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A Blocks: additional results

A.1 Basic Properties

In the next proposition, we show that if conditions 1 and 2 hold, then condition 2 also holds

when we consider all possible sets K ⊆ J\Ji,d. For a given block at (i, d), the proposition also

establishes that if there are less than qd candidates ranked higher than i in the block then

i cannot be an impossible match for d. So, a necessary condition for i to be an impossible

match is that there are qd or more such candidates in the block. Finally, we slightly reinforce

the conclusion of Theorem 2. We show that, in the presence of a block at (i, d), whenever

candidate i is matched to d it must be that one of the candidate j from the block must

remain unmatched, and is ranked higher than a candidate matched at one of the acceptable

departments for j.

Proposition A.1 Every block J at (i, d) satisfies the following properties:

1. For each nonempty K ⊆ J \ Ji,d, Hall’s marriage condition (3) does not hold in

P
d
(J,K).

2. There are at least qd candidates in J ranked higher than i at department d, i.e., |Ji,d| ≥
qd.

3. If µ is a feasible matching such that µ(i) = d then there exists k ∈ J and j ∈ J ∪ {i}
such that µ(j) 6= j, µ(k) = k and kPµ(j)j.

To prove Propositions A.1 we need the following lemma.

Lemma A.2 Let P be a proto-matching problem and (i, d) ∈ A. Let J ⊆ I \ {i}, with

d ∈ AJ, be a nonempty subset of candidates such that for some J′ ⊆ J with |J′| =
∑

d̂∈AJ
qd̂,

Hall’s condition (3) is satisfied in P (J′, ∅). The following three conditions are equivalent,

(a) For each nonempty K ⊆ J \ Ji,d, Hall’s marriage condition (3) does not hold in

P
d
(J,K).

(b) For each K ⊆ J \ Ji,d, with |K| = |J| −
∑

d̂∈AJ
qd̂ + 1, Hall’s marriage condition does

not hold in P
d
(J,K).
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(c) For each K′ ⊆ J\Ji,d such that |K′| = |J| −
∑

d̂∈AJ
qd̂ + 1, there is no perfect match

between J\K′ and AJ in the problem P
d
(J,K′).

Proof Obviously, (a) ⇒ (b) ⇒(c). Thus it remains to show ¬(a) ⇒ ¬(c). To this end,

suppose there exists a set K ⊆ J\Ji,d such that Hall’s condition (3) is satisfied in P
d
(J,K).

So, there exists a matching µ such that each candidate admissible in P
d
(J,K) is matched

to a department. Define the matching µ′ that leaves the match of admissible candidates

unchanged in P
d
(J,K) under µ and such that µ′(j) = j for every other candidate j. Then

µ′ is also comprehensive in P
d
(J, ∅). Note that every candidate in Ji,d is matched to a

department under µ′ since these candidates are all admissible in P
d
(J,K).

Applying successively Lemma 1 we obtain a comprehensive and maximum matching µ̃

in P
d
(J, ∅), where every candidate j ∈ Ji,d is matched to a department. By assumption,

there exists a perfect match between a set J′ ⊆ J such that |J′| =
∑

d̂∈AJ
qd̂ and AJ.

It follows that each department in AJ shall fill its capacity at a maximum matching in

the problem P
d
(J, ∅). Thus µ̃ is comprehensive for P

d
(J, ∅) and every candidate in Ji,d is

matched to a department and every department in AJ fills its capacity under µ̃. Consider

now K′ = {j ∈ J : µ̃(j) = j}. Clearly, |K′| = |J| −
∑

d̂∈AJ
qd̂ + 1. In addition, since µ̃

is comprehensive for P
d
(J, ∅), every candidate j ∈ J \ K′ is admissible in P

d
(J,K′). We

conclude that µ̃ is a perfect match between J\K′ and AJ in the problem P
d
(J,K′), as was

to be proved. �

Proof of Proposition A.1

1 . See Lemma A.2.

2 . One can use the alternative to condition 2 given in (a) of Lemma A.2. The set Ji,d

cannot be empty, for otherwise Hall’s marriage condition trivially holds in P
d
(J,K) with

K = J, which is a contradiction. If Ji,d = J then condition 1 of a block implies |Ji,d| ≥ qd.

Otherwise, consider the nonempty set K = J \ Ji,d. The set of admissible candidates in

P
d
(J,K) is Ji,d. Since Hall’s marriage condition (3) does not holds in P

d
(J,K), one cannot

assign all candidates in Ji,d to department d at any feasible matching in P
d
(J,K). That is,

|Ji,d| > qd − 1.

