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Abstract

We propose a general model of oligopoly with firms relying on a two factor

production function. In a first stage, firms choose a certain fixed factor level

(capacity). In the second stage, firms compete on price, and adjust the variable

factor to satisfy all the demand. When the factors are substitutable, the capacity

constraint is “soft”, implying a convex cost function in the second stage. We

show that there is a unique equilibrium prediction in pure strategies, whatever

the returns to scale, characterized by a price that increases with the number of

firms up to a threshold. The main propositions are established under the general

assumption that the production function is quasi-concave but the paper provides

a general methodology allowing the model to be solved numerically for special

parametrical forms.
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1 Introduction.

This article investigates price competition between a variable number of capacity con-

strained firms producing a homogeneous good. In our model, firms rely on a production

function with two substitutable factors that are chosen sequentially. The first factor,

chosen in a first stage, remains “fixed” in the second during which firms compete on

price and adjust the second “variable” factor to match their demand. In this setting,

the fixed factor can be seen as a capacity. This means that firms in our model are ca-

pacity constrained but that this constraint is “soft” because they can always increase

production beyond their optimal capacity, albeit at an increasing marginal production

cost. Our results are general. The production function can be of any form and returns

to scale do not have to be constant or decreasing. The results are as follows. 1) There

is a continuum of subgame perfect Nash Equilibria in pure strategies. 2) In the second

stage, the convexity of the short-run costs allows high prices to be sustained as an

equilibrium, as reported by Dastidar (1995) and Cabon-Dhersin and Drouhin (2014).

3) Because the short-run cost function is convex whatever the returns to scale, the

existence of an equilibrium for the whole game is disentangled from the nature of the

returns to scale. 4) In the first stage, there is a threshold for the fixed factor below

which competitors can adopt limit pricing strategies in the second stage. 5) Moreover,

the equilibrium price appears to increase with the number of firms, a theoretical result

that has seldom been reported (Rosenthal, 1980; Gabaix et al., 2016).

This paper bridges three lines of literature, the Bertrand-Dastidar convex cost ap-

proach to price competition, the Bertrand-Edgeworth constrained capacity approach

to price competition, and the literature on capacities and limit pricing strategies.

In his seminal model of price competition, Joseph Bertrand (1883) considered inter-

actions between two firms that have identical linear cost functions and simultaneously

set their prices. According to this model, even if the number of competing firms is

small, price competition leads to a perfectly competitive outcome in a market for a
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homogeneous good. The unique equilibrium price equals the firms’ (constant and com-

mon) marginal cost and each firm’s profit is equal to zero. This result is referred as

the Bertrand Paradox. For a long time, following Edgeworth’s 1925 initial insight, the

belief was that there was a serious equilibrium existence problem (in pure strategies)

when considering decreasing returns to scale and/or convex cost functions. However,

Dastidar (1995) proved that a continuum of pure strategy Nash equilibria in price

competition does exist when costs are strictly convex. As usual in price competition, a

firm undercutting its rivals will attract all the demand but, because of the convexity of

the cost function, this move may not necessarily be profitable. At equilibrium there-

fore, prices may be higher than the average cost and even higher than the marginal

cost. Dastidar (2001) shows that, when the costs are sufficiently convex, the collusive

outcome may even be an equilibrium. On the contrary, with strictly subadditive costs

and symmetric firms, it can be shown that there is no equilibrium in price competition

(Dastidar, 2011b)1. The source of subadditivity can be either increasing returns to

scale or the existence of fixed costs when variable unitary costs are constant or not too

convex (Hoernig, 2007; Baye and Kovenock, 2008; Saporiti and Coloma, 2010). In this

Bertrand-Dastidar approach to price competition it is the convexity of the cost func-

tion that resolves the Bertrand Paradox. As mentioned in the introductory paragraph,

in our model, the convexity of the short-run cost function in the second stage is due

to the decreasing marginal productivity of the variable factor. Our model thus shares

some of the properties of the Dastidarian framework, whatever the returns to scale.

As pointed out by Vives (1999), following Edgeworth (1925), there is a long tradition

in Industrial Organization to solve the Bertrand Paradox by considering that firms are

constrained by their production capacities when matching the incoming demand. In

the modern literature, this argument has been put forward by Kreps and Scheinkman

(1983), among others. In a two-stage game, they obtain that quantity pre-commitment,

1Dastidar (2011a) introduces asymmetric cost functions and proves that, in this case, when the
monopoly break-even prices differ, an equilibrium can be found even if costs are strictly subadditive.
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in the first stage, and price competition, in the second, sustain the Cournot outcome

provided the constrained capacities are not “too high”. As shown by Davidson and

Deneckere (1986), this result is sensitive to the choice of a rationing rule for the residual

demand (see Vives, 1999, p.124, for details). This result is built on “drastic” capacity

constraints, that is, the marginal cost of production in excess of capacity is infinite.

Our approach relies on the same type of two stage game with capacity chosen in the

first. However, the softness of the capacity constraint induces a smoother cost function

in the second stage. Less-rigid capacity constraints have been introduced previously in

a number of studies(see Maggi, 1996; Boccard and Wauthy, 2000, 2004; Chowdhury,

2009, for example) directly in the cost function. Cabon-Dhersin and Drouhin (2014)

have established a rigorous basis for such “soft” capacity constraints starting from

the microeconomic production function and production factors chosen sequentially.

Burguet and Sákovics (2017) follow the same approach, but with a very different model

of price competition in the second stage, whereby firms can tailor their prices to each

consumer.

