A Cost-Benefit Approach for Prioritizing Invasive Species
Pierre Courtois, Charles Figuieres, Chloe Mulier, Joakim Weill

To cite this version:
A Cost-Benefit Approach for Prioritizing Invasive Species

Pierre Courtois
Charles Figuières
Chloé Mulier
Joakim Weill
A cost-benefit approach for prioritizing invasive species

Pierre Courtois*, Charles Figuières†, Chloe Mulier‡, Joakim Weill§

September 22, 2017

Abstract

Biological invasions entail massive biodiversity losses and tremendous economic impacts that justify significant management efforts. Because the funds available to control biological invasions are limited, there is a need to identify priority species. This paper first reviews current invasive species prioritization methods and explicitly highlights their pitfalls. We then construct a cost-benefit optimization framework that incorporates species utility, ecological value, distinctiveness, and species interactions. This framework offers the theoretical foundations of a simple and operational method for the management of invasive species under a limited budget constraint. It takes the form of an algorithm for the prioritization of multiple biological invasions.

Keywords: Prioritization, biological invasions, cost/benefit, optimization, diversity

JEL: Q28, Q57, Q58

*INRA - SAE2, LAMETA, Montpellier, France. Email: pierre.courtois@inra.fr
†Aix-Marseille Univ., CNRS, EHESS, Centrale Marseille, AMSE, Marseilles, France. Email: Charles.Figuieres@univ-amu.fr
‡Innovation, Montpellier, France. Email: mulier@supagro.fr
§Dpt of Agricultural and Resource Economics, 2159 Social Sciences and Humanities, University of California, Davis. Email: jweill@ucdavis.edu
1 Introduction

Biological invasions are causing tremendous damages to ecosystems and economic activities. In Europe alone, it is estimated that more than ten thousand non-native species have become invasive, with a total estimated monetary damage of 12 billion euros per year. The impacts of invasive species on economic activities, as well as their impacts on ecosystems and native biodiversity, justify important management efforts. However, budgets allocated to biological invasions management are limited and both the implementation costs and the benefits of management programs often vary greatly. We are faced with an uncomfortable choice: which management strategies should we employ? How should we best spend a limited budget when addressing multiple endangered species, multiple invasive species, or multiple invasion pathways?

Solving this prioritization problem is a major concern for policy makers, conservationists, and land managers. To achieve effective management, progress indicators and decision-support tools are needed in order to best allocate budgets. As highlighted by Aichi Target 9 of the Convention on Biological Diversity, the ultimate goal for invasive species management is that “by 2020, invasive alien species and pathways are identified and prioritized, priority species are controlled or eradicated and measures are in place to manage pathways to prevent their introduction and establishment”.

However, while invasive species prioritization is acknowledged to be an essential task, selecting the appropriate course of action remains controversial. In some instances, invasions are unmanaged even when immediate actions are urgently required in order to avoid substantial damages. In France for example, a reiterated but unattended call for management funds was made at the early stage of the invasion of the Asiatic hornet, *Vespa velutina* (MNHN, 2009). From two nests formally identified in 2004, 1613 nests were localized in 2007, the colonization covering up to 150000 km2 in 2008. Despite reported impacts on apiculture and expected collateral impacts on pollination services due to its massive predation of the European honey bee, *Apis mellifera*, as of 2009, no coordinated control policy was implemented and no funds were allocated. In other instances, significant amounts of money are spent managing invasive species that do not appear to be particularly harmful. In the European Union, for example, a considerable amount of effort and money has been devoted to the eradication of the North American ruddy duck, *Oxyura jamaicensis*. As a result of inter-breeding,
the ruddy duck has become a threat to the survival of the white-headed duck, *Oxyura leucocephala*, the only stiff-tailed duck indigenous to Europe. The European Union co-funded an eradication program in the United Kingdom, which cost 3.7 million euros for the 2005-2011 period alone. While one cannot dispute the fact that the extinction of the white-headed duck would be a tremendous loss, one could also argue that with a EU management budget of only 132 million euros per year (Scalera, 2010), we should take into account costs and benefits while setting management priorities. Another example is the strategy toward the control of *Impatiens glandulifera Royle* in several European countries. Impatiens is ranked as one of the top twenty “high impact” invasive plants in the United Kingdom (U.K. TAG, 2008). It also occurs on Swiss and Norwegian black lists of harmful invasive species and is considered to be an invasion threat in Germany, against which specific control measures are directed (Kowarik, 2003). However, Hejda and Pyzek (2006) and Hulme and Bremner (2006) show that this species does not represent a major problem for the preservation of native biodiversity in Europe. Given the limited economic impacts reported and its relatively large control costs, management in affected riparian areas may appear questionable. Looking at management costs in the UK for instance, 1 million pounds per year is spent on control, with management cost estimates ranging from 150 to 300 million pounds for eradicating the species from the territory (Hemming, 2011). In this context, which prioritization framework seems best-suited to help policy makers and park managers more efficiently allocate funding for the management of invasive species?

This paper contributes to the invasive species prioritization literature in three important ways. First, we review current invasive species prioritization methods and explicitly highlight their pitfalls. We argue that a cost-benefit approach rooted in optimization theory can overcome these pitfalls. Second, we develop a cost-benefit optimization model which allows us to approach accurately and exhaustively the cascade of benefits resulting from invasive species control. Two key theoretical contributions are made: i) we explicitly model species interdependences allowing *per se* to apprehend the complexity of impacts resulting from invasive species, and ii) we assume a multi-component objective function combining ecological and economic considerations. It results that as in Weitzman’s Noah’s Arch approach (Weitzman, 1998) and related literature (Baumgärtner, 2004; van der Heide et al., 2005; Simianer, 2008; Courtois et al., 2014), a multi-component objective as well as species interrelations are accounted for in our optimization procedure. Finally, a last contribution and key motivation of this paper is to develop the the-

3It is currently being hailed for its success and adapted to other European countries, and may likely lead to the first continental-scale eradication of an invasive species (Robertson et al., 2014).

4Control costs range from £0.50/m² for a single chemical application, or manual control by strimming up to £10/m² when habitat restoration is included (Tanner et al., 2008).
oretical foundations of a cost-benefit decision criterion enabling decision-makers to efficiently allocate their budget toward the management of multiple invasive species. Echoing the increasing demand for simple tools that guide managers and politicians to optimize their investments based on objective and measurable criteria (Tilman, 2000; Roura-Pascual et al., 2009; Dana et al., 2014; Koch et al., 2016), we define the theoretical groundwork of a general ranking formula that could be used as a rule of thumb in order to design a reliable, easy to apply, and economically sound tool to derive management decisions.

The paper proceeds as follows. In section 2, we discuss the main invasive species prioritization tools and their limits. In section 3, we consider a simple stylized prioritization model with two native and two invasive species. We define the optimization framework assuming specific functions and analyze the budget allocation decision faced by a manager aiming to minimize disruptions due to multiple biological invasions. In section 4, we generalize this optimization framework by considering any number of species as well as a broad class of objective functions. We develop an optimization algorithm that could be used in order to design an easy to apply decision criterion for management decisions. Section 5 concludes and discusses relevant extensions of this work.

2 Related literature on species prioritization

While well-developed and globally-applicable indicators and decision-support tools are still lacking (Dana et al., 2014), species prioritization is often grounded on the basis of invasive species watch lists, the best known being the IUCN GISP blacklist of the 100 worst invasive species worldwide, developed in the early 2000s. Because the impacts of invasions are often site-specific, national and regional lists were simultaneously developed and are key indicators used to support management for pre-border assessments (Faulkner et al., 2014).

Three key criticisms are addressed toward these lists: i) they imply the mis-perception that they are comprehensive (Daehler et al., 2004) while they clearly underestimate the number of invasions (McGeoch et al., 2012), ii) they reflect expert judgments and may under or over estimate economic and/or ecological impacts (Pheloung et al., 1999), and iii) they fail to account for range and risk measures of the invasiveness of ecosystems, e.g. (Pheloung et al., 1999; Roura-Pascual et al., 2009).

Closely related to invasive species lists and partly developed to overcome their

5Similarly, red lists of threatened species were also provided to ground conservation prioritization.

6For example, regional lists were developed in the US, in Brazil or in the UK. France is currently building national and regional lists within the definition of the French national strategy against biological invasions.
flaws, most other methods are based on risk assessment and scoring approaches that involve ranking invasive species on the basis of a set of criteria (Heikkilä, 2008; McGeoch et al., 2016; Kerr et al., 2016). In scoring approaches, the species with the highest overall score (or lowest, depending on the convention used) is considered the top management priority. It requires environmental managers or stakeholders to choose from pre-defined ordered categories that are then translated to a set of ordered scores; e.g. high-risk invaders are those with a high resulting score. Non exhaustively, Batianoff and Butler (2002, 2003) compiled a list of expert ranked scores on the degree of invasiveness of a variety of species and compared the ranking they obtained to impact scores. Thorp and Lynch (2000) implemented additional criteria such as the potential for spread and sociological values to rank weeds. Thiele et al. (2010) and Leung et al. (2012) added other specific parameters for the classification of an invader. Liu et al. (2011a,b) proposed a framework that specifically accounts for uncertainty while prioritizing risks. Randall et al. (2008), Nentwig et al. (2010), Vaes-Petignat and Nentwig (2014) or Blackburn et al. (2014) developed impact-scoring systems based on a set of ecological and economic impacts. Finally, Kumschick and Nentwig (2010) and Kumschick et al. (2012, 2015) developed frameworks to prioritize actions against alien species according to their impacts, incorporating expert opinions as well as the diverging interests of various stakeholders, thereby capturing, to some degree, a political issue that often underlies prioritization.

