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Programming men and machines.  Changing organisation in the artillery
computations at Aberdeen Proving Ground (1916­1946)

Maarten Bullynck (Paris 8)

The United States' decision to enter World War I marks the beginning of a
new and close alliance between science and the military. On June 19, 1916
the  National  Research  Council  was  organized  to  encourage  “the
employment of scientific methods in strengthening the national defense”.1

This employment would come in many forms, ranging from technological
developments  to  the  application  of  statistical  control  procedures  and
psychological tests for managing the commodities needed during the war
effort. One of the earliest employments of science was the reform of the
mathematical procedures used in ballistics. 
While at first sight this reform can be regarded as a purely mathematical
one,  the  preference  of  one  method  over  another,  it  also  marks  the
beginning  of  a  new  organisation  of  men,  tables  and  machines  for
computational  labour.  In  the  scientific  articles  that  discuss  the
mathematical reform this aspect remains implicit, but the technical reports
and field manuals speak more clearly of the effect of mathematical forms
on  the  organization  of  manual  calculation.  This  new  organization  of
computational  labour  would  imprint  itself  on  the  minds  of  the  artillery
officers.  When,  starting  from  the  1930s,  new  machinery,  analogue  or
digital,  will  be  deployed  to  aid  in  the  artillery  computations,  these
dispositives will still guide them in using and describing the new machines,
having an impact on the hardware architecture and/or the utilisation and
programming of the early computers.

1. New  ways  of  organizing  human  computation  labour  after
World War I

During the first World War the astronomer Forrest R. Moulton brought more
advanced mathematical techniques to the computation of ballistic tables,
replacing older techniques that had become obsolete in part due to the
advances  in  weaponry.  Moulton  introduced  a  method  called  numerical
integration that  was  refined  during  the  years  1917-1928.2 Another
revolution, less explicit perhaps but with more consequences ultimately,
went hand in hand with this mathematical reform: a reorganisation of the
“assembly line” of ballistic computation, of the actual sequence of steps
and actions during computation. 
Moulton (1919, p. 50-51) started from the classic set of ballistic differential
equations:

d2x/dt2 = -F dx/dt
d2y/dt2 = -F dy/dt – g

where  F= G(v)  H(y)  /  C  with  G(v=x'2+y'2)  the  retardation  function  (air
resistance, drag, etc.) for a standard projectile, H(y) the altitude function

1 NRC Annual report 1916-1917, p. 32.
2 See Gluchoff 2011.



and C the ballistic coefficient (corresponding to the form of the projectile).
G and H are empirical functions of which tables were available based upon
experiments  at  the  proving  ground.  For  H,  one  could  also  use  an
exponential function of the y-coordinate (e-ay) as an approximation. 
Moulton's numerical  integration of  these equations is a variant of finite
differences method that works with successive approximations, repeating
the same pattern of arithmetic steps until  a solution becomes stable. It
was a  very flexible  method :  on  the one hand,  it  could  be  adapted to
several classes of situations, on the other hand, it was a more intricately
mathematical and hence difficult method for the common artillerist. 
The translation of Moulton's advanced mathematics into simpler arithmetic
occupied artillery officers in the early 1920s and they devised step-by-step
manuals and example computations that the computors could follow. The
following instructions are taken from C.A.R. Hoar's book:

The following tables are used: Logs and v²/100; Table of the G Function; 
Log10 H=-0.000045y.
The following blank forms are used: “Trajectory sheet” Form 5042; 
“Computing sheet” Form 5041.
x, x', x'', y, y', y'' computed as follows: […]
On the first line of the trajectory sheet enter the initial values of x, x', y, 
y and y' […] then turn to the small computing sheet and compute the 
first column for t=0. […]
The process is as follows: Taking the value of x' from the trajectory 
sheet, look up at the same time log x' and x'²/100 in the table of logs 
and squares. Similarly look up log y' and y'²/100. 
Add x'²/100 and y'²/100 to get v²/100. With the latter, enter the G table 
and take out log G.
With y, as tabulated on the trajectory sheet, enter the H table and take 
out log H.
Add log G, log H and colog C to get log E.
Add log x' and log E to get log Ex'. Add log E and log y' to get log Ey'.
Look up Ex' and Ey' from their logs, in the table of logs and squares. 
[etc.]3

This extract illustrates a number of things. First of all, the computation of a
trajectory is very much a clerical kind of work, involving the selection of
the right forms that are properly labelled by numbers.4 Further, it involves
a number of tables, some of a general nature such as logarithm tables,
other of a special nature such as the G table that features the function of
resistance where values are to be looked up and copied at appropriate
moments.5 Though some technical mathematical vocabulary is used, the
mathematics  to  be  performed  is  essentially  reduced  to  additions  (and
possibly  subtractions).  Finally,  the  sequence  of  the  simple  steps  is
meticulously described in a way we would nowadays call “algorithmic”, as
could  be  performed  by  a  machine.  All  in  all,  the  form of  computation
neatly spells out the actions of the computor, s/he is the incumbent of the

3 Hoare 1921, p. 47-48.
4 See Agar 2003 on the link between the civil service in the U.K. and mecanisation.
5 The “G” of the G-table stands for “Gâvre” the testing ground of the French artillery

where these tables were produced, see Aubin 2014.



orderly arrangement of colums and lines of the computing sheet.6 
The flexibility of Moulton's method provided yet another element of the
dispositives  of  computational  practice  generated  by  mathematical
procedure. There were two advantages. First, once a standard trajectory
had  been  calculated  numerically,  trajectories  under  slightly  different
conditions  could  be  easily  obtained  by  just  one  “run”  of  the  same
mathematical  procedure   (through  differences  and  without  successive
approximation). Second, if the retardation function G changed, it was easy
to substitute one table for another in the mathematical procedure. As the
artillery  officer  L.S.  Dederick  notes  during  a  brief  controversy  over
Moulton's  method  and  its  practice  in  the  Bulletin  of  the  American
Mathematical Society7:

Many trajectories  are  now computed at  Aberdeen  using more  recent
data  on  the  resistance  function  than  those  of  the  G  table.  The
advantage  of  numerical  integration  here  becomes  evident.  The
computer is merely given a new table of the resistance function and he
proceeds  as  before.  The  physicist  does  not  have  to  ask  the
mathematician “can you integrate these new differential equations that
my experiments give?”

