cécile Bazart

To cite this version:
Marjorie Tendero, Cécile Bazart. "Empty lands"? Social representations of contaminated brownfields in France. 2018. halshs-01709548

HAL Id: halshs-01709548
https://halshs.archives-ouvertes.fr/halshs-01709548
Submitted on 15 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
“Empty lands”?

Social representations of contaminated brownfields in France

Marjorie Tendero* and Cécile Bazart†

* Corresponding author. Email: marjorie.tendero@agrocampus-ouest.fr; Adresses: SMART-LEREKO (Structures and Markets in Agriculture, Resources and Territories. Agrocampus Ouest - CFR d’Angers - 2 Rue André Le Notre - 49045 Angers Cedex 01 - France - Tél.: + 33 (0) 241 225 982; and ADEME (French Environment and Energy Management Agency) – 20 Avenue du Grésillé – 49000 Angers - France.
† Cécile Bazart. Email: cecile.bazart@lameta.univ-montp1.fr; Address: LAMETA (Montpellier Laboratory of Theoretical and Applied Economics). University of Montpellier 1 - UFR Economie, Espace Richter - Avenue Raymond Dugrand - CS 79606 - 34960 Montpellier Cedex 2 - France.
Abstract:

What first comes to mind when you think of contaminated brownfields? The information and ideas we hold about brownfield redevelopment can strongly influence discussions on this issue, the impacts we associate with it, and the types of regulation we view as appropriate. This study makes is based on the social representations theory, a process to decode reality by analyzing social representations associated with contaminated brownfield sites in France and isolate what influences individual’s behaviors and acceptance of brownfield management programs today in France. It proceeds in particular with textual analyzes from data collected through open-ended questions from a cross-sectional survey administered among 803 individuals living nearby a contaminated brownfield site. Results show awareness regarding potential contamination of brownfields sites. However, this pollution is associated to visible elements but is disconnected from main pollutants the can be found on the site. We also observe regional disparities regarding contaminated brownfields representations, which are linked to historical activities in former industrial regions. This allows us to draw some lines of recommendation for communication and management of future brownfield redevelopment programs.

Keywords: attitudes; brownfields, IRaMaTeQ; social representations; soil contamination; textual analysis

1. Introduction

On 26 March 2014, the French law on access to housing and urban renovation, so called ALUR law, was issued. This law aims to make significant changes regarding brownfield redevelopment. Indeed, the purpose pursued by ALUR is to remove main obstacles regarding brownfield redevelopment by clarifying environmental responsibilities, introducing
information on soil contamination in the local development plan, and thus securing the transactions (Lafeuille and Steichen, 2015). In France, numerous other laws, as for example, the law of solidarity and urban renewal, so called SRU in 2000, and the Grenelle 1 and 2 in 2009 and 2010 respectively, aim to promote the regeneration of brownfields. They are “any land or premises which have previously been used or developed and are not currently fully in use” (Alker et al., 2000). In France, it represents over 100,000 hectares of brownfields sites (ADEME and QuelleVille?, 2015).

Brownfield redevelopment reduce urban sprawl (Dorsey, 2003; Paull, 2008) and its negative consequences such as for example carbon emissions, unnecessary land consumption (Johnson, 2001; Stone, 2008) and excessive public expenditures on infrastructures: hydraulic, transport, electric, etc. (Benito et al., 2010). However, most brownfields are also contaminated sites due to their previous activities e.g. waste disposal, manufacturing, chemical or industrial activities, as well as petroleum using services (Oliver et al., 2005; Van Liedekerke et al., 2014). Moreover, squatted brownfields may be at the origin of numerous accidents or injuries. Besides, squatters may damage houses and buildings in such a way that become uninhabitable and display behavior that disturb the neighbourhoods (Prujit, 2013). Besides, brownfields cause premature deaths due to soil contaminants’ exposure (Gilderbloom et al., 2014; Hollander, 2009). As a consequence, brownfields sites cause serious economic, social, health and environmental problems (Bambra et al., 2015; Gilderbloom et al., 2014; Hollander, 2009).

Thus, brownfields are not available for immediate reuse without intervention. Indeed, brownfield redevelopment is challenging because of the stigma effect (Chan, 2001; Mundy, 1992; Patchin, 1991). This effect occurs when the entire neighbourhoods of the site are avoided and lie unused and unproductive for long decades because of suspected contamination and economic and social problems (Patchin, 1991). Indeed, brownfields are often located in areas with high poverty and unemployment rates (Gilderbloom et al., 2014; Yaconove, 2011).
France, regions that list the most contaminated sites in BASOL, the French national database for contaminated sites requiring a preventive or curative public intervention, are also the regions characterized by the higher social and environmental inequalities (Caudeville and Rican, 2016). However, once stigma associated to the site are removed, these lands can become very attractive to developers who return them to a productive use (Bond, 2001; Eisen, 2015; Taylor et al., 2016).

Although stigma’s impact on property value has been widely studied over the last decades (Eisen, 2015; Guntermann, 1995; Kiel, 1995; Kiel and McClain, 1996; Kiel and Williams, 2007; McCluskey and Rausser, 2003; Messer et al., 2006; Roddewig, 1999, 1996; Schwarz et al., 2017; Taylor et al., 2016), little has been done regarding social representations of contaminated brownfields. Besides, social representations theory (SRT) has been barely applied in urban studies (Hubbard, 1996; Raynor et al., 2016).

Thus, the aim of this paper is to analyze the relative importance of the stigma effect in social representations regarding contaminated brownfields. Stigma effect may persist even after remediation process (Broto et al., 2010; Kim and Miller, 2017; McGee, 1999; Slovic et al., 1991). Therefore, an analysis of social representations of contaminated brownfields can help to better identify the dynamics governing individuals’ behaviors and thus to most appropriate public communication strategies. In other words, it would be possible to define brownfield redevelopment projects that would be socially acceptable by improving communication about brownfields redevelopment projects. We focus our study on French municipalities impacted by at least one contaminated brownfield site using data from BASOL. Once these municipalities were identified, we have developed and administered a questionnaire survey among citizens who are living near a polluted brownfield site projects that is to say that are concerned by at least one contaminated brownfield. We used open-ended questions to analyze social representations of contaminated brownfields. Results were analysed using textual analysis.
The paper proceeds as follows: the next section presents the SRT framework and its relevance to study social representations regarding contaminated brownfields. Section 3 focuses on the materials and methods used. Section 4 presents results. We discuss our results in the light of the existing literature in section 5. In section 6, the paper concludes and gives some insights for future research directions and enhancements.

2. Theoretical framework of social representations theory

We first present the SRT (1) and more specifically the structural approach developed by Jean-Claude Abric (Abric, 2001; Abric and Tafani, 1995). Then we show of SRT was used to analyze economic phenomena in the literature (2).

1. The structural approach of social representations

A representation is the “product of processes of mental activity through which an individual or group reconstitutes the reality with which it is confronted and to which it attributes a specific meaning” (Abric, 2003; Chalmers et al., 1992). They are the map of meaning used for making sense of one’s life (Abric, 2001). They are socially constructed and hence collectively shared. Indeed, social representations are a “form of socially elaborated and shared knowledge that has a practical aim and is concurrent with the construction of a common reality by a social group” (Jodelet and Moscovici, 1989). It corresponds to a form of common natural and naïve knowledge that gather opinions, beliefs, attitudes, etc. (Sales-Wuillemin et al., 2004) and allow people to interpret the world (Mannoni, 2016; Rateau and Lo Monaco, 2013). Social representations influence how individuals understand and behave in relation to specific issues. Thus, SRT aims to analyze the system of meaning and interpretation that individuals express at a given time in relations to its environmental and cultural context (Mannoni, 2016; Rateau and Lo Monaco, 2013).
According to the structural approach (Abric, 2001; Abric and Tafani, 1995; Flament, 2003) every social representation is structured around a central core that gives the representation its meaning and coherence. The core is the most stable element of the representation because it is the most resistant to change. It reflects normative components derived from the system of individuals’ values, and norms and their social characteristics and practices (Abric and Tafani, 1995). Identification of the core plays a crucial role in the analysis of social representation. The way the components are organized has to be considered because two different representations may contain the same elements but can never be organized the same way (Abric, 2001; Flament, 2003).