Although the scoring approach has proven useful for guiding management prioritization (Roura-Pascual et al., 2009), the method has been developed outside of any formal optimization framework. In particular, this approach exhibits four major flaws: i) the assessment inevitably reflects expert judgments and scores can be controversial, ii) scores’ aggregation is problematic, iii) management constraints and in particular costs associated with management activities are rarely explicitly taken into account, iv) interactions among species are, at best, superficially accounted for. While the first two flaws could be qualified by the fact that scoring procedures are documented and usually validated by peer review processes, the last two are troublesome and can induce the scoring approach to lead to inefficient allocations, for the following reasons.

As argued by Dana et al. (2014), despite the advancements achieved, the practical use of existing decision tools has often been limited and may be misleading as they typically ignore economic, social, technical, institutional or political factors related to conservation and management practices. In particular, as noted by Koch et al. (2016), managing and monitoring is quite costly and decisions thus need to be made on a sound basis to avoid wasting resources. Limited financial resources as well as management costs are key components of invasive species prioritization that ought to be taken into account. As implementation costs and benefits
vary widely from one species to another, a minimum decision rule should be that management efforts be put on species whose control admits the higher benefit/cost ratio. However, many control and prevention programs including the North American ruddy duck eradication campaign in Europe and the Impatiens management campaign in the UK seem to break this rule. Failing to consider species interactions can also lead to serious mismanagement as it implies a mistaken assessment of benefits, as well as a certain shortsightedness since it ignores the cascade of economic and ecological impacts associated with changes in the ecosystem. Zavaleta et al. (2001), Courchamp et al. (2011) and Ballari et al. (2016), for instance, show that ignoring species interactions when eradicating an invasive species could lead to major unexpected changes to other ecosystem elements, potentially creating unwanted secondary impacts. Griffith (2011) argues that targeting multiple species simultaneously may increase the efficiency of eradication programs as a result of interactions between species. This hypothesis is reinforced by experimental results obtained by Flory and Bauer (2014) in an artificial ecosystem, as well as by the analysis of Orchan et al. (2012) regarding interactions among invasive birds.

Cost-benefit optimization modeling is an appropriate tool to overcome these flaws. By design, this approach aims at optimizing invested resources while accounting for relative costs and benefits, making costs and benefits an integral part of allocation choices. Optimization is a formal approach that allows one to explicitly consider many different management objectives and constraints. Management objectives can be to maximize ecosystem services, ecosystem diversity or any combination of economic and ecological benefits related to invasive species management. These benefits need to be measurable, but neither need to be monetary values nor even cardinal values. Several constraints can be considered simultaneously. On top of financial resource constraints, the approach makes it possible to account for additional and more complex ones, such as species interactions, ecosystem carrying capacity, etc. This makes this approach particularly appropriate in order to account for species interactions and the wide range of collateral benefits resulting from invasive species management.

Although cost-benefit and optimization approaches in particular have been increasingly used to study invasive species management, few studies have applied optimization modeling to study budget allocation toward multiple invasive species. In an exhaustive review on the economics of biological invasion management, Epanchin-Niell (2017) examines key research questions raised by the literature. Most papers reviewed are dedicated to the study of where, when, how much and how to prevent and control a single invasion. In particular, much of the litera-

Note that when discussing management of biological invasions, “benefits” are usually “avoided negative impacts from invasive species”.

For other reviews on the economics of managing bioinvasions, see Olson (2006), Gren (2008).
ture focuses on spatial prioritization, with several papers formally studying effort allocation over space in order to efficiently respond to a single biological invasion, e.g. Chades et al. (2011); Epanchin-Niell and Wilen (2012); Chalak et al. (2016) and Costello et al. (2017). Many papers also focus on optimal surveillance and detection strategies to limit the spread of a single invasive species with papers including Hauser and McCarthy (2009); McCarthy et al. (2008); Epanchin-Niell et al. (2014) and Holden et al. (2016). As Dana et al. (2014), the review by Epanchin-Niell (2017) shows that only one cost-benefit optimization paper addresses the question of species prioritization by assessing allocation choices among multiple invasions.

In their seminal paper, Carrasco et al. (2010) analyze optimal budget allocation to address multiple invasions considering an optimal control framework. Assuming simple cost and benefit functions, the key of the approach is to combine analytical methods with genetic algorithm simulation in order to examine the role of Allee effects and propagule pressure on species prioritization. The principal result is that resource allocation toward a given species relies on its relative species invasiveness and marginal cost of control. Funding should be allocated based on cost-effective strategies targeting species with Allee effects, low rate of satellite colony generation, and low propagule pressure, with a focus on control rather than exclusion. Complementarily, we propose to address a related research question by explicitly focusing on how invasive species impact ecological and economic variables. Carrasco et al. (2010) consider a generic damage function related to invasive species but fail to explicitly account for the impact each invasive species has on other species within the ecosystem. As argued by Glen et al. (2013), this is a major issue as disruptions caused by biological invasions result mainly from these interactions. We present in the following an optimization framework accounting explicitly for species interactions as well as for the collateral economic and ecological impacts of biological invasions. On the basis of this optimization model, we present a species prioritization criterion algorithm that could be used to design a...
decision-support tool to help allocate limited funding toward multiple biological invasions.

3 A stylized model

In order to present our cost-benefit optimization framework and introduce our decision criterion, it is useful to start with a simplified stylized model with a few species and a specific management objective function. We consider a hypothetical ecosystem composed of four interacting species indexed $i \in \{1, 2, 3, 4\}$. Among these species, two are invasive species that we denote with subscript k, $k \in \{1, 2\}$, and two are native species that we denote with subscript l, $l \in \{3, 4\}$.

We consider that a decision-maker, a manager in charge of this 4-species ecosystem, must efficiently allocate her budget in order to limit the negative impacts resulting from the invasive species. Given a limited amount of financial resources, we assume she must allocate her budget so as to minimize net losses given the relative marginal costs of controlling species k. This translates into a maximization problem of an objective function under a budget constraint.

To examine this allocation problem, we first need a clearly stated management objective, defined so that it can be measured quantitatively. For example, the objective of the decision-maker can be to conserve the maximum number of native species, the most diverse set of species, the value of ecosystem services, the minimization of economic impacts caused by invasive species, or a combination of these objectives. Without loss of generality we assume that the two invasive species have ecological impacts, including impacts on the native ecosystem through species interactions, competition for resources, etc., as well as economic impacts, such as those associated with the loss of ecosystem services. Although often negative, these impacts may be positive as invasive species may positively affect other native species in the ecosystem through predation or mutualism [Evans et al., 2016]. They can also positively impact economics activities or be favorably received by segments of the population (see Box 1).
Although ecological impacts of biological invasions are still imperfectly documented (Evans et al., 2016), invasive species are known to be the second most important reason for biodiversity loss worldwide (after direct habitat loss or destruction) (EEA, 2012). A notable example is the impact of the invasion of the brown tree snake, *Boiga irregularis*, into the snake-free forests of Guam after World War II. The introduction of this invasive species which occurred through the transportation of military equipment (Fritts and Rodda, 1995; Pimentel et al., 2005), precipitated the extinction of 10 native forest birds (Rodda et al., 1997). The so-called red swamp crayfish, *Procambarus clarkii*, which is included on several invasive species black lists is a good example of an invasion that precipitates positive and negative ecological impacts. The rapid propagation of the crayfish in the French Camargue lagoons significantly impacted the ecosystem by transforming the nature of species interdependence in the affected habitat. The crayfish caused a decline in the population of aquatic vegetation (macrophytes), as well as a decline in the population of native crayfish through the introduction of a parasitic mycosis, *Aphanomyces astaci*. It also positively impacted several populations of birds including the glossy ibis, *Plegadis falcinellus*, Eurasian spoonbill, *Platalea leucorodia*, and Western cattle egret, *Bubulcus ibis* (Kayser et al., 2008).

Economic impacts of biological invasions remain only partially documented. One documented example is the impact of the invasion of *Dreissena polymorpha*, also known as the European zebra mussel, in the US. The mussel, which invaded and clogged water pipes, filtration systems, and power plants, is valued 1 billion USD in damages and associated control costs per year (Vilà et al., 2011). Although poorly reported, biological invasions may also benefit stakeholders who exploit or appreciate it. For example, the red swamp crayfish was voluntarily introduced in Spain for economic exploitation (Gutiérrez-Yurrita and Montes, 1999). Additionally, there is now a Society for the protection of the African sacred ibis, *Threskiornis aethiopicus*, in France, and Simberloff et al. (2013) reported that plans to eradicate feral domestic mammals (e.g. camels in Australia, deer in New Caledonia, gray squirrels in Europe) encountered opposition from a large segment of the public.

As noted by Courchamp et al. (2017), even if economic impacts can be relatively straightforward to estimate, recent studies show that little is known on the topic (Bradshaw et al. 2016). Defining an ecological impact is difficult because the
metric of the impact, its amplitude and the markers of consequences need to be defined, assessed, and distinguished from the background noise of normal ecological variations (Blackburn et al., 2014; Jeschke et al., 2014).

For the sake of generality, we consider a multiple management objective and we assume that the manager gives value to both native species conservation, *i.e.* “ecological benefit”, and ecosystem services, *i.e.* economic benefits.

The modeling of an ecological component measuring ecological benefits is a complex task. A natural assumption is to consider that the manager wishes for the ecosystem to be as healthy as possible. One possible way of measuring ecological health is to define the state of the ecosystem in terms of diversity, which implies that the ecological component of our objective function is a diversity function.

In our two native species ecosystem, this means that, given species dissimilarity and survival probabilities, the decision-maker aims to control the negative impact of invasive species on *expected diversity*. We denote this function $D(\{P_i\}_{i=1}^4)$, with P_i as the survival probability of species i. We assume that $P_i \in [0, 1]$ is an index value, with $P_i = 0$ in the case of extinction and $P_i = 1$ in the case of the complete profusion of species i.

