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2 JOURNAL OF POLITICAL ECONOMY

several decades. We show that firms tend to innovate more in clean
(and less in dirty) technologies when they face higher tax-inclusive fuel
prices. Furthermore, there is path dependence in the type of innova-
tion (clean/dirty) both from aggregate spillovers and from the firm’s
own innovation history. We simulate the increases in carbon taxes needed
to allow clean technologies to overtake dirty technologies.

I. Introduction

There is a wide scientific consensus that greenhouse gas emissions from
human activities, in particular carbon dioxide (COy), are responsible for
the current observed warming of the planet. Automobiles are major con-
tributors to these emissions: according to the International Energy Agency,
in 2009 road transport accounted for 4.88 gigatons of CO,, which repre-
sented 16.5 percent of global CO, emissions (transport as a whole was re-
sponsible for 22.1 percent). In this paper we look at technological innova-
tions in the auto industry and examine whether government intervention
can affect the direction of this innovation. More specifically, we construct
a new panel data set on auto innovations to examine whether firms redi-
rect technical change away from dirty (polluting) technologies and to-
ward cleaner technologies in response to increases in fuel prices (our
proxy for a carbon tax) in the context of path-dependent innovation. We
associate “dirty” innovation with internal combustion engine patents and
“clean” innovation with electric, hybrid, and hydrogen vehicle patents,
but we discuss carefully issues around this definition and consider various
alternatives.'

Our main data are drawn from the European Patent Office’s (EPO)
World Patent Statistical database (PATSTAT). These data cover close to
the population of all worldwide patents since the mid-1960s. Our out-
come measure focuses on high-value “triadic” patents, which are those
that have been taken out in all three of the world’s major patents offices:
the EPO, the Japan Patent Office (JPO), and the US Patents and Trade-
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Stern for helpful comments. Participants at seminars in the American Economic Associa-
tion, Arizona, Birmingham, Cambridge, Canadian Institute for Advanced Research, Impe-
rial, INSEAD, London School of Economics, Manchester, National Bureau of Economic
Research, Paris, Stanford, Stirling, Stockholm, and Venice have all contributed to improv-
ing the paper. Financial support has come from the British Academy, the Economic and
Social Research Council through the Centre for Economic Performance and the Centre
for Climate Change Economics and Policy, and the Grantham Foundation for the Protec-
tion of the Environment. Antoine Dechezleprétre gratefully acknowledges the support of
the ESRC under the ESRC Postdoctoral Fellowship Scheme (award PTA-026-27-2756).
Xavier Vollenweider and Chris Gaskell provided excellent research assistance. Data are provided
as supplementary material online.

' We do not consider radical innovations in upstream industries such as biofuels, for in-
stance. To explore this is beyond the scope of the current paper, which takes the more pos-
itive approach of analyzing the determinants of clean innovation in vehicles.
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CARBON TAXES, PATH DEPENDENCY 3

mark Office (USPTO). Our database also reports the name of patent ap-
plicants, which in turn allows us to match clean and dirty patents with dis-
tinct patent holders each of whom has her own history of clean versus
dirty patenting. Finally, we know the geographical location of the inven-
tors listed on the patent so we can examine location-based knowledge
spillovers.

We report three important empirical findings. First, higher fuel prices
induce firms to redirect technical change away from dirty innovation
and toward clean innovation. Second, a firm’s propensity to innovate
in clean technologies appears to be stimulated by its own past history
of clean innovations (and vice versa for dirty technologies). In other
words, there is path dependence in the direction of technical change:
firms that have innovated a lot in dirty technologies in the past will find
it more profitable to innovate in dirty technologies in the future.> Our
third finding is that a firm’s direction of innovation is affected by local
knowledge spillovers. We measure this using the geographical location
of its inventors. More specifically, a firm is more likely to innovate in
clean technologies if its inventors are located in countries where other
firms have been undertaking more clean innovations (and vice versa for
dirty technologies). This provides an additional channel that reinforces
path dependency.

Our paper relates to several strands in the literature. First, our work is
linked to the literature on climate change, initiated by Nordhaus (1994).?
We contribute to this literature by focusing on the role of innovation in
mitigating global warming and by looking at how various policies can in-
duce more clean innovation in the auto industry.

We also connect with work on directed technical change, in particular,
Acemoglu (1998, 2002, 2007), which itself was inspired by early contribu-
tions by Hicks (1932) and Habakkuk (1962).* We contribute to this liter-

* As shown in Acemoglu et al. (2012), this path dependency feature when combined
with the environmental externality (whereby firms do not factor in the loss in aggregate
productivity or consumer utility induced by environmental degradation) will induce a
laissez-faire economy to produce and innovate too much in dirty technologies compared
to the social optimum. This in turn calls for government intervention to “redirect” tech-
nical change.