2. Social representations theory in economic study: a brief literature review

SRT is derived from both social psychology and sociology (Kouira, 2014).

However, SRT was used in numerous economic study. For instance SRT was applied to study social representations regarding tax evasion (Kirchler et al., 2003), financial crisis (Jeziorski et al., 2012; Roland-Lévy et al., 2010), the euro (Meier and Kirchler, 1998).

The SRT may help to a better understanding of pro-environmental behaviors (Weiss et al., 2011; Weiss and Girandola, 2014). For instance, it has been applied to study: the adoption of renewable energy technologies (Batel and Devine-Wright, 2015; Zbinden et al., 2011); energy savings (Roussiau and Girandola, 2002; Souchet and Girandola, 2013); the link between place identification, pro-environmental behavior and environmental buildings (Ajdukovic et al., 2012). SRT was also implemented to analyze representations of pesticides among 77 students and farmers living in PACA, Languedoc-Roussillon, Bretagne or Martinique in France (Zouhri et al., 2016). In urban studies, SRT was applied to identify and understand representations associated with urban consolidation in 449 articles published in Brisbane newspapers between 2007 and 2014 (Raynor et al., 2016). In most of the case, social representations are analyzed using textual analysis or discourse analysis (Chartier and Meunier, 2011; Fairclough, 2003).
Textual analysis was used to examine business leaders' perceptions on sustainable development and their expectations about local governments using questionnaire data from 32 French business leaders (Musson, 2012). It was also used to examine the different strategies of agricultural advice used by two French farmers' cooperatives (Del Corso et al., 2015). Discourse analysis was employed to identify determinants of local land-use policy in South-Eastern France (Delattre et al., 2015). This method was also used to examine how scientific discourse has evolved since 1989 by processing 6 237 abstracts of articles published in four peer-review journals (Plumecocq, 2014).

3. Materials and methods

This section exposes the way data were obtained using BASOL (1), the survey that was developed and administered (2). It then turns on the methods used to analysed data collected (3) and the descriptive statistics of our sample (4).

1. Data collection strategy

Data were collected from a questionnaire administered to the resident population living near a contaminated brownfield listed in Basol. Data were extracted from Basol on 27th October 2015. There were 6 294 contaminated sites, and among them 6 168 were located in the metropole. Brownfield sites were identified using the site status variable which differentiate industrial sites still used or reused and industrial brownfields. According to this variable, there were 2 133 contaminated brownfield sites. This represents nearly a third of contaminated sites listed in 2015. They are located in 1 375 municipalities. Among them, 503 municipalities were surveyed; it is nearly the half of the impacted municipalities.

To obtain a geographically targeted panel, a quota on the number of individuals to be surveyed in each municipality impacted by a contaminated brownfield has been established
from the data of the 2015 Census from the National Institute of Statistics and Economic Studies (INSEE). Besides, quotas for sex and age were included and checked by a professional panellist to ensure that the data are representative. The choice of such sample ensured that the survey targeted individuals concerned by a contaminated brownfield site.

Figure 1: Geographically targeted panel obtained from BASOL and INSEE Data

2. Questionnaire survey design and administration

Data were collected by a survey questionnaire (see supplementary data) administered online using Limesurvey™. The questionnaire was composed of five parts: the first part focused on soil contamination. The second part dealt with brownfields sites. The third part concerned individual preferences and expectations for numerous brownfield redevelopment projects. The fourth part was about trust in institutions and the modalities of participation wished by individuals. Finally,

3 SSI – Survey Sampling International, LLC, 6 Research Drive, Shelton, CT, 06484, United States.
the last part consisted of a socio-demographic questionnaire. The survey was designed to be completed in about 20 minutes. It was administered online using Limesurvey™.

Two open-ended questions were used to analyse social representations regarding contaminated brownfields. The first open-ended question, posed at the beginning of the questionnaire, focused on soil contamination’s representations of individuals leaving nearby a contaminated brownfield whereas the second open-ended question focused on brownfield sites. Thus, the analysis relied on two open-ended questions with spontaneous evocations.

3. Analyzing social representations with textual analysis

Textual analysis is a method used to describe and interpret characteristics of a message. It offers a rapid and efficient solution to describe content, structure and function of messages contained in texts. It provides statistical indicators and visual charts for analyzing the complex information contained in texts (Lebart and Salem, 1994). Besides, it supports the interpretation of the phenomenon on quantitative and objective criteria (Garnier and Guérin-Pace, 2010). Hence, this avoids biases resulting from the thematic post-codification stage. Indeed, thematic post-codification excludes unusual responses even if they are an important detail to understand the phenomenon.

Moreover, this technique is well-suited to analyze and understand individual or social representations (Abric, 2003; Beaudouin and Lahlou, 1993; Kalampalikis, 2005; Negura, 2006). Textual data analysis enables the analyst to go through texts and identify the main representations. Grammar and lexicon are vectors of representation (Harré, 2003). They may show individual attitudes and behavior (Doise, 2003). In our study, textual analysis were carried out to analyze and understand individual representations associated to the term brownfield by free association of ideas using two open-ended questions. Thus, we constituted two text

4 Limesurvey™ is an open source PHP web application to develop, publish and collect responses to online and offline surveys (Schmitz, 2015). We would like to thank Jean-Marc Rousselle (INRA-LAMETA) who administered the survey on Limesurvey™ with the quotas previously defined.
corpus: a first corpus related to soil contamination and the second related to brownfield. For each open-ended question, individuals could give a maximum of five words or expressions.

Textual analyzes were performed using the Alceste method of classification and similarity (Reinert and Roure, 1993) with the software Iramuted version 0.7 alpha 2 which is the R interface for multidimensional analysis of texts and questionnaires (Baril and Garnier, 2015; Ratinaud and Déjean, 2009). We present some general statistics about these two corpora in Table 1 below.

<table>
<thead>
<tr>
<th></th>
<th>Brownfields corpus</th>
<th>Soil contamination corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texts number</td>
<td>539</td>
<td>723</td>
</tr>
<tr>
<td>Occurrences numbers</td>
<td>1,368</td>
<td>2,087</td>
</tr>
<tr>
<td>Means of occurrences</td>
<td>2.54</td>
<td>2.89</td>
</tr>
<tr>
<td>Active forms number</td>
<td>1,148</td>
<td>1,967</td>
</tr>
<tr>
<td>Supplementary forms number</td>
<td>220</td>
<td>120</td>
</tr>
<tr>
<td>Hapax number</td>
<td>245</td>
<td>346</td>
</tr>
</tbody>
</table>

Table 1: Corpuses description

The number of texts corresponds to the number of responses collected. The corpus included the transcribed and translated (from French) responses of 723 out of 803 surveys (90.03%) regarding soil contamination and 541 out of 803 (67.37%) completed responses. For the first open-ended question, 80 responses were excluded whereas for the second open-ended question, 262 responses were excluded because of poor response. This number is increasing for the second open-ended question, as we observe a wearisome effect towards the survey.