Several competing diversity functions can be considered, and the selection of a function is an important choice as it reflects a philosophy of conservation (Baumgärtner, 2007; Courtois et al., 2015). Three diversity functions are particularly relevant here: Rao’s quadratic entropy (Rao, 1982), Alam’s diversity measure (Alam and Williams, 1993) and Weitzman’s expected diversity (Weitzman, 1992, 1998). These three functions define diversity as a combination of species robustness (e.g. survival probabilities, relative species populations) and species distinctiveness.

For the purpose of tractability, we consider an expected diversity function derived from Weitzman’s (1992), and in the next section, we propose a generalization of our approach to any diversity function. Weitzman assumes that each species could be considered as a library containing a certain number of books. The value of a set of libraries is determined by the collection of different books available, but

11It is important to note that our analysis can be undertaken with any clearly specified objective and is not restricted to this specific twofold objective. In the next section, this assumption is relaxed in order to account for more (or less) than two components. Formally, the manager’s objective function can contain as many components as needed.

12Weitzman (1998) first studied conservation choices using this methodology and extensions of his work were proposed by Baumgärtner (2004), van der Heide et al. (2005), Simianer (2008) and Courtois et al. (2014). Other ecological objectives could be considered as for example preserving the ecological functions of the ecosystem. In the following section, we present an analysis of this optimization problem considering a general objective function.

13One alternative is to assume that invasive species do not participate in the diversity of this ecosystem, and that they only contribute to the diversity of their own native system. This can easily be implemented by substituting subscript i above for l.
also of the different libraries themselves, since they can be considered has hav-
ing an intrinsic value (the Trinity College Library in Dublin, for instance, would
be considered a wonder even if the Book of Kells were not there). Biologically
speaking, this analogy would mean that books can be considered to be genes,
phenotypic characteristics, functional traits, or any other characteristic that may
differ between species. In order to maintain generality, we consider diversity in
terms of different attributes, species \(i \) containing \(A_i \) specific attributes.

Formally, this diversity index is the expected number of attributes present in
the ecosystem with respect to species’ extinction probabilities. Assuming a set of
\(N \) species, and considering any subset \(S \) of species, this expected diversity function
for this \(N \)-species ecosystem reads as:

\[
D(P) = \sum_{S \subseteq N} \left(\prod_{m \in S} P_m \right) \left(\prod_{n \in N \setminus S} (1 - P_n) \right) V(S)
\]

where \(V(S) \) is the number of different attributes in subset \(S \). When applied in our
4-species ecosystem,

- If no species disappears, an event that occurs with probability \(P_1 P_2 P_3 P_4 \), the
total number of different attributes that exist if the four species survive, is
 \(A_1 + A_2 + A_3 + A_4 \),

- if only species 1 survives, an event occurring with probability \(P_1 (1 - P_2) (1 - P_3) (1 - P_4) \), the number of attributes is \(A_1 \),

- if only species 1 and 2 survive, an event occurring with probability \(P_1 P_2 (1 - P_3) (1 - P_4) \), the number of attributes is \(A_1 + A_2 \),

- and so on...

Processing this expected value, we end up with a simple linear function\(^{14}\) which
reads as:

\[
D(\{P_i\}_{i=1}^4) = \sum_{i=1}^{4} A_i * P_i
\]

This means that diversity is measured here as the expected number of attributes
we get from the four species composing the ecosystem.

The second component of the objective function is the utility derived from
each species \(i \). By utility, we mean the anthropocentric value attached to a certain

\(^{14}\)Note that linearity here is due to the fact that species are assumed to not share any common
attributes.
species. We consider that for both native and invasive species, this utility may range from positive to negative values. An invasive species seen as undesirable because of its economic impacts, for instance, would have a negative utility. For tractability reasons, we assume that the marginal utility of species is constant, with $u_i \in \mathbb{R}$. The utility function of the decision-maker writes:

$$U(\{P_i\}_{i=1}^4) = \sum_{i=1}^4 u_i \ast P_i$$

This equation means that the utility of species is substitutable and that no complementarities between species come into play. In other words, the utility we get from one species is substitutable from the utility we get from another species and we discard the possibility of a utility derived from species synergies. In the next section, we propose a generalization of our approach to any utility function, including functions with strategic complements.

Overall, the multi-objective of our decision-maker is to allocate her budget so that diversity and utility is maximized. Following Weitzman (1998), in this stylized model, we assume a perfect substitutability between diversity and utility such that:

$$\text{objective} = \max D(\{P_i\}_{i=1}^4) + U(\{P_i\}_{i=1}^4)$$

Perfect substitutability is a strong stance regarding the value of nature as it implies that ecological losses may be perfectly compensated by economics gains and vice versa. Note that adding weights to each component would not theoretically impact our results. However, considering complementaries between the two components would, as it will change the gradient of the composed function. Again, this substitutability hypothesis is relaxed in the next section where we assume a general objective allowing us to analyze this optimization problem considering any functional composition.

Now that the management objective has been defined, let us focus on constraints. First, we must account for species interactions as disruptions caused by biological invasions result mainly from these interdependences (Glen et al., 2013). An invasive species competing for food with a native species or running a native species to extinction due to predation, impacts per se, all other species interacting with the native species, involving potentially a large cascade of economic and ecological impacts. Similarly, an invasive species can hybridize with a native one, it can bring foreign diseases and parasites with which native species have not evolved to cope, deeply modifying the composition of the ecosystem.\footnote{For example, less than 10% of fish species composing the Camargue lagoon in southern France are native and we observed a complete change in the composition of this ecosystem within the last century due to imported fishes and hybridization (Berrebi et al., 2005).}
To model species interactions, we follow Courtois et al. (2014). We model each species i as having an autonomous survival probability q_i, which is the survival probability of species i in an ecosystem free of species interactions and without any management activity. Autonomous survival probability is a measure of the robustness of a species. Low survival probability characterizes species on the brink of extinction while high survival probability characterizes healthy species such as spreading ones. As a result of the interactions that occur between species, the survival probability of each species i also depends on the survival probabilities of all other species through interaction parameters $r_{i,j \neq i}$, with $r_{i,j \neq i} \in \mathbb{R}$. Finally, the decision-maker can choose to target the survival probabilities of the invasive species present in the ecosystem. The amount of effort she invests in controlling invasive species k is denoted x_k, and we denote by \mathbb{x}_k the maximum control effort constrained by $P_i \in [0, 1], \forall i$.

The resulting survival probabilities in our stylized two-native two-invasive species ecosystem reads as:

$$
\begin{align*}
 P_k &= q_k - x_k + \sum_{k \neq j} r_{kj} P_j , \\
 P_l &= q_l + \sum_{l \neq j} r_{lj} P_j ,
\end{align*}
$$

with the additional constraint:

$$
x_k \in [0, \mathbb{x}_k] \ \forall k .
$$

System of equations (4) describes the stationary law of evolution of survival probabilities of native and invasive species composing the ecosystem.16

16 An algorithm that computes \mathbb{x}_k is available upon request.

17 "Stationary" here refers to the fact that it can be interpreted as the steady state of an explicit dynamic system. Each species i contains a total number of individual beings at date t indicated by $n_{i,t}$. The dynamic system is:

$$
\begin{align*}
 n_{k,t+1} &= \hat{q}_k - \hat{x}_k + \sum_{k \neq j} r_{kj} n_{j,t} , \\
 n_{l,t+1} &= \hat{q}_l + \sum_{l \neq j} r_{lj} n_{j,t} ,
\end{align*}
$$

Let N_t be the total number of individual beings at date $t : N_t = n_1 + n_2^2 + n_3 + n_4$. Now define the frequencies:

$${P_i}_t = \frac{n_i}{N_t} .$$

With obvious changes of variables, the above dynamic system is equivalent to:

$$
\begin{align*}
 P_{k,t+1} * N_{t+1} &= \hat{q}_k - \hat{x}_k + \sum_{k \neq j} r_{kj} \left(P_{j,t} * N_t \right) , \\
 P_{l,t+1} * N_{t+1} &= \hat{q}_l + \sum_{l \neq j} r_{lj} \left(P_{j,t} * N_t \right) ,
\end{align*}
$$

At the steady state, time subscripts can be deleted to give:

$$
\begin{align*}
 P_k * N &= \hat{q}_k - \hat{x}_k + \sum_{k \neq j} r_{kj} \left(P_j * N \right) , \\
 P_l * N &= \hat{q}_l + \sum_{l \neq j} r_{lj} \left(P_j * N \right) ,
\end{align*}
$$

13
Survival probability of invasive species k is the aggregated sum of species’ autonomous survival probability q_k, control effort x_k and interactions with other species composing the ecosystem, $\sum_{k \neq j} r_{kj} P_j$. A similar myopic law of evolution describes the survival probability of native species, except that by definition no control effort is exerted. Additional constraint [5] is a technical requirement as for $P_i \in [0,1] \forall i$ we need $x_k \in [0, \bar{x}_k] \forall k$. For all k, \bar{x}_k is defined such that survival probabilities remain between 0 and 1. In the following, we consider this technical requirement is fulfilled and consider that $x_1 \in [0, \bar{x}_1]$ and $x_2 \in [0, \bar{x}_2]$. And therefore, as far as probabilities are concerned, one has:

$$P_i \in \Pi_i = [\Pi_i, \bar{\Pi}_i] \subseteq [0,1], \quad i = 1, \ldots, 4,$$

meaning that probabilities evolve in the range:

$$\Delta P_i = \bar{\Pi}_i - \Pi_i, \quad i = 1, \ldots, 4.$$

Second, we need to account for financial constraints as well as for the management cost to control each biological invasion. Measures of the cost of control are closely linked to the type of investment being considered. It may include investment in manual, mechanical, chemical or biological treatments and involve expenses in machines, herbicides or manpower. Information on management costs is still sparse but a growing effort is made to collect it. This is important because in an allocation choice, relative management costs are as important as benefits. Let C_k denote the cost to be incurred when the survival probability of species k is raised from Π_j to Π_i. Then $c_k = C_k / \Delta P_i$ approximates the marginal cost of x_k, the control of this invasive species k. Let B stand for the overall budget available to the manager. The budget constraint reads as:

Dividing both sides of those equations by N, one obtains:

$$\left\{ \begin{array}{l}
 P_k = q_k - x_k + \sum_{k \neq j} r_{kj} (P_j) , \\
 P_l = q_l + \sum_{l \neq j} r_{lj} (P_j) , \\
\end{array} \right.$$

where:

$$q_k \equiv \frac{\hat{q}_k}{N}, \quad x_k \equiv \frac{\hat{x}_k}{N}, \quad q_l \equiv \frac{\hat{q}_l}{N}.$$

Formally, this is the system of interdependent probabilities used in our framework.

\[18\] Note that in practice there may be many other constraints, such as available manpower, acceptability of actions, access to land, cooperation from relevant stakeholders, etc. These constraints are implicitly incorporated in our model framework as we only compare a feasible set of control strategies.

\[19\] See Scalera [2010], Oreska and Aldridge [2011] and Hoffmann and Broadhurst [2016] for reviews on management costs of biological invasions in Europe, in the UK and in Australia.
\[\sum_{k} c_k \ast x_k \leq B. \]

Combining the objective and the constraints, the maximization program writes:

\[
\max_{(x_1, x_2) \in [0, \bar{x}]^2} (D(\{P_i\}_{i=1}^4) + U(\{P_i\}_{i=1}^4)) = \max_{x_1, x_2} \sum_{i=1}^4 (A_i + u_i) \ast P_i
\]

subject to (4) and (7).

Solving the system of survival probabilities described by (4), we obtain a system of equations that maps survival probability \(P_i \) to control effort values \(x_k \):

\[
\begin{align*}
P_1 &= \frac{\alpha_1}{\delta} x_1 + \frac{\theta_1}{\delta} x_2 + \frac{\gamma_1}{\delta}, \\
P_2 &= \frac{\alpha_2}{\delta} x_1 + \frac{\theta_2}{\delta} x_2 + \frac{\gamma_2}{\delta}, \\
P_3 &= \frac{\alpha_3}{\delta} x_1 + \frac{\theta_3}{\delta} x_2 + \frac{\gamma_3}{\delta}, \\
P_4 &= \frac{\alpha_4}{\delta} x_1 + \frac{\theta_4}{\delta} x_2 + \frac{\gamma_4}{\delta},
\end{align*}
\]

where \(\delta, \alpha_i \) and \(\theta_i \) are coefficients that only depend on the combinations of species interaction coefficients \(r_{ij} \), and \(\gamma_i \) are coefficients that depend on both species interaction coefficients and on autonomous survival probabilities \(q_i \) (see Appendix 1.). This means that survival probability of any species \(i \) is impacted by the control of invasive species 1 (resp. 2) unless interaction coefficients parameters are such that \(\alpha_i = 0 \) (resp. \(\theta_i = 0 \)) and this, independently from the distribution of autonomous survival probabilities.

Plugging the solution of the system of equations (9) into the multi-objective function (8), the maximization shrinks to the following linear programming problem:

\[
\max_{(x_1, x_2) \in [0, \bar{x}]^2} \beta_1 x_1 + \beta_2 x_2 + \text{constant terms}
\]

subject to \(c_1 x_1 + c_2 x_2 \leq B \).

with \(\beta_1 = \sum_{i=1}^4 (A_i + u_i) \ast \frac{\alpha_i}{\delta}, \beta_2 = \sum_{i=1}^4 (A_i + u_i) \ast \frac{\theta_i}{\delta} \) and the constant terms is \(\sum_{i=1}^4 (A_i + u_i) \ast \frac{\gamma_i}{\delta} \).

Formally, \(\beta_1 \) and \(\beta_2 \) are gradient coefficients that depend only on species interaction parameters \(r_{ij} \), species attributes \(A_i \), and species marginal utility \(u_i \) (see Appendix 1.). Interestingly, \(\beta_1 \) and \(\beta_2 \) do not rely on probability \(q_i \), which means that species’ autonomous survival probabilities are not of direct interest to the decision-maker. This is somehow counter-intuitive as it tells us that allocation of
effort toward the control of invasive species is made independently from the autonomous survival probabilities of native species. This result is a consequence of using Weitzman diversity function as ecological component. Indeed, Weitzman diversity function aims at maximizing expected diversity. As in our stylized model, species do not share any common attribute and as all attributes are similarly valuable, the index is indifferent between preserving one attribute or the other.

The following proposition proceeds

Proposition 1 The optimization problem with ecological interactions, defined by (3), (4) and (7), leads to an extreme solution. Efforts are allocated towards species with the highest benefit/cost ratios. These ratios are:

\[
\begin{cases}
R_1 \equiv \frac{\Delta P_1}{C_1} \beta_1 \equiv \frac{\Delta P_1}{C_1} \sum_{i=1}^{4} (A_i + u_i) \ast \frac{\alpha_i}{\delta}, \\
R_2 \equiv \frac{\Delta P_2}{C_2} \beta_2 \equiv \frac{\Delta P_2}{C_2} \sum_{i=1}^{4} (A_i + u_i) \ast \frac{\theta_i}{\delta}.
\end{cases}
\]

Proof. Remark that the maximization problem shrinks to the maximization of (10) subject to (5) and (7). Because in this program both the objective function and the budget constraint are linear in efforts, we know from the maximum principle that the solution is extreme. It means that an optimal solution is to put financial resources on the control of one invasive species, and next to the other if remaining financial resources are available. As the objective function is linear in efforts, marginal benefit to control invasive species \(k\) is \(\beta_k\). Similarly, as the budget constraint is linear in efforts, marginal cost to control invasive species \(k\) is \(c_k = C_k/\Delta P_k\). We deduce that optimally, efforts is allocated in priority toward the species with the highest ratio \(\frac{\beta_k}{c_k}\), which ends the proof. \(\blacksquare\)

An additional requirement is that budget should be allocated to the control of invasive species if and only if these species are bads.\(^{20}\) Formally, if \(\beta_k\) is negative, the benefit/cost ratio is negative also and no investment should be made on invasive species \(k\). To illustrate our proposition, let us assume that budget \(B\) is completely exhausted by efforts to control a single species. We then obtain three corner solutions, \((0, 0)\), \((x_1, 0)\) and \((0, x_2)\), where \(x_1\) and \(x_2\) stand for the maximal admissible ranges of efforts determined by economic and biological constraints.

The optimal management plan then proceeds as follows:

- if \(R_1 \leq 0\) and \(R_2 \leq 0\), no effort should be made to control invasions. The solution to the maximization program is \((0, 0)\);

\(^{20}\)Note that we employ the terminology of consumer theory, a bad being the opposite of a good. Here, an invasive species is a bad if it has net negative impacts, it is a good if it has net positive impacts.
• if $R_1 \leq 0$ and $R_2 > 0$, control effort targets species 2. The solution to the maximization program is $(0, \overline{x}_2)$;

• if $R_1 > 0$ and $R_2 \leq 0$, control effort targets species 1. The solution to the maximization program is $(\overline{x}_1, 0)$;

• if $R_1 > 0$ and $R_2 > 0$, control effort targets species 2 when $R_2 > R_1$ and species 1 otherwise. The solution to the maximization program is either $(0, \overline{x}_2)$ or $(\overline{x}_1, 0)$. In the very specific case where $R_2 = R_1$, any combination of efforts is applicable.

Item 1 characterizes the situation in which the objective function and the budget constraint do not intersect: the control is not desirable as the invasive species can be assimilated to goods. $R_1 \leq 0$ and $R_2 \leq 0$ means that controlling the two invasive species is of no net benefit as the decision maker benefit is decreasing in the level of efforts. As R_i depends on species interaction parameters r_{ij}, species attributes A_i, and species marginal utility u_i, it can be a negative number for several reasons. First, an invasive species may have positive impacts on economic and/or ecological values (see Box 1). It can for instance be exploited and generate profit. Second, and this is the crux of this model, an invasive species may positively impact other species through species interrelations. It can for instance be the prey of a native predator and forward positive collateral benefits to this native species. One possible candidate example is the American crayfish in the Camargue lagoons for which it is difficult to value whether negative impacts overcome positive impacts. Items 2 and 3 characterize situations in which one invasive species is a bad, and the other is a good. Budget is then allocated toward the control of the bad whatever the distribution of costs. A hypothetical example could be the allocation trade off between controlling the American crayfish and the Asian hornet in the Camargue lagoons. The last item and most interesting case is when the two invasive species are bads. In that case, benefit/cost ratios of the two control strategies should be compared. Again, benefits are to be understood as the direct benefit we get from control but also the indirect benefit we get from species interrelations. Graphically this last case is illustrated in Figure 1, when $\Delta P_1 = \Delta P_2 = 1$ and $\frac{\beta_2}{c_2} > \frac{\beta_1}{c_1}$. The budget constraint is represented by the black line (with slope $-c_1c_2$) and the isoquants of the objective function of the decision maker are represented by the blue lines (with slope $-\frac{\beta_1}{c_1}$).

