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Dynamically Consistent Preferences Under Imprecise
Probabilistic Information

Frank Riedel∗ Jean-Marc Tallon† Vassili Vergopoulos‡

April 24, 2017

Abstract

This paper extends decision theory under imprecise probabilistic information to dy-
namic settings. We explore the relationship between the given objective probabilistic
information, an agent’s subjective multiple priors, and updating. Dynamic consis-
tency implies rectangular sets of priors at the subjective level. As the objective
probabilistic information need not be consistent with rectangularity at the subjec-
tive level, agents might select priors outside the objective probabilistic information
while respecting the support of the given set of priors. Under suitable additional
axioms, the subjective set of priors belongs to the rectangular hull of the objective
probabilistic information.

Keywords: Imprecise information, imprecision aversion, multiple priors, dynamic consistency.

JEL subject classification: D81.

1 Introduction

Economic decisions are often made with imprecise knowledge of the statistical properties of
the environment, i.e., in a situation of Knightian uncertainty. This Knightian uncertainty
need not be absolute, however, as some information about possible probability distributions
is usually available. In one of the famous Ellsberg (1961) experiments, for example, the
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agent knows that the probability of drawing a red ball is one-third whereas the probability
of drawing a yellow ball is anything between zero and two-thirds. Under such conditions,
the agent is faced with a bet (or act) that depends on the outcome of the experiment and
some imprecise information about possible probability distributions that can be described
by an information set (of second order) that contains all objectively possible distributions.

Gajdos, Hayashi, Tallon, and Vergnaud (2008) (henceforth GHTV) adapted the basic anal-
ysis of Gilboa and Schmeidler (1989) (who focus solely on uncertain acts without consider-
ing information about possible probability distributions) to such uncertain environments.
In this paper, we extend the axiomatic analysis of preferences under Knightian uncertainty
with imprecise probabilistic information to dynamic settings.

According to GHTV, an agent who is confronted with an information set of possible priors
selects a subjective set of priors and computes the worst expected utility of an act over
this set of selected priors. These selected priors are consistent with the given information
in the sense that their support is included in the support of objective information.

In dynamic environments, agents need to update their expectations upon the arrival of
new information. Epstein and Schneider (2003) have shown that it is possible to maintain
dynamic consistency for preferences over acts in a multiple-prior setting if agents update
their priors in a Bayesian manner prior by prior and if the subjective set of priors is stable
under pasting conditional and marginal probabilities from different priors to the original
set (or, as Epstein and Schneider call it, rectangular).

In contrast to Epstein and Schneider’s setting, an agent is faced with objective yet imprecise
information about possible probability distributions in our setting. Ex ante, there is no
reason to assume that this information is given by a rectangular set of priors. It is thus not
clear how an agent should process such information or whether it is possible to maintain
dynamic consistency at all.

We show here that utility functionals in the form of GHTV are dynamically consistent if
the subjective set of priors is selected and updated in a suitable way. In the first place,
as in GHTV’s static analysis, the support of the selected set of priors has to be included
in the support of the information set (i.e., the objectively known set of possible priors).
In the second place, the initially chosen set has to be stable under pasting, and once the
initial set of priors has been chosen, agents update their beliefs prior by prior.

An important element of our analysis is the fact that the subjective set of priors can be
larger than the exogenously given set of possible priors because the agent does not want
to exclude possible conditional beliefs ex ante yet also wants to be dynamically consistent.
The potential “overselection” of priors is an important – albeit necessary – feature of our
model.

The overselection should not be too arbitrary, though. In addition to the natural require-
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ment that the selected sets of priors be consistent with the support of objective information,
we adapt two further axioms from GHTV to our dynamic setting, namely Reduction (under
precise information) and Local Dominance. Local Dominance applies GHTV’s dominance
concept locally at each node to the next time step. When two acts are resolved in the next
period and if one act is preferable to another under every element of the information set,
the ranking is unchanged under the whole information set. The reduction axiom states that
when the objective information consists of a single prior and this single prior is consistent
with the given state of the world in that it puts mass one on the currently observed event,
then the agent selects exactly this prior to evaluate acts.

The two axioms of Reduction and Local Dominance force the selected priors to be contained
in the rectangular hull of the information set, i.e., the smallest rectangular set containing
the initially given probabilistic information. As a first consequence, the overselection of
priors does not occur in situations in which the probabilistic information is already rectan-
gular. In other words, the overselection only emerges when the probabilistic information
and the filtration are not “well-adapted” to each other. This overslection can thus be seen
as an attempt on the agent’s part to deal with discrepant sources of information. Second,
requiring the subjective set of priors to be in the rectangular hull of the objectively given
set of priors implies that Bayesian updates of the initial set of subjective priors belong to
updates to the information set. In this sense, no further overselection arises at conditional
stages.

Overselection is a sign of the ambiguity-averse decision maker sophistication when one
is confronted with a potential conflict among sources of information that would lead to
dynamically inconsistent choices. Recognizing the dynamic consistency problem, the deci-
sion maker minimally adapts his or her ex-ante preferences so as not to face consistency
problems later on yet does not dismiss the ambiguous nature of the situation altogether.

There is usually a tension between dynamic consistency and deviations from expected util-
ity. In fact, Epstein and LeBreton (1993) have shown that in order to maintain dynamic
consistency along all possible information flows, it is necessary to fall back on a model of
probabilistic sophistication that precludes any sensitivity to ambiguity. When the infor-
mation flow is given, however, it is possible to maintain dynamic consistency for multiple
priors and other ambiguity-averse models. Epstein and Schneider (2003) (see also Riedel
(2004)) have shown that multiple prior preferences are dynamically consistent if each prior
is updated in a Bayesian way and the set of priors is rectangular or stable under pasting
marginal and conditional probabilities. Maccheroni, Marinacci, and Rustichini (2006) and
Föllmer and Penner (2006) have generalized dynamic consistency to variational preferences
by characterizing the suitable penalty functions for this large class of ambiguity-averse pref-
erences.