3 . Let J be a block at (i, d), and let µ be a feasible matching such that µ(i) = d. Let

K = {j ∈ J : µ(j) = j}. Since µ(i) = d, we have that K 6= ∅ from condition 1 of the

definition of a block. Suppose now by way of contradiction that the conclusion of 3 . is not
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satisfied. Since µ(i) = d we have then necessarily K ⊆ J\Ji,d. Let µ′ be such that µ′(i) = i,

µ′(j) = µ(j) if j ∈ J, and µ′(j) = j if j /∈ J. We observe that µ′ is a feasible matching in

P
d
(J,K), where, by construction, every admissible candidate is matched to a department

under µ′. This contradicts the statement (a) of Lemma A.2. �

A.2 A simple sufficient condition: exact block

We consider a particular case of a block where the number of candidates in J is equal to

the total number of positions in the acceptable departments. We will see that the conditions

1 and 2 specialize respectively into a perfect match between J and AJ, and Hall’s marriage

condition (3) with singleton sets K.

Definition A.3 Given a proto-matching problem P = (I,D, (Pd, qd)d∈D, A), an exact

block at (i, d) ∈ A is a nonempty set J ⊆ I\{i}, with d ∈ AJ, such that:

1. |J| =
∑

d̂∈AJ
qd̂ and Hall’s marriage condition (3) holds in P (J, ∅);

2. For each k ∈ J \ Ji,d Hall’s marriage condition does not hold in P
d
(J, {k}).

The above tractable conditions are sufficient for the existence of impossible matches.

In the next section, we will show that those conditions are also necessary under a mild

restriction on the proto-matching problem.

The following result is deduced from Theorem 2 in the paper.

Corollary A.4 If P admits an exact block at (i, d) then i is an impossible match for d.

Proof Let J be an exact block at (i, d). It is easy to check that J is also a block at

(i, d). Condition 1 of the definition of a block holds with J′ = J. Since |J| =
∑

d̂∈AJ
qd̂,

the second condition of an exact block is equivalent to the condition 2. of a block with

|K| = |J| −
∑

d̂∈AJ
qd̂ + 1 = 1. �

The next two examples illustrate the interplay between conditions 1 and 2 (for blocks or

exact blocks) in order to get impossible matches.
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Pd0 Pd1

i1 i2

i0 i1

Table 1: Impossible match and exact block

Example A.5 Let d0 and d1 be two departments and i0, i1 and i2 three candidates. Consider

the problem P depicted in Table 1, where Ai1 = {d0, d1}, Ai2 = {d1}, qd0 = qd1 = 1.

Clearly, i0 is an impossible match for d0, and it is easy to see that J = {i1, i2} is an exact

block at (i0, d0). Condition 1 holds trivially. As for condition 2, K = {i2} is the only set K

for which we have to consider condition 2. So we only have to check whether we can match

i1 in P
d0

(J, {i2}). This is impossible since d2 is not admissible and d1 has no position. So,

J is an exact block. �

An exact block J does not always exist. A counter-example, where an impossible match

does not admit any exact block, is the following.

Example A.6 Consider four departments, d0, d1, d2 and d3, with one position at each de-

partment, and six candidates ih, h = 0, . . . , 5. The problem P is depicted in Table 2. It is

easy to see that candidate i0 is an impossible match for d0.

Pd0 Pd1 Pd2 Pd3

i1 i2 i2 i3

i0 i3 i4 i4

i5 i1 i5

i1

Table 2: Impossible match and no exact block

To begin, notice that any block must contain at least 4 candidates, otherwise condition

1 cannot be satisfied.1 The set J1 = {i1, i2, i3, i4} satisfies condition 1, but not condition 2.

1Candidate i1 must be part of the block, and thus condition 1 implies that we must include at least two

other candidates to fill departments d1 and d2. So, any block must contain at least candidate i3, or i4 or

i5. If any of these three candidates is added to the block, we span all four departments, and thus any block

must contain at least four candidates.
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To see this, consider the matching µ (feasible for P
d0

) defined by µ(i1) = d1, µ(i2) = d2 and

µ(i3) = d3. Candidate i4 is ranked lower than the matched candidates for all his acceptable

departments. So, condition 2 is not satisfied for the block J1, since Hall’s condition (3) is

satisfied in P
d0

(J1, {i4}).
A similar reasoning applies for the sets J2 = {i1, i2, i3, i5}, J3 = {i1, i2, i4, i5}, and J4 =