Given the budget constraint and the relative costs, the greatest benefit that can be obtain leads us to choose point $(0, \overline{x}_2)$, meaning targeting species 2 first. Considering an allocation trade off such as controlling invasion of the Asian hornet or of the ruddy duck in Europe, one could expect that unless the management of the hornet is amazingly expensive, ruddy duck should be species 1.
The result we derive from this stylized model is that when both invasive species are bads, it becomes necessary to examine aggregated benefit-cost ratios in order to set management priorities. The management strategy can thus be characterized as one of limiting the economic and ecological disruption of ecosystem at the lowest possible cost. A key insight from our model is that benefit/cost ratios depend on species’ interactions, distinctiveness, marginal utilities, as well as the relative control costs of invasive species. Contrasting with most species prioritization approaches, an important insight of this model is that the principal coefficient affecting the benefit of invasive species control is species’ interactions. This makes the laws of evolution of survival probabilities of native and invasive species composing the ecosystem an essential ingredient of species prioritization.

Although this model is useful in that it provides us with a formal framework with which to analyze the optimal management of biological invasions, it is not sufficient as such to define the theoretical foundations of a general indicator for allocating budgets and setting priorities in a more complex world. First, a model that incorporates more species entails more interactions between species, which could render the maximization problem intractable. Second, simple linear expected diversity and utility functions are restrictive assumptions. Other diversity functions or indicators of the ecological state, such as the Rao general entropy concept [Rao, 1982] or even Weitzman’s expected diversity with common species
attributes, exhibit local convexities. Utility functions also often admit concavities or convexities. Third, preferences over utility and diversity do not need to be substitutable and may well exhibit complementariness. In the following section we address these three points and propose a prioritization criterion that would allow to set priorities in a more complex socio-ecological system.

4 Species prioritization: general description

Our overall goal is to define the theoretical foundations of species prioritization criteria that could be used to allocate a limited budget for the control of multiple invasive species.

To reach this goal, we need our optimization setting to accomodate for: i) any number of species, and ii) any objective functions. In this purpose, we now consider an ecosystem composed of \(N = [1; n] \) distinct species, where \(k \) of them are invasive and \(n - k \) are native.

As previously, we assume that given species interactions and a limited budget constraint, a manager chooses a vector of effort \(X \) that maximizes a multi-objective function that is comprised of an ecological and an economic component.

In order for our results to remain as general as possible and to facilitate an application to a wide range of manager’s objectives, we assume the ecological component function \(D \) and the economic component function \(U \) pertain to the class of \(C^2 \) functions, \(i.e \) those whose first and second order derivative both exist and are continuous.

From this point on, it is convenient to work with matrices, which we write in bold characters. For any matrix \(\mathbf{M} \), let \(\mathbf{M}^\top \) denote its transpose. Further, \(\mathbf{I}^n \) is the \((n \times n) \) identity matrix, \(\mathbf{\iota}^n \) is the \(n \)-dimension column vector whose elements are all equal to 1.

We define \(\mathbf{Q}, \mathbf{P}, \mathbf{\mu} \) as the \(n \)-dimension column vectors whose \(i \)-th elements respectively are \(q_i, P_i, \) and \(P_i \), where \(P_i \) denotes the survival probability of species \(i \) in an ecosystem absent of any control policy. We define \(\mathbf{c}, \mathbf{X}, \mathbf{X} \) as the \(n \)-elements column vectors whose \(i \)-th elements respectively are \(c_i, x_i, \) and \(x_i \) for \(i \in [1; k] \) and 0 for \(i \in [k; n] \).

Generalizing our stylized model, we now assume that the objective function of the manager is

\[
\mathcal{F}(D(\mathbf{P}), U(\mathbf{P})).
\]

The manager’s preferences over the ecological state of the system and the economic benefits derived from it are therefore reflected in the general functional form of \(\mathcal{F} \). It follows that from this point on \(D \) and \(U \) could either be substitutable, as in the stylized model, or admit complementarity reflecting the fact that economic
and ecological benefits are correlated. Furthermore, while we previously assumed specific ecological and economic components, we now consider a generic objective function such that any ecological functional forms, e.g. any diversity functions, and any utility functions, e.g. concave utility functions, be under consideration.

We generalized the system of survival probabilities described in (4). With N species in matrix form, this system reads as

$$ P = Q - X + R \ast P. $$

To ensure $0 \ast \iota^n \leq P \leq \iota^n$ we impose $0 \ast \iota^n \leq X \leq X$. Under the weak assumption that matrix $I^n - R$ is invertible, system (12) has a solution that reads as:

$$ P = \Lambda \ast (Q - X), $$

where $\Lambda \equiv [I^n - R]^{-1}$.

Note that the solution (13) is a generalization of (9) to a N-species ecosystem. As in the stylized model, species’ survival probabilities are linear functions of efforts. Let $P(X) \equiv \Lambda \ast (Q - X)$ refer to the affine mapping from management efforts to probabilities. Plugging (13) into (11) we obtain two composite functions, which are mappings from the values taken by the vector of efforts X to the set of real numbers:

$$ D \circ P(X) \equiv D(P(X)), $$
$$ U \circ P(X) \equiv U(P(X)). $$

Therefore the manager’s objective function can be expressed as a function:

$$ F(X) = F(D(P(X)), U(P(X))), $$

and the invasive species management problem becomes the constrained maximization of a function of management efforts X:

$$ \max_X F(X) $$

subject to

$$ c^\top \ast X \leq B, $$
$$ 0 \ast \iota^n \leq X \leq \overline{X}, $$

20
where the two remaining constraints are the budget constraint and the admissible range of efforts.

The whole problem boils down to finding the optimal set of management efforts \(x_i, \forall i \in [1; k] \) for problem (15), (16) and (17). The \(N \)-species optimization program is a straight generalization of the 4-species optimization program (10) presented in the previous section. Considering more species raises no new conceptual difficulties. Besides, it is a well-behaved problem: the constraints form a compact (and convex) set, the objective is \(C^2 \), therefore there trivially exists a solution. Let us denote \(X^* \) this optimal solution, for future reference.

Finding this exact solution \(X^* \) is no trivial task. This question has been extensively studied in the Applied Mathematics literature and well-known iterative methods exist to approach - and eventually attain - the solution (for instance the famous Frank-Wolfe algorithm, 1956, and its numerous variants). Those algorithms have different convergence properties and even the most performing in this respect may be time-consuming. Often, a stopping rule needs to be introduced, leaving the user with a "nearly" optimal solution. In other words, from a practical point of view, there is a trade-off between the accuracy of the "nearly" optimal solution delivered by a method and its ability to single out an answer in a quick and tractable manner.

Inspired by this literature on algorithms we propose below heuristic approaches, in order to quickly provides answers that are not necessarily optimal but offer an improvement compared to the laissez-faire and are amenable to intuitive interpretations, i.e. they are rational in a sense that is made explicit. As with the gradient-based algorithms, the general idea is to search an admissible ascent direction by solving for a derived optimization problem where the objective function is replaced by its linear approximation.

A first step is therefore to approximate the objective function \(F(X) \) by its first order Taylor approximation evaluated at a given point \(\hat{X} \):

\[
F(X) \simeq F(\hat{X}) + \nabla F(\hat{X}) \ast (X - \hat{X}) .
\]

To begin with, let us set \(\hat{X} = 0 \ast i^n \), i.e. the starting point is the one without control policy. Let us now see how to compute the gradient \(\nabla F(0 \ast i^n) \) in the above expression. Recalling the chain rule, and that in the absence of control policy probabilities are \(P \), one has:

\[
\nabla F(0 \ast i^n) = \nabla F(D(P), U(P)) \ast \nabla P(0 \ast i^n) .
\]

\[21\] We refer the interested reader to Courtois et al. (2014) for a discussion of the legitimacy of this approximation in this class of problems and an estimation of the error that is introduced when following this approach.
Let us denote:
\[F_i(P) \equiv \frac{\partial F(D(P), U(P))}{\partial P_i} \bigg|_{P=P} , \forall i \in [1; n] . \]

By definition, the gradient ∇F is the vector:
\[\nabla F(D(P), U(P)) \equiv \begin{bmatrix} F_1(P) \\ F_2(P) \\ \vdots \\ F_n(P) \end{bmatrix} . \]

Finally, observing that:
\[\nabla P(X) = - \Lambda , \]
the gradient $\nabla F(0 \ast \iota^n)$ in (18) is simply the matrix $\Upsilon(0 \ast \iota^n)$, or using the simpler notation Υ^0:
\[\Upsilon^0 \equiv - \nabla F^\top(D(P), U(P)) \ast \Lambda . \]

Matrix Λ is easily computed and if Λ_{ji} denotes a typical element of Λ, then Υ^0 is a n-dimensional line vector of the type:
\[\Upsilon^0 = [\beta^0_1, \beta^0_2, ..., \beta^0_n] , \]
where
\[\beta^0_i \equiv - \sum_{j=1}^{n} \left(\frac{\partial F(D(P), U(P))}{\partial P_j} \right) \Lambda_{ji} . \]

This expression of the gradient of the objective function shows the product of two terms that captures two marginal effects of the control of a biological invasion. First, control effort has a direct impact on the ecological state and utility, which is brought about by lowering the survival probability of the controlled invasive species. Second, there is a cascade of additional impacts resulting from this control effort, conveyed by the matrix $\Lambda \equiv [I^n - R]^{-1}$. When the survival probability of an invasive species decreases, this modifies the survival probabilities of the other species present in the interconnected ecosystem, which causes collateral positive or negative impacts.

