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Dominique Guégan · Bertrand Hassani ·
Kehan Li

Received: date / Accepted: date

Abstract The distortion operator proposed by Wang (2000) has been devel-
oped in the actuarial literature and that are now part of the risk measurement
tools inventory available for practitioners in finance and insurance. In this arti-
cle, we propose an alternative class of distortion operators with explicit analyt-
ical inverse mapping. The distortion operators are based on tangent function
allowing to transform a symmetrical unimodal distribution to an asymmetrical
multimodal distribution.
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1 Introduction

To integrate financial and actuarial insurance pricing theories, Wang (2000)
proposes a form of insurance risk pricing based on the standard Gaussian cu-
mulative distribution function (cdf) distortion operator with one parameter.
He points out that this operator is either concave (when the parameter is
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Université Paris 1 Panthéon-Sorbonne, CES UMR 8174, 106 bd l’Hopital 75013; Labex Refi,
Paris, France.
E-mail: kehanleex@gmail.com

 
Documents de travail du Centre d'Economie de la Sorbonne - 2017.30



2 Dominique Guégan et al.

positive) or convex (when the parameter is negative). Hamada and Sherris
(2003) suggests that this operator can shift the quantile of a distribution to
the left, thereby assigning higher probabilities to low outcomes. A number of
papers propose applications of distortion operators. For example, Härlimann
(2004) obtains an optimal economic capital formula, under suitable assump-
tions on insurance market prices, the collection of possible losses, and the
distortion function. Lin and Cox (2005) successfully applies Wang transform
to price mortality risk bonds. Hamada et al. (2006) shows a formal treat-
ment of risk measures based on distortion functions in discrete-time setting.
They conclude that the risk neutral computational approach is well adapted
to portfolio optimisation with such measures that do not lie within the ex-
pected utility framework. De Jong and Marshall (2007) provides a method for
analysing and projecting mortality based on the Wang Transform. Denuit et
al. (2007) designs the survivor bonds with the help of Wang transform (Wang
(2000)) which could be issued directly by insurers.

However, Godin et al. (2012) argues that it is a well-known fact that the re-
turns of most financial assets have semi-heavy tails. Consequently he recognizes
that a downside of the normal distortion of Wang (2000) is its underlying sym-
metrical that poses some constraints in applications. More precisely, Guégan
and Hassani (2015) criticize that Wang (2000) applies the same perspective
of preference to quantify the risk associated to gain and risk. Thus, the risk
manager evaluates the risk associated to the upside and downside risks with
the same function that implies a symmetrical consideration for the two effects
due to the distortion.

Accordingly, a number of papers make proposals on how to avoid the problem
of symmetry in the previous distortion operators. For example, van der Hoek
and Sherris (2001) proposes to use two different distortion functions g(x) and
h(x) (for instance when g(x) is concave, a convex h(x) = 1−g(1−x) would be
one possible choice), to allow a different treatment of the upside and downside
of the risk. In Wang (2004) a Student-t distribution based distortion operator
is introduced allowing for skewness. Sereda et al. (2010) proposes to use two
different functions issued from the same polynomial with different coefficients.
Godin (2012) introduces a distortion operator based on the Normal Inverse
Gaussian (NIG) distribution, which can asymmetrically distort the underly-
ing distribution. Guégan and Hassani (2015) suggests the use of an inverse
S-shaped polynomial function of degree 3 as a distortion operator to create an
asymmetrical distribution. Additionally this operator can have a concave part
and a convex part by varying its parameters.

Wirch and Hardy(1999) concludes that there is an interest in investigating
measures for capital adequacy that utilise the shape of the loss distribution,
particularly in the right tail. Specifically, multimodality is one of the impor-
tant characteristics of probability distribution. A number of papers related to
the income distribution find evidence of multimodality (for a review, see, e.g.,
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Bianchi (1997), Jones (1997), Quah (1996a, 1996b, 1997) and Zhu (2005)),
for instance the results of Zhu (2005) indicate that the US personal income
distribution has been multimodal in 1962, 1972, 1982, 1992 and 2000. Also, he
suggests that changes in the shape of the income distribution over the entire
income range provide rich information and shed light on issues of income in-
equality, poverty traps and convergence. Moreover, he argues that theoretical
models should be capable of explaining and generating multimodal income
distributions.