* Nordhaus (1994) developed a dynamic Ramsey-based model of climate change (the
dynamic integrated climate-economy [DICE] model), which added equations linking pro-
duction to emissions. Subsequent contributions have notably examined the implications of
risk and discounting for the optimal design of environmental policy. In particular, see Stern
(2006), Nordhaus (2007), Weitzman (2007, 2009), Dasgupta (2008), Mendelsohn et al. (2008),
von Below and Persson (2008), and Yohe, Tol, and Anthoff (2009). Recently, Golosov et al.
(2014) have extended this literature by solving for the optimal policy in a full dynamic stochas-
tic general equilibrium framework.

* The theoretical literature on directed technical change is well developed. For applica-
tions to climate change, see, e.g., Messner (1997), Grubler and Messner (1998), Goulder
and Schneider (1999), Nordhaus (2002), van der Zwaan et al. (2002), Buonanno, Carraro,
and Galeotti (2003), Smulders and de Nooij (2003), Sue Wing (2003), Manne and Richels
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4 JOURNAL OF POLITICAL ECONOMY

ature by providing empirical evidence on the role of carbon prices in di-
recting technical change. Earlier work by Popp (2002) is closely related
to our paper. This paper uses aggregate US patent data from 1970-94 to
study the effect of energy prices on energy-efficient innovations. Popp
finds a significant impact from both energy prices and past knowledge
stocks on the direction of innovation. However, since he uses aggregate
data, a concern is that his regressions also capture macroeconomic
shocks correlated with both innovation and the energy price.” The nov-
elty of our approach is that we use international firm-level panel data
and exploit differences in a firm’s exposure to different markets to build
firm-specific fuel prices, which allows us to provide microeconomic evi-
dence of directed technical change. Acemoglu et al. (2016, in this issue)
calibrate a microeconomic model of directed technical change to derive
quantitative estimates of the optimal climate change policy. The focus of
our work is more empirical, but we use our results to perform a related
exercise: we simulate the aggregate evolution of future clean and dirty
knowledge stocks and analyze how this evolution would be affected by
changes in carbon taxes.

Finally, we draw on the extensive literature in industrial organization
that estimates the demand for vehicles (energy-efficient and otherwise)
as a function of fuel prices and other factors.® We go beyond this work by
looking at the rate and direction of innovation.

The paper is organized as follows. Section II develops a simple model
to guide our empirical analysis and Section III presents the econometric
methodology. The data are presented in Section IV with some descrip-

(2004), Gerlagh (2008), Gerlagh, Kverndokk, and Rosendahl (2009), and Gans (2012). In
contrast, empirical work on directed technical is scarcer; but see Acemoglu and Linn
(2004) for evidence in the pharmaceutical industry, Acemoglu and Finkelstein (2008) in
the health care industry, or, more recently, Hanlon (2015) for historical evidence in the
textile industry.

® Further evidence of directed technical change in the context of energy saving can be
found in the study by Newell, Jaffe, and Stavins (1999), who focus on the air conditioning
industry, or by Crabb and Johnson (2010), who also look at energy-efficient automotive
technology. HaiCi¢ et al. (2009) investigate the role of regulations and fuel price on auto-
motive emission control technologies. Hassler, Krussell, and Olovsson (2012) find evidence
for a trend increase in energy-saving technologies following oil price shocks. They measure
the energy-saving bias of technology as a residual, which is attractive as it sidesteps the need
to classify patents into distinct classes. On the other hand, our technology variables are
more directly related to the innovation we want to measure.

¢ For example, using around 86 million transactions, Alcott and Wozny (2014) find that
fuel prices reduce the demand for autos, but by less than an equivalent increase in the ve-
hicle price. They argue that this is a behavioral bias causing consumers to undervalue fuel
price changes. Readers are referred to this paper for an extensive review of the literature
on fuel prices and the demand for autos. Busse, Knittel, and Zettelmeyer (2013) use similar
data in a more reduced-form approach but, by contrast, find a much larger impact of fuel
price on auto demand. Although the magnitude of the fuel price effect on demand differs
between studies, it is generally accepted that there is an important effect of fuel prices on
vehicle demand.
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tive statistics. Section V reports the results and discusses their robustness
and some extensions. We perform the simulation exercise in Section VI.
Section VII presents conclusions. Appendix A provides details on the
theoretical model, appendix B on the econometrics model, and appen-
dix C on the data. All appendices are available online.