We are now equipped to express the linearized problem in matrix form:

\[\max_{X} \ \Upsilon^0 \ast X + \text{constant terms} , \]
\[\text{subject to } (16) \text{ and } (17) \]

(19)

It is interesting to note the similarity between this general problem and the one we addressed in the previous section discussing gradient parameters β_1 and β_2. A
The key difference between the stylized model and this generalized model lies in the gradient of the objective function and therefore on the solution of the program. While previously considered linear, \(F \) may be non-linear. How does this affect the recommendations of our model? More accurately, one can ask whether it is feasible to propose a simple functional methodology for assessing species priorities whatever the objective considered. Answering these questions entail a discussion over the resolution of this maximization program considering two classes of interest: \(i) \) the class of problems that admits extreme solutions, and \(ii) \) the class of problems that admits all the other possibilities. While in the stylized model the objective falls in the first class, a manager aiming for example at maximizing a utility function that happens to be concave would fall in the second.

4.1 Prioritizations policies

4.1.1 Approximation of extreme solutions

Sometimes it is possible to know, before any computations, qualitative properties of the optimal control. For instance, it is well know that the maximum of a convex function on a compact convex set \(S \) is attained on the boundary of \(S \). See Section 32 in Rockafellar (1970). It follows that when \(F(X) \) is convex, the maximization program (15) admits an extreme solution. An extreme policy fully controls a subset of species, partially controls at most one species, and does not control any remaining invasive species. This is a qualitative result that does not identify which invasive species should be targeted.

In order to approximate this optimal solution and prioritize the control of invasive species given the available budget, a possibility derived from Weitzman (1998) and Courtois et al. (2014) is to rank all benefit-cost ratios:

\[
R^0_i = \frac{\Delta P_i}{C_i \beta_i^0},
\]

computed at the no-policy initial point. Assume invasive species \(i, i \in [1; k] \) is assigned with the highest ratio value. If \(R^0_i \geq 0 \), species \(i \) should be targeted first. If budget is sufficient, control efforts should focus on this species until efforts reach a maximum, \(i.e \) until \(x_i = \pi_i \). Then, if \(c_i \pi_i < B \), the invasive species \(j \) with the second highest score \(R^0_j \geq 0 \) should be the next species targeted and this iterative process continues until budget \(B \) is fully exhausted.

This algorithm is highlighted in Box 2 below:
Algorithm 1 Prioritization algorithm for extreme solutions

1. Assess for each invasive species i the ratio R_0^i.
2. Rank the benefit-cost ratios of those invasive species.
3. Allocate maximum control effort to species with the highest positive ratio. In case of tie, one species is randomly chosen.
4. Proceed with next highest positive ratio species until the budget is exhausted. The last selected species is given maximum or partial attention, depending on what the budget allows.

When the objective is convex, we can establish the following properties for this algorithm:

Proposition 1 When $F(.)$ is convex:

i) the approximation X^{**} achieved by Algorithm 7 produces an improvement compared to inaction,

ii) the approximation error, $F(X^*) - F(X^{**})$, is no larger than $K \ast (\Xi^T \iota^k)^2$, where $K = \max \{\partial^2 F / (\partial x_i \partial x_i)\}$.

Proof. i) By definition X^{**} solves the linear programming problem (??). Therefore one has:

\[\Upsilon^0 \ast (X^{**} - 0 \ast \iota^n) \geq 0. \]

This means that, starting from $F(0 \ast \iota^n)$, vector $X^{**} - 0 \ast \iota^n$ is an ascent direction. This, however, is only a local information around the initial situation $0 \ast \iota^n$. Since $F(.)$ is non linear, we cannot yet conclude that $F(X^{**}) \geq F(0 \ast \iota^n)$. But recall that convexity of $F(.)$ means:

\[F(X^{**}) - F(0 \ast \iota^n) \geq \Upsilon^0 \ast (X^{**} - 0 \ast \iota^n) \geq 0, \]

where the second inequality stems from (20). We end up with $F(X^{**}) - F(0 \ast \iota^n) \geq 0$, which proves the first statement.

ii) A second order Taylor expansion of $F(X^*)$ is:

\[F(X^*) = F(0 \ast \iota^n) + \Upsilon^0 \ast (X^* - 0 \ast \iota^n) + 1/2 (x^*)^T \ast \nabla^2 F(x^*) \ast X^*, \]
for some admissible vector Z^*, where $\nabla^2 F(\cdot)$ is the Hessian matrix of $F(\cdot)$. Similarly, we can write:

$$F(X^{**}) = F(0 \ast l^n) + \Upsilon^0 \ast (X^{**} - X^*) + \frac{1}{2} (X^{**})^T \ast \nabla^2 F(Z^{**}) \ast X^{**},$$

for some adequate vector Z^{**}. Subtracting those two expansions:

$$F(X^*) - F(X^{**}) = \Upsilon^0 \ast (X^* - X^{**})$$

$$+ \frac{1}{2} (X^*)^T \ast \nabla^2 F(Z^*) \ast X^*$$

$$- \frac{1}{2} (X^{**})^T \ast \nabla^2 F(Z^{**}) \ast X^{**}.$$

By definition of X^{**}:

$$\Upsilon^0 \ast (X^* - X^{**}) \leq 0,$$

therefore:

$$F(X^*) - F(X^{**}) \leq \frac{1}{2} (X^*)^T \ast \nabla^2 F(Z^*) \ast X^*$$

$$- \frac{1}{2} (X^{**})^T \ast \nabla^2 F(Z^{**}) \ast X^{**}$$

$$\leq K \frac{[(X^*)^T l^n]^2}{2} - K \frac{[(X^{**})^T l^n]^2}{2}$$

$$\leq K (\bar{X} l^k)^2,$$

where $K = \max \{ \partial^2 F/ (\partial x_i \partial x_j) \}$. ■

Importantly, the R_i^0 score of invasive species i does not depend only on the direct impacts of the species on the ecosystem, but also on its indirect impacts, i.e., impacts generated through its effects on other species, via ecological interactions. Therefore, a species with a high disutility can be ranked below another species with a lower disutility, but whose indirect impacts resulting from interactions with other species are overwhelming.

This prioritization criterion accounts for management constraints as well as for direct and indirect benefits from invasive species control. It constitutes therefore a transparent measure that can be used as a theoretical foundation to build a simple decision-support interactive tool enabling managers to set control priorities and to decide whether or not to allocate part of their budget toward the management of an invasive species. Of course there is price to be paid for simplicity: this tools is an approximation of the optimal solution. The upper bound K for the approximation error mentioned in the above proposition is linked to the non-linearity of $F(\cdot)$, i.e.
the second order derivatives $\partial^2 F / (\partial x_i \partial x_j)$. To relate this matter to usual concepts in decision theory under risk and uncertainty, one may say that the stronger the curvature of F (the stronger the preference for diversity if F is convex) the larger this upper bound.

To conclude this sub-section, recall the algorithm only applies to management situations in which the objective of the manager is convex. In the following sub-section, we propose a method for the criterion to apply to any objective function. This leads us to consider the non convex case.

4.1.2 An approximated solution for a wider class of problems

Algorithm I provides a simple management rule, but its properties hold only if the manager’s preference is convex. This can be the case in many choice situations including the one we described in our stylized model. However, the whole universe of biological invasion management problems does not reduce to the convex case. Therefore we must be able to provide guidance for when this is not the case.

If the manager’s objective function $F(.)$ is arbitrary, its maximization under linear constraints may lead in particular to an interior solution. It is clear in this case that the first algorithm is inadequate since by construction it leads to choosing an extreme solution. It would be welcome to have an algorithm that allows any kind of solution and which does not force to choose systematically among boundary outcomes. Our proposal consists in extending iterative algorithm I so that it also handles interior solution allocations.

To derive this extended iterative algorithm, we follow Simianer et al. (2003) and we divide budget B into s shares, such that $b = B/s$. If s is sufficiently big then b is small enough and the set of achievable allocations via the algorithm tends to the whole set of constraints. They include both interior and extreme solutions (those that are on the envelope of constraints). If b is allocated to species i, then the control effort dedicated to this particular species is $x_i = b/c_i$. Let B^i stand for the n-dimensional vector where each element is zero, except element i which is equal to b/c_i. Instead of computing derivatives evaluated at the initial situation as in the first algorithm, it will prove useful to consider the following differences:

$$\hat{\beta}_t^i (q) \equiv \frac{F(X_t + qB^i) - F(X_t)}{q}, \quad q \in [0, 1].$$

Notice that when $q = 1$:

$$\hat{\beta}_t^i (1) \equiv F(X_t + B^i) - F(X_t)$$

is simply the change of $F(.)$ due to the change $\Delta x_i = b/c_i$.

26
Notice also that when \(q \) tends to zero, \(\hat{\beta}_t^i(q) \) tends to the directional derivative of \(F(\cdot) \), in the direction given by vector \(B^i \). And it is also the partial derivative of \(F(\cdot) \) with respect to \(x_i \):

\[
\lim_{q \to 0} \hat{\beta}_t^i(q) = D_{B^i} F(X_t) = \left. \frac{\partial}{\partial x_i} F(X_t) \right|_{x_i}
\]

Consider now the following extended iterative procedure for prioritization:

Algorithm 2 Extended prioritization algorithm

1. Divide budget \(B \) into \(s \) shares, such that \(b = B/s \).

2. Assess for each invasive species \(i \) the ratio

\[
R_t^i \equiv \hat{\beta}_t^i(1)
\]

3. Allocate the share of budget \(b \) to the control of the invasive species with the highest positive score. In case of ties, a species is selected randomly among them.

4. Update \(P \) given this allocation of \(b \).

5. Return to step 2, recalculate the ratios \(R_t^i \) and allocate the next budget share, until either all \(R_t^i \) are equal or all shares are allocated.

In the following it will be useful to denote \(X_0, X_1, \ldots, X_t, \ldots \) the sequence of decisions produced by Algorithm 2.