Importantly, motivated by the crisis, the multimodal characteristic of distri-
butions of some economic variables, for example some stock market indexes
like S&P 500 index (the Standard & Poor’s 500), SHCOMP index (Shang-
hai Stock Exchange Composite Index) and FTSE Index (the Financial Time
Stock Exchange 100 Index), can include useful information of systemic risk.
Accordingly it is necessary to find a model such that it is flexible enough
to accommodate various shapes of continuous distributions with leptokurtic,
skewed and multimodal characteristics.

Additionally, the financial industry has extensively used quantile-based down-
side risk measures based on the Value-at-Risk (V aR). In actuarial terms, V aR
is a quantile reserve, often using the pth percentile of the loss distribution. We
should emphasize that when we compute the V aR, the explicit analytical form
of the inverse mapping of cdf is crucial. Consequently, we propose an alterna-
tive class of distortion operators allowing to build an asymmetrical multimodal
distribution, with explicit analytical inverse mapping.

We proceed as follows. Section 2 describes the definition and some basic prop-
erties of distortion operators. Section 3 presents our model. Section 4 assess
the properties of three distortion operators by simulation. Section 5 concludes.

2 Distortion operator

For a continuous distribution with cdf F (f is its probability density func-
tion (pdf)), we recall the definitions of distortion operator and multimodal
distribution.

Definition 1 (Distortion operator) From Wang (2000), a mapping g: [0, 1]
→ [0, 1] is a distortion operator if: g is continuous and increasing; g(0) = 0
and g(1) = 1.

Definition 2 (Multimodal distribution) We call F a multimodal distri-
bution if its pdf f has multiple local maxima.

Then we give a definition
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Definition 3 (Changing point of concave-convex property) A point
x0 ∈ (0, 1) is called a changing point of concave-convex property for a distor-
tion operator g if g′′(x0) = 0, g′′(x) < 0 when x ∈ [0, x0) and g′′(x) > 0 when
x ∈ (x0, 1].

In his article Wang (2000) specifies that the distortion operator g can be
applied to any distributions. A distortion operator g can always transform a
cdf F to another cdf g ◦ F (denotes the composition function of g and F ).
Denoting Φ the cdf of the standard Gaussian distribution with mean 0 and
variance 1 (N(0,1)), Wang (2000) proposes a distortion operator gW as follows:

gW (x) = Φ[Φ−1(x) + a], x ∈ [0, 1] (1)

By illustrating the impact of gW on the logistic distribution, Guégan and
Hassani (2015) observes the shift of the mode of the initial distribution only.
Further more the close form of gW is not straightforward.

To create multi-modal distributions g ◦F , assuming f is differentiable and g is
twice differentiable, we can derive its associated pdf (g◦F (x))′ = (g(F (x)))′ =
g′(F (x))f(x) and

(g ◦ F (x))′′ = g′′(F (x))f2(x) + g′(F (x))f ′(x). (2)

By definition, g′(F (x)) is always positive. Thus to add hump in (g ◦F (x))′ for
a given F , we need to manipulate the sign of g′′(F (x)). Consequently concave-
convex property of g need to be considered.

Guégan and Hassani (2015) provides an inverse S-shaped polynomial function
of degree 3 given by the following equation and characterized by a location
parameter δ and a shape parameter β

gp(x) = a[
x3

6
− δ

2
x2 + (

δ2

2
+ β)x], x ∈ [0, 1] (3)

where a = ( 1
6−

δ
2 + δ2

2 +β)−1, δ ∈ [0, 1] and β ∈ R. They remark that gp’s curve
exhibits a concave part and a convex part. We can derive that g′′ = a(x− δ).
Thus when F (x) = δ, g′′(F (x)) equals to 0. However, the sign of g′′(F (x))
depends on the sign of a, for F (x) ∈ [0, δ) and F (x) ∈ (δ, 1]. Consequently to
locate the changing point of concave-convex property of g by δ is confusing.