Beyond the issue of price competition, strategic investment capacity decisions are

also a very classical question in industrial organization with regard to entry deterrence

(Spence, 1977; Dixit, 1980, among many others). In this kind of model, choosing an

excess capacity in the first stage drives away potential competitors. In our model, all

the competitors are already operating in the market. However, a firm that chooses

too low a capacity in the first stage will be unable to match its competitors’ prices

profitably in the second. Firms must therefore choose a high enough capacity to avoid

limiting their pricing strategies in the second stage.

In this context, we propose a general model of price competition with “soft” capac-

ity constraints that allows the effects on the market price of the number of firms to be

investigated. Notably, we find that when there are few firms in the market, the equilib-

rium price can increase when new firms enter whatever the returns to scale. While the

concept of price-increasing competition is not new to the literature (Rosenthal, 1980;
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Gabaix et al., 2016), our model highlights a simple explanation for this phenomenon:

cost convexity combined with endogenous capacities induces a “capacity effect” that

can offset the negative effect on prices of additional competing firms. When more firms

operate in the market, the level of the fixed factor (capacity) tends to decrease and the

stronger convexity of the cost function increases the equilibrium price.

The paper is organized as follows. Section 2 rigourously characterizes the notion

of “soft” capacity constraints; the complete model is solved in Section 3; in Section 4

finally, a general method for numerical simulations is presented along with a “textbook

example” to illustrate some interesting properties.

2 Characterization of soft capacity constraints

Firms produce a homogeneous good using the same technology represented by a two

factor production function. The factors are chosen sequentially. We denote z the level

of the factor chosen in the first stage (the fixed factor) and v, the level of the factor

(the variable factor) chosen in the second stage. We denote y the level of production,

and f : R2
+ → R+, giving:

y = f(z, v) (1)

The only assumptions are that f increases with z and v, shows decreasing marginal

factor productivity, and is quasi-concave. Thus: fz > 0, fv > 0, fzz < 0, fvv < 0 and

−fzzf
2
v + 2fzvfvfz − fvvf

2
z > 0.

It is important to emphasize that we make no general assumptions about the nature of

the returns to scale or the level of substitutability between the two production factors.

When z is fixed, Equation (1) defines the variable factor as an implicit function of

z and y, v̂(y, z).
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Lemma 1. 1) The function v̂ is quasi-convex and fulfils:

v̂y(y, z) =
1

fv(z, v)
> 0 (2)

v̂z(y, z) = −fz(z, v)

fv(z, v)
< 0 (3)

v̂yy(y, z) = −fvv(z, v)v̂y(y, z)

fv(z, v)2
> 0 (4)

v̂zz(y, z) =
−fzzf

2
v + 2fzvfvfz − fvvf

2
z

fv(z, v)3
> 0 (5)

v̂yz(y, z) = v̂zy(y, z) = −fvz(z, v) + v̂z(y, z)fvv(z, v)

fv(z, v)2
< 0 (6)

2) Moreover, if f is (strictly) concave then v̂ is (strictly) convex.

Proof: Implicit differentiation of v̂ yields Equations (2) to (6).

The quasi-concavity of f means that:

−v̂zzv̂
2
y + 2v̂zyv̂zv̂y − v̂yyv̂

2
z = fzzfv < 0 (7)

This proves that v is quasi-convex.

Moreover, it is easy to check that:

∣∣∣∣∣∣∣
v̂yy v̂yz

v̂zy v̂zz

∣∣∣∣∣∣∣ =
1

f 4
v

∣∣∣∣∣∣∣
fzz fzv

fvz fvv

∣∣∣∣∣∣∣
If f is concave then this determinant is necessarily positive. The second order pure

derivatives of v̂ are also positive (cf. (4) and (5)), proving part 2) of the Lemma. �

We can therefore define the cost as a function of (y, z). With w1,the price of factor z

and w2, the price of the factor v, we have:

C(y, z) = w1z︸︷︷︸
FC(z)

+w2v̂(y, z)︸ ︷︷ ︸
V C(y,z)

(8)
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Setting the level of the fixed factor corresponds to choosing a capacity. In this

model, it is possible to match any incoming demand but at an increasing marginal

cost. It is in this way that the capacity constraint is“soft”. The sequential choice of

production factors implies that the cost function is convex, whatever the returns to

scale. Thus, when firms compete on price in the second stage, our model inherits the

general properties of the Dastidarian framework.

It is noteworthy that as always, the fixed cost depends on the level of the fixed

factor, but so does the variable cost. The level chosen for the capacity will have

qualitative implications for the shape of the variable cost function. Models that start

from an arbitrary cost function usually miss this effect.

Finally, it is important to notice that the softness of the capacity constraint comes

from the substitutability of the production factor. As pointed out by Cabon-Dhersin

and Drouhin (2014, p. 428) and Burguet and Sákovics (2017), if the production factors

are fully complementary (Leontief technology), our approach is equivalent to the usual

“drastic” capacity constraint.

3 Equilibrium of the game

Firms first set their fixed factor to a certain level then compete on price in a sec-

ond stage. The demand of the whole market is continuous, twice differentiable and

decreasing.

D : R+ −→ R+ with D(pmax) = 0, D(0) = Qmax.

The strategic variable for the firms in stage 2 is price. We denote pi the price of firm

i and p⃗ = (p1, .., pn), the vector of prices of all the n firms in the market. We denote

pL = Min{p1, .., pn} and we define the set M = {j ∈ {1, .., n}|pj = pL}. We denote

m = Card(M) the number of firms quoting the lowest price. Firms have to supply all

the demand they face in stage 2 at price pi. The demand function of firm i is defined
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as follows:

Di(p⃗) =


0 if pi > pL

D(pi)
m

if pi = pL

We can now express the profit πi of each firm i, when m firms operate in the market

(set the lowest price).