II. Theoretical Predictions

In this section we develop theoretical predictions that will guide our em-
pirical analysis. Full details are in appendix A. We consider a one-period
model of an economy in which consumers derive utility from an outside
good and from motor vehicle services. To abstract from income effects,
utility is quasi-linear with respect to the outside good G, (chosen as the
numeraire).

To consume motor vehicle services, consumers need to buy cars and
fuel (call this a “dirty car bundle”) or cars and electricity (call this a
“clean car bundle”). Utility is then given by

I 1 [o/(e=1)][(e=1)/¢]
U = C() 4+ Y(.ﬂfl)/adi
6 -1 , ci

! lo/(o=1)][(e=1) /] \ [e/(e=1)][(B~1)/8]
- [ Yd(f”/"dz} } :
0

where the consumption of variety ¢ of clean cars together with the corre-
sponding clean energy (electricity) is

YM = min(ym') rieri) )

and the consumption of variety ¢ of dirty cars together with the corre-
sponding dirty energy (fuel) is

Y, = min(}’dn Erliedi)~

The term e, is the amount of energy consumed for variety ¢ of a type z
car, where z = ¢, d, that is, z = Clean, Dirty; ¢ is the elasticity of substitu-
tion between the clean and dirty cars; o is the elasticity of substitution
among varieties within each type of car; and 8 is the elasticity of con-
sumption of motor vehicle services with respect to its index price (this
parameter measures the degree of substitutability between motor vehi-
cle services and the outside good). Finally, £, (respectively, &;) is the en-
ergy efficiency of clean (respectively, dirty) cars. We impose the following
parameters restrictions: 1 < e < g, so that clean cars are more substitut-
able with each other than with dirty cars; and ¢ > (3, that is, the elasticity
of substitution between clean and dirty cars is larger than the price elas-
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ticity for motor vehicle services (which implies that the elasticity of sub-
stitution between clean and dirty cars is larger than that between motor
vehicle services and the outside good).

Varieties of cars are produced by monopolists. Each monopolist owns
a given number of varieties in clean or dirty cars of mass zero. The mo-
nopoly producer of variety ¢ of a type z car produces A, cars using one
unit of outside good as an input, and the energy requirement for that
variety is &, Therefore, &, captures energy-augmenting technologies,
while A, captures technologies that augment the other inputs (labor,
for instance) for a car of type z Prior to production, monopolists can
spend R&D resources to increase the level of their technologies (we as-
sume that the cost function is quadratic in the amount of technological
improvement). We refer to increases in A, as “dirty” innovations: such
an innovation reduces the price of dirty cars and increases the demand
for fossil fuel, generating more emissions. Increases in &, are “grey” in-
novations; they reduce the amount of emissions per unit of “dirty car
bundles” but they also increase the demand for dirty cars (through a “re-
bound” effect), so that the impact on emissions is ambiguous. Increases
in &, or A, are clean innovations; they lead to a substitution from dirty
cars consumption to clean cars consumption, leading to a decrease in
emissions.”

The model is solved in appendix A. We show that for typical parameter
values we can derive some key predictions.

PreDICTION 1. An increase in the price of the fossil fuel increases
innovation in clean technologies, decreases innovation in dirty tech-
nologies, and has an ambiguous impact on innovation in grey tech-
nologies.

PreDICTION 2. Firms with an initially higher level of clean technol-
ogies will tend to innovate more in clean technologies. Similarly, those
with higher initial levels of dirty technologies will tend to innovate more
in dirty technologies.

Here, we provide only the intuition for these results. First, on the im-
pact of an increase in fuel price on clean innovations (prediction 1), a
higher fuel price makes the dirty bundle more expensive; and since
clean and dirty cars are substitutes, this encourages the consumption
of clean cars. Since the market share of clean cars is now larger, the re-
turn to innovation in clean cars is also larger. For dirty cars, a higher fuel
price reduces the market share and therefore profits, discouraging both
dirty and grey innovation. However, it also increases the returns from
grey innovation as saving on fuel reduces the price of a car bundle more
when fuel prices are large. The total impact on grey innovations is there-

7 Asan increase in productivity increases income, there would be an additional rebound
effect if cars were a normal good.
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CARBON TAXES, PATH DEPENDENCY 7

fore ambiguous (it is more likely to be negative when the price elasticity
of cars is larger and when clean and dirty cars are closer substitutes).®

Second, on path dependence within firms (prediction 2),a higher level
of dirty technologies implies a larger market share increasing the incen-
tives to innovate in dirty technologies. Against this, however, more dirty
technologies imply that there are lower marginal benefits to making in-
vestments that increase productivity and reduce the prices of a dirty car
bundle further. The net effect is positive when the elasticity of substitu-
tion is sufficiently large (so that the market size effect is large). The same
applies to grey and clean technologies.