In other words, the mathematical procedure (and its stepwise translation
into computational instructions) is invariant under the exchange of tabular
data.  The  fact  that  the  mathematical  procedure  remains  the  same,
whether  for  successive  approximation,  or  for  the  shortcut  of  direct
computation under slightly different conditions, or even under substitution
of the empirical  function is  a very important property of  the numerical
integration method.8 It allows for a precise and orderly grouping of data in
the ballistic problem and its computational treatment. 
There are exactly three groups of data: 1) the initial data of the problem,
2) the data pertaining to the empirical  function of  resistance and drag
obtained  by  experiment,  and  finally,  3)  the  mathematical  data  of  the
procedure itself.9 This last group, the mathematical data, can be obtained
through development of the differential equations that correspond to the
general  problem.  The  middle  group  of  empirical  or  experimental  data
correspond  to  a  function  or  functions  appearing  in  that  differential

6 For a testimony on the time-consuming work of computing trajectories at Aberdeen
Proving Ground, see Polachek 1997.

7 Dederick 1928. It responds to a review by J.E. Rowe of Moultons Exterior Ballistics (Bull.
AMS vol. 29 p. 229-232)that faulted the book because it could not be used in practice:
“it is for the use of the mathematician rather than for the practical  ballistician” (p.
232). A similar debate happened between Hoar and Moulton, see Gluchoff 2011.

8 This  property  is  not  to  be  had  with  the  Siacci-method,  in  use  before  numerical
integration. The Siacci-method was valid under specific conditions that simplified the
situation and had to be complexified considerably if these conditions were not met and
higher  degree approximations had to be introduced.  The advance of  weaponry led
under the Siacci-theory to triple-entry tables and the use of nomograms, see Alger
1919.

9 Remark that Charles Babbage already had a similar separation of groups of data in his
design for the Analytical Machine, distinguishing between data of the operations and
numerical data. This distinction is also rooted in the mathematical development of the
method of finite differences but is guided by another philosophy, that of the English
algebraic school of the early 19th century. See Durand-Richard 1992.



equation (the resistance, the altitude or ballistic coefficient).10 The group of
initial data, finally, correspond to a specific set-up, a specific angle, speed
and velocity of a specific artillery instrument, this is the most concrete set
of  quantities.  These  three  groups  of  data  thus  correspond  to  different
levels  of  generality,  but  are  also  precisely  situated  in  the  numerical
integration method. The mathematical data correspond to the sequence of
computation steps. The empirical data are found in the tables used. Lastly,
the entry data are the initial  data or  the new initial  data that may be
simply inserted into the procedure to directly obtain the next trajectory.11

The fact that they can be rather neatly separated in the procedure will
prove to be of importance for later mechanisation.

2. Looking for mechanisation (1933-1943)

During  the  1920s  and  1930s  the  officers  at  Aberdeen  Proving  Ground
pursued the organisation and optimisation of the computations, providing
manuals and courses at the Ordnance School designed to be practical in
the field, while at the same time they were looking out for other aids for
computation. When at the 1929 AMS Meeting Vannevar Bush presented his
planned differential analyser, J.W. Barker, reserve officer of the Ordnance,
and L.S. Dederick, chief of Aberdeen Proving Ground' Computing Branch,
both  present  at  the  meeting,  immediately  talked  to  Bush  about  the
possibility  of  using the new machine to  do ballistic  computations.  This
conversation was followed up by Dederick's visit to Bush and Caldwell's
differential analyzer that was still under construction at MIT in 1931 and a
test ballistic computation on the machine in 1932. Finally, it was decided
to  build  a  new  differential  analyzer  at  Aberdeen  Proving  Ground  in
cooperation  with  the  MIT  and  the  Moore  School  of  Pennsylviana.  The
construction  took  from  1933  to  1935  and  some  improvements  were
gradually added in the years afterwards.12 
From that time onward, the Ordnance's textbook mentioned “mechanical
integration”  alongside  “numerical  integration”.13 On  the  positive  side,
discounting  the  time  needed  for  the  reduction  of  data  and  of  the
machine's  set-up,  the  analyzer  worked  about  fifty  times  faster  than  a
human computer.  On the negative side,  mechanical  integration  did not
lend  itself  to  shortcuts,  numerical  integration's  advantage  of  obtaining
slightly  different  trajectories  directly  could  not  be  realized  on  the
differential analyzer.14 But there was a neat localisation of the three groups

10Because these empirical functions are often “rough” functions, they were often split up
in  various  “zones”  where  they  were  more  or  less  “smooth”  (continuous).
Corresponding to each “zone”, different interpolation formulae were used. In practice,
these  data,  strictly  belonging  to  the  mathematical  data,  were  put  in  the  tabular
empirical data too. The development of better mathematical methods to interpolate
and approximate these “rough” functions during the years 1930-1940 constitutes an
important chapter in the genesis of numerical analysis. Schoenberg's work, mentioned
later in this article is part of that story.

11That is, if they are only slightly different from the preceding initial data.
12The information in this paragraph is taken from A.A. Bennett's report (Bennett 1942, p. 

7-13).
13Kent et al. 1938, p.444
14See Dederick 1940, p. 634-35 and Feller and Shannon, p. 2.



of data. The differential analyzer being an analogue machine, it did not
proceed by simple, discrete computation steps, but rather the quantities
were  generated  by  the  connection  between  continuously  moving
integrators  interconnected  with  so-called  input  tables.  On  these  input
tables one could lay a plotted curve that could be traced using a pointer.
On  the  Aberdeen  analyzer,  three  input  tables  were  used  during
computation:  A  divisor  table  (for  doing  division),  a  vector  table  (that
contained the initial conditions in the form of limits on the variable v), and
a template table (that contained the G function). Thus, the three groups of
data  were  materially  separated:  Mathematical  data  were  the  cables
connecting  the  integrators  and  tables,  functional  data  were  in  the
template table(s) and the initial data in the vector table.
This neat separation was challenged by the H function. The H function was
not taken from a table, but calculated as an exponential function of y on
the differential analyzer. When the Analyzer was up for review by W. Feller
and C.E. Shannon in 1942, Dederick asked whether it would not be better
to use a table than to calculate it ad hoc, the answer was a clear no (Feller
and Shannon 1942, p. 8).  The question had already come up at MIT in
1932  when  Guerrieri  had  investigated  what  functions  could  be
conveniently  generated  by  the  differential  analyzer  itself:  “functional
relations are introduced into the machine by means of input tables which
are not automatic in their operation and which require the services of an
attendant for their use […] the process might possibly be made entirely
automatic”  (Guerrieri  1932,  p.1)  Guerrieri  had  shown  how  elementary
functions  (such  as  the  exponential  of  the  H  function)  could  be  simply
generated by the differential analyzer itself instead of “reading” the data
from tables. It soon turned out the idea could be generalized. Indeed, as
C.E. Shannon showed in a 1941-publication, essentially all functions could
be  generated  by  the  differential  analyzer  itself  (Shannon  1941).15 This
results blurs the neat separation between groups of data, since, at least in
theory, all functional data could be put in the machine itself instead of in
input tables. 
With the progress of  weapons development during World War II,  it  was
soon clear  that  the groups  of  computors  and the differential  analyzers
could not work fast enough to supply all necessary ballistic tables to the
army. Also, “the solutions obtained on the Differential Analyzer were not as
accurate as those obtained by manual calculation” (Polachek 1997, p. 26).
The problem was debated at meetings of the National Defense Research
Council (that counted four to five members of Aberdeen Proving Ground).
The  Council  decided  it  would  be  wise  to  supplement  the  human  and
analogue computing with digital machinery. George R. Stibitz fom Bell Labs
had been serving on the NDRC since the beginning of the war and had
constructed  with  his  team of  engineers  at  Bell  two  relay-based  digital
computers: Model II (or the Relay Interpolator) in 1943 and Model III (or the
Ballistic  computer)  in  1944,  both  for  the  Naval  Research.  In  1944,  the
NDRC decided that a two new machines of a more general design, the
Model V, would be built  under contract for  the Naval  Research and for