Siniscalchi (2001) and Pires (2002) were able to consider updating for arbitrary events
by weakening the notion of dynamic consistency. Siniscalchi (2011) considered a version
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of Strotz’s (1955) Consistent Planning in which inconsistent agents play a dynamic game
against themselves. Hanany and Klibanoff (2007) maintained both Dynamic Consistency
and Relevance but allowed dynamic preferences and updated sets of priors to depend on
the set of feasible plans of actions, some particular optimal plan of actions within this
set, and the event that is observed. Hill (2016) observed that the incompatibility between
Dynamic Consistency and Relevance only holds over objective trees and does not preclude
their compatibility over subjective trees. By exploiting this idea, he developed a dynamic
extension of the multiple prior model in which the ex-ante set of priors is updated on
subjective contingencies in a dynamically consistent and relevant way.

The remainder of the paper is organized as follows: Section 2 briefly reviews the GHTV
preferences and representation in a static decision environment. Section 3 describes the
dynamic decision environment. It first presents a conditional version of Relevance and
Dynamic Consistency and their characterization within dynamic GHTV preferences. It
then introduces the axioms of Reduction and Local Dominance and shows how they impose
restrictions on the overselection of priors. All proofs are gathered in the Appendix.

2 The Framework

2.1 Objects of Choice

Consider two nonempty sets, the outcome space X and the state space S. The state space
S is assumed to be finite. Let ∆X denote the set of all lotteries with finite support on X .
An act is a function f : S → ∆X . Let F stand for the set of all acts. A constant act with
f(s) = l for all s ∈ S and for some lottery l ∈ ∆X is also denoted by l.

Imprecise probabilistic information is modeled by a nonempty closed and convex set P of
probability measures on S. A typical element of P will be denoted by p. Let P stand for
the set of all nonempty, closed, and convex sets of probability measures on S. For P ∈ P ,
we let suppP be the support of P which contains all states s ∈ S such that there exists
p ∈ P with p(S) > 0. For a real–valued function g : S → R and a probability measure p
on S, we denote by

Ep(g) =
∑
s∈S

p(s)g(s)

the expectation of g under p.

Following GHTV, we consider uncertain acts in conjunction with imprecise probabilistic
information as the basic objects of choice. Thus, an agent has a preference relation %
defined on P × F , the set of pairs of imprecise probabilistic information and acts. For
P,Q ∈ P and f, g ∈ F , the preference ranking (P, f) % (Q, g) means that the agent
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prefers act f under probabilistic information P to act g under probabilistic information Q.

2.2 Static representation

We recall the static representation result of GHTV for a preference relation % on P × F .
Consider the following list of axioms.

Order % is complete and transitive. As usual, � denotes the strict preference relation
derived from %, and ∼ the indifference relation.

Act Continuity For any P ∈ P and f, g, h ∈ F , if (P, f) � (P, g) � (P, h), there exists
α, β ∈ (0, 1) such that (P, αf + (1− α)h) � (P, g) � (P, βf + (1− β)h).

Outcome Preference For every P,Q ∈ P and l ∈ ∆X , (P, l) ∼ (Q, l).

Nontriviality There exist P ∈ P and l,m ∈ ∆X such that (P, l) � (P,m).

C-independence For any P ∈ P , f, g ∈ F , l ∈ ∆X and λ ∈ (0, 1), if (P, f) % (P, g), then
(P, λf + (1− λ)l) % (P, λg + (1− λ)l).

Uncertainty Aversion For any P ∈ P , f, g ∈ F and λ ∈ (0, 1), if (P, f) ∼ (P, g), then
(P, λf + (1− λ)g) % (P, f).

Monotonicity For P ∈ P and f, g ∈ F , if (P, f(s)) % (P, g(s)) for all s ∈ suppP , then
(P, f) % (P, g).

A binary relation % on P × F is said to be imprecision averse or GHTV if it satisfies
the axioms Order, Act Continuity, Outcome Preference, Nontriviality, C-independence,
Uncertainty Aversion and Monotonicity.

The representation theorem states that an imprecision averse decision maker uses a function
ϕ : P → P which chooses for an objectively given set of possible distributions P a set of
prior ϕ(P ) that the agent uses to evaluate the outcomes.

Definition 1 A mapping ϕ : P → P is support–preserving if suppϕ(P ) ⊆ suppP holds
for all P ∈ P.
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Theorem 1 (Gajdos, Hayashi, Tallon, and Vergnaud (2008)) A binary relation %
on P×F is ghtv if and only if there exist a nonconstant linear utility function u : ∆X → R
and a support–preserving mapping ϕ : P → P such that, for any P,Q ∈ P and f, g ∈ F :

(P, f) % (Q, g)⇐⇒ min
p∈ϕ(P )

Ep(u ◦ f) ≥ min
p∈ϕ(Q)

Ep(u ◦ g) (1)

In this representation, u is unique up to positive affine transformations, and ϕ is unique.

Theorem 1 provides a decision-theoretic foundation to the idea that the set of priors is
fully determined as a function ϕ of the objective probabilistic information. In the static
setting, the only restriction that ϕ must satisfy is the support–preserving property; that is,
only states that are deemed possible by the probabilistic information can be also deemed
possible by the set of priors that the agent selects.

3 Updating and Dynamic Representations

3.1 Time and Information Flow

We consider a discrete time framework with points in time t = 0, . . . , T . The information
flow is given by a sequence of partitions (πt)t=0,...,T on S where πt+1 refines πt for any
t = 0, . . . , T − 1. We assume that π0 = {S}. For a state s ∈ S and a time t = 0, . . . T , we
denote by πt(s) the unique set in πt which contains s. We assume that the true state of
the world is revealed at time T . Thus, πT (s) = {s} for any s ∈ S.