By inspection of steps 2 and 3 of Algorithm 2 an immediate - yet important - observation is that a sequence of decisions produces no deterioration of the objective \(F(\cdot) \), and may even brings about gradual improvements. Let us emphasize this general property:

Proposition 2 In our optimization problem with ecological interactions, along a sequence of decisions produced by Algorithm 2 the objective \(F(\cdot) \) is non decreasing, whatever the properties of \(F(\cdot) \).

This nice general property comes at a cost: one has to compute \(\hat{\beta}_t^i(1) \) at each stage. Sometimes function \(F(\cdot) \) may take a functional form with well-know or easy
to compute partial derivatives, and in this case it is possible to save computing
time. This is obviously so when $F(\cdot)$ is linear as in our motivating example of Section
On the other hand, the information about the best ascent direction provided by
partial derivatives is valid only locally, and may be seriously misleading when the
changes in \mathbf{X}_t are incremental and not infinitesimal. The question, then, is what
would be the consequence of replacing $\hat{\beta}_t^i (1)$ by $\partial F(\mathbf{X}_t)/\partial x_i$? Are there at least
cases where such a replacement would not deteriorate the value of the objective
$F(\cdot)$? The proposition below provides some answers:

Proposition 3 Consider our optimization problem with ecological interactions,
and Algorithm 2 where $\hat{\beta}_t^i (1)$ is replaced by $\partial F(\mathbf{X}_t)/\partial x_i$. The following conditions
are sufficient to produce an improvement compared to the initial situation:

i) $F(\cdot)$ behaves monotonically in every variable,

ii) $F(\cdot)$ is convex,

iii) b is infinitesimal.

Proof. i) When $F(\cdot)$ behaves monotonically in every variable, each and every step
3 of the algorithm results in a positive increase of $F(\cdot)$, whatever the size of b.

ii) Consider a sequence of decisions produced by the algorithm, and $\Upsilon_0, \Upsilon_1, ..., \Upsilon_t, ...
the corresponding sequence of gradients (i.e. $\Upsilon_t \equiv \nabla F(\mathbf{X}_t)$). Without loss of gen-
erality, call i the species that is selected by the algorithm at stage t. And recall
that, by convexity of $F(\cdot)$:

$$F(\mathbf{X}_{t+1}) - F(\mathbf{X}_t) \geq \Upsilon^t (\mathbf{X}_{t+1} - \mathbf{X}_t) = \frac{b}{c_i} \frac{\partial}{\partial x_i} F(\mathbf{X}_t) \geq 0,$$

where the last inequality makes use of step 3 of the algorithm, by which only species
with positive ratios ($\partial F(\mathbf{X}_t)/\partial x_i \geq 0$) are allocated b, and the result follows.

iii) if b is infinitesimal, the local information given by the ratios R_i applies to
the whole proposed increment: the positive sign of the partial derivative of the
variable to which b is allocated means a positive marginal increase in $F(\cdot)$.

So, when $F(\cdot)$ is convex, this second algorithm also improves upon the initial
no-policy situation, as does the first algorithm under the assumption of convexity.
Another, independent, sufficient condition for this property is that $F(\cdot)$ behaves
monotonically in every variable. A convex function may or may not respect this
condition. We may say the same for a concave function. And there are functions
that possess this property, yet they are neither convex nor concave. So this second
algorithm can be applied on a wider class of situations in order to increase the
value of $F(\cdot)$. And finally, the manager can dispense from Condition i) and/or
Condition ii) if he sets arbitrarily small shares b.

Now let us turn to other important properties of Algorithm 2 which holds
regardless of whether $\hat{\beta}_t^i (1)$ or $\partial F(\mathbf{X}_t)/\partial x_i$ is used in step 2.
Proposition 4 In our optimization problem with ecological interactions and with any objective functions, Algorithm 2 is feasible and an interior optimal solution, if there exists any, is a steady state of this algorithm.

Proof. At an interior solution, all R_i are equal. Such an allocation is invariant for the dynamics defined by Algorithm 2 (see step 5).

According to the above proposition, if the algorithm is initiated at X^*, no further change is implemented. This property does not rest on any restriction on function $F(\cdot)$. It should not be misconstrued as a statement about convergence towards X^*. To elaborate on that question, let us first recall the following definitions of stability:

Definition 1 X^* is a stable steady state of 2 if for any $\epsilon > 0$ there exists some $\delta \in (0, \epsilon)$ such that:

$$\|X_t - X^*\| < \delta \implies \|X_s - X^*\| < \epsilon, \ \forall s \geq t.$$

In other words, if at some stage t the sequence of decisions enters a ball of radius δ around X^*, it then remains forever within a ball of radius ϵ (possibly larger than δ) around X^*.

Definition 2 X^* is an asymptotically stable steady state of 2 if it is stable and if the constant δ can be chosen so that $\|X_t - X^*\| < \delta$, $\forall t$ implies:

$$\|X_s - X^*\| \to 0 \text{ as } s \to \infty.$$

So, when X^* is asymptotically stable, sequences of decisions that reach a neighborhood of it not only stay close, but approach it as time passes by.

Proposition 5 Assume $F(\cdot)$ has a unique maximum X^*. Along the sequence of decisions $X_0, X_1, ..., X_t, ...$ produced by Algorithm 2, define $L(X_t) = F(X^*) - F(X_t)$.

i) If $L(X_t)$ is increasing for all admissible $X_t \neq X^*$, then X^* is stable.

ii) If $L(X_t)$ is strictly increasing for all admissible $X_t \neq X^*$, then X^* is asymptotically stable.

Proof. To prove this Proposition, one simply has to check that $L(X_t)$ qualifies as a Lyapunov function. Those conditions are:

a) $L(X_t)$ is a continuous function. Obviously, this property is simply inherited from function F.

b) $L(X^*) = 0$. True by construction.
c) \(L(X_t) \geq 0 \). Also true by construction.

d) Finally, Conditions 1) or 2) of the Proposition are the last requirements for \(L(X_t) \) to qualify as a Lyapunov function. ■

This extended prioritization criterion algorithm is consistent for any objective function and any number of species. It works with convex and non-convex objective functions. This algorithm is recursive and is thus computationally demanding. Many iterations are necessary in order to approximate the solution to our maximization problem. It does, however, constitute a simple theoretical method that can be used in the design of an easy to use decision-support tool for managers to set priorities in invasive species management. The next step and obvious continuation of this work is to build an easy to use computer interface enabling managers to allocate their budget efficiently.

5 Conclusion

Considering a cost-benefit optimization model, we analyze how to allocate limited resources toward the control of multiple invasive species. The contribution of the paper is above all theoretical and our principal achievements can be resumed in two major points.

On a pure theoretical ground, this paper is, to our knowledge, the first cost-benefit optimization approach that deals with multi-invasive species prioritization by accounting explicitly for species interactions. The novelty of our optimization approach lies in its assessment of the benefits of control efforts by explicitly considering species interactions and therefore by accounting explicitly for indirect impacts resulting from invasive species’ control. Carrasco et al. (2010) developed a multi-invasive species cost-benefit optimization approach. However, they failed to account for species interdependences and instead focused on the invasiveness of species. They show that funding should be preferentially allocated towards cost-efficient control strategies of invasive species with Allee effects, i.e. whose survival probability increases with the density of the population, and low propagule pressure. Complementing this work, our model provides two major theoretical insights. The first is that species interactions, for example through competition or predation, may well counterbalance an Allee effect or a low propagule pressure. Although the survival probability of an invasive species depends on intrinsic reproduction capabilities and propagule pressure, interaction with other species is also a key determinant of this probability. The survival probability of an invasive species potentially increases with the survival probability of its prey and potentially decreases with the survival probability of its predators or competitors. It follows that species interactions ought to be taken into account when prioritizing species.
A second insight is that the relative survival probabilities of invasive species is not sufficient to assess the relative harmfulness of these species. Again, due to species interactions, the survival probability of an invasive species is likely to impact the survival probability of other species and so on and so forth. It follows that invasive species generate indirect impacts through interconnected species. Our model shows that a species that causes severe direct damages can in fact be a lower management priority than another that generates lower direct damages, but whose overall damages are higher due to extensive interactions with other species. As indirect impacts may outweigh direct impacts, it is not the relative survival probabilities of invasive species that matter but rather how these relative survival probabilities affect the overall survival probabilities of all species in an ecosystem. In other words, relative harmfulness of invasive species should be assessed by accounting for indirect benefits and damages resulting from species interactions.

On a practical ground, we show that optimal management consists in assessing the benefit-cost ratio of each invasion and identifying the invasive species with the highest ratios as priority management targets. Two relevant policy recommendations for the design of species prioritization protocols can be made. First, prioritization criteria should be driven by an exhaustive assessment of the relative benefit-cost ratios of each invasive species. Because management resources are limited, the relative costs of control are as important a consideration as the relative benefits when selecting management priorities. Although highlighted by other papers including Carrasco et al. (2010); Dana et al. (2014) and Epanchin-Niell (2017), this is an especially important message given that management costs are often neglected in current prioritization protocols. Second, prioritization criteria must account for indirect impacts of biological invasions. Interactions between species are important, if not crucial variables in assessing the benefits resulting from control efforts and understanding species interdependences should be a top priority.

An important contribution of this work is to provide the theoretical foundation for a species prioritization criterion that could be used to design a reliable, easy to apply, and economically sound tool to derive management decisions. If the paper is first and foremost addressed to a scientific audience, a specific attention has been placed on defining a simple algorithm that could next be implemented in a progress indicator to help decision makers, conservationists and land managers to allocate limited funding toward efficient management strategies.