15To  be  precise,  all  functions  that  are  not-hypertranscendental.  Examples  of
hypertranscendental functions are the Gamma-function or the Riemann Zeta-function



Aberdeen Proving Ground.16 In June 1943 they also signed a contract with
the Moore School where John Mauchly and Presper Eckert had proposed an
ambitious  project  to  build  a  numerical  integrator  and  computer  with
vacuum tubes.17 The Bell  machine would finally be delivered December
1946 for the Ordnance and August 1947 at Aberdeen. The ENIAC, Mauchly
and Eckert's  machine,  would  be  ready February  1946.  These machines
added to the digital  computational  power already present at Aberdeen,
two IBM Relay calculators that had been operational since 1944.18

In a report on the computing facilities at Aberdeen in 1949, the authors
write, speaking of the IBM calculators, the Bell machine and the ENIAC19:
“The  three  digital  machines  have  very  similar  logical  organizations”
(Harrison et al. 1949, p. 5) and they give the “logical organization of a
representative digital calculating machine” as follows:

In  the  diagram  we  have  a  central  programming  unit  that  commands
function tables, arithmetic unit and internal storage that all communicate,
through  a  bus,  with  input  and  output.  It  may  quite  surprise  to  see  a
representative model of a computer anno 1949 that does not resemble
the well-known von-Neumann-architecture.20 In the von Neumann model,
supposed to be the “blueprint”  of  the modern computer,  the logic  and
arithmetic units are brought together in a central programming unit that

16See Stibitz' report (March 1944) to the Council, or one of the papers describing the line
of Bell relay calculators.

17See Brainerd 1976 or other papers of the rich bibliography on the ENIAC.
18These machines are described informally but clearly in Berkeley 1949. 
19The  ENIAC the  report  describes  is  already  the  “rewired”  ENIAC that  “simulates”  a

stored-program computer, see Haigh et al. 2014  for more details.
20 Von Neumann 1945.



controls communication with the memory device and input/output. But of
course, the report presents a synthesis, driven by von Neumann's talent of
abstraction and generalization, of how the team that was developing the
all-electronic ENIAC was forecasting the form of future computing devices.
In contrast, Aberdeen's report is still paying tribute to practices of the past
and  has  to  be  read  in  the  tradition  of  the  organisation  of  (ballistic)
computations.  The  difference  between  von  Neumann's  and  Aberdeen's
reports is most obvious in the special unit “Function tables”, completely
absent in von Neumann's model, but capital in Aberdeen's representative
model. 
The authors of the report specify in detail:

The  internal  and  external  storage  furnish  the  calculator  with  the
analogues of  the mathematical  symbols of  (  ),  [  ],  {  },  and other
designations  of  association.  […]  In  comparing  machine  computing
with  manual  computing,  we  may  liken  the  internal  storage  and
external  storage  respectively  to  the  memory  of  the  [human]
computer,  and  the  data  sheet  upon  which  he  enters  intermediate
results.
Manual computer have frequent  occasion to refer  to tables of  pre-
computed or empirical functions. To perform the analogous operation
upon the representative digital  computing machine,  function tables
are provided [that contain] entries and interpolational coefficients of a
tabulated function. (Harrison et al. 1949, p. 7)

Also in parallel  with the organisation of manual ballistic  computation,  a
division of labour between the mathematician and the computor returns in
the  form  of  a  relationship  between  the  “problem  preparer”  and  the
“machine”: “the machine does not solve a problem […] [it] will not invent
the sequence of operations necessary […] the method of solution must be
devised by the problem preparer” (Ibid., p. 8)21 The suitability of a problem
for machine computation is conditioned by three criteria: The reducibility,
the containability and the economy of a problem. A problem is reducible if
“the  expressions  to  be  evaluated  in  its  execution  are  expressible  to  a
sufficient degree of approximation, in terms of the elementary operations
and pretabulated functions.” (p.8) It is containable if it satisfies the digital
capacity of the machine (its word size), its storage capacity (its internal
and  external  memory)  and  its  sequencing  capacity  (the  types  and
organisation of orders of the programming unity). Finally, the economy of a
problem must be considered, is the solution method repetitive and general
enough  as  to  warrant  the  investment  of  the  coder's  time  and  the
machine's time? 
As  the  comparative  table  makes  clear,  the  ENIAC  stands  out  for  the
economy of running time (its electronic speed) and the Bell computer for
its unlimited programming capacity and flexibility of changing the set-up
(because new data can be automatically accessed). 

21 It may be remarked that this division of labour returns in a slightly different form in
Goldstine and von Neumann's report on programming (1947-1948, pp. 20-23).



The  common  background  in  ballistic  computation  for  the  three  digital
Aberdeen machines is evident from the language and similes used in this
report. It can also be tracked down in the architecture of these machines,
but,  what is  quite interesting,  the accumulated experience gathered by
using  these  machines   during  the  years  1946-1950  ultimately  led  to
changing the computational organisation, having an impact on hardware
design (abandoning the “representative digital machine” for von-Neumann
architecture)  and  on  software  conception  (from  preparing  and  coding
computations  to  programming).  This  change  can  be  observed  in  the
development and use of the Bell Model V (especially when compared with
the Model III),  and in the rewiring of  the original  ENIAC into a “stored-
program” machine.22

3. Bell Model V Calculator: Tapes and Controls

The Bell relay calculator Model V pursued the line of design of Models II
and III23, but was to be a general-purpose machine from the outset. The
head engineer for  Model  V was S.B.  Williams who had already been in
charge of  the Model III  machine.  The Model  III  machine was actually a
machine to compute errors, viz. the machine “observed” (i.e. it received
the data the communication through punched tape) a real gun director
shooting a projectile with a fuse and compared that data with the data of
the gun director and the ballistic tables that contained the presupposed
trajectory and fuse time of the projectile.  The difference between these
data gave the errors. This set-up is translated into three types of tapes

22See references of footnote 19.
23Model IV was a slightly different version of Model III, with extra trigonometric and 

logarithmic tables that had been wired down.



read  by  the  Model  III  machine:  Ballistic  tapes  containing  known  and
precomputed ballistic data; the interpolator data tapes that contains the
mathematical coefficients for the interpolation; and the problem data tape
containing the data “observed”. Finally, there was the master or routine
tape. As the patent specifies: 

The master tape will bear the burden of steering the calculations, the
tapes which have herein been called the ballistic tapes will contain a
great amount of known information tabulated by indices (which may
be calculated or recorded by this calculator), the problem data tape
will  contain the arguments of the problem or problems to be solved
and the interpolator tape will contain data correlated with the problem
data.24 

On the  Model  III  the  problem data  came from an external  source  (the
“observed” projectile), so the machine was essentially in a feedback loop
with another piece of  machinery,  it  was a coupled system. Though the
engineers sometimes suggested Model III was nearly general-purpose, its
coupling with the gun director made it special-purpose. This was the main
difference in design of Model V that would be a standalone computer, not
coupled to external  devices like a gun director,  and built  as a general-
purpose machine from the start. 
This transpires from the respective block diagrams of the relay computers.
Model  III  is  basically  oriented  from input  (5  tapes25)  to  output  (1  tape
printed), where the data are first combined and then transformed under
way by the calculator (in yellow in the figure). Model V is self-contained
and  is  gouverned  by  the  routine  tape  (in  red)  that  controls  the
communication with and between the other units.