The occurrences number indicates the number of words used. Individuals used on average 2.54 words about brownfields and 2.89 to deals with soil contamination. Hapax are words, which have a unique occurrence all over the corpus.

Out of all forms, active forms carry more sense than others do. They can be verbs, nouns or adjectives while supplementary form are composed of functional words.

5 Some respondents did not succeed to provide even a single word or expression to these open-ended questions. These respondents have just typed random letters on their keyboard to move on to the next question. Their responses are meaningless and were not kept in the analysis.
4. Population

Data were collected in December 2015. 1,089 questionnaires were returned and 803 were complete and valid. It represents a response rate of 76.58%. The sociodemographic characteristics of the participants are presented in Table 2. 52.30% of our sample were female. The mean age of our sample was 44 years, and 69.49% were employed. The panelist has selected individuals from previously defined quotas (in terms of localization, gender and age). Therefore, this sample is representative of the French population.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N = 803</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>383</td>
<td>47.70</td>
</tr>
<tr>
<td>Female</td>
<td>420</td>
<td>52.30</td>
</tr>
<tr>
<td>Age, mean (standard deviation)</td>
<td>44.12 (12.93)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without diploma or primary school only</td>
<td>39</td>
<td>4.86</td>
</tr>
<tr>
<td>Vocational training</td>
<td>158</td>
<td>19.68</td>
</tr>
<tr>
<td>Baccalaureate</td>
<td>190</td>
<td>23.66</td>
</tr>
<tr>
<td>University degree (Bac + 2)</td>
<td>201</td>
<td>25.03</td>
</tr>
<tr>
<td>Master’s degree (Bac + 3 or 4)</td>
<td>215</td>
<td>26.77</td>
</tr>
<tr>
<td>Employed</td>
<td>558</td>
<td>69.49</td>
</tr>
<tr>
<td>Socio-professional category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmers</td>
<td>3</td>
<td>0.37</td>
</tr>
<tr>
<td>Skilled manual workers, shopkeepers, company owners</td>
<td>19</td>
<td>2.37</td>
</tr>
<tr>
<td>Senior managers and higher managerial, administrative and professional positions</td>
<td>101</td>
<td>12.58</td>
</tr>
<tr>
<td>Intermediate managerial, administrative positions</td>
<td>132</td>
<td>16.44</td>
</tr>
<tr>
<td>Salaried</td>
<td>249</td>
<td>31.01</td>
</tr>
<tr>
<td>Semi-skilled and unskilled workers</td>
<td>54</td>
<td>6.72</td>
</tr>
<tr>
<td>Inactive</td>
<td>245</td>
<td>30.51</td>
</tr>
<tr>
<td>- retired</td>
<td>93</td>
<td>11.58</td>
</tr>
<tr>
<td>- students</td>
<td>30</td>
<td>3.74</td>
</tr>
<tr>
<td>- unemployed</td>
<td>46</td>
<td>5.73</td>
</tr>
<tr>
<td>- others inactive (invalidity, housewife/man, etc.)</td>
<td>76</td>
<td>9.46</td>
</tr>
<tr>
<td>Married</td>
<td>497</td>
<td>61.89</td>
</tr>
<tr>
<td>Regions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile de France</td>
<td>139</td>
<td>17.31</td>
</tr>
<tr>
<td>Centre Val de Loire</td>
<td>44</td>
<td>5.48</td>
</tr>
<tr>
<td>Bretagne</td>
<td>28</td>
<td>3.49</td>
</tr>
<tr>
<td>Pays de la Loire</td>
<td>31</td>
<td>3.86</td>
</tr>
<tr>
<td>Provence-Alpes Côte d'Azur (PACA) + Corse</td>
<td>34</td>
<td>4.35</td>
</tr>
<tr>
<td>Hauts de France</td>
<td>122</td>
<td>15.19</td>
</tr>
<tr>
<td>Auvergne Rhône Alpes</td>
<td>108</td>
<td>13.45</td>
</tr>
<tr>
<td>Nouvelle Aquitaine</td>
<td>64</td>
<td>7.97</td>
</tr>
<tr>
<td>Bourgogne Franche-Comté</td>
<td>35</td>
<td>4.36</td>
</tr>
<tr>
<td>Grand-Est</td>
<td>111</td>
<td>13.82</td>
</tr>
</tbody>
</table>
4. Results

In this section, we present results obtained from the corpus related to soil contamination (1) and brownfield (2).

1. Results regarding soil contamination

First, we seek to identify the elements that could be part of possible social representations of soil contamination using textual statistics and similarity analysis. Table 3 shows the 10 active forms according to their frequency in the corpus. Figure 2 represents results obtained from similarity analysis. Similarity analysis shows how the words are connected to each other’s. It studies the overall relationship between words used in the same context. Thus, it helps to identify the structure of a text corpus. It is based on graph theory (Flament, 1981). A connected graph without circling represents the network of the words frequently used together in the same context (i.e. in the same text segment). Thickness of the line between two words represents how often those two words are used together. Only strongest connections between words are kept.

We observe that soil contamination is associated to visible and material elements (plastic, cigarette stub and wastes). Besides, individuals express concerns regarding water contamination (nitrate, wastewater) and air pollution (fumes, gas, hydrocarbon, fuel). They consider agriculture as the main pollutant activity (pesticide, fertilisers, intensive farming).

<table>
<thead>
<tr>
<th>Form</th>
<th>Count</th>
<th>Form</th>
<th>Count</th>
<th>Form</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesticide</td>
<td>188</td>
<td>Intensive farming</td>
<td>21</td>
<td>Wastewater</td>
<td>13</td>
</tr>
<tr>
<td>Waste</td>
<td>79</td>
<td>Weed killing</td>
<td>20</td>
<td>Fuel</td>
<td>13</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>63</td>
<td>Plastic</td>
<td>18</td>
<td>heavy metals</td>
<td>12</td>
</tr>
<tr>
<td>Chemical products</td>
<td>50</td>
<td>Industry</td>
<td>18</td>
<td>Gas</td>
<td>12</td>
</tr>
<tr>
<td>Agriculture</td>
<td>42</td>
<td>Water</td>
<td>17</td>
<td>Soil</td>
<td>11</td>
</tr>
<tr>
<td>Manufacturing plant</td>
<td>39</td>
<td>Human</td>
<td>17</td>
<td>Cigarette stub</td>
<td>11</td>
</tr>
<tr>
<td>Nitrate</td>
<td>31</td>
<td>Hydrocarbon</td>
<td>16</td>
<td>Agricultural</td>
<td>11</td>
</tr>
<tr>
<td>Industrial</td>
<td>30</td>
<td>Contamination</td>
<td>16</td>
<td>Disease</td>
<td>10</td>
</tr>
<tr>
<td>Pollution</td>
<td>23</td>
<td>Landfill</td>
<td>15</td>
<td>Waste</td>
<td>10</td>
</tr>
</tbody>
</table>
Table 3: Active forms regarding soil contamination with at least 10 occurrences in the corpus (translated from French)

To confirm this interpretation, we performed a descending hierarchical classification (DHC). It provides a classification of words representing semantic contexts (Table 4). We name each category according to subjects and characteristics treated. Each of these categories gathers terms, which have a common meaning.