{i1, i3, i4, i5}. That is, there is no block J at (i0, d0) such that |J| = 4,, hence no exact block,

while the reader can check that J = {i1, i2, i3, i4, i5} is the (unique) block at (i0, d0). �

A.3 Finding blocks and impossible matches

According to Proposition 2 in the paper, we would have to consider all possible maximal

and comprehensive matchings to check whether a candidate is an impossible match for a

department. Theorem 2 in the paper greatly simplifies this task, for we only have to consider

all the sets K ⊆ J of a particular size. The set J turns out to be easy to construct; the

proof of the necessity part of Theorem 2 suggests a procedure to identify impossible matches,

which we now detail.

Let P be a proto-matching problem and let i ∈ Ad.

Algorithm: Impossible Matches Algorithm

1. Delete candidate i from the preference of all departments but department d, without chang-

ing the relative ranking of the other candidates.

2. Construct a maximum and comprehensive matching µ.2

3. If µ(i) = d then i is not an impossible match for d. Otherwise go to step 4.

4. Constructing the set J:

4.1 Let J0 be the set of all candidates matched to a department, and D0 all the depart-

ments that do not fill their capacity at µ. If D0 is empty then go to Step 5. Otherwise

iterate through h until obtaining an empty set Dh:

2We describe in the proof of Lemma 1 in the Appendix a way to construct a maximum and comprehensive

matching for a proto-matching problem. This construction consists of an iterative search of augmenting

paths starting from a comprehensive matching (which could be empty) and can be performed in polynomial

time —See the Section A in Appendix for a definition of augmenting paths.
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4.2 Define Jh as the set Jh−1 minus the set of candidates made by every candidate who

finds acceptable at least one department in Dh−1 ,

Jh = {j ∈ Jh−1 : j /∈ ADh−1} ,

and let Dh be the set of departments that do not fill their capacities with candidates

in Jh,

Dh = {d̂ : |µ(d̂) ∩ Jh| < qd̂} .

Set h := h+ 1 and repeat step 4.2 until D` = ∅ for some h = `. Let J̄ = J`.

5. If d /∈ AJ̄ then i is not an impossible match for d. Otherwise check condition 2 of Definition

4 at J:

5.1 Let T̄ be the set of unmatched candidates at µ (except i) such that every such

candidate finds acceptable some department in AJ̄. Let J = J̄ ∪ T̄.

5.2 For each K ⊆ J\Ji,d such that |K| = |J| −
∑

d̂∈AJ
qd̂ + 1, find a maximum matching

in the problem P
d
(J,K). If there is no set K such that all admissible candidates of

P
d
(J,K) are matched to a department then i is an impossible match for d. Otherwise

i is not an impossible match.

We show in the proof of Theorem 2 that the set J constructed in Step 5.1 satisfies the

first condition of a block, and Step 5.2 consists of checking condition 2. If there is a set K

satisfying the conditions set in Step 5.2 and a matching µ such that all admissible candidates

in P
d
(J,K) can be matched to a department then i is not an impossible match for d. This

is so because µ is comprehensive for P (J, ∅). By construction no candidate better ranked

than i at d is in K, so these candidates are all matched. Also, in the problem P
d
(J,K) the

capacity of d is qd − 1, so it then suffices to match i to d to have a comprehensive matching

for P , the original proto-matching problem. On the other hand, if no such set K can be

found then Hall’s condition (3) is not satisfied for any set K, which simply establishes that

the second condition of a block holds.

Note that the set J̄ constructed in Step 4 is clearly easy to obtain, so the complexity of

our algorithm is determined by Step 5.2. This is where the added value of Theorem 2 comes

in, for we only have to truncate by taking sets K that have the size specified in condition 2,

a clear improvement compared to Proposition 2.
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In practice, it is possible to further reduce the sets K one has to consider by not including

the candidates who are necessarily matched at a maximal and comprehensive matching.

Definition A.7 Given a proto-matching problem P , a candidate i is prevalent if for each

job market problem �∈ Θ(P ) and each µ ∈ Σ(�), it holds that µ(i) ∈ D.

Finding whether a candidate i is prevalent is easy. It suffices to consider the profile P

restricted to the departments Ai truncated at i, and then check whether there is at least one

department in Ai that does not fill its capacity at a maximum matching. Given a proto-

matching problem P , let J∗ denote the set of prevalent candidates. We can then re-write

the second condition of a block in the following way,

2’. For each K ⊆ J \ (Ji,d ∪ J∗), with |K| = |J| −
∑

d̂∈AJ
qd̂ + 1, Hall’s marriage condition

(3) does not hold in P
d
(J,K).