3.2 Basic Pointwise Representation

We consider a family of preference relations (%t,s)t=0,...,T,s∈S on P × F . For P,Q ∈ P ,
f, g ∈ F , t = 0, . . . , T and s ∈ S, the preference ranking (P, f) %t,s (Q, g) means that
the agent prefers act f under probabilistic information P to act g under probabilistic
information Q conditional upon the event πt(s) that she observes at time t and state s.
We will use the following axioms.

GHTV For t ∈ {0, . . . , T} and s ∈ S, the binary relation %t,s on P × F is ghtv.

Adaptedness For t ∈ {0, . . . , T} and s, s′ ∈ S, if πt(s) = πt(s
′), then %t,s = %t,s′ .

6



From the axiom GHTV and Theorem 1, we obtain a family (ϕt,s)t=0,...,T,s∈S of support–
preserving functions ϕt,s : P → P and a family of nonconstant, linear (Bernoulli) utility
functions (ut,s)t=0,...,T,s∈S such that the preference relation %t,s can be represented by the
utility function

Ut,s(P, f) = min
p∈ϕt,s(P )

Ep(ut,s ◦ f) .

The axiom Adaptedness requires preferences at time t and state s to only depend upon
s through the event πt(s) which the agent observes. Thus, if the agent observes the
same event at two different states, the corresponding preferences at that time must be the
same. A collection of functions (ϕt,s)t=0,...,T,s∈S from P to P is said to be adapted if, for
t ∈ {0, . . . , T} and s, s′ ∈ S such that πt(s) = πt(s

′), we have ϕt,s = ϕt,s′ .

Thus, for an adapted family, (ϕt,s)t=0,...,T,s∈S, the priors selected at time t and state s
only depend upon the event which the agent observes at (t, s), as well as the available
probabilistic information.

We also require that the preferences over sure acts do not change over time and states.

Stable Tastes For t, t′ ∈ {0, . . . , T}, s, s′ ∈ S, P,Q ∈ P and l,m ∈ ∆X , we have
(P, l) %t,s (Q,m) if and only if (P, l) %t′,s′ (Q,m).

As a consequence of the axiom “Stable States”, the (Bernoulli) utility functions at the
various times and states are positive affine transformations of each other. We can thus
choose one common (Bernoulli) utility function which we simply denote by u. Moreover,
note that the set ϕ0,s(P ) of priors selected ex ante at any state s ∈ S is independent of s
by Adaptedness and the triviality of π0. We use the notation ϕ(P ) to refer to any of the
ϕ0,s(P ) for s ∈ S.

3.3 Conditional Relevance

It is natural to require that the agent’s preferences do not depend on states which can be
excluded at some given point in time. At time t and state s, the agent knows that the
event πt(s) happened. Given some probabilistic information, she must then be indifferent
between any two acts that agree with each other on πt(s).

For any P ∈ P and A ⊆ S, we say that A is P–negligible if we have p(A) = 0 for all p ∈ P .

Conditional Relevance For t ∈ {0, . . . , T} and s ∈ S, P ∈ P , and f, g ∈ F : if πt(s) is
not P–negligible and f(s′) = g(s′) for all s′ ∈ πt(s), then (P, f) ∼t,s (P, g).

We then obtain that the agent chooses only probability distributions which put full mass
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on the current information set πt(s) in the sense of the following definition.

Definition 2 A collection (ϕt,s)t=0,...,T,s∈S of mappings from P to P is said to be condition-
ally relevant if, for t ∈ {0, . . . , T}, s ∈ S , and P ∈ P such that πt(s) is not P–negligible,
we have p(πt(s)) = 1 for all p ∈ ϕt,s(P ).

To understand why we restrict Conditional Relevance to situations where the observed
event πt(s) is not P -negligible, suppose to the contrary that πt(s) is P -negligible. Then,
suppP ⊆ S \πt(s). By the support-preserving property, we must also have suppϕt,s(P ) ⊆
S\πt(s). This implies p(πt(s)) = 0 for all p ∈ ϕt,s(P ) and would contradict the unrestricted
versions of both Conditional Relevance and Definition 2. This shows that we need to restrict
the agent’s preferences only when the two sources of information are not contradictory and
justifies that Conditional Relevance has bite only when these two sources are compatible.

We summarize our discussion in the following theorem.

Theorem 2 A family (%t,s)t=0,...,T,s∈S of binary relations on P×F satisfies ghtv, Adapt-
edness, Conditional Relevance, and Stable Tastes if and only if there exist a nonconstant
linear utility function u : ∆X → R and a family (ϕt,s)t=0,...,T,s∈S of support–preserving,
adapted, and conditionally relevant mappings from P to itself such that %t,s is represented
by the utility function

Ut,s(P, f) = min
p∈ϕt,s(P )

Ep(u ◦ f) . (2)

Moreover, u is unique up to positive affine transformations, and (ϕt,s)t=0,...,T,s∈S is unique.

To have a more concise language later on, we give the following names to the list of
properties of the preceding equivalence.

Definition 3 We call a family (%t,s)t=0,...,T,s∈S of binary relations on P ×F that satisfies
ghtv, Adaptedness, Conditional Relevance, and Stable Tastes a Conditional Imprecision
Averse Preference Family. We call a family (ϕt,s)t=0,...,T,s∈S of support–preserving, adapted,
and conditionally relevant mappings from P to itself a prior selection family.

Hence, the axiomatic characterization of prior selection families in terms of Conditional
Imprecision Averse Preference families obtained in Theorem 2 portrays an agent selecting
priors at each time t and state s according to ϕt,s. The priors selected at (t, s) only deem
as possible states that are already deemed possible by the probabilistic information itself.
Moreover, they only depend on the probabilistic information and the event which she
observes at (t, s), and, when possible, assign a probability of 1 to this event.
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3.4 Dynamic Consistency

We now need to connect the priors selected at each state s and time t to one another.
We thus introduce Dynamic Consistency to that effect and discuss its consequences in our
model.