 

The block diagrams of Models III  and V make the consequences of this
transition visible though they also show some continuity. On the left hand

24Andrews et al. (1946) p.24-25.
25  These are : the control data tape (red), the interpolation data tape (white), the two

table data tapes (blue) and the problem data tape (green). The tape recording the
output is brown on the figure.



side of Model V's diagram two additions are featured (diagonally striped),
the discriminator and the storage register. On the right hand side, we have
virtually  the  some block  elements,  the  tapes  and  their  controls,  as  in
Model  III,  though  they  have  been  slightly  rearranged.  The  left  hand
additions are symptomatic of the growing importance of “programming”,
controlling the routine.  The right hand side rather marks the continuity
with the older practices of automated ballistic computation.
In Model V, the disappearance of the interpolator tape and control (white)
is immediately linked to the appearance of the discrimator unity (striped),
they are effects of moving away from a specific class of problems (ballistic
equations and interpolations) to a more general and abstract approach to
mathematical  computation.  As  mentioned  earlier  (footnote  10),  the
ballistic  calculations used empirical functions (the drag function G) that
were  rather  “rough”  so  they  had  to  be  approximated  and  interpolated
locally.  Instead  of  a  global  interpolation  formulae,  a  set  of  local
interpolation  formulae  with  specific  coefficients  were  matched  to  the
different  “zones”  of  the  “rough”  function.  These  coefficients  and  the
adresses of the “zones” where they were to be used could be found on the
interpolator tape. On the original ballistic machines, Models II and III, the
machine had a special control coupled to the interpolator tape to switch
between interpolation formulae. This specific setup was now abandoned
for a more general formulation. The discriminator unit could now be used
to  look  at  specific  values  provided  by  the  computation  and  to
“discriminate” or “decide” on the basis of that value what would be the
(sub)routine to be followed, viz. to activate parts of the routine tape and/or
data in storage to pursue the calculation. This change in machine design
features  two  important  characteristics  of  programmability:  Abandoning
special-purpose for general-purpose, and the introduction of a conditional
structure in the computation. 
Actual usage of the Model V machine at Aberdeen, however, soon made
clear  that  this  logical  design  of  the  machine  could  have  even  been
improved upon. In particular,  the distinction between the various tapes,
still  inherited  from  the  organisation  of  manual  ballistic  computation,
proved obsolete:

When the tape input system for this machine was designed, it  was
intended that the routine tapes should contain all the orders, the table
tapes  should  contain  numerical  information  of  a  general  nature,
comparable to  function  tables  used in  manual  computing,  and the
problem tape  should  contain  numerical  information  specific  to  the
problem being solved (i.e. initial conditions for differential equations,
coefficients of a system of algebraic equations etc.). Gradually, as the
machine developed, the distinction between the kind of tapes became
blurred.  As  matters  stand  now,  most  orders  are  contained  in  the
routine  tapes,  but  some  may  be  put  in  the  problem  tape;  some
numerical information may be put into routine tapes, and most of it is
distributed between the table and problem tapes at will,  to fit the
needs  of  a  particular  problem.  […]  As  a  result  of  the  experience
gained in the operation of this machine, it appears that the problem
tape  is  an  unnecessary  complication  of  the  machine,  and  that  its



function  had better  be distributed between the other two types of
tapes. (Alt 1948, p.9)

The logic  and memory management  of  a  manual  computation   indeed
suggest a distinction between problem data and tabular data. The problem
data are the data you start with and that help select the mathematical
procedure you will use, the tabular data are consulted as the computation
develops and demands those data. Moreover, the problem data are used
only once and than exchanged for new initial data, whereas the tabular
data are permanently  stored in  printed books for  repeated usage.  This
manual  distinction  between  one-time-usage  and  repeating  usage  is
superseded by the machine distinction  between fast  or  slow access  to
data. In a general-purpose computing device as Model V you essentially
work with a few relatively fast memory registers that are used to hold the
values that you are working on and that you continually need. To add or
multiply in the registers takes 0.3 and 1 second respectively. If other data,
problem data or tabular data, are needed, values from the tapes can be
accessed, rather slowly in the range of some seconds to some minutes26,
and transferred to the computing registers. This is the relevant distinction
on  the  relay-based  Model  V:  There  is  a  routine  and  the  values  it  is
handling,  and there is  a table and values that can be looked up when
needed. The first can be accessed rapidly, the second rather more slowly.
The distinction between fast and slow data will become the all-determining
characteristic of the all-electronic vacuum-tube-based ENIAC.

4.  The  ENIAC  or  how  electronic  speed  prompted  automated
programmability

The  engineers  at  the  Moore  School  had  gathered  know-how  with  the
construction and use of the differential analyzer since 1935. Further, there
had been teams of  computors  at the Moore School,  and in  1942,  John
Mauchly  had  learnt  to  organize  such  a  computors'  team  for  doing
numerical integration (Akera 2008, p. 85). Mauchly's central idea was to
exploit the speed of vacuum tubes for digital computation and together
with  the  engineer  Eckert  they thought  they  could  manage to  turn  the
notoriously  unreliable  tubes  into  a  reliable  digital  adding  machine  (or
accumulator). Mauchly had written a memo on how to use vacuum tubes
for ballistic  calculations in 1942, essentially using the organisation of a
manually  performed  numerical  integration  as  the  blueprint  of  the
architecture of the proposed machine. In 1943, this memo was the basis
for the proposal to the NDRC, but now the expertise of Eckert and Brainerd
brought in elements of the organization of a differential analyzer. In a way,
the ENIAC is the fruit of this confluence of ideas, an “amalgam between