πi(p⃗, zi) = pDi(p⃗)− w1zi − w2v̂ (Di(p⃗), zi)

πi(p⃗, zi) =


−w1zi if pi > pL

pD(p)
m

− w1zi − w2v̂
(

D(p)
m

, zi

)
def
= π̂(p, zi,m) if pi = pL = p

The function π̂(p, zi,m) represents the profit of firm i when m firms (including firm

i) quote the lowest price, p. This function depends on the level of the fixed factor set

in the first stage of the game. The assumptions described above for the production

function are sufficient to ensure that π̂zz < 0. However, even if the profit is necessarily

concave in y, this does not guarantee that π̂ is strictly concave in p. This only occurs

if the demand function is not too concave or too convex:

−D′(p)2

m

v̂yy
v̂y

(
D(p)

m
, z

)
< D′′(p) < −2

D′(p)

p

The left-hand side of the inequality corresponds to the sufficient condition for the short

run cost to be convex in p and the right-hand side is the sufficient condition for the

revenue function to be concave in p.2 Moreover, if we want this condition to hold

whatever the number of firms, in particular when this number grows to infinity, the

left-hand side should tend to zero and the demand function has to be convex (non-

strictly).

To solve the equilibrium of the game in stage 2, the first step is to test whether firm

2This is a standard assumption to make, even if when starting directly from a cost function, it is
hidden within the general assumption that the profit function is concave in p.
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i can deviate profitably from an outcome in which m firms (including firm i) quote the

same price. The following two thresholds are defined with this purpose in mind. The

first, p̄, is the maximum price for which firms cannot increase their profits by lowering

their prices. The second, p̂, is the minimum price for which firms cannot increase their

profits by increasing their prices. In the traditional Bertrand competition model with

constant average/marginal costs, these two thresholds are equal and correspond to the

unique equilibrium of the game, implying marginal cost pricing. In our more general

setting with a convex short-run cost function, as in Dastidar (1995), the two thresholds

are never equal and define a price interval for each firm for which there is no profitable

deviation.

Let us start by studying a firm’s ability to increase its profit by undercutting

its competitors. For that purpose we define, for m > 2, the function Ω(p, z,m)
def
=

π̂(p, z, 1)− π̂(p, z,m). Ω can be interpreted as the incentive for a firm to lower its price

when the market price is p. Thus when Ω ≤ 0, it is not profitable for the firm to lower

its price while when Ω > 0, it is profitable for the firm to do so.

Lemma 2. For a given z and m, there is a unique threshold p̄(z,m) ∈ (0, pmax) that

solves Ω(p, z,m) = 0

When p ≤ p̄, Ω(p, z,m) ≤ 0 and when p > p̄, Ω(p, z,m) > 0

Proof: The first step is to expand Ω and Ωp

Ω(p, z,m) =

(
m− 1

m

)
D(p)p− w2

(
v̂(D(p), z)− v̂

(
D(p)

m
, z

))

Differentiating gives:

Ωp(p, z,m)

=

(
m− 1

m

)
D(p) +D′(p)

[
p− w2v̂y(D(p), z)− 1

m

(
p− w2v̂y

(
D(p)

m
, z

))] (9)

We are now going to prove existence.
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For a given z and m, Ω(0, z,m) = −w2

(
v̂(Qmax, z)− v̂

(
Qmax

m
, z
))

< 0 (because v̂y >

0 and Qmax > Qmax/m). We also have Ω(pmax, z,m) = 0 with Ωp−(pmax, z,m) =

D′−(pmax)p < 0 (with D′− being the left derivative of the demand function). Ω is

continuous in p over the interval [0, pmax], initially negative and finally converging to

zero from above. This implies that there is necessarily a p̄(z,m) ∈ (0, pmax) that solves

Ω(p, z,m) = 0

We now prove the uniqueness of p̄(z,m) in (0, pmax). Over this interval, we have

D(p) > D(p)/m > 0. Moreover, the strict convexity of v̂ implies that:

v̂y

(
D(p)

m
, z

)
<

v̂(D(p), z)− v̂
(

D(p)
m

, z
)

D(p)− D(p)
m

< v̂y(D(p), z)

From the definition of p̄, m−1
m

D(p̄)p̄ = w2

(
v̂(D(p̄), z)− v̂

(
D(p̄)
m

, z
))

and thus

w2v̂y

(
D(p̄)

m
, z

)
< p̄ < w2v̂y(D(p̄), z) (10)

Finally, considering Equation (9), it is now obvious that Ωp(p̄, z,m) > 0. This means

that, in the interval (0, pmax), Ω can only intercept the x-axis from below. And since

Ω is a continuous functions, this can only happen once. �

p̄(z,m) is the highest price with no incentive to deviate when m firms operate the

market. From Inequality (10), we can see that it corresponds to a strictly positive

markup.

We can now study the possibility for a firm to increase its profit by increasing its

price. This case is much simpler because in the second stage, the fixed cost, w1z, is

sunk, and the firm it only motivated to produce if the variable part of the profit is

positive. If this is not the case at the current price, p, increasing the price will induce

zero demand for the firm and thus zero production and will reduce its losses.

Lemma 3. For a given z and m ≥ 1, there is a unique p̂(z,m) in the interval (0, pmax)

for which: π̂(p̂, z,m) = −w1z
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Moreover, π̂(p̂, z,m) decreases with m and p̂(z,m) < p̄(z,m).