Table 4: Descending hierarchical classification regarding soil contamination (translated from French)

79.53% of the words used in the corpus are listed in three groups. The percentages represent the distribution of classed words for each category e.g., category 1 garners 61.91% of words used. Assigning a given term to a group was evaluated using a chi-squared test.
(significance level set at 3.84 that is to say a 0.05% that a word was assigned to a group randomly). A tree diagram (dendrogram) illustrates this analysis (Figure 3 hereafter).
Figure 2: Similarity analysis regarding soil contamination
The first category deals with pollutants such as pesticide, waste, hydrocarbon, plastic, fertilizer, and weed killing. The second category is about activity sectors that may generate soil contamination. Although they are aware that they may have a part of responsibility, mainly agricultural and industrial activities are mentioned. The consequences of soil contamination correspond to the third category. Health and environmental consequences are mostly evoked.

A prototypical analysis was conducted using a rank-frequency method to analyze social representation of soil contamination (Dany et al., 2015; Vergès, 1992). It reveals the most salient words based on the calculation and segmentation according to the medium rank of appearance and words’ frequency (see Table 5). The central system zone of the social representation of soil contamination is composed by elements related to agriculture and industry: pesticide, fertilizer, chemical products, weed killing, manufacturing plant, heavy metal.
Other references to these component are in the potential change zone and in the peripheral system zone: intensive farming, water, pig manure, cigarette stub, etc. It reveals that individual misunderstood what soil contamination is. They refer to tangible and visible (waste, cigarette stub, garbage fumes) elements.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Association appearance ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (≤ 2.03)</td>
<td>High (> 2.03)</td>
</tr>
<tr>
<td>Low (< 8.37)</td>
<td>Phytosanitary product, Diesel, Chemical fertilizer, Earth, Destruction, Detergent, Danger, Detritus, Water contamination, Toxic waste, Chewing gum, Dust, Garbage</td>
</tr>
</tbody>
</table>