26A random entry on a table tape can be found (can be “hunted” as the Bell jargon had
it) in under 8 minutes, in most cases, the entries used are “close” to one another, so
the access time is rather in the bound of some seconds. The problem and routine tapes
are  read  on  average  at  the  speed  of  one  number  or  instruction  per  2  seconds.
Because  access  to  the  tapes  was  relatively  slow,  the  frequently  used  classical
functions such as sines or logarithms were “wired down” as relay circuits:  “permanent
function tables in the machine, [t]hese are wirings which make it possible to obtain very quickly the value of
certain functions for any desired value of the argument (sin, cos, tan-1 and log” (Alt 1948, p. 74)



the  differential  analyzer  and  the  knowledge  of  human  computers  that
became embedded into the ENIAC’s proposed design” (Akera 2008, p. 90). 
The hardware development of the ENIAC happening between the original
proposal from 1943 and the extensive 1946-descriptions of the machine as
it was finally built, was a long and complex process.27 One thing was to get
a decade ring counter for storing and processing numerical values up and
running, and later, to get a complete accumulator (an adding machine)
made  out  of  vacuum tubes  to  work  reliably.  Yet  another  thing  was  to
develop the units of the ENIAC that featured more or less as “black boxes”
in  the  1943  proposal:  the  central  programming  unit  and  the  function
generator.  The  programming  unit  had  to  tie  the  workings  of  all
accumulators together, and the function generator was meant to provide
functional data to the calculation (as would a table in manual calculation
or in a differential analyzer). As was often the case in circuit design, design
problems often first appeared as “black boxes” in the overall picture, to be
filled in later on in the design process.28

For  practical,  engineering  reasons29 the  “local  programming”  of  the
accumulators was done first, end of 1943 (Akera 2008, p.99). This “local”
programming essentially defines how the communication with the other
units  would  run.  It  tells  when  a  result  has  to  be  “written”  in  another
column, or has to added/subtracted  n times from another value etc. The
master  programmer  that  would  control  the  sequence  and repetition  of
such elementary “local  programs” was only  designed mid 1944.  Arthur
Burks, one of the engineers on the ENIAC project, was responsible for a
large part of its design. In 1944, he had made a schematics for how the
projected  machine  would  compute  ballistic  trajectories  using  the  Heun
method30. This would serve as a blueprint when they started developing
parts  of  the  master  programmer,  responsible  for  the  “central
programming”.
The  “function  generator”  was  defined  as  “a  device  for  introducing  an
arbitrary function, the mathematical form of which is either not known or
not  simple  enough  to  be  generated  by  a  simple  difference  equation.”
(Brainerd et al.  1943, Appendix 2, p. xi) The generator would read and

27For an overview of the design process see p. 85-102 in Akera 2008 and Burks 1965.
Apart from the know-how the engineers at the Moore School, there was also interaction
with the Bell Labs engineers (S.B. Williams acted as a consultant and G.R. Stibitz was
member of the NDRC panel, though the extent of the Bell contribution is unclear ) and
with many other people from the NDRC panel and Aberdeen Proving Ground

28Cf.  “The  correct  approach  to  multifunctional  circuit  design  is  to  some  extent  the
inverse  of  the  analytical  operation.  From  a  statement  of  circuit  requirements,  a
functional plan is developed in terms of known or conceptually evident circuit blocks,
representing  simple  circuits  similar  to  single-function  circuits  [...]  as  the  design
proceeds, the functional blocks are coordinated and integrated to the point where a
comprehensive block diagram of the proposed circuit exists. [...] The most satisfactory
approach to developing a block diagram is to start with a few main subdivisions of the
over-all  circuit  and  successively  break  these  down  until  each  block  represents  a
unifunctional circuit. ” (Keister et al. 1951)

29Viz. they first built two accumulators, connected and programmed them to show the
feasibility of the machine.

30According to Mauchly,  he came up with a method simple enough to be put on the
ENIAC, and this method was later on identified as a method developed by Heun (Stern
1977).



store information from punched cards “permitting it to continue generating
the function for a limited range in x”, and, “the function generator in effect
interpolates a great number of values of f(x) when provided with f(x) and
some of its differences at relatively few points.” (Idem, p. xii) The idea was
that  the  argument  x  would  cause  not  only  f(x)  to  be  looked  up  and
transmitted,  but also upto four surrounding values f(x-2),  f(x-1),  f(x+1),
f(x+2), all could be transmitted upto 9 times, possibly with opposite sign.
This  arrangement was helpful  for  building interpolation  formulae in  the
accumulators.31 The team took their inspiration from a function generator
design developed at RCA (Morton et al. 1944) that they had already used
to devise a multiplication table for the ENIAC's  multiplier.  However,  the
RCA  design,  though  it  had  worked  for  the  10x10  multiplication  table,
proved impracticable for the function table that would need 104 entries
times  12  digits  and  2  signs  (with  the  flexibility  of  reaching  for  4
neighbouring values).  The design was adapted mid 1944 by Burks and
Shaw (Burks 1964, p. 36-44). 
The ENIAC conditioned the kind of mathematics that could be used for the
ballistic  trajectories  by  its  limited  programming and memory  resources
and by its  phenomenal  speed.  The ENIAC could  do 5000 additions  per
second and it could consult about 1000 values from its function table per
second, but reading a punched card took half a second and crippled its
speed. This was the reason the Heun method was preferred over methods
that had been used by human computers. Simplicity of method and brute
force  computation  with  vacuum tubes  won  over  more  subtle,  but  less
straightforward methods of calculation. But the ENIAC, in combination with
weapons  development  and  improved  measuring  techniques,  also
challenged mathematics. New classes of G functions had been introduced
in the 1930ies (G1 to G5), after 1943 there were even more:

All firing tables prepared by the Laboratory before 1943 depended on
a limited  number  of  standard  drag functions  and drag coefficients
which had been worked out for generic types of projectiles between
the wars. Whenever a drag function was needed for a projectile of
new design, the function already established for the type of projectile
most closely resembling the new design was used. By 1943, however,
the  use  of  solenoid  chronographs  in  conjunction  with  electronic
counters  made possible  the rapid and accurate calculation of  drag
functions for new projectiles on a fully experimental basis.  (Barber et
al., p. 45)

These new drag functions only had a limited accuracy of 4 digits and it
was feared that, after the many Heun iterations, it could generate non-
negligable  rounding-off  errors.  Also,  the  “rough”  contours  of  the  G-
functions had to be handled with care and it seemed that new approaches

31 For instance, to obtain f(67,320) by simple linear interpolation between two known and tabulated values, say
f(67)=72500 and f(68)=74500. The function table is set to transmit not only two times the value of f(67) (i.e.
the value corresponding to the first two digits of  67,320) but also to transmit one the next value in the table,
f(68), with negative sign. The remaining digits (320) are used as coefficients in the interpolation and are also
transmitted this time to the 2nd multiplicand unit of the multiplier. The difference between f(67) and f(68) is
taken in one accumulator (the 1st multiplcand unit of the multiplier),  then multiplied by 0,320, the result
(0.640) is  added to f(67)  (in another  accumulator)   to  obtain 73,140.  The example is taken from
Eckert and Mauchly 1947, p. 66.



to interpolation, either of higher degree than four or of a greater variety,
had to come in. These problems were attacked in two ways: Locally, the
ENIAC  team  exploited  the  hardware  to  come  with  robust  solutions,
whereas the Aberdeen Research Lab put mathematicians to work to find
mathematical solutions. 
In 1945-46, the ENIAC team had already devised a scheme that could work
around some of the problems. In this scheme, the function table needed
not  only  to  be  a  look-up  table  linked  up  with  some  interpolational
coefficients, but had to incorporate a way of discriminating what “zone” of
the table had to be used (Report ENIAC, vol. 4, VII, 34-35).32 Indeed the
table of the drag function could not be simply interpolated with just one
formula, but had to be approached in “slices”. As can be seen from the
form of a typical G function (taken from Reed 1952, p. 103), the curve
consists  of  about  three  “zones”.  Before  1000  on  the  X-axis  (i.e.  when
velocity becomes faster than sound), the function is slowly increasing, but
than, for a short while, steeply goes up, to restabilize and increase steadily
but slowly.