Proof: It is easy to check that π̂(0, z,m) < −w1z, π̂(pmax, z,m) = −w1z and

π̂p−(pmax, z,m) < 0. Then, the strict concavity of π̂ in p implies that p̂ exists and is

unique. Implicit differentiation of π̂ for a given z yields

dp̂

dm

∣∣∣∣
dz=0

=
1

m

D(p̂)
(
p̂− w2v̂y

(
D(p̂)
m

, z
))

D(p̂) +D′(p̂)(p̂− w2v̂y(
D(p̂)
m

, z))
< 0 (11)

For p < pmax, we have D(p)
m

> D(pmax) = 0. The strict convexity of v̂ then im-

plies that v̂
(

D(p)
m

, z
)
− 0 <

(
D(p)
m

− 0
)
v̂y

(
D(p)
m

, z
)
. By definition, p̂ is such that

p̂D(p̂)
m

= w2v̂
(

D(p̂)
m

, z
)
and then p̂ < w2v̂y

(
D(p̂)
m

, z
)
, which gives the sign of the implicit

derivative and proves that p̂ decreases with m. Thus, for m ≥ 2, p̂(z,m) < p̂(z, 1)

and π̂(p̂(z,m), z, 1) < −w1z. It follows that for m ≥ 2, Ω(p̂(z,m), z,m) < 0, implying

p̂(z,m) < p̄(z,m) . �

For a given z, p̂(z,m) is the minimum price that motivates production in the second

stage when m firms operate in the market.

The price interval [p̂(z,m), p̄(z,m)] is crucial to solving for the equilibrium of the

game in stage 2. These prices will have to be compared with the purely collusive price,

p∗, when m firms operate in the market.

Lemma 4. For a given z and m ≥ 1, there is a unique p∗(z,m) in the interval (0, pmax)

for which p∗(z,m)
def
= argmax

p
{π̂(p, z,m)}

Moreover, p∗(z,m) > p̂(z,m).

Proof: It is easy to verify that π̂p(0, z,m) > 0 and π̂p−(pmax, z,m) < 0. π̂p is

continuous, ensuring that the program has an interior maximum. The strict concavity

of π̂ with p ensures that the maximum is unique. Because π̂p(p̂, z,m) > 0, p∗(z,m) >

p̂(z,m) �

A simple interpretation is that this is the collusive price when all firms chose to set

their fixed factor to the same level in the first stage (when m = 1, it is the monopoly
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price). We will see that p∗ can fall within [p̂(z,m), p̄(z,m)], but not necessarily.

Lemma 5. ∀m ∈ [1, n], p̂(z,m), p̄(z,m) and p∗(z,m) are strictly decreasing in z and

m over their respective domains.

Proof: At p̂, D(p̂)
m

p̂− w2v̂(
D(p̂)
m

, z) = 0.

The derivative of the above expression with respect to z is:

dp̂

dz

∣∣∣∣
dm=0

=
w2v̂z(

D(p̂)
m

, z)
D′(p̂)
m

p̂+ D(p̂)
m

− w2
D′(p̂)
m

v̂y(
D(p̂)
m

, z)
< 0

From Equation (11), we have

dp̂

dm

∣∣∣∣
dz=0

< 0

At p̄, we have Ω(p̄, z,m) = 0. The derivatives of the above equality with respect to z

and m are:

dp̄

dz

∣∣∣∣
dm=0

= −Ωz(p̄, z,m)

Ωp(p̄, z,m)
=

w2

(
v̂z(D(p̄), z)− v̂z(

D(p̄)
m

, z)
)

Ωp(p̄, z,m)

which is < 0 since Ωp(p̄, z,m) > 0 and v̂z < 0, v̂yz < 0.

dp̄

dm

∣∣∣∣
dz=0

= −Ωm(p̄, z,m)

Ωp(p̄, z,m)
= −

D(p̄)
m2 (p̄− w2v̂y(

D(p̄)
m

, z))

Ωp(p̄, z,m)

which is < 0 since Ωp(p̄, z,m) > 0 and from Equation (10), p̄ > w2v̂y(
D(p̄)
m

, z).

Finally, we obtain,

dp∗

dz

∣∣∣∣
dm=0

= − π̂pz(p
∗, z,m)

π̂pp(p∗, z,m)
= w2

D′(p∗)

m

v̂yz(
D(p∗)
m

, z)

π̂pp(p∗, z,m)
< 0

and

dp∗

dm

∣∣∣∣
dz=0

= − π̂pm(p
∗, z,m)

π̂pp(p∗, z,m)
= −w2

D′(p∗)

m3

D(p∗)v̂yy(
D(p∗)
m

, z)

π̂pp(p∗, z,m)
< 0

�
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We have now gathered all the elements required to characterize the equilibrium

prediction for the whole game.

Proposition 1. An outcome of the game (p⃗, z⃗) in which n firms operate in the market

at the same price pN is a Subgame Perfect Nash Equilibrium (SPNE) if and only if

the three following conditions are verified simultaneously:

1. Efficiency: All n firms set their fixed factor to the same level, zN = z∗(pN , n),

with z∗(p, n) being a solution of the program:

(P1)

 max
z

π̂(p, z, n)

s.t. p ≤ p̄(z, n)

2. Profitability: π̂(pN , zN , n) ≥ 0

3. Non-existence of limit pricing strategies:

π̂(pN , zN , n) ≥ π̂(p̂(zN , n), argmax
z

π̂(p̂(zN , n), z, 1), 1)

Proof: Assuming that we are in a SPNE in which all n firms (indexed by i)

operate in the market at price pN and have fixed factors that can range from zL, the

lowest level, to zH , the highest. Because p
N is a Nash equilibrium in the second stage,

the firms have no incentive to deviate in the second stage: pN ∈
∩
i

[p̂(zi, n), p̄(zi, n)] =

[p̂(zL, n), p̄(zH , n)] ̸= ∅. There are three cases to consider depending on the location of

pN in this interval.

The case in which pN = p̂(zL, n) can be discarded because by definition π̂(p̂(zL, n), zL, n) =

−w1zL < 0. zL cannot be an equilibrium strategy in the first stage (the firm will earn

a strictly higher profit by playing z = 0).