Table 5: Structure of social representation of soil contamination (translated from French)
Finally, a factorial analysis is carried out to identify regional disparities regarding social representations (Table 6). We observe that in Brittany and Pays-de-la-Loire regions soil contamination is closely related to nitrate, fertilizers, and intensive farming. These two French regions are vulnerable with respect to nitrate according to the European Directive 91/676/EEC issued on 12th December 1991 (known as “Nitrate Directive) due to intensive farming (Direction régionale de l’Environnement, de l’Aménagement et du Logement Centre-Val de Loire, 2017; Forged et al., 2011; Loyon, 2017). This result may indicate that people are aware that pig manure due to intensive farming cause water contamination by nitrate and eutrophication. This corresponds to words included in the peripheral system, that is to say to representation related to group members’ individual experiences.
<table>
<thead>
<tr>
<th></th>
<th>Grand-Est</th>
<th>Nouvelle Aquitaine</th>
<th>Bourgogne-Franche-Comté</th>
<th>Bretagne</th>
<th>Centre-Val-de-Loire</th>
<th>Île-de-France</th>
<th>Occitanie</th>
<th>Normandie</th>
<th>Hauts-de-France</th>
<th>PACA</th>
<th>Pays-de-la-Loire</th>
<th>Auvergne-Rhône-Alpes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>0.36</td>
<td>0.21</td>
<td>-0.20</td>
<td>-0.18</td>
<td>0.32</td>
<td>0.25</td>
<td>-0.24</td>
<td>-0.25</td>
<td>-0.84</td>
<td>0.44</td>
<td>0.47</td>
<td>0.68</td>
</tr>
<tr>
<td>Agriculture</td>
<td>-0.47</td>
<td>-0.27</td>
<td>0.61</td>
<td>-0.71</td>
<td>0.66</td>
<td>0.25</td>
<td>-0.18</td>
<td>0.43</td>
<td>0.28</td>
<td>0.63</td>
<td>-0.28</td>
<td>-0.39</td>
</tr>
<tr>
<td>Chemical</td>
<td>-0.36</td>
<td>0.26</td>
<td>1.23</td>
<td>0.24</td>
<td>0.44</td>
<td>-0.31</td>
<td>-0.15</td>
<td>0.51</td>
<td>0.32</td>
<td>0.22</td>
<td>0.24</td>
<td>-0.45</td>
</tr>
<tr>
<td>Chemical products</td>
<td>-1.31</td>
<td>-0.34</td>
<td>0.38</td>
<td>-0.20</td>
<td>0.89</td>
<td>1.38</td>
<td>-0.31</td>
<td>1.03</td>
<td>-0.46</td>
<td>-0.62</td>
<td>-0.20</td>
<td>-0.36</td>
</tr>
<tr>
<td>Cigarette stub</td>
<td>-0.25</td>
<td>-0.41</td>
<td>-0.20</td>
<td>-0.18</td>
<td>0.89</td>
<td>0.57</td>
<td>-0.24</td>
<td>0.35</td>
<td>0.26</td>
<td>-0.20</td>
<td>-0.18</td>
<td>0.31</td>
</tr>
<tr>
<td>Contamination</td>
<td>-0.19</td>
<td>-0.60</td>
<td>0.30</td>
<td>0.34</td>
<td>0.42</td>
<td>0.96</td>
<td>0.73</td>
<td>0.70</td>
<td>-0.61</td>
<td>-0.29</td>
<td>0.93</td>
<td>-0.53</td>
</tr>
<tr>
<td>Dirt</td>
<td>-0.36</td>
<td>-0.17</td>
<td>-0.26</td>
<td>0.38</td>
<td>0.25</td>
<td>-0.53</td>
<td>-0.31</td>
<td>-0.32</td>
<td>1.24</td>
<td>-0.25</td>
<td>0.38</td>
<td>0.48</td>
</tr>
<tr>
<td>Disease</td>
<td>0.88</td>
<td>0.24</td>
<td>0.46</td>
<td>-0.17</td>
<td>-0.26</td>
<td>-0.79</td>
<td>-0.22</td>
<td>-0.23</td>
<td>-0.29</td>
<td>0.47</td>
<td>-0.17</td>
<td>0.78</td>
</tr>
<tr>
<td>fertilizers</td>
<td>0.63</td>
<td>-0.62</td>
<td>0.42</td>
<td>0.47</td>
<td>0.25</td>
<td>0.35</td>
<td>-0.72</td>
<td>0.30</td>
<td>-0.66</td>
<td>0.43</td>
<td>-0.18</td>
<td>0.29</td>
</tr>
<tr>
<td>Fuel</td>
<td>0.28</td>
<td>-0.49</td>
<td>-0.24</td>
<td>-0.22</td>
<td>0.27</td>
<td>0.43</td>
<td>-0.29</td>
<td>-0.30</td>
<td>-0.99</td>
<td>-0.23</td>
<td>0.41</td>
<td>2.21</td>
</tr>
<tr>
<td>Fumes</td>
<td>0.82</td>
<td>0.26</td>
<td>-0.41</td>
<td>-0.37</td>
<td>0.44</td>
<td>-1.02</td>
<td>-0.15</td>
<td>-0.16</td>
<td>0.57</td>
<td>0.22</td>
<td>-0.37</td>
<td>0.40</td>
</tr>
<tr>
<td>Gas</td>
<td>-0.28</td>
<td>-0.45</td>
<td>-0.22</td>
<td>0.44</td>
<td>-0.31</td>
<td>-0.42</td>
<td>-0.27</td>
<td>0.33</td>
<td>0.22</td>
<td>0.41</td>
<td>-0.20</td>
<td>1.69</td>
</tr>
<tr>
<td>Heavy metals</td>
<td>0.70</td>
<td>0.19</td>
<td>0.40</td>
<td>-0.20</td>
<td>-0.31</td>
<td>-0.95</td>
<td>0.34</td>
<td>0.33</td>
<td>0.53</td>
<td>0.41</td>
<td>-0.20</td>
<td>-0.34</td>
</tr>
<tr>
<td>Human</td>
<td>0.41</td>
<td>-0.23</td>
<td>-0.31</td>
<td>-0.28</td>
<td>-0.44</td>
<td>0.87</td>
<td>-0.38</td>
<td>-0.39</td>
<td>0.28</td>
<td>0.83</td>
<td>-0.28</td>
<td>0.34</td>
</tr>
<tr>
<td>Hydrocarbon</td>
<td>0.45</td>
<td>0.86</td>
<td>0.31</td>
<td>-0.27</td>
<td>-0.42</td>
<td>-1.27</td>
<td>0.73</td>
<td>0.24</td>
<td>-1.22</td>
<td>0.31</td>
<td>-0.27</td>
<td>1.16</td>
</tr>
<tr>
<td>Industrial</td>
<td>0.45</td>
<td>-0.27</td>
<td>0.91</td>
<td>-0.16</td>
<td>0.28</td>
<td>-0.37</td>
<td>0.35</td>
<td>-0.27</td>
<td>0.27</td>
<td>0.47</td>
<td>-0.50</td>
<td>-0.46</td>
</tr>
<tr>
<td>Industry</td>
<td>-0.53</td>
<td>-0.68</td>
<td>-0.33</td>
<td>-0.30</td>
<td>-0.14</td>
<td>1.20</td>
<td>0.22</td>
<td>0.21</td>
<td>-0.37</td>
<td>0.79</td>
<td>0.85</td>
<td>-0.30</td>
</tr>
<tr>
<td>Intensive farming</td>
<td>-0.33</td>
<td>0.28</td>
<td>0.23</td>
<td>0.74</td>
<td>0.46</td>
<td>-0.28</td>
<td>0.55</td>
<td>-0.49</td>
<td>0.36</td>
<td>-0.38</td>
<td>-0.35</td>
<td>-0.20</td>
</tr>
<tr>
<td>Landfill</td>
<td>-0.52</td>
<td>0.73</td>
<td>0.33</td>
<td>0.36</td>
<td>0.23</td>
<td>-0.59</td>
<td>-0.33</td>
<td>0.75</td>
<td>-0.25</td>
<td>-0.27</td>
<td>0.36</td>
<td>-1.03</td>
</tr>
<tr>
<td>Manufacturing plant</td>
<td>0.62</td>
<td>-0.82</td>
<td>-0.73</td>
<td>-0.24</td>
<td>0.40</td>
<td>-0.46</td>
<td>0.23</td>
<td>0.49</td>
<td>1.46</td>
<td>-0.28</td>
<td>-0.65</td>
<td>-0.31</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0.68</td>
<td>-0.28</td>
<td>0.88</td>
<td>-0.17</td>
<td>0.58</td>
<td>-0.41</td>
<td>-0.27</td>
<td>0.67</td>
<td>-0.62</td>
<td>-0.19</td>
<td>0.98</td>
<td>-1.34</td>
</tr>
<tr>
<td>Pesticide</td>
<td>-0.64</td>
<td>0.42</td>
<td>-0.33</td>
<td>0.85</td>
<td>-0.34</td>
<td>0.33</td>
<td>0.93</td>
<td>0.29</td>
<td>-0.81</td>
<td>-0.30</td>
<td>0.60</td>
<td>-0.28</td>
</tr>
<tr>
<td>Petroleum</td>
<td>-0.36</td>
<td>0.99</td>
<td>-0.26</td>
<td>-0.23</td>
<td>-0.36</td>
<td>0.38</td>
<td>-0.31</td>
<td>-0.32</td>
<td>-0.22</td>
<td>0.36</td>
<td>0.38</td>
<td>0.48</td>
</tr>
<tr>
<td>Plastic</td>
<td>-0.24</td>
<td>0.35</td>
<td>-0.33</td>
<td>-0.30</td>
<td>1.09</td>
<td>-0.77</td>
<td>-0.40</td>
<td>0.21</td>
<td>0.25</td>
<td>-0.32</td>
<td>-0.30</td>
<td>1.45</td>
</tr>
<tr>
<td>Pollution</td>
<td>-0.19</td>
<td>-0.38</td>
<td>-0.43</td>
<td>0.23</td>
<td>-0.60</td>
<td>0.77</td>
<td>-0.51</td>
<td>-0.18</td>
<td>0.83</td>
<td>0.21</td>
<td>-0.38</td>
<td>0.36</td>
</tr>
<tr>
<td>Soil</td>
<td>0.78</td>
<td>0.21</td>
<td>-0.20</td>
<td>-0.18</td>
<td>-0.29</td>
<td>-0.37</td>
<td>0.37</td>
<td>-0.25</td>
<td>0.26</td>
<td>-0.20</td>
<td>1.22</td>
<td>-0.29</td>
</tr>
<tr>
<td>Wastes</td>
<td>0.41</td>
<td>-0.38</td>
<td>-0.18</td>
<td>-0.17</td>
<td>0.35</td>
<td>0.65</td>
<td>-0.22</td>
<td>-0.23</td>
<td>0.31</td>
<td>-0.18</td>
<td>0.50</td>
<td>-0.25</td>
</tr>
<tr>
<td>Wastewater</td>
<td>-0.32</td>
<td>-0.49</td>
<td>-0.24</td>
<td>1.98</td>
<td>0.27</td>
<td>-0.47</td>
<td>0.31</td>
<td>0.30</td>
<td>-0.18</td>
<td>0.38</td>
<td>-0.22</td>
<td>0.23</td>
</tr>
<tr>
<td>Water</td>
<td>-0.48</td>
<td>-0.64</td>
<td>-0.31</td>
<td>-0.28</td>
<td>0.58</td>
<td>-0.35</td>
<td>2.10</td>
<td>0.22</td>
<td>0.54</td>
<td>-0.30</td>
<td>0.32</td>
<td>-0.26</td>
</tr>
<tr>
<td>Weed killing</td>
<td>-1.23</td>
<td>0.30</td>
<td>1.34</td>
<td>0.77</td>
<td>-0.17</td>
<td>1.01</td>
<td>-0.45</td>
<td>0.56</td>
<td>-0.45</td>
<td>-0.36</td>
<td>0.27</td>
<td>-0.73</td>
</tr>
</tbody>
</table>

Table 6: Factorial analysis regarding soil contamination by French regions (translated from French, in bold the most significant terms)
2. Results regarding brownfields

Table 7 indicates words frequencies regarding brownfields’ corpus see table 6 below. Brownfields are perceived as unused abandoned area (desert, abandoned buildings, uninhabited, empty) that remain unmaintained (ruin, abandoned buildings). This interpretation is confirmed by similarity analysis (Figure 4). This analysis also reveals some confusions about brownfields because some respondents identified them to fallow that is to say to uncultivated agricultural land. It corresponds to the etymological meaning of brownfield. Besides, brownfields are negatively considered because of weeds growing on brownfield site. Furthermore, problems of pollution and waste disposals are mentioned as well as the presence of uninhabited building when people are resigned leaving behind a degraded district.