3 A new class of distortion operators

The objective is to construct a distortion operator g with property below
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Property 1 It is twice differentiable. It contains a changing point of concave-
convex property x0, with a location parameter to locate x0 and with a shape
parameter to control the concave-convex level of g (characterised by |g′′|: the
absolute value of g′′). Furthermore the inverse mapping of g has a straightfor-
ward closed-form.

In order to construct a g satisfying Property 1, first we construct a distortion
operator g1 by tangent function (since tan(x), x ∈ (−π2 ,

π
2 ) is a smooth func-

tion (it has derivatives of all orders) containing x0, and its inverse mapping is
arctan(x))

Definition 4 (Distortion operator g1) For x ∈ [0, 1] with a shape param-
eter 0 < a < π

g1(x) =
1

2tana2
(tan(ax− a

2
) + tan

a

2
) (4)

The first and second derivatives of g1 are

g′1(x) =
a

2tana2

1

cos2(ax− a
2 )

(5)

g′′(x) =
a2

tana2
tan(ax− a

2
) (6)

The inverse mapping of g1(x) is

g−11 (x) =
1

2
+

1

a
arctan(2xtan

a

2
− tana

2
) (7)

One can verify that g1(x) is a distortion operator and it has x0 = 1
2 . Thus the

concave-convex property of g1 is symmetrical.

Comparing with Property 1 for g1, a location parameter to locate x0 is needed,
which allows g1 to have an asymmetrical concave-convex property.

Definition 5 (Distortion operator g2) For x ∈ [0, 1] with shape parameter
0 < a < π and location parameter b ∈ ( 1

2 ,∞)
g2(x) =

1

2btana2
tan(abx− a

2
) +

1

2b
, 0 ≤ x ≤ 1

2b

g2(x) =
2b− 1

2btana2
tan(

ab

2b− 1
x+

a

2− 4b
) +

1

2b
,

1

2b
< x ≤ 1

(8)

One can verify that g2 satisfies all conditions in Property 1, whose first and
second derivatives are
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
g′2(x) =

a

atana2

1

cos2(abx− a
2 )
, 0 ≤ x ≤ 1

2b

g′2(x) =
a

atana2

1

cos2( ab
2b−1x+ a

2−4b )
,

1

2b
< x ≤ 1

(9)


g′′2 =

a2b

tana2
tan(abx− a

2
), 0 ≤ x ≤ 1

2b

g′′2 =
a2b

(2b− 1)tana2
tan(

ab

2b− 1
x+

a

2− 4b
),

1

2b
< x ≤ 1

(10)

The inverse mapping of g2 is


g−12 =

1

ab
arctan(2bxtan

a

2
− tana

2
) +

1

2b
, 0 ≤ x ≤ 1

2b

g−12 =
2b− 1

ab
arctan(

2btana2
2b− 1

x−
tana2
2b− 1

) +
1

2b
,

1

2b
< x ≤ 1

(11)

4 Simulation

In this section, first we show the evolution of gp, g1 and g2 w.r.t (with respect
to) different values of their parameters by simulation (gp is the benchmark),
which allows to compare these distortion operators and remark the difference
of two properties of them: concave-convex property level and location of x0.
Second g2 is applied to transform a unimodal F to a multimodal g2 ◦ F . We
plot the pdf associated to g2 ◦ F to check the influence of g2.

4.1 Evolution of distortion operators

Firstly we check the concave-convex level of gp, g1 and g2 affected by the
shape parameter. Thus we always fix the location parameter. In Fig. 1, the
value of δ is given by 0.5, then we plot the function gp for different values
of β (β = 0.00003, 0.003, 0.03, 0.3). The purpose of Fig. 1 is to show how β
can effect the concave-convex level of gp. We observe in this picture that the
curve has symmetrical concave and convex parts, and low values of β are cor-
responding to high concave-convex level.