Another possibility is that pN falls within the interval, pN ∈ (p̂(zL, n), p̄(zH , n)). The

derivative π̂z(p
N , zi, n) can be calculated for each firm i. If this derivative is negative,

there is an incentive for firm i to slightly decrease its fixed factor. Thus zi cannot be an

equilibrium strategy in the first stage. Symmetrically, when the derivative is positive,
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the firm has an incentive to slightly increase its fixed factor and zi is therefore not an

equilibrium strategy in the first stage either. A SPNE is thus only obtained in the

second stage if for all i, π̂z(p
N , zi, n) = 0. Because π̂ is strictly concave in z, π̂z is

strictly decreasing. This implies that zL = zH , i.e. that in a SPNE in which all the

firms operate in the market at the same price, pN , all the firms also have their fixed

factor set to the same level.

The third (and last) possibility is that pN = p̄(zH , n). As before, we can compute the

derivative π̂z(p
N , zH , n). When the derivative is zero, there is no incentive to deviate

for the firm with the highest fixed factor. When this derivative is negative, firm H has

an incentive to reduce its fixed factor in the first stage, which is incompatible with a

SPNE. What happens when the derivative is strictly positive? In this case, Lemma

5 shows that for any ϵ > 0, p̄(zH + ϵ, n) < p̄(zH , n) = pN . By increasing its fixed

factor in the first stage, the firm whose fixed factor is the highest prevents itself from

sustaining pN as a Nash equilibrium in the second stage. In this case, a necessary

condition to have a SPNE is thus π̂z(p
N , zH , n) ≥ 0. Finally, is it possible in this case

to have zL < zH ? Because π̂ is strictly concave in z, π̂z(p
N , zH , n) ≥ 0 and zL < zH

imply that π̂z(p
N , zL, n) > 0. From Lemma 5 furthermore, p̄(zL, n) > p̄(zH , n), the firm

whose z is strictly lower initially can increase its profit by slightly increasing z without

destabilizing the equilibrium at price pN in the second stage. In this case therefore,

the inequality zL < zH cannot be verified in the SPNE.

Cases 2 and 3 are mutually exclusive and cover all the possible SPNE. Thus, any SPNE

necessary fulfils zi = zH = zL = zN for all i and:


pN < p̄(zN , n)

and

π̂z(p
N , zN , n) = 0

OR


pN = p̄(zN , n)

and

π̂z(p
N , zN , n) ≥ 0

It is easy to check that this last logical necessary condition is the same as the one

required for zN to be a solution of program (P1), completing the proof of Part 1. of
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Proposition 1. This efficiency condition is required to obtain a SPNE but it is not

sufficient, because it only tests for the profitability of slight adjustments of the fixed

factor in the first stage. We must also rule out the profitability of substantial deviations

in z in the first stage.

The first substantial deviation to consider is setting z = 0 in the first stage and a

price p > pN in the second. This move will induce zero profit for the firm. (It is not

profitable as long as π̂(pN , zN , n) ≥ 0.) This proves part 2. of the proposition.

The second substantial variation to consider is when a firm sets z high enough to sustain

a price in the second stage that is low enough to “exclude” its competitors from the

market. This is a limit pricing strategy. If all the other firms play zN in the first

stage, their interest will be to sustain any pN ≥ p̂(zN , n) (remember that in the second

stage the fixed cost is sunk and the decision criterion is the positivity of the variable

profit). The limit price is thus pL = p̂(zN , n) − ϵ with ϵ > 0 and as low as possible.

The most profitable value of z to sustain such a price is argmax
z

π̂(p̂(zN , n), z, 1). If a

firm deviates using this “limit pricing strategy”, it will operate in the market alone.

This move is profitable only when part 3. of the proposition is not fulfilled. �

Proposition 2. The outcome in which all n firms choose the same fixed factor level,

zC, in the first stage and quote the same price, pC, in the second, with pC being a

solution of the program,

(P2)



max
p

π̂(p, z, n)

s.t. z = argmax {P1(p)}

π̂(p, z, n) ≥ 0

π̂(p, z, n) ≥ π̂(p̂(z, n), argmax
z̃

π̂(p̂(z, n), z̃, 1), 1)

and zC = argmax {P1(p
C)}, is a Subgame Perfect Nash Equilibrium of the game. More-

over, π̂(zC , pC) is the Payoff Dominant Subgame Perfect Nash Equilibrium of the game.

Proof: Because all firms have the same technology, it is obvious that any (p, z)
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that fulfil the constraints of Program P2 are SPNE. It follows that (p
C , zC) is the Payoff

Dominant SPNE.�

In the remainder of the article, we will consider (pC , zC) to be the unique and

symmetric predictable outcome of the price competition game with soft capacity con-

straints. As pointed out by Cabon-Dhersin and Drouhin (2014), the solution of pro-

gram (P2) is collusive by nature (i.e. it corresponds to a joint profit maximisation

program). When neither of the constraints on programs (P1) and (P2) are binding, the

predictable outcome will verify pC = p∗(zC , n), with p∗ defined as in Lemma 4. In this

case the predictable outcome is fully collusive. When the constraint on Program (P1)

is binding (i.e. no profitable deviation in stage 2, p ≤ p̄(z, n) ), then pC = p̄(zC , n) and

the predictable outcome is “weakly collusive”. However, as proved in Proposition 2,

this “collusive” solution is a Subgame Perfect Nash equilibrium, a result that is very

unusual in a non-repeated game.

4 A textbook example

The model in this article is built on very general assumptions: two substitutable factors

chosen sequentially, a quasi-concave production function, decreasing marginal factor

productivity. Propositions (1) and (2) show that the equilibrium prediction for the

whole game can be seen as a solution to a maximisation program subject to three

different inequality constraints. We can exploit this unusual and remarkable property

to compute equilibrium predictions of parametrical versions of price competition models

with soft capacity constraints.