Dynamic Consistency For t ∈ {0, . . . , T − 1} and s ∈ S, for P ∈ P such that πt(s)
is not P -negligible, and for f, g ∈ F : If (P, f) %t+1,s′ (P, g) for all s′ ∈ πt(s), then
(P, f) %t,s (P, g).

The key insight Dynamic Consistency captures is the following one: at any time t < T and
state s, if the possible future preferences at t + 1 unanimously rank an alternative above
another one, then preferences at (t, s) must also rank the former one above. But note that
we only require this in situations when πt(s) is not P -negligible; that is, when the realized
event and the probabilistic information are coherent with each other.

Dynamic consistency of multiple prior representations has been studied extensively in re-
cent years; after the basic insight of Sarin and Wakker (1998) of the role of rectangularity
in a two period example, Epstein and Schneider (2003) characterize dynamic consistency
for intertemporal consumption choice problems, and Delbaen (2002) and Riedel (2004)
achieve the same for dynamic risk measures.

Consider a probability measure p on S. Fix t ∈ [0, T ] and s ∈ S. If p(πt(s)) > 0, then,
define pt(s) = p(· |πt(s)), which is another probability measure. We can also view pt(·) as
a transition kernel on S. Moreover, for t < T , define p+1

t (s) as the restriction of pt(s) to
the algebra generated by πt+1.

Consider a set P ∈ P . Fix t ∈ [0, T ] and s ∈ S. If πt(s) is not P -negligible, then we define:

Pt(s) = {pt(s), p ∈ P, p(πt(s)) > 0} ∈ P and P+1
t (s) = {p+1

t (s), p ∈ Pt(s)}.

Definition 4 Fix t ∈ {0, . . . , T − 1} and s ∈ S. For probability measures p, q on S, define
the pasting p ◦t,s q of p and q after (t, s) as follows. If q(πt+1(s)) = 0, set p ◦t,s q = p.
Otherwise, we set for s′ ∈ S

p ◦t,s q(s′) =

{
q(s′|πt+1(s)) p(πt+1(s)) if s′ ∈ πt+1(s)
p(s′) else.

For P,Q ∈ P , we define their pasting after (t, s) to be

P ◦t,s Q = {p ◦t,s q : p ∈ P, q ∈ Q} .
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We call a family (Pt,s)t=0,...,T,s∈S of sets of priors Pt,s ∈ P stable under pasting (or rectan-
gular) if for all t = 0, . . . , T − 1 and s, s′ ∈ S such that s′ ∈ πt(s) we have

Pt,s ◦t,s′ Pt+1,s′ = Pt,s .

Similarly, we call a prior selection family (ϕt,s)t=0,...,T,s∈S stable under pasting if for all
t = 0, . . . , T − 1, all s ∈ S such that πt(s) is not P -negligible and all s′ ∈ πt(s)

ϕt,s(P ) ◦t,s′ ϕt+1,s′(P ) = ϕt,s(P ) .

The pasting p◦t,sq of p and q after (t, s) describes a probability distribution whose Bayesian
update on πt+1(s) agrees with that of q. But its Bayesian update on S \ πt+1(s), as well as
its one-step-ahead restriction to {πt+1(s), S \ πt+1(s)}, agree with those of p. Such pasting
can be extended to sets of probability measures. It is always possible to close a given family
(Pt,s)t=0,...,T,s∈S under pasting; we call the resulting family of priors the rectangular hull of
(Pt,s)t=0,...,T,s∈S and denote it by (rectt,s(P ))t=0,...,T,s∈S. More precisely, for any s ∈ S, let δs
be the degenerate measure assigning a probability of 1 to state s. We then define rectt,s(P )
recursively for all t = 0, . . . , T , s ∈ S and P ∈ P such that πt(s) is not P -negligible by
setting

rectT,s(P ) := PT (s) = {δs}, and

rectt,s(P ) :=

{ ∫
S

p(s′) · dm(s′), m ∈ Pt(s)
+1, p(s′) ∈ rectt+1,s′(P )

}
.

Theorem 3 A Conditional Imprecision Averse Preference Family (%t,s)t=0,...,T,s∈S satisfies
Dynamic Consistency if and only if the prior selection family (ϕt,s)t=0,...,T,s∈S in the repre-
sentation (2) is stable under pasting. Moreover, when these equivalent conditions hold, we
further have:

(1) For any t ∈ {0, . . . , T − 1}, s ∈ S, P ∈ P such that πt(s) is not P -negligible, and any
f ∈ F ,

Ut,s(P, f) = min
m∈ϕt,s(P )+1

{
∫
S

Ut+1,s′(P, f) · dm(s′)}. (3)

(2) For any t ∈ {0, . . . , T − 1}, s ∈ S and P ∈ P such that πt(s) neither P -negligible nor
ϕ(P )-negligible,

ϕt,s(P ) = ϕ(P ) | πt(s) ≡ {p(.|πt(s))|p(πt(s)) > 0 and p ∈ P} , (4)

Theorem 3 characterizes Dynamic Consistency for Conditional Imprecision Averse Prefer-
ence families in terms of the stability under pasting of the prior selection family. Moreover,
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Equation (3) shows that Dynamic Consistency leads to value functions {Ut,s, t = 0, . . . , T ,
s ∈ S} with a recursive structure. This property lies at the heart of dynamic program-
ming methods, as it ensures the equality between backward induction solutions and ex-ante
optimal plans. It also secures that information has always a nonnegative value.

In addition, Theorem 3 also shows through Equation (4) that the Full Bayes updating rule
is implied: given some objective information P , the priors that are selected at (t, s) consist
of the Bayesian updates on the available event πt(s) of all the priors selected ex ante under
P . Thus, it is still true, as in Theorem 2, that the priors selected at (t, s) only depend on
the probabilistic information P and the available event πt(s). Equation (4) clarifies that
these priors only depend on P through the set ϕ(P ) of priors selected ex ante. In this
sense, the priors selected at (t, s) can also be seen as fully determined by the ex-ante priors
(under the same objective information) and the available event.