It was therefore proposed to modify some of the digits that are not used in
the function table (because the accuracy of the G-function does not go to
12 digits).  Depending  on  the  value  V  with  which  the  function  table  is
entered (viz. velocity smaller than velocity of sound, in its neighbourhood
or greater than) the 9th, 10th or 11th digit will be 9 (the columns are marked
grey in the diagram below). This digit will then be rerouted to a so-called
“dummy program” of an accumulator. This “dummy program” essentially
“translates” the numerical 9-pulse into a programming pulse (B(11), B(10)
and  B(9)  respectively)  that  will  than  stimulate  the  appropriate
interpolation routine and will send the argument a either to function table
1 (for “zones” 1 and 3) or function table 2 (for “zone” 2 in the vicinity of
the velocity of sound), as can be seen in te block diagram below. 

32The author of Parts 3 and 4 of the ENIAC report is Adèle Goldstine, the wife of H.H.
Goldstine and on the ENIAC's programmng team, although she most probably served
rather as the editor of the report, gathering technical reports and facts of the ENIAC
project  and  compiling  the  « Technical  Description ».  A  specialist  of  ballistic
computations herself, she may, however, have contributed directly to this scheme.



The  function table is thus modified to generate programming pulses next
to numerical pulses. In quite a similar way as for the Bell machine, the
boundaries between numerical data and programming data also became
blurred for the ENIAC. This set-up can even be extended and the whole
function  table  could  eventually  be  modified  into  a  “plugboard”  for
stimulating programs (i.e. subroutines). This idea would prove to be very
fruitful  (and  the  subject  of  much  controversy).  When,  after  much
discussions and interactions between the ENIAC team, the programmers,
the  mathematicians,  ballistic  officers  and  John  von  Neumann,  it  was
decided to  “rewire”  the  ENIAC in  a  permanent  way,  the  function  table



would be used to as the pathway to stimulate the basic orders  of  the
ENIAC. In this way, the ENIAC, though admitedly slower in its operation,
became much easier to program now it could “simulate” a stored-program
computer and sequentially execute orders.33 
Taking a look at the mathematical work on the ballistics for the ENIAC, it
was  started  in  1943  when Hans  Rademacher  was  hired  to  look  at  the
rounding-off  problem,  and  when  I.J.  Schoenberg  was  asked  to  develop
methods to “smoothen” the rough G functions:

Trajectories  of  projectiles  were  until  then  computed  with  desk
calculators by hand. Into these computations entered tables of the
drag-functions  of  air  resistance,  about  24  of  them,  which  were
obtained empirically by firings of various types of projectiles. As the
step of integration used in these trajectory computations was rather
large and the methods of numerical integrations fairly complicated, it
did not much matter that the 4-place drag-function tables were rather
rough.  In performing these computations  on the ENIAC,  which was
very fast, a much simpler integration method of very small step could
be used. In these methods, the accumulation of the round-off errors
was unacceptable due to the rough drag-function tables; they needed
to be smoothed by being approximated by analytic functions. To do
this was my problem. (Schoenberg 1988, p.4)

Schoenberg  came  up  with  a  variety  of  methods  that  were  known  as
osculatory  interpolation  and  that  he  would  later  systematize  and
generalize under the name of “splines”. As for Rademacher, his work on
the accumulation of rounding-off errors (Rademacher 1948) would also be
one of the pioneering studies in modern numerical analysis. Rademacher's
results helped determine how many digits each accumulator should have
for the desired precision, viz. 10 (decimal) digits (Haigh et al. 2016, p. 34
& 294).
Schoenberg's  work  on  interpolation  was  implemented  in  the  ballistic
calculations after 1947-1948. In a description of the standard calculations,
Harry  Reed,  one  of  the  operators  for  ENIAC's  ballistics  computations,
writes:

The method of integration used to compute trajectories on the Eniac
is one due to Heun. […] The error in this method is of the third order
in Dt.34 Other methods using higher order approximations have been
considered, but the above is quite well adapted to the Eniac's storage
capacity  and has  sufficient  accuracy for  the  allowable  error  under
suitable choice of Dt. (Reed 1952, p. 104)

The  remark  that  the  Heun  method  is  “quite  well  adapted”  is  an
understatement  given  that  the  Eniac  was  in  part  designed  with  this
particular method in mind. Schoenberg's contributions appear in the part
where interpolation  from the G-table  has to be done.  According  to  the
“quadrant angle of elevation” being smaller or greater  than 45 degrees a
different  order  of  interpolation  is  chosen.  In  the  first  case,  osculatory

33See Clippinger's report and the articles by Neukom for more technical details on this
complex rewring, and see Haigh, Priestley and Rope 2016 (Chapter 7) for more details
on this complicated story.

34This was the main result of Rademacher's study.



interpolation for y is followed by a second interpolation to obtain the angle
using Aitken's algorithm. In the second case, osculatory interpolation is
used to obtain x  and than Aitken's  algorithm is  used for  obtaining the
angle.  Reed remarks: “there seems to be difficulty in obtaining smooth
results therewith, and the use of osculating interpolation appears to be the
better approach” (Reed 1952, p. 105).