4.1 General procedure and parametrization

In this section, we provide a general procedure to compute equilibria and apply it

to solve a simple parametrical example numerically as a “textbook case”, assuming a

Cobb-Douglas production function and linear demand.
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The production function is:

f(z, v) = A
(
z1−αvα

)ρ
(12)

with ρ > 0, the scale elasticity of production, and, ρα < 1 and ρ (1− α) < 1 because

of the decreasing marginal factor productivity. In general of course, the Cobb-Douglas

production function is quasi-concave. It will be concave when ρ = 1 (constant returns to

scale) and strictly concave when ρ < 1 (decreasing returns to scale). Taking y = f(z, v),

the function v̂ is easily obtained by direct calculation:

v̂(y, z) =
y

1
αρ

A
1
αρ z

1−α
α

(13)

Thus, when n firms operate in the market, the function π̂ can be written:

π̂(p, z, n) = p
D(p)

n
− w1z − w2

y
1
αρ

A
1
αρ z

1−α
α

(14)

The demand function is assumed to be linear:

D(p) = b(pmax − p) (15)

with b > 0. We will show that although the assumptions are simple, they are suf-

ficient to demonstrate the full richness of our theoretical framework. We take the

Payoff dominant subgame perfect Nash Equilibrium of Proposition (2) - the solution

of programme (P2)- as the predictable outcome of our general model of price compe-

tition with soft capacity constraints. But because the “non-existence of limit pricing

strategies” condition can be tricky to deal with directly, we will proceed sequentially.

Step 1. We solve program (P1) for a given number of firms, n, a given price p ∈

(0, pmax), and a given vector of parameters (α, ρ, A, b, w1, w2), and obtain z∗(p, n)

the level of the fixed factor that efficiently sustains price p. We are thus able

to calculate Π(p, n) = π̂(p, z∗(p, n), n).
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Step 2. For a given n, the process in step 1 can be repeated for any p ∈ (0, pmax). So

we are able to draw Π(p, n) as a function of p point by point.

Step 3. The profitability condition Π(p, n)) ≥ 0 can be tested for each point (p,Π(p, n))

calculated in Step 2.

Step 4. For each point (p,Π(p, n)) calculated in Step 2, we can calculate p̂(z∗(p, n), n)

and then test for the non-existence of limit pricing strategies: π̂(p, z∗(p, n), n) ≥

π̂(p̂(z∗(p, n), n), argmax
z̃

π̂(p̂(z∗(p, n), n), z̃, 1), 1).

Step 5. For each point (p,Π(p, n)) calculated in Step 2, we can check if the non prof-

itable deviation in stage 2 condition is binding or not.

Step 6. Among all the (p,Π(p, n)) that satisfy the profitability test in Step 3 and

the non-existence of limit pricing strategies test in Step 4, we search for

the price that provides the highest profit, which is pC , the equilibrium price

solution of (P2). If in Step 5 the non profitable deviation in stage 2

condition is binding, pC = p̄(z∗(pC , n), n), otherwise, pC = p∗(z∗(pC , n), n).

For a given number of firms and all prices, the constraints of Program (P2) can all be

binding or slack. In each case, there will be a threshold price delimiting the subdomain

in which each constraint is binding. We will denote: p̃(n) = p̄(z∗(p, n), n), the threshold

above which profitable deviations are excluded in the second stage; p0(n), the threshold

above which firms earn a positive profit; and pL(n), the threshold above which a fixed

factor can be chosen in the first stage that can make limit pricing strategies profitable

in the second.

Consider the following numerical example.3 Figure 1 shows the behavior predicted

for a duopoly (n=2), with constant returns to scale (ρ=1), α = .7, pmax = 10, and all

the other parameters normalized to 1.

3Numerical simulations were performed using Wolfram Research Mathemathica 11. The optimiza-
tion programs were solved numerically using the NMaximize function and the value of p̂(z∗(p, n), n)
was obtained using the Findroot function.

18



2 4 6 8 10
p

8

6

4

2

0

2

4

p1pC
p0

pm

p

0.5

1.0

1.5

2.0

2.5

z

  pɶ

 pɶ

 Π

Figure 1: The SPNE interval for price (plain red) and associated fixed factor levels

when ρ = 1, α = .7, n = 2, w1=1, w2=1.

The lower graphic represents z∗(p, n) the solution of the Program (P1) i.e. the

efficient level of the fixed factor taking into account the non profitable deviation

in stage 2 constraint. For p ≤ p̃, the constraint is slack. Of course, z∗ decreases as p

increases, converging to zero as p tends to pmax. Conversely, for p ≥ p̃, the constraint

is binding (p = p̄(z∗, n)). It will become apparent that a binding constraint implies a

much lower level of z for a given price.

The upper graph in Figure 1 shows the whole function Π(p, n) = π̂(p, z∗(p, n), n)

for p ∈ (0, pmax). The left dotted part, for p ∈ (0, p0), corresponds to negative profits.

This price interval can therefore not be a SPNE of the two-stage game. The right part

of the curve (in black) does not fulfil the non-existence of limit pricing strategies

condition (verified in Step 4 of our procedure), and cannot correspond either to a SPNE.
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Consequently, the remaining (red) part of the curve corresponds to values of p for which

both the profitability and non-existence of limit pricing strategies conditions are

fulfilled. This means that all (p, z) pairs for which p belongs to [p0, pC ] and z = z∗(p, n)

are SPNE of the two-stage game. It is easy to check that pC corresponds to the “Payoff

dominant” SPNE of the whole game (the solution of program (P2)). With this vector

of parameters, we can see that the price p1 that maximizes Π(p, n) does not correspond

to a SPNE (note that the Π function is defined in step 1 of our general procedure).