<table>
<thead>
<tr>
<th>Form</th>
<th>Count</th>
<th>Form</th>
<th>Count</th>
<th>Form</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned</td>
<td>73</td>
<td>Garbage</td>
<td>13</td>
<td>Garden</td>
<td>8</td>
</tr>
<tr>
<td>Abandoned area</td>
<td>64</td>
<td>House</td>
<td>11</td>
<td>Dumpsite</td>
<td>8</td>
</tr>
<tr>
<td>Wasteland</td>
<td>38</td>
<td>Weeds</td>
<td>10</td>
<td>Soil</td>
<td>7</td>
</tr>
<tr>
<td>City</td>
<td>36</td>
<td>Unused</td>
<td>10</td>
<td>Old manufacturing plant</td>
<td>7</td>
</tr>
<tr>
<td>Manufacturing plant</td>
<td>34</td>
<td>Nature</td>
<td>10</td>
<td>Free space</td>
<td>7</td>
</tr>
<tr>
<td>Fallow</td>
<td>31</td>
<td>Industrial</td>
<td>10</td>
<td>Empty</td>
<td>7</td>
</tr>
<tr>
<td>Pollution</td>
<td>23</td>
<td>Unmaintained</td>
<td>9</td>
<td>Contaminate</td>
<td>7</td>
</tr>
<tr>
<td>Closed down</td>
<td>23</td>
<td>Ruin</td>
<td>9</td>
<td>Abandoned buildings</td>
<td>7</td>
</tr>
<tr>
<td>Waste</td>
<td>20</td>
<td>Landfill</td>
<td>9</td>
<td>Urban</td>
<td>6</td>
</tr>
<tr>
<td>Land</td>
<td>18</td>
<td>Ruin</td>
<td>9</td>
<td>Space</td>
<td>6</td>
</tr>
<tr>
<td>Urban area</td>
<td>16</td>
<td>Zone</td>
<td>8</td>
<td>Old industry</td>
<td>6</td>
</tr>
<tr>
<td>Area</td>
<td>15</td>
<td>Uninhabited</td>
<td>8</td>
<td>Insalubrious</td>
<td>6</td>
</tr>
<tr>
<td>Building</td>
<td>14</td>
<td>Uncultivated land</td>
<td>8</td>
<td>Desert</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 7: Active form with more than 5 occurrences in the corpus regarding brownfields (translated from French)

We complete these results with a descending hierarchical classification (Table 9). The dendrogram is composed of four categories (62.34 % classified) as show Figure 5. Category 1 listed the types of activities that may generate a brownfield according to their past activities. This category is linked to the third category that contains terms describing unused urban areas (unused; unexploited; unmaintained; deindustrialization; remediation). Category 4 gathers words referring of different kind of empty spaces (such as uninhabited areas like for example
slums or ruins). Finally, the category 4 contains terms addressing the problem of waste disposals (waste, dumpsite, trash) encountered on many brownfield sites.

The prototypical analysis (Table 8) confirms that brownfields are mainly represented as fallow and uncultivated land characterized by vegetation growth and weeds. It corresponds to the etymological sense of the terms brownfield. Besides, these results show that individuals are aware that this type of land may be contaminated. They evoke garbage and wastes’ contamination.

<table>
<thead>
<tr>
<th>Association appearance ranking</th>
<th>Frequency</th>
<th>Low ((\leq 1.64))</th>
<th>High ((>1.64))</th>
</tr>
</thead>
<tbody>
<tr>
<td>High ((\geq 5.15))</td>
<td>Abandoned area</td>
<td>Pollution</td>
<td>Manufacturing plant</td>
</tr>
<tr>
<td></td>
<td>Wasteland</td>
<td>Garbage</td>
<td>Unmaintained</td>
</tr>
<tr>
<td></td>
<td>Fallow</td>
<td>Unmaintained</td>
<td>Dumpsite</td>
</tr>
<tr>
<td></td>
<td>Abandonment</td>
<td>Ruin</td>
<td>Landfill</td>
</tr>
<tr>
<td></td>
<td>Closed down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weeds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low ((< 5.15))</td>
<td>Garden</td>
<td>Dirt</td>
<td>Manufacture</td>
</tr>
<tr>
<td></td>
<td>Free space</td>
<td>Poor maintenance</td>
<td>plant</td>
</tr>
<tr>
<td></td>
<td>Deindustrialization</td>
<td>Nature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brownfield</td>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demolition</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unbuilt area</td>
<td>Danger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desert</td>
<td>Housing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detritus</td>
<td>Squat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deforestation</td>
<td>Vegetation</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: Structure of social representation of brownfield (translated from French)

Regional disparities observed (Table 10) indicate differences regarding former industrial regions such as Grand-Est and Hauts-de-France (significant words are manufacturing plant and industrial) as well as regions characterized by an extensive and fast urban development such as Île-de-France (Antoni, 2013). Grand-Est and Hauts-de-France were regions characterized by coal and steel industries in the past and nowadays, Île-de-France region is characterized by an important urban growth. This may explain these regional disparities.
5. Discussions

The aim of this paper was to analyze social representations regarding contaminated brownfields among individuals impacted by such site. To identify brownfield sites, we relied on data extracted from BASOL. In France, it is the unique database on contaminated sites and in particular on contaminated brownfields. Hence, generalization of our results should be made with caution because we focus only on contaminated brownfields and thus exclude other situations (i.e. non-contaminated brownfields). However, this allowed us to analyze social representations associated to homogeneous sites. We classified responses according to their appearance ranking; not their level of importance. Abric 2003 showed that words that appear first are not necessarily the most important. Nevertheless, by combining both content analysis and prototypical analysis our results are more accurate and potential biases are reduced.

Our results show that individuals misunderstood soil contamination. They make confusion between soil, air and water contamination as well as with wastes. They consider only tangible, material elements (such as for example cigarette stub or dog mess) and visible components such as air pollution generated by fumes. This was also observed on a preliminary study regarding perceptions of soil contamination among 141 French individuals living in the Occitanie region (Angignard, 2006; Angignard and Ferrieux, 2007). However, this study was not focused on contaminated brownfield. Besides the sample used is not representative neither of the French population nor the residents of individuals living in the six municipalities surveyed: Agde, Calstelanau-le-Lez, Ceilhes and Rocozels, Fabrèges and Montpellier (Angignard, 2006). Contrary to Angignard (2006), the choice of our sample ensured that the survey targeted representative individuals impacted by contaminated brownfields.
Figure 4: Graph of similarities applied to the whole corpus related to brownfield (translated from French)
Table 9: Descending hierarchical classification regarding brownfield