There are several promising research directions for future work on this topic. The first is an operational research perspective aimed at designing a progress indicator based on this work. For our prioritization criterion to be operational, an easy to use interactive interface is required. Although it would be an effective way to bridge theoretical research and management practices, to our knowledge, no
such interface exists. The second avenue for future research concerns applications of our methodology to other management problems involving species interactions. An obvious application is conservation policy and budget allocation towards conservation plans. An interesting example is the Australian rescue campaign of the Christmas Island pipistrelle, *Pipistrellus murrayi*. Although important funds were invested, the campaign failed and the pipistrelle went extinct. However, the campaign to save it initiated an important debate on the rational of conservation targets. This debate could be discussed using a cost-benefit optimization framework. An interesting example is the Australian rescue campaign of the Christmas Island pipistrelle, *Pipistrellus murrayi*. Although important funds were invested, the campaign failed and the pipistrelle went extinct. However, the campaign to save it initiated an important debate on the rational of conservation targets. This debate could be discussed using a cost-benefit optimization framework. Site prioritization is another appealing potential application. Deciding where and when to implement invasive species controls or where to build national reserves requires considering budget constraints and species interdependences. Finally, optimizing the allocation of funds through multiple invasion pathways is a key research perspective that could be addressed by employing similar methods.

Acknowledgements

Thanks are due to: the three anonymous referees and the Co-Editor of Ecological Economics, Anne Atlan, Christopher Costello, Luc Doyen, Guy Meunier, Maureen Page, Jean Christophe Péreau, Nicolas Querou, Hubert Stahn, Raphael Soubeyran, Tim Swanson, Jacques Tassin, Alban Thomas, Kate Farrow, the seminar participants of Lameta (Montpellier), Aliss (Paris), Gretha (Bordeaux), the Centre for International Environmental Studies (Geneva, BIOECON 2015 (Cambridge), FAERE 2015 (Toulouse), WCNRM 2015 (Bordeaux).

Appendix

The system of survival probabilities described by (4) writes:

\[
\begin{align*}
 P_1 &= q_1 - x_1 + r_{12} P_2 + r_{13} P_3 + r_{14} P_4 \\
 P_2 &= q_2 - x_2 + r_{21} P_1 + r_{23} P_3 + r_{24} P_4 \\
 P_3 &= q_3 + r_{31} P_1 + r_{32} P_2 + r_{34} P_4 \\
 P_4 &= q_4 + r_{41} P_1 + r_{42} P_2 + r_{43} P_3
\end{align*}
\]

Solving it, we obtain a system of equations that maps survival probability \(P_i \)
to control effort values x_k:

$$
\begin{align*}
\delta &= r_{12}r_{21}r_{34}r_{43} - r_{12}r_{23}r_{34}r_{41} - r_{12}r_{24}r_{34}r_{42} + r_{13}r_{24}r_{34}r_{42} \\
&\quad - r_{13}r_{24}r_{32}r_{43} - r_{14}r_{21}r_{32}r_{43} - r_{14}r_{23}r_{31}r_{42} + r_{14}r_{23}r_{32}r_{41} - r_{12}r_{23}r_{31} \\
&\quad - r_{12}r_{24}r_{41} - r_{13}r_{21}r_{32} - r_{13}r_{34}r_{41} - r_{14}r_{21}r_{42} - r_{14}r_{31}r_{43} - r_{23}r_{34}r_{42} \\
&\quad - r_{24}r_{32}r_{43} - r_{12}r_{21} - r_{13}r_{31} - r_{14}r_{41} - r_{23}r_{32} - r_{24}r_{42} - r_{34}r_{43} + 1
\end{align*}
$$

$$
\begin{align*}
\alpha_1 &= r_{23}r_{34}r_{42} + r_{24}r_{32}r_{43} + r_{23}r_{32} + r_{24}r_{42} + r_{34}r_{43} - 1 \\
\alpha_2 &= r_{21}r_{34}r_{43} - r_{23}r_{34}r_{41} - r_{24}r_{31}r_{43} - r_{23}r_{31} - r_{24}r_{41} - r_{21} \\
\alpha_3 &= r_{24}r_{31}r_{42} - r_{21}r_{34}r_{42} - r_{24}r_{32}r_{41} - r_{21}r_{32} - r_{34}r_{41} - r_{23} \\
\alpha_4 &= r_{23}r_{32}r_{41} - r_{21}r_{32}r_{43} - r_{23}r_{31}r_{42} - r_{21}r_{42} - r_{31}r_{43} - r_{41}
\end{align*}
$$

$$
\begin{align*}
\theta_1 &= r_{12}r_{34}r_{43} - r_{13}r_{34}r_{42} - r_{14}r_{32}r_{43} - r_{13}r_{32} - r_{14}r_{42} - r_{12} \\
\theta_2 &= r_{13}r_{34}r_{41} + r_{14}r_{31}r_{43} + r_{13}r_{31} + r_{14}r_{41} + r_{34}r_{43} - 1 \\
\theta_3 &= r_{14}r_{32}r_{41} - r_{12}r_{34}r_{41} - r_{14}r_{31}r_{42} - r_{12}r_{31} - r_{34}r_{42} - r_{32} \\
\theta_4 &= r_{13}r_{31}r_{42} - r_{12}r_{31}r_{43} - r_{13}r_{32}r_{41} - r_{12}r_{41} - r_{32}r_{43} - r_{42}
\end{align*}
$$

and γ_i are coefficients that depend on both species interaction coefficients and
on autonomous survival probabilities q_i:

$$
\gamma_1 = -q_1 r_2 r_3 r_4 r_2 - q_1 r_2 r_3 r_4 r_3 - q_2 r_1 r_3 r_4 r_2 + q_2 r_1 r_3 r_4 r_3 + q_2 r_1 r_3 r_4 r_4, \\
+ q_3 r_1 r_2 r_4 r_3 - q_3 r_1 r_2 r_4 r_4 + q_3 r_1 r_3 r_4 r_2 + q_3 r_1 r_3 r_4 r_3 + q_3 r_1 r_3 r_4 r_4 + q_3 r_1 r_3 r_4 r_5 \\
- q_4 r_1 r_2 r_3 r_2 - q_1 r_1 r_2 r_3 r_4 - q_1 r_1 r_3 r_4 r_2 + q_1 r_1 r_3 r_4 r_3 + q_2 r_1 r_3 r_4 r_2 + q_2 r_1 r_3 r_4 r_3 + q_3 r_1 r_2 r_3 \\
+ q_3 r_1 r_2 r_4 r_3 + q_4 r_1 r_2 r_4 + q_4 r_1 r_3 r_4 r_2 + q_4 r_1 r_3 r_4 r_3 + q_4 r_1 r_3 r_4 r_4 + q_4 r_1 r_4 r_2 + q_1 \\
\gamma_2 = -q_1 r_2 r_3 r_4 r_3 + q_1 r_2 r_3 r_4 r_4 + q_1 r_2 r_3 r_4 r_1 + q_2 r_1 r_3 r_4 r_1 - q_2 r_1 r_3 r_4 r_2 \\
+ q_3 r_1 r_2 r_4 r_1 + q_3 r_1 r_2 r_4 r_3 - q_3 r_1 r_2 r_4 r_4 + q_3 r_1 r_2 r_4 r_5 + q_4 r_1 r_2 r_4 r_2 + q_4 r_1 r_3 r_4 r_1 - q_4 r_1 r_3 r_4 r_2 \\
+ q_4 r_1 r_2 r_4 r_3 + q_4 r_1 r_2 r_4 r_4 + q_4 r_1 r_2 r_4 r_5 - q_4 r_1 r_2 r_4 r_6 - q_4 r_1 r_3 r_4 r_2 \\
\gamma_3 = q_1 r_1 r_2 r_3 r_4 r_3 - q_1 r_1 r_2 r_3 r_4 r_4 + q_2 r_1 r_2 r_3 r_4 r_3 + q_2 r_1 r_2 r_3 r_4 r_4 + q_2 r_1 r_2 r_3 r_4 r_5 \\
- q_2 r_1 r_2 r_3 r_4 r_6 - q_3 r_1 r_2 r_3 r_4 r_2 + q_3 r_1 r_2 r_3 r_4 r_3 + q_3 r_1 r_2 r_3 r_4 r_4 + q_3 r_1 r_2 r_3 r_4 r_5 + q_3 r_1 r_2 r_3 r_4 r_6 \\
+ q_4 r_1 r_2 r_3 r_4 r_3 + q_4 r_1 r_2 r_3 r_4 r_4 + q_4 r_1 r_2 r_3 r_4 r_5 + q_4 r_1 r_2 r_3 r_4 r_6 + q_4 r_1 r_2 r_3 r_4 r_7 \\
\gamma_4 = q_1 r_1 r_2 r_3 r_4 r_3 - q_1 r_1 r_2 r_3 r_4 r_4 + q_2 r_1 r_2 r_3 r_4 r_3 + q_2 r_1 r_2 r_3 r_4 r_4 + q_2 r_1 r_2 r_3 r_4 r_5 \\
+ q_2 r_1 r_2 r_3 r_4 r_6 + q_3 r_1 r_2 r_3 r_4 r_2 + q_3 r_1 r_2 r_3 r_4 r_3 + q_3 r_1 r_2 r_3 r_4 r_4 + q_3 r_1 r_2 r_3 r_4 r_5 + q_3 r_1 r_2 r_3 r_4 r_6 \\
- q_4 r_1 r_2 r_3 r_4 r_3 + q_4 r_1 r_2 r_3 r_4 r_4 + q_4 r_1 r_2 r_3 r_4 r_5 + q_4 r_1 r_2 r_3 r_4 r_6 + q_4 r_1 r_2 r_3 r_4 r_7 \\
+ q_5 r_1 r_2 r_3 r_4 r_3 + q_5 r_1 r_2 r_3 r_4 r_4 + q_5 r_1 r_2 r_3 r_4 r_5 + q_5 r_1 r_2 r_3 r_4 r_6 + q_5 r_1 r_2 r_3 r_4 r_7 \, 23\text{[a]}.
$$

References