4.2 Effect of the concavity of the variable cost and the fixed

factor price

The convexity of the cost function in the second stage is a crucial feature of our model.

With a Cobb-Douglas production function, this convexity in the second stage (with z

fixed) is determined by the product of α and ρ. When αρ tends to one, the variable cost

function becomes linear. For a given level of scale elasticity, ρ, a lower α corresponds

to a “more convex” production function.

Figure 2 shows the effect of different levels of convexity on the equilibrium prediction

of the whole game when five firms operate in the market.

In the upper graphic, α = .45, meaning that the variable cost function is highly

convex. In this case, p̃ is higher. The more convex variable cost function implies that

price deviation in the second stage is more costly (here, with five firms, the deviating

firm will have to produce approximatively five times more.) Thus, pC and pL differ

from p̄, and the corresponding z∗ will be higher. This is why pL > p1 = pC . The

maximum of Π(p, n) corresponds to the solution of Program (P2).

In the middle graphic, with α = .6, p̃ is now lower than p1 and pL = pC . p1 and

pL = pC are thus p̄, meaning that the non profitable deviation condition in the second

stage is binding (implying that zC is much lower). At p1, limit pricing strategies are

profitable (p1 > pL); p1 is not a SPNE. This is why pC = pL is the highest possible
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profit in the absence of of limit pricing strategies.

The lower graph shows that the behavior is similar with α = .75, with pC being

much more lower than p1. The non-existence of limit pricing strategies constraint

excludes more than half of the prices between p0 and p1 from being SPNE.
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Figure 2: Effect of α on the SPNE interval for price (plain red) (ρ = 1, n = 5, w1=1,

w2=1).
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Finally, in this example, when α → 0.45 → 0.6 → 0.75, pC → 6 → 5.58 → 3.51 and

zC → 0.88 → 0.42 → 0.20: the lower the convexity is, the lower the equilibrium price

is. The effect on the level of the fixed factor is more complex to analyze. A lower price

implies a higher demand and thus, all things being equal, optimally requires a higher

fixed factor to produce. However, a higher α implies that the production process uses

the variable factor more intensively, and thus that z is lower. Moreover, when the “non

profitable deviation in the second stage” condition is binding, the optimal level of z

(the solution of program P1) is much lower (cf. Figure 1).

The same method can be used to study the effect of all parameters other than the

number of firms.

4.3 Effect of the number of firms and of returns to scale

We will now study how the price varies with the number of firms. We will show that

the nature of the returns to scale has a qualitative impact on this relation.
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Figure 3: Effect of the number of firms on equilibrium prices (ρ = 1, α = 0.7, w1=1,

w2=1).
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Considering constant returns to scale first, Figure 3 shows the equilibrium prediction

of pC as a function of the number of firms when ρ = 1, α = 0.7, w1=1, and w2=1.

Two important thresholds are apparent. When the number of firms is low (between

2 and n0), the non-existence of limit pricing strategies constraint is binding.

The lower n is, the more effective this constraint is, meaning that the pL(n) = pC

threshold increases with n. From n = n0 onwards, the non-existence of limit pricing

strategies constraint is no longer binding. Between n0 and ñ, the non-profitable

deviation constraint is binding. The corresponding prices are p̄. The higher n is, the

less effective this constraint is. Prices continue to increase with n. Beyond ñ, none

of the constraints are binding at equilibrium. pC corresponds to a purely collusive

outcome. Because of the constant returns to scale, the market price pC is independent

of the size of the firm and thus of the number of firms sharing the market.

This result is very unusual! When the number of firms is lower than ñ, the price

increases with the number of firms. This is still because the cost function is convex. In

our model, any firm that deviates (either in the second stage by lowering its price or in

the first stage by following a limit pricing strategy in z) will capture the entire market

(i.e. operate in the market alone). The increase in production is proportional to the

number of firms. Because of the convexity of the variable cost, the higher the increase

in production is, the lower the incentive to deviate is. However, a convex short-run

cost function does not guarantee that the price increases with the number of firms. As

shown in Lemma 5, and also by Dastidar (2001), for a given z, p̂, p̄ and p∗ decrease

with n. It is the endogeneity of z, a specificity of our model, that adds a “capacity

effect” that overcomes the direct effect of n on p for a given z. At equilibrium, z will

tend to decrease with n and will, according to Lemma 5, have an indirect positive effect

on p. As shown in the lower part of figure 1 this effect of z on p dominates when the

constraint p ≤ p̄ is binding.

Let us now consider the limit case of free entry, in which firms enter the market as

long as it is profitable to do so. With constant returns to scale, the endogenous number
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of firms will tend to infinity and each firm’s market share and profit to zero. However,

prices will remain at the collusive level, significantly higher than the constant long-run

average/marginal cost. The markup will remain strictly positive and constant (i.e.

never tending to zero)! In a sense, the convexity of the short-run cost in the second

stage is stronger than the optional free entry condition. In our framework, free entry

does not imply average cost pricing.
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Figure 4: Effect of the number of firms on equilibrium prices (ρ = 0.9, α = 0.7,w1=1 ,

w2=1).

Considering now decreasing returns to scale (ρ = 0.9) with all the other parameters

left unchanged, the properties represented in Figure 4 are similar to those shown in

Figure 3. The only difference is that in Figure 4 the right part of the curve (in red)

decreases as the number of firms increases. This is a direct effect of the decreasing

returns to scale. Smaller firms will be more efficient and will have an interest, when

the outcome is purely collusive, in sustaining slightly lower prices.