<table>
<thead>
<tr>
<th>Category 1 (32.14%)</th>
<th>Category 2 (34.82%)</th>
<th>Category 3 (16.37%)</th>
<th>Category 4 (16.67%)</th>
<th>Past Industrial Areas</th>
<th>Issues of Garbages</th>
<th>Unused Areas</th>
<th>Location if Urban Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forms</td>
<td>χ^2</td>
<td>p</td>
<td>Forms</td>
<td>χ^2</td>
<td>p</td>
<td>Forms</td>
<td>χ^2</td>
</tr>
<tr>
<td>Manufacturing plant</td>
<td>73.09</td>
<td>< 0.0001</td>
<td>City</td>
<td>51.93</td>
<td>< 0.0001</td>
<td>Land</td>
<td>51.66</td>
</tr>
<tr>
<td>Wasteland</td>
<td>64.07</td>
<td>< 0.0001</td>
<td>Abandonment</td>
<td>46.71</td>
<td>< 0.0001</td>
<td>Area</td>
<td>51.32</td>
</tr>
<tr>
<td>Closed down</td>
<td>52.12</td>
<td>< 0.0001</td>
<td>Pollution</td>
<td>36.03</td>
<td>< 0.0001</td>
<td>Soil</td>
<td>36.52</td>
</tr>
<tr>
<td>Abandon</td>
<td>40.45</td>
<td>< 0.0001</td>
<td>Waste</td>
<td>33.93</td>
<td>< 0.0001</td>
<td>Space</td>
<td>31.21</td>
</tr>
<tr>
<td>Building</td>
<td>18.01</td>
<td>< 0.0001</td>
<td>Garbage</td>
<td>25.31</td>
<td>< 0.0001</td>
<td>Unoccupied</td>
<td>25.93</td>
</tr>
<tr>
<td>Contaminate</td>
<td>15.08</td>
<td>0.0001</td>
<td>Nature</td>
<td>13.83</td>
<td>0.0002</td>
<td>Unmaintained</td>
<td>25.11</td>
</tr>
<tr>
<td>Old industry</td>
<td>12.9</td>
<td>0.0003</td>
<td>Free space</td>
<td>13.38</td>
<td>0.0002</td>
<td>Unexploited</td>
<td>15.01</td>
</tr>
<tr>
<td>Industrial</td>
<td>11.51</td>
<td>0.0006</td>
<td>Abandoned buildings</td>
<td>13.38</td>
<td>0.0002</td>
<td>Poor maintenance</td>
<td>15.01</td>
</tr>
<tr>
<td>Zone</td>
<td>11.51</td>
<td>0.0006</td>
<td>Urban</td>
<td>11.43</td>
<td>0.0007</td>
<td>Unused</td>
<td>14.33</td>
</tr>
<tr>
<td>Demolish</td>
<td>10.72</td>
<td>0.001</td>
<td>Desert</td>
<td>11.43</td>
<td>0.0007</td>
<td>Unbuilt</td>
<td>7.06</td>
</tr>
</tbody>
</table>

Figure 5: Dendrogram associated with brownfield
<table>
<thead>
<tr>
<th></th>
<th>Grand-Est</th>
<th>Nouvelle Aquitaine</th>
<th>Bourgogne-Franche-Comté</th>
<th>Bretagne</th>
<th>Centre-Val-de-Loire</th>
<th>Île-de-France</th>
<th>Occitanie</th>
<th>Normandie</th>
<th>Hauts-de-France</th>
<th>PACA</th>
<th>Pays-de-la-Loire</th>
<th>Auvergne-Rhône-Alpes</th>
<th>Grand-Est</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned area</td>
<td>-0.56</td>
<td>0.69</td>
<td>0.78</td>
<td>-1.04</td>
<td>0.25</td>
<td>0.27</td>
<td>0.45</td>
<td>-0.84</td>
<td>0.39</td>
<td>-0.52</td>
<td>-1.10</td>
<td>0.84</td>
<td>-0.06</td>
</tr>
<tr>
<td>Abandonment</td>
<td>-0.96</td>
<td>0.44</td>
<td>0.42</td>
<td>0.61</td>
<td>-0.20</td>
<td>-0.45</td>
<td>0.86</td>
<td>-0.91</td>
<td>1.09</td>
<td>-0.14</td>
<td>0.57</td>
<td>-0.76</td>
<td>-0.03</td>
</tr>
<tr>
<td>Area</td>
<td>0.97</td>
<td>-0.53</td>
<td>0.28</td>
<td>-0.23</td>
<td>1.00</td>
<td>0.39</td>
<td>-0.32</td>
<td>-0.15</td>
<td>-0.45</td>
<td>-0.24</td>
<td>-0.24</td>
<td>-0.22</td>
<td>-0.01</td>
</tr>
<tr>
<td>Building</td>
<td>0.60</td>
<td>-0.15</td>
<td>-0.30</td>
<td>-0.21</td>
<td>-0.15</td>
<td>-0.20</td>
<td>0.31</td>
<td>0.19</td>
<td>-0.94</td>
<td>-0.23</td>
<td>0.39</td>
<td>0.83</td>
<td>-0.01</td>
</tr>
<tr>
<td>City</td>
<td>-1.37</td>
<td>0.53</td>
<td>-0.32</td>
<td>0.45</td>
<td>0.27</td>
<td>0.51</td>
<td>-0.78</td>
<td>-0.59</td>
<td>-0.39</td>
<td>0.42</td>
<td>0.42</td>
<td>1.12</td>
<td>-0.03</td>
</tr>
<tr>
<td>Closed down</td>
<td>-0.37</td>
<td>-0.34</td>
<td>-0.15</td>
<td>-0.36</td>
<td>-0.34</td>
<td>-0.54</td>
<td>-0.15</td>
<td>1.77</td>
<td>0.68</td>
<td>-0.38</td>
<td>0.24</td>
<td>0.33</td>
<td>-0.02</td>
</tr>
<tr>
<td>Fallow</td>
<td>0.25</td>
<td>0.36</td>
<td>1.31</td>
<td>-0.48</td>
<td>-0.25</td>
<td>0.47</td>
<td>0.36</td>
<td>-0.47</td>
<td>-0.26</td>
<td>-0.16</td>
<td>-0.16</td>
<td>-0.55</td>
<td>-0.03</td>
</tr>
<tr>
<td>Garbage</td>
<td>-0.30</td>
<td>0.58</td>
<td>-0.27</td>
<td>-0.20</td>
<td>-0.46</td>
<td>-0.95</td>
<td>-0.27</td>
<td>0.21</td>
<td>-0.36</td>
<td>0.41</td>
<td>1.12</td>
<td>1.48</td>
<td>-0.01</td>
</tr>
<tr>
<td>House</td>
<td>0.82</td>
<td>0.23</td>
<td>-0.23</td>
<td>0.49</td>
<td>0.69</td>
<td>-0.32</td>
<td>0.38</td>
<td>-0.35</td>
<td>-0.73</td>
<td>0.47</td>
<td>-0.18</td>
<td>-0.31</td>
<td>-0.01</td>
</tr>
<tr>
<td>Industrial</td>
<td>-0.59</td>
<td>0.26</td>
<td>-0.21</td>
<td>-0.15</td>
<td>0.76</td>
<td>-0.73</td>
<td>0.42</td>
<td>0.28</td>
<td>0.81</td>
<td>-0.16</td>
<td>-0.16</td>
<td>0.34</td>
<td>-0.01</td>
</tr>
<tr>
<td>Land</td>
<td>0.40</td>
<td>-0.64</td>
<td>-0.38</td>
<td>0.33</td>
<td>0.39</td>
<td>0.90</td>
<td>0.23</td>
<td>-0.58</td>
<td>0.32</td>
<td>0.31</td>
<td>-0.33</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>Manufacturing plant</td>
<td>0.92</td>
<td>-0.30</td>
<td>-0.29</td>
<td>-0.17</td>
<td>-0.30</td>
<td>-0.42</td>
<td>-0.29</td>
<td>0.68</td>
<td>0.27</td>
<td>0.93</td>
<td>-0.19</td>
<td>-0.67</td>
<td>-0.03</td>
</tr>
<tr>
<td>Nature</td>
<td>0.44</td>
<td>0.26</td>
<td>-0.21</td>
<td>0.53</td>
<td>0.26</td>
<td>-0.28</td>
<td>0.82</td>
<td>-0.67</td>
<td>0.51</td>
<td>-0.16</td>
<td>-0.27</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>Pollution</td>
<td>-0.72</td>
<td>1.04</td>
<td>-0.15</td>
<td>0.74</td>
<td>-0.82</td>
<td>0.32</td>
<td>-0.49</td>
<td>-0.29</td>
<td>0.68</td>
<td>0.24</td>
<td>-0.38</td>
<td>0.33</td>
<td>-0.02</td>
</tr>
<tr>
<td>Unused</td>
<td>0.44</td>
<td>-0.35</td>
<td>0.42</td>
<td>0.53</td>
<td>-0.35</td>
<td>-0.28</td>
<td>0.42</td>
<td>0.28</td>
<td>-0.24</td>
<td>-0.16</td>
<td>0.34</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>Urban area</td>
<td>-0.17</td>
<td>-0.56</td>
<td>0.27</td>
<td>-0.25</td>
<td>-0.56</td>
<td>1.62</td>
<td>1.47</td>
<td>-0.52</td>
<td>-0.22</td>
<td>-0.26</td>
<td>0.35</td>
<td>-0.56</td>
<td>-0.02</td>
</tr>
<tr>
<td>Waste</td>
<td>0.33</td>
<td>-0.27</td>
<td>-0.43</td>
<td>0.29</td>
<td>-0.27</td>
<td>-0.20</td>
<td>-0.43</td>
<td>0.80</td>
<td>0.26</td>
<td>0.80</td>
<td>-0.33</td>
<td>-0.19</td>
<td>-0.02</td>
</tr>
<tr>
<td>Wasteland</td>
<td>1.06</td>
<td>-0.37</td>
<td>-0.34</td>
<td>-0.60</td>
<td>0.81</td>
<td>0.26</td>
<td>0.26</td>
<td>0.56</td>
<td>-0.73</td>
<td>-0.23</td>
<td>-0.64</td>
<td>-0.33</td>
<td>1.09</td>
</tr>
<tr>
<td>Weeds</td>
<td>-0.20</td>
<td>-0.35</td>
<td>0.42</td>
<td>0.53</td>
<td>0.26</td>
<td>0.33</td>
<td>-0.21</td>
<td>-0.32</td>
<td>-0.24</td>
<td>-0.16</td>
<td>1.33</td>
<td>-0.27</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