Proposition A.8 Let P be a proto-matching problem and (i, d) ∈ A. Let J ⊆ I \ {i}, with

d ∈ AJ, be a nonempty subset of candidates satisfying condition 1. of a block. Then the

condition 2. of a block and the condition 2’ are equivalent.

Proof Clearly 2 implies 2′. To show the converse implication suppose that there exists

K ⊆ J \ Ji,d with |K| = |J| −
∑

d̂∈AJ
qd̂ + 1, such that Hall’s marriage condition (3) holds

in P
d
(J,K). From Lemma A.2 (c), there exists a perfect match between J\K and AJ in

the problem P
d
(J,K), i.e., where each department fills its capacity. Let j be a prevalent

candidate. If j ∈ K, then it is possible to fill all the departments in Aj with candidates

that are ranked higher than j at these departments. This would contradict the fact that j

is prevalent. So j /∈ K. It follows that K ⊆ J \ (Ji,d ∪ J∗). �

Finally, we are also able to show that our algorithm yields a computationally easy task

by imposing a slight restriction on the proto-matching problem. We assume that there exists

a matching for P such that all candidates are matched to a department.

Assumption A.9 Hall’s Marriage condition is satisfied in P .

Checking whether Hall’s Marriage condition is satisfied for a given problem P sim-

ply amounts to computing a maximum matching and checking whether all candidates are

matched. There are various algorithms doing this in polynomial time. A well-known al-

gorithm is the Edmonds–Karp algorithm (Edmonds and Karp (1972)) which is similar to
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the procedure outlined in the proof of Lemma 1 (see also Remark 5). Another (and faster)

algorithm is the Hopcroft–Karp algorithm (Hopcroft and Karp (1973)).

Proposition A.10 Under Assumption A.9, candidate i is an impossible match for depart-

ment d if, and only if, P admits an exact block at (i, d). Furthermore, finding whether a

candidate is an impossible match can be done in polynomial time.

Proof From Corollary A.4, the existence of an exact block J at (i, d) implies that i is an

impossible match for department d.3

Suppose now that i is an impossible match for d in P . We show that there is an exact block

J. To begin with, note that we cannot have J = I\{i}. To see this, note that Assumption

A.9 implies that |I| ≤
∑

q̂ qd̂. Since we necessarily have i /∈ J we have |I\{i}| <
∑

q̂ qd̂.

Let P̃ be the problem identical to P except that AP̃i = {d}. By Assumption A.9, there

exists a matching µ̃ for P such that µ̃ 6= j for each j ∈ I. Let µ be the matching such that

µ(j) = µ̃(j) for each j 6= i and µ(i) = i. Note that µ̃ is necessarily comprehensive in P .

Since i is an impossible match for d in P , µ̃(i) 6= d. So, µ is a feasible matching for P̃ and

|{j : µ(j) 6= j}| = |I| − 1. So any maximum and comprehensive matching for P̃ necessarily

matches |I| − 1 candidates. So we can assume without loss of generality that µ is also a

comprehensive matching.

We can now construct a set J` following the procedure detailed in the proof of Theorem

2.4 Now consider the set T. It contains all the unmatched candidates different from i that

are acceptable for a department in AP̃
J` . But since µ̃(j) 6= j for each j 6= i, we have T = ∅.

From there it suffices to follow the arguments in the necessity part of Theorem 2 (after

the claim that µ(d0) ⊆ J`). Since T = ∅, |J| =
∑

d̂∈AJ
qd̂, the two conditions for a block

become the two conditions for an exact block.

We show now that under Assumption A.9 we can check whether a candidate is an im-

possible match for a department in polynomial time. To this end, consider the Impossible

Matches Algorithm. The matching constructed in Step 2 is done in polynomial time (see

Remark 5 in the paper). At step 4, the matching is such that all candidates but candidate

i are matched to a department. Hence, at step 5.1, T = ∅ and |J| =
∑

d̂∈AJ
qd̂. At Step

5.2, the maximal number of cases one has to consider is thus equal to |I| − 1. That is, we

only have to check that, for each candidate j ∈ J \ Ji,d, Hall’s marriage condition (3) is not

3Note that Assumption A.9 is not needed here.
4Observe that the set D0 is nonempty. This is so because µ̃(i) 6= i and thus |µ(µ̃(i))| ≤ qµ̃(i) − 1.
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satisfied in the problem P
d
(J, {j}). Again, it amounts to finding a maximum matching for

the problem P
d
(J, {j}) which can also be done in polynomial time.5 �

Remark A.11 The identification of impossible matches can be sped up when scrutinizing

the blocks. If we identify a block (resp. exact block) J at some pair candidate–department

(i, d), then for each candidate ranked lower than i at d who is not an element of the block

(resp. exact block) J, the set J is also a block (resp. exact block) for (i, d). That is, the

candidate is also an impossible match for d.