For g1, to understand the influence of the parameter a on the shape of curve,
we plot g1 for a = 0.1π, 0.8π, 0.9π, 0.95π in Fig. 2. The curves show that the
function g1 is always symmetrical. We observe that if a tends to 0 then g1
tends to the identity mapping and when a tends to π the curve exhibits higher
concave-convex level.

 
Documents de travail du Centre d'Economie de la Sorbonne - 2017.30
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Fig. 1 Curves of the distortion function gp introduced in equation (3) for several value of
β (β = 0.00003, 0.003, 0.03, 0.3 and fixed value of δ = 1

2
.

Fig. 2 we plot g1 in equation (4) for a = 0.1π, 0.8π, 0.9π, 0.95π.

Fig. 3 illustrates the effect of the shape parameter a on g2 using the same
values of a as in Fig. 2 and fixed b = 1. We observe that the curve is sym-
metrical and in this case the shape parameter has the same effects as in Fig. 2.

Secondly we check the effects of location parameters of gp and g2 on the loca-
tion of x0. The location of x0 characterises the asymmetrical concave-convex
property of distortion operators.

For gp, to illustrate the role of δ on the location of x0, we use two graphs
in Fig. 4. The left graph corresponds to the curve of gp for δ = 0.45 and
β = 0.00003, 0.003, 0.03, 0.3. The right graph provides the curve of gp for
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Fig. 3 we plot g2 in equation (8) for a = 0.1π, 0.8π, 0.9π, 0.95π and fixed b = 1.

δ = 0.3 and β = 0.00003, 0.003, 0.03, 0.3. We observe that through δ one can
indeed manipulate the location of x0, but the relationship of them are confus-
ing.

Fig. 4 The left graph corresponds to the curve of gp for δ = 0.45 and β =
0.00003, 0.003, 0.03, 0.3. The right graph provides the curve of gp for δ = 0.3 and β =
0.00003, 0.003, 0.03, 0.3.

For g2, to understand the influence of the parameter b on the location of x0,
we provide two graphs in Fig. 5. The left graph corresponds to the curve of g2
for b = 2.5 and a = 0.1π, 0.8π, 0.9π, 0.95π. The right graph provides the curve
of g2 for = 5

8 and a = 0.1π, 0.8π, 0.9π, 0.95π. We observe the location of x0 is
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exactly 1
2b .

Fig. 5 The left graph corresponds to the curve of g2 for b = 2.5 and a =
0.1π, 0.8π, 0.9π, 0.95π. The right graph provides the curve of g2 for = 5

8
and a =

0.1π, 0.8π, 0.9π, 0.95π.

From the argumentation and simulation above, we can summarize that g2
meets all the conditions in Property 1.

4.2 Transform a unimodal distribution to a multimodal distribution

To explain how to use g2 to transform a given unimodal F to a new asymmet-
rical multimodal g2 ◦ F , we begin with the N(0,1) with cdf FG and pdf fG.

By plotting the pdf of N(0,1) and the distorted density g′2(FG(x))fG(x) with
fixed b = 1 and a = 0.5π, 0.8π, 0.9π, 0.99π, Fig. 6 shows the effect of shape pa-
rameter a of g2 on N(0,1). For b = 1, g′2(FG(x))fG(x) are always symmetrical.
As a increases, g′2(FG(x))fG(x) associates a small probability in the centre of
the distribution and puts bigger weight in the tails. We observe two humps in
the distorted density when a is large enough.

To investigate how the location parameter b of g2 introduces asymmetrical
property into g′2(FG(x))fG(x), we provide two graphs in Fig. 7 using the same
values of the shape parameters than those used in Fig. 6, but b is 2.5 for the
left graph and b is 5

8 for the right one. From Fig. 7 we can remark that the
values of a control the information under the humps and the values of b con-
trol the locations of the humps. When b 6= 1, g′2(FG(x))fG(x) is asymmetrical.
More precisely, when the original distribution is symmetrical, the relatively
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Fig. 6 We plot the pdf of N(0,1) and distorted density g′2(FG(x))fG(x) with fixed b = 1
and a = 0.5π, 0.8π, 0.9π, 0.99π.

high hump of the distorted density is in the right tail for the high value of b
in g2; the relatively high hump of the distorted density is in the left tail for
the low value of b in g2.