Theorem 3 leaves a lot of freedom for the choice of ϕ(P ). In light of GHTV’s Theorem
2, one might expect the ex-ante prior selection process to satisfy the following property:
ϕ(P ) ⊆ P for any P ∈ P . GHTV call this the selection property. It would mean that the
agent selects her ex-ante priors within the available objective information. But the next
example shows that this is too restrictive as it sometimes implies neutrality to ambiguity,
an undesirable feature.

Example 1 Consider the following dynamic version of the Ellsberg (1961) experiment.
An agent takes bets on the color of the ball drawn from an urn containing 90 balls of three
possible colors: red, blue and green. The state space is S = {r, b, g}. Objective information
takes the form of a set of probability measures Pa,b = {(1/3, p, 2/3 − p), a ≤ p ≤ b} for
some a, b with 0 ≤ a ≤ b ≤ 2/3. Each of these sets conveys the information that exactly 30
of the balls are red, together with a more or less imprecise estimation of the numbers of blue
and green balls. Moreover, the agent will be told whether the drawn ball is green or not.
Thus, the information flow is determined by the partition π = {E,F} where E = {r, b}
and F = {g}.

Then, fix aE, bE,m,m ∈ [0, 1] possibly depending on a and b with aE ≤ bE and m ≤ m.
Define

ϕE(Pa,b) = {(p, 1− p, 0), aE ≤ p ≤ bE} and ϕF (Pa,b) = {(0, 0, 1)},

ϕ0(Pa,b) = {
((

1

3
+m

)
p,

(
1

3
+m

)
(1− p), 2

3
−m

)
, aE ≤ p ≤ bE, m ≤ m ≤ m}.

The collection {ϕ0(Pa,b), ϕE(Pa,b)), ϕF (Pa,b))} is stable under pasting for any a, b, consis-
tently with Theorem 3.1

1We abuse slightly notation here. Note that time is here always t + 0 = 0 or t = 1. By Stable Tastes,
ϕ0,s is independent of s, and denoted ϕ(P ). By Adaptedness, we can identify ϕ1,s is constant over E (resp.
F ), and denoted ϕE (resp. ϕF ).
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It might be tempting to choose aE, bE,m,m ∈ [0, 1] so as to have ϕ0(Pa,b) ⊆ Pa,b for any
a, b. However, for any mappings ϕ0, ϕE and ϕF such that {ϕ0(Pa,b), ϕE(Pa,b)), ϕF (Pa,b))}
is stable under pasting and ϕ0(Pa,b) ⊆ Pa,b, we have that ϕ0(Pa,b) is a singleton. Indeed,
suppose that (1/3, p, 2/3 − p) and (1/3, q, 2/3 − q) belong to ϕ0(Pa,b). Then, by stability
under pasting,( 1

3
+ p

1 + 3q
,
3q(1

3
+ p)

1 + 3q
, 2/3− p

)
= (1/3, p, 2/3− p) ◦E (1/3, q, 2/3− q) ∈ ϕ0(Pa,b) ⊆ Pa,b.

But then (1/3 + p)/(1 + 3q) = 1/3 and, therefore, p = q. Hence, imposing that the selected
priors be a subset of the set P has the overly strong implication in this example to impose
that the agent is neutral to the ambiguity of the situation captured by the fact that P is not
a singleton.

Ambiguity is typically attributed to the “poor” quality of the probabilistic information
that an agent has. Thus, one could interpret the fact that the selection property implies
ambiguity neutrality in cases where the objective information P does not contain nontrivial
rectangular subsets as meaning that these sets P represent information of “good” quality,
or are “falsely ambiguous”. This interpretation however is not satisfactory, as such sets P
can still be very dispersed. In the example, P0, 2

3
contains no nontrivial rectangular subset

but is still imprecise enough and generates ambiguity as demonstrated by the Ellsberg
(1961) paradox itself.

Our view is therefore that overselection of priors, when the original set does not contain
nontrivial rectangular subsets, is a desirable feature, as it does not force the decision
criterion to be expected utility in these circumstances. We further investigate the way the
selection operates in the next section.

Last, a further understanding of the way selection operates in our context is to explore the
consequence of requiring that ϕ(P ) = ϕ(rect(P )) for any P ∈ P . This would mean that
the agent always “rectangularizes” the objective probabilistic information that he is given
to make it fit well with the structure of the information flow of events.

But consider now the particular case where the filtration consists of a single partition π.
Suppose that P is conditionally more precise than Q in the sense of GHTV (with respect to
π). Then, P and Q have the same rectangular hull. So the condition implies ϕ(P ) = ϕ(Q).
In turn, given the representation obtained in Theorem 3, this implies that (P, f) and (Q, f)
must be indifferent for any f . In the terminology of GHTV, an agent whose prior selection
family satisfies the condition is thus necessarily indifferent to imprecision.

Hence, an agent who is strictly averse to imprecision cannot satisfy the condition. This
means that the selected priors do not only depend upon the rectangular hull of P under
the filtration: the selected priors depend also on the “specific nonrectangular shape” of
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P , that is, on the way P provides hedging for the ambiguity perceived conditionally at
disjoint events.

3.5 Local Dominance

A consequence of Theorem 3 is that an agent with preferences satisfying Dynamic Consis-
tency and Conditional Relevance and revealing a nonneutral attitude towards ambiguity
must sometimes select her ex-ante priors outside the probabilistic information that she
disposes of. So far, the only restriction on this overselection is the support-preserving
property of the prior selection family: the priors selected ex ante must only assign posi-
tive probability weight to states already receiving a positive weight from the probabilistic
information. Any prior is thus not allowed. We now develop other restrictions for this
overselection.