Remark A.12 The identification can also be sped up by considering the connected com-

ponents of the graph defined by the mutually acceptable pairs, in the proof of Theorem 2.

If a block at (i0, d0) involves two disconnected components of the acceptability graph, then

there exists one block in the connected component containing d0. This obvious property can

be helpful in practice. It means one can work separately on each connected component of

the market when looking at impossible matches one by one.

B The French academic job market

Here we provide more details about the French academic job market.

B.1 Organization

Disciplines in French academics are divided into sections, that correspond to fields. For

instance the section corresponding to economics is section ] 5, section ] 10 corresponds to

comparative literature. There are 77 different sections, but medical positions sections are

often split into sub-sections corresponding to sub-specialities, bringing the total to about

120.

For candidates, the job market begins in the Fall. Candidates first request an evaluation

by a national committee, the Conseil National des Universités. There is a committee for

each section. A positive evaluation by a committee is valid for four years, after which the

5We can use for instance the Hopcroft–Karp algorithm. Contrary to Step 2 in Step 5.2 we only need to

look for a maximum matching (i.e., not necessarily comprehensive).

10



candidate must ask for another evaluation, should he or she want to participate again in the

job market.

Positions are advertised by the Ministry of Higher Education in winter. Shortly after

the publication of job openings the candidates send their applications to the departments

where they want to apply. By law a candidate need only to have a positive evaluation by

one section to apply to any job. That is, a candidate having a positive evaluation from the

committee for section, say, 17 (philosophy), can apply to a position advertised in section,

say, 34 (astronomy and astrophysics). In practice, recruiting committees reject candidates

who do not have a positive evaluation for the section corresponding to the job opening.

Each open position is assigned a recruiting committee of about 15–20 people. The com-

position of the committee is constrained by a double parity on the members’ origin (internal

or external) and the type of position (junior or senior). Upon receiving the candidates’ appli-

cations, the recruiting committees decide first which candidate to interview. The interviews

usually take place in May, and usually last between 20 and 30 minutes. In most cases all the

interviews are made the same day. Contrary to, for instance, the (international) job market

for economists, interviews in the French job market are held at the universities. That is,

candidates must travel to attend their interviews. So, a candidate may have an interview

scheduled in Paris and Marseilles (900 km away) the same day, at the same time. Com-

mittees try to be flexible to permit candidates to tune their schedules in case of conflicting

interviews.

After the interviews, recruiting committees rank the candidates (usually the same day)

and the rankings are submitted to the Ministry of Higher Education after validation by

the University board.6 Once the interview season is over, candidates are asked to submit

(in June) their preferences over the positions for which they are ranked. When logging in,

candidates see all the positions for which they are ranked (and their rank), independently

of the section (i.e., field) in which the positions were advertised, and have to rank them.

For instance, if a candidate was ranked for positions that were advertised for sections, say,

26 and 34, the candidate will have to submit a unique ranking, not one for each field. In

other words, the Ministry of Higher Education is considering one job market encompassing

6The university board (“Conseil d’administration” is composed of (mostly) faculty, staff and students’

representative. The board has the power to alter the ranking decided by the recruiting committee. In

mathematics this does happen, albeit rarely. We consider in the paper the rankings decided by the recruiting

committees.
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all sections.

The Ministry then computes a matching, which is announced about a week after.7 Most

positions start on September 1st of the same year.

Remark B.1 Parallel to the university job market there is another job market involving

research institutions (CNRS, INRA, INSERM, INRIA, etc.). These positions (also tenured)

are research-only positions and are usually preferred by the candidates. These institutions

usually announce which candidate is offered a job in April, i.e., before the interviews. How-

ever, candidates have little control over the institution where they will be assigned. The

assignment is usually announced in June, when candidates must submit their choice lists for

the assistant professor positions. That is, a candidate hired by the CNRS (in April) does

not know before June where (e.g., Paris, Marseilles or Toulouse) he will be assigned.