Figure 5 illustrates the case of increasing returns to scale (ρ = 1.02). The lower

envelop of the three curves on the left-hand side of the figure (up to n1) follows the

same trend as described above for the corresponding parts of Figures 3 and 4, with the

24



purely collusive part (in red, between ñ and n1) being slightly increasing because of

the increasing returns to scale (a greater number of smaller firms sharing the market

is less efficient). The novelty is that beyond the n1 threshold, the non-existence of

limit pricing strategies constraint becomes binding again. Limit pricing strategies

are more efficient because of the increasing returns to scale. Beyond n1, this gain is

sufficient to cancel the effect of the convexity of the variable cost function described

previously.
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Figure 5: Effect of the number of firms on equilibrium prices(ρ = 1.02, α = 0.7,w1=1

, w2=1).

This last figure illustrates a very original property of our general model of price

competition: there is an equilibrium even when returns to scale are increasing. As

already pointed out in the introduction, this result stems from the sequential choice of

production factors which makes the short-run cost convex in the second stage whatever

the returns to scale. With a homogeneous single product, the long-run cost is clearly

subadditive when returns are increasing. But in our model, in contrast with Dastidar’s

2011b, this does not entail the existence of an equilibrium because the production

factors are chosen sequentially and because the fixed factor z is set endogenously. It
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is noteworthy that the case of increasing returns to scale (or more generally, of cost

subadditivity) is usually associated with the notion of a natural monopoly. In the

contestable market theory (Baumol and Willig, 1981; Baumol et al., 1988), the threat

of entry is assumed to be sufficient to drive the price down to the average cost with a

single firm operating in the market. As pointed out by Tirole (1988) (p. 310) contestable

market theory has been seen as a “generalisation of Bertrand competition to markets

with increasing returns to scale”. Our general model of price competition with soft

capacity constraints clearly refutes this claim. Not only can more than one firm operate

in the market when returns are increasing, but they do so with positive profits and

potentially high markups. Thus, in presence of increasing returns to scale, a market

driven by price competition with soft capacity constraints suffers simultaneously from

market inefficiency (existence of a markup) and production inefficiency (the average

cost is not minimum).

The same general pattern occurs in all the different cases of returns to scale that

has already been analyzed for constant returns to scale. Because of a “capacity effect”,

before a threshold number of firms, ñ, is reached, the price increases with the number

of firms. Beyond this threshold, prices can decrease both when the returns to scale are

decreasing (because of the collusive nature of the outcome) and when they are increas-

ing (because of the combined effect of the non-existence of limit pricing strategies and

technological inefficiencies). The general model of price competition that we propose

accounts for high markups that can increase with the number of firms. Gabaix et al.

(2016) obtained the same pattern for a homogeneous-good market but based on a very

different model with random utility. These authors surveyed the empirical literature

on this phenomenon.
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5 Conclusion

The general model of price competition with soft capacity constraints we propose is a

simple and natural extension of existing studies of price competition that bridges three

lines of literature: capacity constraints, cost convexity and limit pricing strategies. We

show that an equilibrium prediction in pure strategies exists whatever the number of

firms and the nature of the returns to scale. This equilibrium prediction is characterized

by high markups and prices that can increase with the number of firms in the market.

It is the balance between the “natural” feature of this extension and its paradoxical

outcome that is the principle contribution of our work.

As economists, we have been taught that price competition is stronger than quantity

competition and also that tacit collusion can only result from threats and retaliation

in a dynamic setting when firms are not too numerous. Our model clearly undermines

these ideas in a very general framework, starting from a production function that is

only required to be quasi-concave with decreasing factor marginal productivity.

The core property of the model is summarized in Propositions 1 and 2 in section 3.

The predictable non-cooperative outcome of a non-repeated game of price competition

with soft capacity constraints is equivalent to the solution of a joint profit maximization

program.

This result is very unusual and it is important to understand the special mechanism

that operates behind the scene. In the second stage, for a given soft capacity (i.e. a

given level of the fixed factor), because of the Dastidarian property of the model stem-

ming from a convex short-run cost function, there is a continuum of Nash Equilibria

in prices. A direct reverse implication is that there is a continuum of levels of the fixed

factor (chosen in the first stage) that lead to the same price equilibrium in the second.

Thus, for a given price in the second stage, it can be profitable for firms to deviate

in the first from any fixed factor level that is not the one that maximizes the profit

for that price, as long as this price remains sustainable as a Nash equilibrium in the
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second stage. It is thus the combination of a sequential choice of production factors

with the continuum of Nash equilibria in the second stage that is at the origin of the

joint profit maximisation property described in Proposition 2.

This has two important consequences. First, from a positive point of view, this

property can be used to compute the equilibrium of the game. In general, studies of

price competition are cursed by discontinuities, making it impossible to use standard

reasoning based on continuous reaction functions to compute the equilibrium. The

general methodology provided in section 4 offers a much more tractable method to

compute the predictable outcome of the price competition game. Second, from a nor-

mative point of view, this outcome, which can be termed “collusive”, is obtained in

a non-cooperative framework, generalizing the claim of Cabon-Dhersin and Drouhin

(2014) that the model offers an alternative mechanism for tacit collusion.

However, as general it is, our model relies on a number of assumptions that are

debatable. Of course, as is always the case for Bertrand-Dastidar competition, the

assumption that firms are committed to satisfying all incoming demand is a limit

that has been commented upon at length. More interesting is the question of the

robustness of our results with respect to some of the simplifying assumptions we made.

What happens when firms use different technologies. What happens when a new firm

arrives on an existing market? What happens if uncertainty (about demand, costs,

etc.) is introduced into the model? What happens if dynamic effects are included?

The textbook example that we provide here is sufficiently striking to prove that it is

worth pursuing.
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