The Dominance criterion employed by GHTV restricts the agent’s choice of priors to subsets
of P . We will now impose a weaker and local version of this dominance criterion that is
suited to our dynamic framework.

Local Dominance For t ∈ {0, . . . , T − 1} , s ∈ S, P ∈ P such that πt(s) is not P–
negligible,and f, g ∈ F that are πt+1–measurable: if ({p}, f) %t,s ({p}, g) for all p ∈ Pt(s),
then (P, f) %t,s (P, g).

Because of the role played by the Bayesian updating of the objective information on the
events in the filtration, Local Dominance can be understood as a requirement of consistency
between preferences and the two sources of information, the objective probabilistic set and
the filtration. Moreover, Local Dominance can be also seen as a criterion of internal
consistency of the preference relation %t,s at some pair (t, s): if act f is at least as good
as act g under the Bayesian update on πt(s) of any of the probability distributions in P ,
then f must also be at least as good as g under P . But we only require this for acts
f and g are measurable with respect to the partition of the next stage. Omitting this
restriction would lead to the inclusion ϕ(P ) ⊆ P for any P ∈ P (See GHTV’s Theorem 2),
which as explained would be too strong for our purposes. In fact, the dominance reasoning
captured in the axiom becomes questionable when applied to nonmeasurable acts: since the
uncertainty attached to these acts is not fully resolved at the next stage, the ambiguities
perceived at the disjoint cells of the next stage partition might hedge one another and
explain failures of the dominance reasoning. The measurability restriction is thus meant
to allow such hedging to play a role in decisions.

We will also use a version of the criterion of Reduction under Precise Information employed
by GHTV. But it requires additional notation. Fix p ∈ ∆S and f ∈ F . Then, there is a
partition (E1, ..., En) and a collection (l1, ..., ln) of lotteries on X such that f(s) = li for any
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s ∈ Ei and any i ∈ [1, n]. Then, define l(p, f) ∈ ∆X as the lottery given by
∑n

i=1 p(Ei) · li.
Note that this definition is independent of the specific partition (E1, ..., En) that is chosen
to construct l(p, f).

Reduction For any t ∈ {0 . . . T−1}, any s ∈ S, and for any p ∈ ∆S such that p(πt(s)) = 1,
we have ({p}, f) ∼t,s ({p}, l(p, f)), for any f ∈ F .

Under the Reduction axiom, whenever the objective information consists of a single prob-
ability measure that is consistent with the available event, the selected priors must be that
measure as captured by the following definition.

Definition 5 A prior selection family (ϕt,s)t=0,...,T,s∈S is said to be grounded if ϕt,s({p}) =
{p} for any p ∈ ∆S such that p(πt(s)) = 1, and any t ∈ [0, T ] and s ∈ S.

The next theorem uses Local Dominance and Reduction to further constrain the selection
of priors.

Theorem 4 A Conditional Imprecision Averse Preference Family (%t,s)t=0,...,T,s∈S satisfies
Dynamic Consistency, Local Dominance and Reduction if and only if the prior selection
family (ϕt,s)t=0,...,T,s∈S in the representation (2) is stable under pasting, grounded and we
have

ϕt,s(P ) ⊆ rectt,s(P ), (5)

for all t ∈ {0, . . . , T} , s ∈ S, and P ∈ P such that πt(s) is not P–negligible.

In the dynamic setting, the probabilistic information P might be given in a way that does
not fit well with the structure of the information flow of states of nature in the sense that
P itself is not stable under pasting (or rectangular) with respect to the filtration of events.
Equation (5) shows that the agent ”rectangularizes” the probabilistic information (or closes
it under pasting according to the given information flow). In other words, she chooses freely
her priors within the rectangular hull of P . Note that this is always consistent with the
support-preserving property of the prior selection family as the rectangularization itself
preserves the support of a set of measures.

Confining the additional priors within the rectangular hull of probabilistic information has
at least two advantages. First, if the objective information P fits well the structure of
the information flow, then P is already rectangular. In particular, we obtain ϕ(P ) ⊆ P .
Thus, the agent is only allowed to select ex-ante priors outside the objective information
in situations where the latter is not well-adapted to the filtration. Second, the rectangular
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hull of a set P does never add new posteriors conditional on the events in the filtration.
Therefore, at any (t, s) such that πt(s) is a proper and not P–negligible subset of S, we have
ϕt,s(P ) ⊆ Pt(s). Thus, all the selected priors must be Bayesian updates on the available
event of measures in the objective information. Hence, overselection is here the natural
consequence of the decision maker’s desire to act in a dynamically consistent manner while
acknowledging the imprecision of the information he has.

Getting back to the dynamic version of the Ellsberg (1961) experiment, the rectangular
hull of the sets Pa,b is given by:

rectE(Pa,b) =

{(
1

(1 + 3p)
,

3p

(1 + 3p)
, 0

)
, a ≤ p ≤ b

}
and rectF (Pa,b) = {(0, 0, 1)},

rect0(Pa,b) =

{(
1
3

+m

(1 + 3p)
,

(
1
3

+m
)

3p

(1 + 3p)
,
2

3
−m

)
, a ≤ m, p ≤ b

}
Now, for any a, b, let a′, b′ ∈ [0, 1], possibly depending on a and b, be such that a ≤ a′ ≤
b′ ≤ b. Then, define (ϕ0(Pa,b), ϕE(Pa,b)), ϕF (Pa,b))) according to:

ϕE(Pa,b) =

{(
1

(1 + 3p)
,

3p

(1 + 3p)
, 0

)
, a′ ≤ p ≤ b′

}
and ϕF (Pa,b) = {(0, 0, 1)},

ϕ0(Pa,b) =

{(
(1
3

+m)

(1 + 3p)
,
(1
3

+m)3p

(1 + 3p)
,
2

3
−m

)
, a′ ≤ m, p ≤ b′

}
By construction, {ϕ0(Pa,b), ϕE(Pa,b)), ϕF (Pa,b))} is stable under pasting and satisfies Equa-
tion (5) for any a, b, consistently with Theorem 4.