Remark B.2 There are each year between 80 and 130 positions open in sections 25 and

26. This high number of positions is rather unusual. For instance, in economics there are on

average about 40–50 positions a year. This high number is partly explained by the fact that

mathematics departments often provide the mathematics courses taught in other disciplines.

Each year, there are on average between 400 and 500 candidates having passed the evaluation

of the CNU of sections 25 or 26, so this gives an average of 5 candidates per opening.8 On

average about 30–40% of the candidates do not pass the CNU evaluation. The main reasons

of reject are misfit (the field of specialization of the candidate does not match the field of

the section), incomplete application and weakness of the scientific production (about 5% of

the applicants).

B.2 Changes during the time framework

Our observations cover 15 years (from 1999 to 2013) of the market for assistant profes-

sors in Mathematics. We observe four major institutional changes along those years. In

chronological order:

7For 2016 for instance, the deadline for submitting the preferences over the positions is June 16 and the

match is announced on June 20.
8There are slightly more candidates qualified for section 26 than for section 25. The former often includes

candidates from other disciplines (e.g., economics, physics, biostatistics, chemistry, computer science)
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No more linked positions - since 2008 It can happen that a department offers two or

three identical positions at the same faculty (i.e., positions with identical job descrip-

tions). Until 2007, those positions were considered “linked,” which implied that the

recruiting committee had to establish a unique ranking for all the linked positions.

a new decentralized market Since September 2008, departments must choose between

two separate methods of recruiting before entering the market. The first one is a

“synchronized session,” where the timeline for recruiting is imposed by the Ministry

of Higher Education. Departments recruiting in this market are competing with each

other at the same time. This is the market we consider in the paper. The other market

is not coordinated. That is, departments can choose the dates of the interview and

make job offers to candidates immediately thereafter. This market is called “au fil de

l’eau” (on the fly). A cause for concern is merely the existence of overlaps between the

decentralized and centralized markets for the candidates who matter in our data. But

the few positions of the uncoordinated market are usually published well before with

the respect to the synchronized market, so that the candidates accepting such early

positions do not appear in the latter market.9

No more second session – since 2009 The Ministry used to organize a second job mar-

ket in September which would sometimes include positions that were not filled in the

first job market session (although in general the second session positions were new po-

sitions). This session had a very small number of positions and will not be considered

in this paper (e.g., for mathematics, there were 6 positions in 2006, 2 in 2007, 1 in

2008).

No more constraints for the ranking length – since 2009 Until 2008 departments could

rank at most 5 candidates per position. In case of “linked positions” (until 2007), the

length of the rank list was 5×] linked positions. For instance, if a department had 3

linked positions it could rank up to 15 candidates. The Ministry of Higher Education

dropped the constraint on the number of candidates that could be ranked. Our data

9The co-existence of a second market may have important strategic implications for both departments

and candidates. Some of them are already well-documented in the matching literature, including strategic

unraveling and the problem of early resolution of uncertainty (e.g., Halaburda (2010), Echenique and Pereyra

(2016)). We do not discuss those issues here.

13



shows that it took some time for the departments to fully integrate this new possibility

in their strategies. By 2013, most of the departments ranked more than 5 candidates

per position, suggesting that the constraints on the length of the rankings was binding.

However, the length of the rankings have not increased substantially. For the last year

in our data (2013), the distribution of the length of the rankings are given in Table 3.

When looking at the rank of hired candidates (Table 4), we can see that there is no

substantial impact of the abandon of the constraint on the length of the rankings.10

Length 3 4 5 6 7 8 9 10

] positions 1 9 17 27 12 4 2 2

% of positions 1.4% 12.2% 23% 36.5% 16.2% 5.4% 2.7% 2.7%

Table 3: Distribution of ranking lengths (year 2013)

Rank 1 2 3 4 5 6 7 8 9 and more

] cand. (year 2013) 26 15 11 11 2 3 1 0 2

% cand. (year 2013) 36.6% 21.1% 15.5% 15.5% 2.8% 4.2% 1.4% 0% 2.8%

avg. years ≤ 2008 32.8% 20.9% 16.7% 10.4% 7.2% 3.6% 3.7% 2.2% 2.5%

avg. years > 2008 29.3% 20.2% 13.8% 12.7% 6.2% 6.9% 5.0% 3.1% 2.9%

Table 4: Rank of hired candidates (for the position that hired them)

The effects of those institutional changes are globally ambiguous. On the one hand, we

observe that the joint abandon of quotas and linked positions leads to a thicker centralized

market, all things being equal. But on the other hand, the effect is mitigated by the creation

of a second decentralized market that deprives the centralized market of candidates and

positions.