Conclusion

The  particular  intertwining  between  mathematical  methods  and
computational organization in ballistics that was developed and taught at
Aberdeen Proving Ground had quite an impact on the decision-making and
on the design of analogue and digital computing instruments that were
built between 1935 and 1947. The division of labor inherent in Moulton's
reorganization of  ballistic  computing (the procedure to be followed,  the
tables for look-up and the simple but repetitive arithmetic operations for
the  human computer)  proved  to  be  the  initial  blueprint  for  the  digital
machines.  The  handling  of  the  H  function  and  in  particular  of  the  G
function proved to be tricky.  Already on the differential  analyzer it  was
clear that the H function could be better generated than tabulated. When
the Bell Model V and the ENIAC were built, this example was followed and
the H function was directly generated. 
Because  of  the  advance  in  measuring  techniques,  the  increasing
complexity of the G functions, demanding the regimenting of more than
one  interpolation  procedure,  proved  to  be  a  bigger  problem  for  the
designers  of  the Bell  machine and the ENIAC.  In  both  cases,  hardware
solutions  were  worked  out.  For  the  Bell  machine  a  discriminator  was
introduced, on the ENIAC the function table was slightly diverted from its
original  aim (by using the adapter  PX-4-119)  to accommodate not only
numerical but also programming signals. In a way, one could say that the
tables  gradually  dissolved  into  the  machine.  These  hardware  changes
heralded a more general development, that of programmability. Consulting
a card punched or paper taped table took too long in comparison with the
speed  of  computation.  Putting  the  tables  into  fast  storage  (the  extra
registers on the Bell Model V and the accumulators and the function table
on the ENIAC) proved to be too expensive, because this fast storage was
sorely needed for exploiting the speed and versatility of these machines.
The special-purpose machines grew to become general-purpose. The key
was  programmability.  To  fully  exploit  the  speed  of  the  machines,  the
program  had  to  be  internalized  and  read  at  high  speed  so  that  the
machine  could  compute  autonomously,  without  waiting  (too  much)  for
external input.
With the progress of technology, both of weapons and of vacuum tubes'
electronic speed, new mathematical techniques had to be brought in too.
F.R.  Moulton's  numerical  integration  technique  had  started  off  the
“scientification” of the U.S. Ballistic research and had prepared the minds
for mechanization. But conditioned by the materiality of the vacuum tube
machine, its enormous speed coupled with a very limited fast memory,
other mathematical procedures were needed. Numerical integration was
(temporarily)  abandoned  for  a  less  advanced  but  more  straightforward



technique,  Heun's  method.   Not  only  the  main  algorithm  for  ballistic
calculation changed, but also “new”35 problems appeared:  The study of
rounding-off errors and the development of new classes of interpolation
methods. 
This two-way development of mathematics and computing machines did
not  go  unremarked,  already  John  Mauchly,  after  Rademacher's  talk  on
rounding-off errors during the Moore School Lectures in 1946, said: “many
of us have been looking forward with certainty to the day when the advent
of computing machines would influence the course of mathematics, and
there are still many directions in which we can look forward to further such
impact. This reaction is not, of course, one way. Mathematics should also
influence the computing machine.” (Moore School Lectures 1946, p. 186).
While  the  computer  certainly  helped  to  explore  and  develop  new
mathematic  problems  questions,  and  in  particular  contributed  to  the
establishement  of  a  new  flourishing  mathematical  discipline,  viz.
numerical  analyis,  the  impact  of  mathematics  on  machine  design  has
diminished  from  the  1950s  onwards.  Through  the  development  of
programming systems in the 1950s the « trading zone » between man and
computer migrated from the machine and its components to a variety of
programmable  interfaces  that  could  be  more  readily  and  flexibly
developed and modified according to the human user's needs. As a result,
the  interaction  between  mathematics  and  computing  moved  to  the
« software »  side  of  things.  Mathematics  and  its  formal  expressiveness
served as the reference point for the first programming languages such as
Fortran (1957)  or  Algol  (1960),  and in  its  turn,  problems in  developing
programming tools led to new directions of mathematical research such as
automata  theory  or  formal  verification.  As  computing  progresses  and
moves on, so does its interaction with mathematics.

BIBLIOGRAPHY

A Report on the ENIAC, 1946, 5 volumes: vol.1 ENIAC Operating Manual
(A.W. Burks and H. Huskey); vol. 2 Maintenance Manual (Chu, Cummings,
Davis, Huskey, Sharpless, Shaw); Vol. 3-5 Technical Description Parts I (A.K.
Goldstine) and II (H. Huskey), Moore School of Engineering.
National Research Council, Annual Report 1916-1917, Washington D.C.
AGAR (John), 2003,  The Government Machine. A Revolutionary History of

the Computer, Cambridge/MA, MIT Press.
AKERA (Atsushi), 2008,  Calculating a Natural World: Scientists, Engineers,

and  
Computers during the Rise of U.S. Cold War Research, Cambridge/MA,
MIT Press.

ALGER (P.L.),  1919,  « Charts  for  the  calculation  of  the  effect  of  small
changes in the elements of fire »», Journal of the United States artillery,

35“New” is very relative in this context. The problem of rounding-off was well-known in
the 18th and 19th centuries, mostly in an astronomical context. Similarly, Schoenberg
found  inspiration  for  his  interpolation  methods  in  actuarial  mathematics  from  the
interwar period. Rather the digital electronic computer reinvigorated interest in fields
of mathematics and its applications that were either marginal or somewhat forgotten.



51, pp 585-603. 
ALT (F.L.),  1948,  «  Bell  Telephone  Laboratories'  computing  machine »»,

Mathematical Tables and Other Aids to Computation, 3, p.1-13 & 69-84.
ANDREWS (E.G.)  and  VIBBARD,  (V.L.),  1946,  Patent  application  Automatic

Calculator, filed Dec. 17 1946, granted March 28 1961, no 2,977,048.
AUBIN (D.),  2014,   « "I'm  Just  a  Mathematician":  Why  and  How

Mathematicians Collaborated with Military Ballisticians at Gâvre  »» , in
Aubin  (D.)  and  Goldstein  (C.),  éds.,  2014,  The  War  of  Guns  and
Mathematics: Mathematical Practices and Communities through World
War I in France and its Western Allies, Berlin, Springer.

BARBER (G.) et al.,  Ballisticians at war and peace, A History of the United
States Ballistic Research Laboratories, volume 1: 1914-1956, Aberdeen
Proving Ground, Maryland.

BENNETT,  (A.A.),  1942,  Report  on  the  Differential  Analyzer  at  Aberdeen
Proving Ground, Ballistic Research Laboratories, Report 319, Aberdeen
Proving Ground, Maryland.

BERKELEY (E.C.),  1949,  Giant  Brains.  Or  machines  that  think, Science
editions, New York.

BLISS (G.A.), 1919, « A method of computing differential corrections for a
trajectory » , Journal of the United States artillery, 51, p. 445-449.

BRAINERD (J.G.), ECKERT (J.P.),  MAUCHLY (J.W.), 1943,  Report on an Electronic
Diff*  Analyzer,  for  Ballistic  Research  Laboratory,  Aberdeen  Proving
Ground,  by  Moore  School  of  Electrical  Engineering,  University  of
Pennsylvania, Unpublished, April 1943. (contains Appendices A, B and C)

BRAINERD (J.G.),  1976, « Genesis of the ENIAC », Technology and Culture,
Vol. 17, No. 3, p. 482-488.

BURKS (A.), 1965,  Exhibit A of Affidavit of Arthur W. Burks, Honeywell vs.
Sperry Rand, Consolidated Civil Action No. 4 - 67 Civ. 128, US District
Court, Minnesota Fourth Division.

BUSH (V.),  1931,  « The differential  analyzer.  A  new machine  for  solving
differential equations », Journal of the Franklin Institute, 212 (4), pp 447-
488..