Appendix

Proof of Theorem 3

By Theorem 2, there exist a nonconstant linear utility function u : ∆X → R and a family
(ϕt,s)t=0,...,T,s∈S of support–preserving, adapted, and conditionally relevant mappings from
P to itself such that for any t ∈ {0, . . . , T} and s ∈ S, and for any P,Q ∈ P and f, g ∈ F :

(P, f) %t,s (Q, g)⇐⇒ Ut,s(P, f) ≥ Ut,s(Q, g), (6)

where, for any P ∈ P and f ∈ F , we have:

Ut,s(P, f) = min
p∈ϕt,s(P )

Ep(u ◦ f) (7)
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Now, fix t ∈ {0, . . . , T−1}, s ∈ S and P ∈ P such that πt(s) is not P -negligible. Moreover,
fix f ∈ F . Note that it is simple to obtain the following fact: For t′ ∈ [0, T ] and s′ ∈ S,
there exists lt′,s′ ∈ ∆X such that (P, f) ∼t′,s′ (P, lt′,s′). We can further assume without loss
of generality that we have lt′,s′ = lt′′,s′′ whenever %t′,s′ = %t′′,s′′ . Let us consider the act
g ∈ F defined by g(s′) = lt+1,s′ for any s′ ∈ S. Since πt(s) is not P -negligible, it is also
true that πt(s

′) is not P -negligible for any s′ ∈ πt(s). We can apply Conditional Relevance
and obtain (P, g) ∼t+1,s′ (P, lt+1,s′) for any s′ ∈ πt(s). This gives (P, g) ∼t+1,s′ (P, f) for
any s′ ∈ πt(s). Then, by Dynamic Consistency, (P, g) ∼t,s (P, f). Therefore, by Equation
(6), and using the πt+1-measurability of g,

minp∈ϕt,s(P )Ep(u ◦ f) = minp∈ϕt,s(P )Ep(u ◦ g) = minm∈ϕt,s(P )+1{
∫
S

u(lt+1,s′) · dm(s′)}. (8)

Meanwhile, given the definition of lt+1,s′ as well as the representation obtained in Equation
(6), we have

u(lt+1,s′) = minp∈ϕt+1,s′ (P )Ep(u ◦ f) (9)

Therefore, combining Equation (8) and (9), we obtain:

minp∈ϕt,s(P )Ep(u ◦ f) = minm∈ϕt,s(P )+1{
∫
S

minp∈ϕt+1,s′ (P )Ep(u ◦ f) · dm(s′)} (10)

Hence, we have the dynamic programming principle of Equation (3). As a consequence,
we can now also write

minp∈ϕt,s(P )Ep(u ◦ f) = minp∈ϕ̃t,s(P )Ep(u ◦ f), (11)

where ϕ̃t,s(P ) is the closed and convex set defined by

ϕ̃t,s(P ) = {
∫
S

p(s′) · dm(s′), m ∈ ϕt,s(P )+1, p(s′) ∈ ϕt+1,s′(P ) }. (12)

By the uniqueness part of the Gilboa and Schmeidler (1989) theorem, we obtain ϕt,s(P ) =
ϕ̃t,s(P ). As a result, for any t ∈ {0, . . . , T − 1}, s ∈ S and P ∈ P such that πt(s) is not
P -negligible, we have

ϕt,s(P ) = {
∫
S

p(s′) · dm(s′), m ∈ ϕt,s(P )+1, p(s′) ∈ ϕt+1,s′(P ) }. (13)

Furthermore, for any state s′ ∈ πt(s) such that πt+1(s
′) is not ϕt,s(P )-negligible, Equation

(13) gives
ϕt+1,s′(P ) = ϕt,s(P ) | πt+1(s

′). (14)
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We now show that the prior selection family (ϕt,s)t=0,...,T,s∈S is stable under pasting. Let
t ∈ {0, . . . , T − 1}, s ∈ S and P ∈ P such that πt(s) is not P -negligible. It is sufficient to
show ϕt,s(P ) ◦t,s′ ϕt+1,s′(P ) = ϕt,s(P ) for any s′ ∈ πt(s).

First, take p ∈ ϕt,s(P ). If p(πt+1(s
′)) > 0, then πt+1(s

′) is not ϕt,s(P )-negligible and, by
Equation (14), we have p(.|πt+1(s

′)) ∈ ϕt+1,s′(P ) and p = p ◦t,s′ p(.|πt+1(s
′)) ∈ ϕt,s(P ) ◦t,s′

ϕt+1,s′(P ). If p(πt+1(s
′)) = 0. Then, p = p ◦t,s′ q for any measure q on S. So it is sufficient

to take q ∈ ϕt+1,s′(P ) to obtain p ∈ ϕt,s(P ) ◦t,s′ ϕt+1,s′(P ).

Now, take p ∈ ϕt,s(P ) ◦t,s′ ϕt+1,s′(P ). So p = m ◦t,s′ q with m ∈ ϕt,s(P ) and q ∈ ϕt+1,s′(P ).
Then, p must be an element of ϕ̃t,s(P ) and, therefore, of ϕt,s(P ).

Moreover, an induction on t ∈ [0, T ] relying upon Equation (14) finally shows the following
equality: for any t ∈ [0, T ], s ∈ S and P ∈ P such that πt(s) neither P -negligible nor
ϕ(P )-negligible,

ϕt,s(P ) = ϕ(P ) | πt(s), (15)

Now assume that the prior selection family (ϕt,s)t=0,...,T,s∈S in the representation (2) is
stable under pasting. Fix t ∈ {0, . . . , T − 1}, s ∈ S and P ∈ P such that πt(s) is not
P -negligible. By iterative applications of stability under pasting, we obtain the equality
ϕt,s(P ) = ϕ̃t,s(P ). This entails in turn that Equation (10) holds for any f ∈ F . From
there, dynamic consistency easily follows.