These predictions are also generated by other models in the literature.
Acemoglu et al. (2012) and Gans (2012) study models in which innova-
tion can augment a clean or a dirty energy technology and show that a
carbon tax (equivalent here to a higher fuel price) increases innovation
in clean energy-augmenting technologies (to the detriment of dirty energy-
augmenting technologies) provided that the two inputs are substitutes.
This is similar to the trade-off between clean and dirty innovations in our
model. Smulders and de Nooij (2003) and Hassler et al. (2012) consider
models in which innovation can augment either (fossil fuel) energy or
other inputs that are complementary to it. An increase in the price of
energy redirects innovation toward energy-augmenting technology, but
since the total amount of innovation may decrease, the net impact on
energy-augmenting innovation is ambiguous (this is similar to what hap-
pens to grey innovations here in our model).

Our model departs from these models, however, in three main re-
spects. First, we simultaneously consider clean, dirty, and grey technolo-
gies when looking at path dependence. Second, we allow for firm hetero-
geneity. Both aspects are directly relevant to our empirical analysis since
it is based on firm-level data, and we identify the role of path depen-
dence from the difference in innovation efforts by firms with differing
technology levels. Third, we allow for an externality whereby local aggre-
gate knowledge in a given technology exogenously contributes to a
firm’s own knowledge stock. This directly delivers the third prediction,
which we take to the data.

PrEDICTION 3. Firms innovate more in clean technologies when the
aggregate level of clean technologies is higher in neighboring varieties
(and similarly for dirty technologies).

® Inapp. A, we further show that the impact of an increase in fuel price on innovation is
not the same for all varieties if their productivity levels differ. Indeed, the fuel price in-
crease affects relatively less the varieties that have a high level of grey over dirty technolo-
gies; therefore, these varieties can increase their market share at the expense of other dirty
cars. This has the effect of increasing both dirty and grey innovations. By contrast, both
types of innovations are further reduced for varieties with a low grey over dirty technology
levels ratio.
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III. Econometrics
General Approach

Consider the following Poisson specification for the determination of
firm innovation in clean technologies:”

PATC,:’[ = CXP(BQP In FP,_, + AC.iL—l) + Uy, (1)

where PAT ., is the number of patents applied for in clean technologies
by firm ¢ in year & A, is the firm’s knowledge stock relevant for clean
innovation, which depends on both its own stocks of past clean and dirty
innovation and the aggregate spillovers from other firms (discussed be-
low); uc, is an error term; exp(-) is the exponential operator; and FP; is
fuel price. We lag prices and knowledge stocks to reflect delayed re-
sponse and to mitigate contemporaneous feedback effects.' In the ro-
bustness section we show that this functional form is reasonable com-
paring it to alternative dynamic representations using other lag structures
and the Popp (2002) approach.

The fuel price has independent variation across time and countries
primarily because of country-specific taxes, and we show the robustness
of our results to using just fuel taxes instead of (tax-inclusive) fuel prices.
The profile of car sales across countries differs between auto firms. For ex-
ample, General Motors has some “home bias” toward the US market,
whereas Toyota has a home bias toward the Japanese market (i.e., they
sell more in these countries than one would expect from country and
firm observables alone). Thus, different firms are likely to be differently
exposed to tax changes in different countries, and the fuel price has a
firm-specific component. This firm-specific difference in market shares
across countries could arise because of product differentiation and het-
erogeneous tastes or perhaps because of government policies to promote
domestic firms. To take this heterogeneity into account, we use the firm’s
history of patent filing to assess the relative importance of the various mar-
kets the firm is operating in and construct firm-specific weights on fuel
prices for the corresponding market. Simply put, an unexpected increase
in US fuel taxes will have a more salient impact on car makers with a bigger
market share in the United States than those with a smaller market share.
We discuss this in more detail in Section IV.

? In our regressions we use an equivalent equation for dirty technologies. We initially
discuss only one of these equations to simplify the notation.