10The average distribution for the years prior to 2009 in Table 4 is calculated not taking into account the

linked positions. If two positions are linked then the candidate ranked 2nd could be considered as ranked

first (he is sure to get either position if he desires so).
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Year Number Violations Number Violators

1999 4 4

2000 3 3

2001 16 15

2002 9 6

2003 6 4

2004 6 5

2005 7 6

2006 11 11

2007 6 6

2008 12 8

2009 19 15

2010 5 4

2011 16 13

2012 12 9

2013 9 6

Table 5: Number of violations of the acceptability assumption

C More on acceptability

C.1 Violation of the acceptability assumption on the French mar-

ket

Table 5 provides the distribution of the obvious violations of the assumption by candidates.

See the discussion in sub-section 3 in the Empirical Analysis.

C.2 Acceptable or achievable?

As we explained in the Introduction, our goal is to analyze the consequences of short pref-

erence lists and not why preference lists are short. We can nevertheless use the concept of

impossible matches to shed some light on the structure of those lists. A natural hypothesis

to explain the length of the departments’ preference lists is that departments are naturally
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constrained in their choices. Any candidate that appears in a department’s submitted pref-

erence list must be interviewed by that department. Obviously, in a sufficiently large job

market like the one we are analyzing it is not materially possible for departments to interview

all candidates who applied to the positions offered by the departments. But departments

are likely to be strategic, too. That is, when establishing the rankings of candidates depart-

ments may focus on a subset of candidates, namely candidates that they may have a chance

to hire. In other words, a candidate not appearing in a department’s (submitted) preference

list is not necessarily unacceptable for the department. A reasonable assumption could be

then that departments consider in their ranking only candidates that are achievable, that

is, candidates that departments can be matched with at some stable matching (in the job

market problem). The next result shows that if this were the case then we should not identify

impossible matches in the data. Therefore the presence of impossible matches in our data

shows that departments do not rank only achievable candidates.11

Before going further, some definitions are in order. Let � be a job market problem.

A candidate i is achievable for a department d (or d is achievable for i) if there exists a

matching µ stable for � such that µ(i) = d. Given a job market (I,D, (�d, qd)d∈D, (�i)i∈I),
we define the achievable proto-matching problem associated to � the proto-matching

problem (I,D, (P̃d, qd)d∈D, Ã) such that

• for each i ∈ I, d ∈ D, (i, d) ∈ Ã if, and only if, i is achievable for d in �

• for each d ∈ D, and i, i′ ∈ I, iP̃di
′ if, and only if, iPdi

′.

Proposition C.1 Let � be a job market problem and let P̃ be the achievable proto-matching

problem associated to �. If a candidate i is achievable for a department d in � then i is not

an impossible match for d in P̃ .

Proof Let � be a job market problem and let i0 be achievable for d0 in �, i.e., there

exists a matching µ ∈ Σ(�) such that µ(i0) = d0. Let P = (I,D, (Pd, qd)d∈D, A) be the

11Intuitively, this result is not too surprising since matching markets tend to have a unique stable matchings

as the market gets larger. In this case, most departments would rank only one candidate per position, the

one who is matched to that position at the unique stable matchings. One issue with that reasoning is that

large markets do not necessarily have a unique stable matchings. Even though we may suspect that in the

French job market there is only one stable matching, we cannot show for sure that it is the case.

16



proto-matching problem such that �∈ Θ(P ). Since µ is stable, µ is maximal and compre-

hensive for P . Now consider P̃ , the achievable proto-matching problem associated to �.

By construction, for each j ∈ I, µ(j) 6= j implies j ∈ AP̃d . Note that for each department

d, AP̃d ⊆ Ad and for each j, j′ ∈ AP̃d , jP̃dj
′ if, and only if, jPdj

′. It follows that µ is also

maximal and comprehensive for P̃ , and thus µ(i0) = d0 implies that i0 is not an impossible

match for d0 in P̃ . �

D Data analysis

D.1 A remark on reshuffled profiles

In this case, the ranking of a department simply consists of a random reshuffling of the

original ranking. This ensures that the distribution of number of times candidates are

ranked is identical to the original distribution.