CALDWELL (S.H.),  1933,  The  extension  and  application  of  differential
analyzer technique in the solution of ordinary differential equations. PhD
Thesis MIT. 

CAMPBELL-KELLY (M.)  and  WILLIAMS (M.R.,  eds.),  1985,  The  Moore  School
Lectures:  Theory  and  Techniques  for  Design  of  Electronic  Digital
Computers. Cambridge, Massachusetts; London, England; Los Angeles,
California; San Francisco, California, The MIT Press.

DEDERICK (L.S.), 1928, « Letter to the editor  », Bulletin of the AMS, vol. 35,
p. 667. 

DEDERICK (L.S.),  1940,  « The  mathematics  of  exterior  ballistic
computations », American Mathematical Monthly, 47 (9), p. 626-634.

DURAND-RICHARD (M.-J.), 1992,  « Charles Babbage (1791-1871) : de l'Ecole
algébrique  anglaise  à  la  "machine  analytique"  »,  Mathématiques,
Informatique et Sciences Humaines, 30° année, n° 118, p. 5-31 et n°
120, p. 79-82.

ECKERT (J.P.),  MAUCHLY (J.W.),   GOLDSTINE (H.H.),  BRAINERD (J.G.),  1945,
Description of the ENIAC and comments on electronic digital computing



machines, NDRC AMP Report 171.28 November 1945.
ECKERT (J.P.) and MAUCHLY (J.W.), 1947, Electronic Numerical Integrator and
Computer,  filed  June  26,  1947,  patented  Feb.  4,  1964,  US  Patent  no
3,120,606.
FELLER (W.) and  SHANNON (C.E.), 1943,  On the integration of the ballistic
equations on the Aberdeen Analyzer, Applied Mathematics Panel Report
no. 28.1, National Defense Research Committee,  in:  Sloane  (N.J.  A.)
and Wyner (A.D., eds.), 2013,  C.E. Shannon. Miscellaneous Writings,  Bell
Labs.
GOLDSTINE (H.H.),  1977,  The Computer  –  From Pascal  to  von Neumann,

Princeton, Princeton University Press.
GOLDSTINE (H.H.)  &  NEUMANN (J.  V.),  1947-1948,  Planning  and  Coding of

Problems  for  an  Electronic  Computing  Instrument.  Report  on  the
mathematical and logical aspects of an electronic computing instrument
(Volume II, parts 1, 2 & 3). Princeton NJ : Institute for Advanced Study.

GLUCHOFF (A.),  2011,  « Artillerymen  and  mathematicians:  Forest  Ray
Moulton  and  changes  in  American  exterior  ballistics,  1885–1934 »,,
Historia mathematica 38, p. 506–547. 

GRIER (D.A.),  2005,  When computers  were  human,  Princeton:  Princeton
University Press.
GUERRIERI (J.),  1932, Methods  of  introducing  functional  relations
automatically on the differential analyser. PhD Thesis MIT.
HAIGH (Tom),  PRIESTLEY (Mark) and  ROPE (Crispin), 2014a, « Reconsidering

the  Stored  Program  Concept  »,   IEEE  Annals  for  the  History  of
Computing, 36 (1). 

HAIGH (Tom), PRIESTLEY (Mark) and ROPE (Crispin), 2014b, « Engineering ‘The
Miracle of  the ENIAC’:  Implementing the Modern Code Paradigm »»  EEE
Annals for the History of Computing, 36 (2). 
HAIGH (TOM),  PRIESTLEY (MARK)  AND ROPE (CRISPIN),  2016,  Eniac  in  Action.
Making and remaking the modern Computer. Cambridge (MA) : MIT Press.
HARRISON (J.O.),  HOLBERTON (J.V.)  and  LOTKIN (M.),  1949, Preparation  of
problems  for  the  BRL  calculating  machines,  Ballistic  Research
Laboratories, Technical Note 104, Aberdeen Proving Ground, Maryland.
KENT (R.H.),  DEDERICK (L.S.)  and  ZORNIG (H.H.),  1938,  Chapter  « Exterior
Ballistics », in: Hayes (T.J., ed.), Elements of ordnance; a textbook for use
of cadets of the United States Military Academy, New York: Wiley, p.379-
468.
HOAR (C.R.),  1921, A  course  in  Exterior  Ballistics. Ordnance  Textbook,
Washington.
Juley (J.), 1947, « The Ballistic Computer  », Bell Laboratories Record, 24, p.
5-9.
KEISTER (A.), RITCHIE (D.) and WASHBURN (S.),  1951, The Design of Switching
Circuits. New York, Van Nostrand.
LYNCH (J.),  1947  Differential  Analyzer  –  electrical  aspects  of  operation,
Ballistic  Research  Laboratories,  Report  654,  Aberdeen  Proving  Ground,
Maryland.
LYNCH,  (J.)  et  al.,  1949,  Programming  principles  for  the  IBM  relay
calculators, Ballistic Research Laboratories, Report 705, Aberdeen Proving
Ground, Maryland.



MORTON (G.A.)  et al.,  1944,  Computing device,  patent filed Jan, 5 1944,
granted Feb. 10 1948, US Patent 2,435,841.
MOULTON (F.R.), 1919, «  Numerical int egration of differential equations »»
Journal of the United States artillery, 51, p. 40-55.
NEUKOM (H.) The Second Life of ENIAC, IEEE Annals for the history of 
computing 28 (2006), p. 4-16.

NEUMANN (J. V.), 1945, First Draft of a Report on the EDVAC, Report Contract
No. W-670-ORD-4926.

POLACHEK (H.), 1997, « Before the ENIAC », IEEE Annals for the history of 
computing, 19 (1997), p. 25-30.

RADEMACHER (H.),  1948,  « On the accumulation of  errors in processes of
integration on high-speed calculating machines, » in:  Proceedings of a
symposium  on  large-scale  digital  calculating  machinery,  Harvard
University. (An earlier version of the paper, “"On the Accumulation of
Errors in Numerical Integration on the ENIAC" (July 22, 1946)” can be
found in the Moore School Lectures)

REED (H.), 1952, « Firing table computations on the ENIAC »,  » (Pittsburgh)
p. 103-106.

SCHOENBERG (I.J.),  1988,  « A  brief  account  of  my  life  and  work »,  in:
Collected papers, vol. I, ed. By C. de Boor, Basel, Birkhäuser.

SHANNON (C.E.), 1941, « Mathematical Theory of the Differential Analyzer »,
Journal of Mathematics and Physics, 20 (4), 337–354. 

STERN (N.),  1977,  Interview  with  Dr.  John  W.  Mauchly,   Ambler,
Pennsylvania , May 6, 1977 , American Institute of Physics Oral Histories
Transcripts.

STIBITZ (G.R.), 1944, Calculating System, Bell Labs Report 29 March 1944. (kindly provided
through the courtesy of Crispin Rope and Thomas Haigh)