Table 10: Factorial analysis regarding brownfield using the variable regions (translated from French; in bold the most significant terms)
Main pollutants mentioned by individuals are pesticides, wastes (including radioactive wastes), hydrocarbons, heavy metals, oils and nitrates. It should be noticed that pesticides and weed killing that are frequently evoked by respondents are not main pollutants on contaminated sites. Indeed, in 2016 pesticides represented only 0.63 % of pollutants on BASOL (Antoni, 2013). In terms of public communication, an emphasis should be put on definition of soil contamination, the pollutants and the modalities of transmission.

Concerning brownfields, the majority of our respondent are aware of the potential danger brownfield sites may generate. In particular, they mentioned the problems of waste disposals and of pollution. Similar results were found in a study conducted in the Czech Republic (Kunc et al., 2014). They found individuals referred to atmospheric pollution in the two former mining cities surveyed (Brno and Ostrava). Furthermore, our results show individuals linked brownfield to fallow, which is its etymological sense, and to unmaintained urban green spaces. This is similar to other study regarding non-contaminated brownfields (Lafortezza et al., 2008; Rouay-Hendrickx, 1991; Vaseux, 2014; Wintz and Dersé, 2012). Furthermore, this kind of land may negatively be perceived due to illegal activity that may occur (Bogar and Beyer, 2015; Hofmann et al., 2012). However, as brownfield are considered as informal urban green spaces, in terms of public communication an emphasis could be put on the benefits brownfields may yield in terms of biodiversity (Bonthoux et al., 2014; Carrus et al., 2015; Hunter, 2014)

6. Conclusion

The information and ideas we hold about brownfield redevelopment can strongly influence our discussion of this issue, the impacts we associate with it, and the types of regulation we view as appropriate. Based on the structural approach of SRT we identify elements that may belong to the core of social representations of contaminated brownfield. We carried out textual
analysis using data obtained from two open-ended questions from a cross-sectional survey among 803 representatives’ individuals living nearby a contaminated brownfield. We show that both SRT and textual analysis are relevant to examine individuals’ representations of contaminated brownfields. We show that individuals are aware that brownfield sites may be polluted. They mainly consider wastes and garbage’s pollution. Therefore, soil contamination is clearly misunderstood as individuals refer to tangible components and visible elements such as atmospheric pollution. We observe some regional disparities regarding contaminated brownfields. They are linked to the historical activities of former industrial regions. This analysis of social representations aimed to better identify the dynamics governing of individuals’ behaviors and thus to most appropriate public communication strategies. In terms of public communication, soil contamination knowledge has to be improved. Concerning brownfield an emphasis should be put regarding the benefits their biodiversity may generate which has not be done yet. Furthermore, brownfield redevelopment yield compact city. It could be wise in further study to analyze social representations associated with compact or dense city (Cook et al., 2013).

Acknowledgments

The work of the first author benefited from a Ph.D. fellowship funded by the French Environment and Energy Management Agency (ADEME) and the “Pays de la Loire” region (2014-2017). The University of Montpellier, the SRUM 2015 and the LAMETA (Montpellier Laboratory of Theoretical and Applied Economics) supported the implementation of this survey. We would like to thank Jean-Marc Rousselle (INRA, LAMETA) who administered the survey. We thank participants of the seventh international doctoral meeting of Montpellier in Economics, Management and Finance and participants of the doctoral meeting of the Angers Economics and Management Research Group (GRANEM) for valuable comments and suggestions on preliminary versions of this paper. The first author would like to thank its thesis
committee (Béatrice Plottu, Hélène Rey-Valette and Bénédicte Rulleau) for support and advices along this project.

7. References

Angignard, M., 2006. Enquête sur la perception des sols pollués et de leurs conséquences sanitaires : étude qualitative (Mémoire de stage de Master). Université de Montpellier 1, Université de Montpellier 3 - Paul Valéry, Ecole des Mines d’Alès, Montpellier, France.
Baril, É., Garnier, B., 2015. Utilisation d’un outil de statistiques textuelles : IRaMuteQ 0.7 alpha 2. Interface de R pour les analyses multidimensionnelles de textes et de questionnaires. Institut National d’Études Démographique.

Hollander, J.B., 2009. Polluted and dangerous: America’s worst abandoned properties and what can be done about them. University of Vermont Press; Published by University Press of New England, Burlington, VT: Hanover, NH.

Vaseux, L., 2014. Représentations construites par les habitants des friches en milieu urbain. Les cas d’étude de Tours (37) et de Blois (41) (Projet de fin d’étude). Université François Rabelais - Polytech Tours, Tours.

8. Supplementary data

1. Preview of the corpus related to brownfield

**** sexe_f age_2539 reg_npc pollution / indifference / dirt / uninhabitable / measure
**** sexe_f age_4059 reg_rha zone closed_down
**** sexe_h age_2539 reg_idf wasteland fallow
**** sexe_f age_4059 reg_idf garden
**** sexe_f age_1924 reg_npc Waste

Figure 6: Map of the municipalities of the survey (QGis; source: authors)
2. Preview of the corpus related to soil contamination

**** sexe_f age_2539 reg_npc
indifference / contamination / dirt / cost / measure
**** sexe_f age_2539 reg_als
car, manufacturing_plant, gaz, urban transport
**** sexe_f age_4059 reg_rha
old gas_station asbestos
**** sexe_h age_2539 reg_idf
pesticides, carbon dioxid, waste
**** sexe_f age_4059 reg_idf
dirty, not_good; destruction

3. Supplementary data regarding soil contamination’s corpus

![Figure 7: Word-cloud of soil contamination (N = 723)](image)
4. Supplementary data regarding brownfields’ corpus

![Word-cloud of brownfields (N = 539)](image)

Figure 8: Word-cloud of brownfields (N = 539)