' In principle, the price should be the firm’s expectation of the future evolution of the
fuel price based on the information set at the time of making the innovation investment
decision. Fuel prices appear to be well approximated by a random walk process (e.g., An-
derson et al. 2011; Anderson, Kellogg, and Sallee 2013), so given our assumption that de-
cisions are made on ¢ — 1 information, lagged prices should be a sufficient statistic for this
expectation. Note that the Anderson result is only for US data, but it seems more generally
true in other countries (e.g., Hamilton 2009; Liu et al. 2012).
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©

We parameterize the firm’s total knowledge stock as

Aciy = B(},l In SPILL; + Bcz In SPILL,,,, + B(,% In K¢
+ BCA In Kz),iz-

(2)

The firm’s knowledge will likely depend on its own history of innova-
tion, and we denote this as K, (firm’s own stock of clean innovation) and
K. (firm’s own stock of dirty innovation)." In addition to building on
their own past innovations, firms will also “stand on the shoulders of gi-
ants,” so we allow their knowledge stock to depend on spillovers from
other firms in both clean (SPILL,) and dirty technologies (SPILL,,).
We use stocks of economywide patents to construct these country-specific
spillover measures. Drawing on the evidence that knowledge has a geo-
graphically local component (e.g., Jaffe, Trajtenberg, and Henderson
1993), we use the firm’s distribution of inventors across countries to
weight the country spillover stocks. In other words, if the firm has many
inventors in the United States regardless of whether the headquarters of
the firm is in Tokyo or Detroit, then the knowledge stock in the United
States is given a higher weight (see Sec. IV).

There are of course other factors that may influence innovation in ad-
dition to fuel prices and the past history of innovation. These include
government R&D subsidies for clean innovation, regulations over emis-
sions, and the size and income level of the countries a firm is expecting
to sell to (proxied by GDP and GDP per capita). We denote these poten-
tially observable variables by the vector wc,;. We also allow for unobserv-
able factors by introducing a firm fixed effect (5.,), a full set of time dum-
mies (7¢,), and an error term (u;, assumed to be uncorrelated with the
right-hand-side variables). Adding these extra terms and substituting
equation (2) into (1) gives us our main empirical equation for clean in-
novation:

PAT:; = eXP(ﬁc.P In FP, | + B(I,l In SPILL ¢ ;-
+ Beo InSPILL, ;- + BesIn K¢y (3)
+ 60.4 In K ;1 + BC,wu)it + Tc.t)ﬂc,i + Uy

Symmetrically, we can derive an equation for dirty innovation:

PAT,, = eXp(Bn,P In FP,; + B, In SPILLC,i:—l
+ By InSPILL,;—y + B3 1n K¢y (4)
+ 61),4 In Kl),it—l + Bl),wwit + Tlu)ﬂp,i + Up,it-

" We construct stocks using the perpetual inventory method but show robustness to us-
ing patent flows and to considering alternative assumptions over knowledge depreciation
rates. Some firms have zero lagged knowledge stock in some periods, so we also add in
three dummy indicator variables for when lagged clean stock is zero, lagged dirty stock
is zero, or both are zero.
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Section II yielded predictions on the signs of the coefficients in these
two equations. If higher fuel prices induce more clean than dirty inno-
vation, then the marginal effect of the fuel price must be larger on clean
innovation than on dirty innovation: ., > £, and we would further ex-
pect that B¢»> 0 and S, < 0."* Next, for there to be path dependence in
the direction of innovation, it should be the case that (ceteris paribus)
firms that are exposed to more dirty spillovers become more prone to
conduct dirty innovation in the future: that is, 85, > 0 and B > B¢2. In
the clean innovation equation we have 8., > 0 and 8¢, > 8. Further-
more, path dependence should involve similar effects working through
a firm’s own accumulated knowledge: 8,4 > 0 and Bps > Bes (Bes > 0
and B3> Bps). Also, we would expect that the positive effect of dirty spill-
overs and dirty knowledge stocks on dirty innovation would be larger than
the effects of clean spillovers and clean knowledge stocks: 8, > 8, and
Bp4 > Bys. The reverse predictions should all apply for the clean equation:
Bez < Bcy and Bey < Bes.

Dynamic Count Data Models with Fixed Effects

To estimate equations (3) and (4) we use
PAT,, = eXp(xnﬁz)ﬂz,i + w, (5)

where z € {C, D} and x, is the vector of regressors. We compare a num-
ber of econometric techniques to account for firm-level fixed effects 7.,
in these Poisson models. Our baseline is an econometric model we label
CFX, the control function fixed-effect estimator. It builds on the presam-
ple mean scaling estimator proposed in Blundell, Griffith, and Van Reenen
(1999) (see also Blundell, Griffith, and Van Reenen 1995; Blundell, Griffith,
and Windmeijer 2002).