Proof of Theorem 4

First assume Dynamic Consistency, Local Dominance and Reduction. Let u, (ϕt,s)t=0,...,T,s∈S
and (Ut,s)t=0,...,T,s∈S be as in Theorem 3. Let us now use Reduction to show groundedness;
that is, we show that ϕt,s({p}) = {p} for any p ∈ ∆S such that p(πt(s)) = 1, and
any t ∈ [0, T ] and s ∈ S. By Reduction and linearity, for any f ∈ F , Ut,s({p}, f) =
Ut,s({p}, l(p, f)) = u(l(p, f)) =

∑n
i=1 u(li)p(Ei) = Ep(u ◦ f). Therefore, by the uniqueness

part of Gilboa and Schmeidler’s theorem (1989), we obtain ϕt,s({p}) = {p}.

Now, fix P ∈ P and s ∈ S such that PT (s) 6= ∅. We show that ϕT,s(P ) ⊆ PT (s). Since
PT (s) 6= ∅, we have that πT (s) = {s} is not P -negligible. Since the prior selection family
is conditionally relevant, any prior in ϕT,s(P ) puts a probability of 1 on {s}. Therefore,
ϕT,s(P ) only contains the Dirac distribution at s. Similarly for PT (s). Hence the inclusion
ϕT,s(P ) ⊆ PT (s).

Moreover, we show that, for any P ∈ P , s ∈ S and t < T such that Pt(s) 6= ∅, we
have ϕt,s(P )+1 ⊆ P+1

t (s) by means of contradiction. If ϕt,s(P )+1 6⊆ P+1
t (s), then there

exists p∗ ∈ ϕt,s(P )+1 such that p∗ /∈ P+1
t (s). By the separation theorem, we obtain an
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πt+1-measurable function F : S → R such that:

minp∈ϕt,s(P )+1Ep(F ) ≤ Ep∗(F ) < minp∈P+1
t (s)Ep(F ) (16)

Without loss of generality, we assume that F is of norm less than 1. By adequately
normalizing u if necessary, we can also assume that the range of u contains [−1, 1]. So F
is necessarily of the form F = u ◦ f , for some πt+1-measurable f ∈ F . Therefore, Equation
(16) becomes:

Ut,s(P, f) ≤ Ep∗(u ◦ f) < minp∈P+1
t (s)Ep(u ◦ f) (17)

Now, define another πt+1-measurable g = (1/2)f + (1/2)l ∈ F where l ∈ ∆X is defined by
l = l(p∗, f) and, therefore, satisfies:

u(l) = Ep∗(u ◦ f) (18)

On the one hand, for any p ∈ Pt(s), we have ϕt,s({p}) = {p}. So Ut,s({p}, g) = Ep(u ◦ g) =
(1/2)Ep(u ◦ f) + (1/2)u(l) = (1/2)Ep(u ◦ f) + (1/2)Ep∗(u ◦ f) ≤ Ep(u ◦ f) = Ut,s({p}, f)
by Equation (17). Thus, ({p}, f) %t,s ({p}, g) for any p ∈ Pt(s).

On the other hand, Ut,s(P, g) = (1/2)Ut,s(P, f)+(1/2)u(l) = (1/2)Ut,s(P, f)+(1/2)Ep∗(u◦
f) ≥ Ut,s(P, f) by Equation (17). Thus, (P, g) %t,s (P, f). But then Local Dominance is
contradicted, which finally shows that ϕt,s(P )+1 ⊆ P+1

t (s).

Moreover, since Dynamic Consistency holds, we can proceed as in the proof of Theorem 3
to obtain the equality ϕt,s(P ) = ϕ̃t,s(P ) for any t ∈ {0, . . . , T − 1}, s ∈ S and P ∈ P such
that πt(s) is not P -negligible.

Now we use these facts to show by induction that for any t ∈ [0, T ] and s ∈ S such that
Pt(s) 6= ∅

ϕt,s(P ) ⊆ rectt,s(P ) (19)

First, if t = T , we have ϕT,s(P ) ⊆ PT (s) which shows (19). If t = T − 1, we have

ϕT−1,s(P ) = ϕ̃T−1,s(P ) = {
∫
S

p(s′) · dm(s′), m ∈ ϕT−1,s(P )+1, p(s′) ∈ ϕT,s′(P ) }

But we know that ϕT−1,s(P )+1 ⊆ P+1
T−1(s) if PT−1(s) 6= ∅ and ϕT,s′(P ) ⊆ PT (s′). Therefore,

we obtain

ϕT−1,s(P ) ⊆ {
∫
S

p(s′) · dm(s′), m ∈ PT−1(s)
+1, p(s′) ∈ PT (s′) } = rectT−1,s(P ) (20)

To complete the proof in the case where t < T , we proceed as in the case where t = T − 1.

As for the necessity of the axioms, Reduction follows directly from the fact that (ϕt,s)
s∈S
t∈[0,T ]
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is grounded. Last, to show Local Dominance, first note that, since Pt(s) 6= ∅, we have
ϕt,s(P ) ⊆ rectt,s(P ). Thus, ϕt,s(P )+1 ⊆ rectt,s(P )+1 = Pt(s)

+1. Now, take f, g ∈ F that
are πt+1-measurable such that ({p}, f) %t,s ({p}, g) for any p ∈ Pt(s). Since ϕt,s({p}) = {p}
(by p ∈ Pt(s) and groundedness), Ep(u ◦ f) ≥ Ep(u ◦ g) for any p ∈ Pt(s) and, therefore,
for any p ∈ ϕt,s(P )+1 ⊆ Pt(s)

+1. But then, since f, g are πt+1-measurable, we have
Ep(u ◦ f) ≥ Ep(u ◦ g) for any p ∈ ϕt,s(P ). This finally shows Ut,s(P, f) ≥ Ut,s(P, f). Hence
Local Dominance.
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