Until 2007 some positions were linked, i.e., recruiting committees had to give a unique

ranking for all the linked positions. In that case we opted for reshuffling in the same way

for all linked positions. For instance, if two positions are linked and rank (in this order)

candidates a, b, c, d and e, the reshuffled ranking of the two positions would be the same

(e.g., c, e, a, d and b).

D.2 Market stars

In the main paper the definition of a star given a proto-matching problem P is a candidate

that is ranked more than once and always first (at some stage of the Predicting Algorithm).

In the program we use an additional definition of stars, that we call pseudo stars. Such a

candidate is a candidate who is always ranked weakly higher than the hired candidate (but

not necessarily always first). Table 6 illustrates this, where the candidates in boxes are the

matched (hired) candidates.

In this example candidate i1 is a pseudo star. He is ranked by d1 and d2, and his rank is

always weakly higher than the rank of the hired candidate. Candidate i2, on the contrary,

is not a pseudo star, because for d4 he is ranked below the hired candidate.
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Table 6: Pseudo stars.

Pd1 Pd2 Pd3 Pd4

i2 i2 i5 i4

i1 i1 i2 i2

i5 i5 i6 i7

i4 i3 i4 i3

Since we know that the final matching is stable, a pseudo market star is similar to a

market star in the following sense: the department that hires that candidate is necessarily

the top choice among all the other positions that rank that candidate. Indeed, if it is not the

case the matching would not be stable. So, in our case we know that i1 necessarily prefers d2

to d1. Note, however, that this deduction is only valid for a given proto-matching problem

at a given step of the algorithm. In our predicting algorithm it could be that at a previous

step i1 was ranked by, say, d4, but below the hired candidate, i4. In this case we obviously

cannot infer the relative ranking of d4 and d1 in i1’s preferences, and thus at that previous

step i1 was not a pseudo star.

The structure of our code works as follows when considering stars (and pseudo stars).

The algorithm is similar to the algorithm presented in the paper, except that we also search

for pseudo stars. This search is only triggered when there are no market stars.

Predicting Algorithm

Input: A pair (P, µ), where µ is the output of a regular matching algorithm with input

�∈ Θ(P ).

Step 1 Identify and remove all impossible match pairs in P and construct P 1 := R(P ).

Step h for h ≥ 2

h.1 Identify the market stars in P h.

If there are no market stars, identify the pseudo stars in P h.

If there are no stars and no pseudo stars, then STOP.

h.2 If there are stars (or pseudo stars), eliminate them from the rankings of the

positions that do not hire them. Let P̃ h be the proto-matching problem obtained.
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h.3 Construct P h+1 := R(P̃ h) and go to Step h+ 1.

It is routine to check that with this version of the Predicting Algorithm the results of

Section 4 continue to hold. The proof of Proposition 7, which is the unique result dealing

with market stars, simply needs some minor modifications in the phrasing (paragraphs 2

and 3 in the proof).

Table 7 reports the number of market stars and pseudo stars used in the Predicting

Algorithm for every year. Note that the total number of stars and pseudo stars outnumber

the number of positions extracted. Indeed, very few pseudo stars (at most three per year)

identified at step h.2 of the above algorithm are not mapped to a position by the algorithm.

Those candidates are identified by the algorithm and possibly used to clear the market since

they are eliminated from the rankings of the positions that do not hire them. However, the

positions hiring them cannot be cleared at any step of the algorithm, that is extracted. In the

example given in Table 6, candidate i1 is a pseudo star but the algorithm cannot clear any

of the four positions (even after iterations). In that example, there is no position extracted

and one pseudo star.

D.3 Simulations

Table 8 reports the detailed results of the simulations that we discuss in sub-section 4 of the

empirical analysis.
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year Original Random Reshuffle

1999 32.2% 31% 33.1%

2000 49.4% 40.8% 43.8%

2001 44.2% 41.1% 47.1%

2002 52.9% 42.6% 48.3%

2003 44.3% 40.7% 38%

2004 50.7% 44.1% 47.8%

2005 44.9% 38% 46.3%

2006 39.1% 27.8% 40.3%

2007 47% 36.7% 45.3%

2008 36% 28.1% 34.4%

2009 33.9% 29.3% 30.2%

2010 34.2% 27.3% 36%

2011 38.8% 28.5% 35.3%

2012 60.2% 53.3% 51%

2013 58.9% 48.3% 52.2%

average 44.4% 37.2% 41.9%

Table 8: % of predicted positions
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