Fig. 7 The left graph corresponds to the curves of g′2(FG(x))fG(x) for b = 2, 5 and a =

0.5π, 0.8π, 0.9π, 0.99π. The right graph provides the curves of g′2(FG(x))fG(x) for b = 5
8

and
a = 0.5π, 0.8π, 0.9π, 0.99π.

Besides assessing the location parameter b with F coming from the symmet-
rical, thin-tail distribution from the elliptical distribution family, it is also
necessary to check the influence of b with F coming from the asymmetrical,
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fat-tail distribution. Let FE (fE the associated density) be GEV(0.2,0.05,-0.01)
(Generalized extreme value distribution with shape parameter k = −0.4, scale
parameter σ = 0.05 and location parameter µ = −0.01.). Using the same
value of the shape parameter a = 0.95π but different location parameters
b = 0.625, 0.54, we plot the distorted density g′2(FE(x))fE(x) in Fig. 8. Un-
expectedly, instead of controlling the locations of the humps, we observe b
controls the information under the humps. Especially lower value of b is asso-
ciated to higher left hump and lower right hump.

Fig. 8 Using the same value of the shape parameter a = 0.95π but different location
parameters b = 0.625, 0.54, we plot the distorted density g′2(FE(x))fE(x).

To check if parameter a can affect the locations of the humps or not, we plot
the pdf of GEV(0.2,0.05,-0.01) and g′2(FE(x))fE(x) with the same b = 1 but
different a = 0.95π, 0.999π in Fig. 9. The graph suggests that the parameter
a indeed effects the locations of the humps. We observe that the left hump
shifts to the left when a increases. It is important to point out that in this
simulation, the concave-convex property of g2 is symmetrical since b = 1.

Motivated by Fig. 9, we plot the pdf of GEV(0.2,0.05,-0.01) and g′1(FE(x))fE(x)
in Fig. 10 using the same values of the shape parameters than those used in Fig.
9. Comparing Fig. 9 and Fig. 10, we observe the same result. Consequently, we
can remark that when the original distribution is asymmetrical, it is enough
to use g1 if the main purpose is to create an asymmetrical distorted density
with two humps, which possesses the flexibility of shifting the positions of the
humps.
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Fig. 9 We plot g′2(FE(x))fE(x) with the same b = 1 but different a = 0.95π, 0.999π.

Fig. 10 We plot g′1(FE(x))fE(x) using the same values of the shape parameters than those
used in Fig. 9., i.e. a = 0.95π, 0.999π.

5 Conclusion

In this article, we propose an alternative class of distortion operators with
explicit analytical inverse mapping. The distortion operators are based on
tangent function allowing to transform a symmetrical unimodal distribution
to an asymmetrical multimodal distribution.

More precisely, when the original distribution is symmetrical, the first distor-
tion operator with just shape parameter can only generate symmetrical dis-
torted density. Its shape parameter controls the information under the humps.
Consequently, to introduce asymmetry into the distorted density in this case,
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it is necessary to use the second distortion operator with both shape parame-
ter and location parameter. Especially, the values of shape parameter control
the information under the humps and the values of location parameter control
the locations of the humps.

However, when the original distribution is asymmetrical, unexpectedly we ob-
serve that instead of controlling the locations of the humps, the location pa-
rameter of the second distortion operator controls the information under the
humps. Further more, in this case its shape parameter indeed effect the loca-
tions of the humps. Additionally we remark that it is enough to use the first
distortion operator which is more concise, if the main purpose is to create an
asymmetrical distorted density with more than one humps from an asymmet-
rical original density, and at the same time possess the flexibility of shifting
the positions of the humps.
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