A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances, Data Mining and Knowledge Discovery, vol.10, issue.1???2, pp.1-55, 2016.
DOI : 10.1038/nmeth.2560

A. Bailly, S. Malinowski, R. Tavenard, L. Chapel, and T. Guyet, Dense Bagof-Temporal-SIFT-Words for Time Series Classification, Lecture Notes in Artificial Intelligence, vol.9785, pp.17-30, 2016.
DOI : 10.1007/978-3-319-44412-3_2

URL : http://arxiv.org/abs/1601.01799

M. G. Baydogan and G. Runger, Learning a symbolic representation for multivariate time series classification, Data Mining and Knowledge Discovery, vol.21, issue.7, pp.400-422, 2015.
DOI : 10.1016/j.knosys.2008.03.027

M. G. Baydogan, G. Runger, and E. Tuv, A Bag-of-Features Framework to Classify Time Series, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.11, pp.2796-2802, 2013.
DOI : 10.1109/TPAMI.2013.72

C. Beecks, M. S. Uysal, and T. Seidl, Signature Quadratic Form Distance, Proceedings of the ACM International Conference on Image and Video Retrieval, CIVR '10, pp.438-445, 2010.
DOI : 10.1145/1816041.1816105

L. Bo and C. Sminchisescu, Efficient match kernel between sets of features for visual recognition, Advances in Neural Information Processing Systems 22, pp.135-143, 2009.

K. S. Candan, R. Rossini, and M. L. Sapino, sDTW, Proceedings of the International Conference on Very Large DataBases, pp.1519-1530, 2012.
DOI : 10.14778/2350229.2350266

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall et al., The UCR time series classification archive, 2015.

M. Cuturi, Fast global alignment kernels, Proceedings of the International Conference on Machine Learning, pp.929-936, 2011.

P. Drineas and M. W. Mahoney, On the nyström method for approximating a gram matrix for improved kernel-based learning, The Journal of Machine Learning Research, vol.6, pp.2153-2175, 2005.

T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola, Multi-instance kernels, Proceedings of the International Conference on Machine Learning, 2002.

T. Górecki and M. Luczak, Non-isometric transforms in time series classification using dtw. Knowledge-Based Systems 61, pp.98-108, 2014.

J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-thieme, Learning time-series shapelets, Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '14, pp.392-401, 2014.
DOI : 10.1145/2623330.2623613

A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola, A kernel method for the two-sample-problem. In: Advances in neural information processing systems, pp.513-520, 2006.

J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, Classification of time series by shapelet transformation, Data Mining and Knowledge Discovery, vol.22, issue.1, pp.851-881, 2014.
DOI : 10.1007/s10618-010-0179-5

D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, Comparing images using the Hausdorff distance, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.15, issue.9, pp.850-863, 1993.
DOI : 10.1109/34.232073

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Cun, Y. Bengio, and Y. , Convolutional networks for images, speech, and time series In: The Handbook of Brain Theory and Neural Networks, pp.255-258, 1995.

J. Lin, E. Keogh, S. Lonardi, and B. Chiu, A symbolic representation of time series, with implications for streaming algorithms, Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery , DMKD '03, pp.2-11, 2003.
DOI : 10.1145/882082.882086

J. Lin, R. Khade, and Y. Li, Rotation-invariant similarity in time series using bag-of-patterns representation, Journal of Intelligent Information Systems, vol.13, issue.3, pp.287-315, 2012.
DOI : 10.1145/1557019.1557122

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikitlearn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

F. Perronnin and C. Dance, Fisher Kernels on Visual Vocabularies for Image Categorization, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383266

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Rahimi and B. Recht, Random features for large-scale kernel machines Advances in neural information processing systems, pp.1177-1184, 2007.

H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, issue.1, pp.43-49, 1978.
DOI : 10.1109/TASSP.1978.1163055

P. Schäfer, The BOSS is concerned with time series classification in the presence of noise, Data Mining and Knowledge Discovery, vol.38, issue.11, pp.1505-1530, 2014.
DOI : 10.1109/ICDM.2012.26

P. Senin and S. Malinchik, SAX-VSM: Interpretable Time Series Classification Using SAX and Vector Space Model, 2013 IEEE 13th International Conference on Data Mining, pp.1175-1180, 2013.
DOI : 10.1109/ICDM.2013.52

J. Wang, P. Liu, F. H. She, M. Nahavandi, S. Kouzani et al., Bag-of-words representation for biomedical time series classification, Biomedical Signal Processing and Control, vol.8, issue.6, pp.634-644, 2013.
DOI : 10.1016/j.bspc.2013.06.004

J. Xie and M. Beigi, A Scale-Invariant Local Descriptor for Event Recognition in 1D Sensor Signals, Proceedings of the IEEE International Conference on Multimedia and Expo, pp.1226-1229, 2009.

L. Ye and E. Keogh, Time series shapelets, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, pp.947-956, 2009.
DOI : 10.1145/1557019.1557122