Blundell et al. suggest conditioning on the presample average of the
dependent variable to proxy out the fixed effect. Like the Blundell
et al. (BGVR) estimator, the CFX uses a control function approach to
deal with the fixed effect; but rather than using information from the
presample period in the control function, we simultaneously estimate
the main regression equation and a second equation allowing us to iden-
tify the control function from future data (similar to the idea of taking
orthogonal deviations in the linear panel data literature; see Arellano
2003). The full details on this are provided in appendix B, but in a nut-
shell, we use CFX to deal with a potential concern with the BGVR ap-
proach, namely, that it requires a long presample history of realizations

'* Note that these two stronger second conditions are not necessary for induced (re-
directed) technical change as the absolute sign of the price effects will depend on the elas-
ticity of substitution between cars and other goods.

This content downloaded from 129.199.209.143 on August 30, 2017 03:19:07 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journal s.uchicago.edu/t-and-c).



CARBON TAXES, PATH DEPENDENCY 11

of the dependentvariable. However, in our data—particularly for clean—
patenting is concentrated toward the end of our sample period. Be-
low, we provide results using both the CFX and BGVR method as well
as two other common approaches. First, we use the Hausman, Hall,
and Griliches (1984) method (the count data equivalent to the within-
groups estimator) even though this requires strict exogeneity, which is
inconsistent with models including functions of the lagged dependent
variable as we have in equations (3) and (4). Second, we implement some
simple linear within-groups models adding an arbitrary constant to the
dependent variable before taking logarithms. We show that all these ap-
proaches deliver similar qualitative results, although the CFX provides
the best overall fit to the data.

IV. Data
Main Data Set

In this section, we briefly present our data (additional details can be
found in app. C). Our main data are drawn from the World Patent Sta-
tistical Database (PATSTAT) maintained by the EPO." Patent documents
are categorized using the International Patent Classification (IPC) and
national classification systems. We extract all the patents relating to clean
and dirty technologies in the automotive industry. Clean is identified by
patents whose technology class is specifically related to electric, hybrid,
and hydrogen vehicles. Our selection of relevant IPC codes for clean
technologies relies heavily on previous work by the OECD (see http://
www.oecd.org/environment/innovation; Has€i¢ et al. 2009; Vollebergh
2010).

Clearly, there is a debate as to how clean both electric cars and hydro-
gen cars really are (Graff Zivin, Kotchen, and Mansur 2014). This will
depend, by and large, on how electricity and hydrogen are being gener-
ated. However, we note that in most plausible long-run scenarios, elec-
tricity will be generated by renewable sources and hydrogen will be gen-
erated using electrolysis. Consequently, electric and hydrogen cars would
be clean. Assessing the speed of such a transition for a full optimal envi-
ronmental policy is beyond the scope of this paper but is an important
topic for future research.

The precise description of the IPC codes used to identify relevant
clean patents can be found in panel A of table 1. Some typical IPC clas-
sification codes included in the clean category are B60L11 (electric pro-
pulsion with power supplied within the vehicle) and B60K6 (arrange-

¥ PATSTAT can be ordered from the EPO at http://www.epo.org/searching/subscription
/raw/product-14-24.html.
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TABLE 1
DEFINITION OF IPC PATENT CLASSES FOR CLEAN AND DIRTY PATENTS

Description IPC Code

A. Clean Patents

Electric vehicles:
Electric propulsion with power supplied within the vehicle B60L 11
Electric devices on electrically propelled vehicles for safety B60L 3
purposes; monitoring operating variables, e.g., speed,
deceleration, power consumption

Methods, circuits, or devices for controlling the traction— B60L 15
motor speed of electrically propelled vehicles
Arrangement or mounting of electrical propulsion units B60K 1
Conjoint control of vehicle subunits of different type or B60W 10/08, 24, 26

different function/including control of electric propulsion
units, e.g., motors or generators/including control of
energy storage means/for electrical energy, e.g., batteries or
capacitors
Hybrid vehicles:
Arrangement or mounting of plural diverse prime movers for B60K 6
mutual or common propulsion, e.g., hybrid propulsion
systems comprising electric motors and internal combustion
engines
Control systems specially adapted for hybrid vehicles, i.e., B60W 20
vehicles having two or more prime movers of more than one
type, e.g., electrical and internal combustion motors,
all used for propulsion of the vehicle
Regenerative braking:
Dynamic electric regenerative braking B60L 7/1
Braking by supplying regenerated power to the prime mover B60L 7/20
of vehicles comprising engine-driven generators
Hydrogen vehicles/fuel cells:

Conjoint control of vehicle subunits of different type or B60W 10/28
different function; including control of fuel cells
Electric propulsion with power supplied within the vehicle— B60L 11/18

using power supplied from primary cells, secondary cells,
or fuel cells
Fuel cells; manufacture thereof HOIM 8

B. Dirty Patents

Internal combustion engine:

Internal combustion piston engines; combustion engines in F02B
general

Controlling combustion engines FO2D

Cylinders, pistons, or casings for combustion engines; FO2F
arrangement of sealings in combusion engines

Supplying combusion engines with combustible mixtures or FO2M
constituents thereof

Starting of combusion engines FO2N

Ignition (other than compression ignition) for internal FO2P

combustion engines

C. Grey Patents

Fuel efficiency of internal combustion engines:

Fuel injection apparatus F02M39-71
Idling devices for carburetors preventing flow of idling fuel FO2M3/02-05
Apparatus for adding secondary air to fuel-air mixture FO02M23
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TABLE 1 (Continued)

Description IPC Code

Engine-pertinent apparatus for adding nonfuel substances or FO02M25
small quantities of secondary fuel to combustion-air, main
fuel, or fuel-air mixture

Electrical control of supply of combustible mixture or its F02D41
constituents
Methods of operating engines involving adding nonfuel F02B47/06

substances or antiknock agents to combustion air, fuel,
or fuel-air mixtures of engines, the substances including
nonairborne oxygen

ment or mounting of hybrid propulsion systems comprising electric mo-
tors and internal combustion engines). US patent 6456041 is an example
of a clean patent from our data set:'* it describes a power supply system
for an electric vehicle. It was first filed by Yamaha Motor in Japan in 1998
and was then filed at the EPO and at the USPTO in 1999. The front page
and technical diagram of the patent are shown in appendix figure Al.

Dirty includes patents with an IPC code that is related to the internal
combustion engine. These can be found in various subcategories of the
F02 group, for example, FO2B (combustion engines in general), FO2F
(cylinders, pistons, or casings for combustion engines), or FO2N (starting
of combustion engines). The full list of IPC codes used to identify dirty
patents is in panel B of table 1. Each of these groups includes several
dozen subclasses, and an example of the full list of subclasses for the
FO2F group is shown in appendix figure A2. The dirty category typically in-
cludes patents covering the various parts that make up an internal combus-
tion engine. For example, EPO patent 0967381 protects a cylinder head of
an internal combustion engine and USPTO patent 5844336 protects a
starter for an internal combustion engine.

An important feature of the dirty category is that some patents in-
cluded in this group aim at improving the fuel efficiency of internal com-
bustion engines, making the dirty technology less dirty. We refer to these
fuel efficiency patents as “grey” patents. In our baseline results, grey pat-
ents are included in the dirty category, but we also disaggregate the cat-
egory to estimate models separately for grey and “pure dirty” innovations
separately (as well as splitting up the knowledge stocks along these lines
on the right-hand side of the regressions). To select IPC codes for grey
technologies, we use recent work at the EPO related to the new climate
change mitigation patent classification (see Veefkind et al. 2012). We
complement this with information from interviews with engineers work-
ing in the automobile industry."” The list of these IPC codes is shown in

'* We use the publication numbers in this and the following patent examples.
!> We are especially indebted to Christian Hue de la Colombe for many extremely help-
ful discussions.
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panel C of table 1. An example of a grey patent is EPO patent 0979940,
which protects a method and device for controlling fuel injection into an
internal combustion engine. Electronic fuel injection technologies con-
stantly monitor and control the amount of fuel burntin the engine, with
aview to reducing the amount of fuel unnecessarily burnt, thus optimiz-
ing fuel consumption. Appendix figure A3 has the front page and tech-
nical diagram of this patent.

Alongside the grey fuel efficiency innovations, there are many purely
dirty patents, such as EPO patent 0402091, which covers a four-cycle 12-
cylinder engine (see app. fig. A4). Fuel consumption is proportional to
the number and the volume of cylinders: the average car sold in Europe
has four cylinders, whereas it has six in the United States. A 12-cylinder en-
gine is much more powerful than a four- or six-cylinder engine, but this
comes at the cost of increased fuel consumption. Twelve-cylinder en-
gines are used by many carmakers for their top-range models, including
Aston Martin, Audi, BMW, and Rolls Royce. These cars typically run about
15 miles per gallon, while the average new car sold in the United States in
2011 obtains 33.8 miles per gallon.'®

To measure innovation, we use a count of patents by application/fil-
ing date. The advantages and limitations of patenting as a measure of in-
novation have been extensively discussed.'” For our purposes, there are
three advantages of using patents. First, they are available at a highly tech-
nologically disaggregated level. We can distinguish innovations in the
auto industry according to specific technologies, whereas R&D investment
cannot be easily disaggregated. Second, R&D is not reported for small and
medium-sized firms in Europe nor for privately listed firms in the United
States (they are exempt from the accounting requirement to report R&D).
Third, the auto sector is an innovation-intensive sector, where patents are
perceived as an effective means of protection against imitation, something
that is not true in all sectors (Cohen, Nelson, and Walsh 2000).'® In our
view, these considerations make patents a reasonably good indicator of in-
novative activity in the auto sector.

' See http://www.fueleconomy.gov for details on car consumption and http://www.bts

.gov/publications/national_transportation_statistics/html/table_04_23.html for US aver-
ages. Note that even though much of dirty innovations are efficiency improving, this has
been historically more than offset by increases in horsepower and size of cars. For example,
between 1980 and 2004 the fuel efficiency of passenger cars increased by only 6.5 percent,
while horsepower increased by 80 percent (Knittel 2011).

'7 See Griliches (1990) and OECD (2009) for overviews. Dating by application is conven-
tional in the empirical innovation literature as it is much more closely timed with when the
R&D was performed than the grant date.

'* Cohen et al. (2000) conducted a survey questionnaire administered to 1,478 R&D labs
in the US manufacturing sector. They rank sectors according to how effective patents are
considered as a means of protection against imitation and find that the top three industries
according to this criterion are medical equipment and drugs, special-purpose machinery,
and automobiles.
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Patents do suffer from a number of limitations. They are not the only
way to protect innovations, although a large fraction of the most eco-
nomically significant innovations appear to have been patented (Dernis,
Guellec, and van Pottelsberghe 2001). Another problem is that patent
values are highly heterogeneous, with most patents having a very low
valuation. Finally, the number of patents that are granted for a given in-
novation varies significantly across patent offices with concerns over in-
creasing laxity in recent years particularly in the USPTO (e.g., Jaffe and
Lerner 2004).

To mitigate these problems, we focus on “triadic” patents as our main
outcome measure,'” which are those patents that have been taken out in
all three of the world’s major patent offices in the United States, Europe,
and Japan (USPTO, EPO, and JPO).* Focusing on triadic patents has a
number of advantages. First, triadic patents provide us with a common
measure of innovation worldwide, which is robust to administrative idi-
osyncrasies of the various patent offices. For example, if the same inven-
tion is covered by one patent in the United States and by two patents in
Japan, all of which are part of the same triadic patent family, we will count
itas onesingle invention. Second, triadic patents cover only the mostvalu-
able inventions, which explains why they have been used so extensively to
capture high-quality patents.”’ Third, triadic patents typically protect in-
ventions that have a potential worldwide application; thus these patents
are relatively independent of the countries in which they are filed.

Our data set includes 6,419 clean and 18,652 dirty triadic patents.*
Since the EPO was created in 1978, our triadic patent data start only in
that year. The last year of fully comprehensive triadic data is 2005, so this
is our end year.*® Our basic data set consists of all those applicants (both
firms and individuals) that applied for at least one of these clean or dirty
auto patents. We identify 3,423 distinct patent holders, which breaks

' To identify triadic patents we use the INPADOC data set in PATSTAT. For details on
the construction of patent families, see Martinez (2010).

* Following standard practice we use all patents filed at the EPO, JPO, and USPTO. The
USPTO published ungranted patent applications only after 2001 (when it changed policy
in line with the other major patent offices). For consistency we thus consider only triadic
patents granted by the USPTO both before and after 2001. For the official definition of
triadic patents and how triadic patent families are constructed, see Dernis and Kahn
(2004) and Martinez (2010).

' It has been empirically demonstrated that the number of countries in which a patent
is filed is correlated with other indicators of patent value. See, e.g., Grupp (1996, 1998),
Lanjouw, Pakes, and Putnam (1998), Dernis et al. (2001), Harhoff, Scherer, and Vopel
(2003), Dernis and Khan (2004), and Guellec and van Pottelsberghe (2004).

** In total, the PATSTAT data set includes 213,668 clean and 762,708 dirty patent appli-
cations across all 80 patent offices. Thus by using triadic patents we focus on the high end
of the distribution of patent quality.

* The number of triadic patents in all technologies (i.e., including patents that are nei-
ther clean nor dirty) starts falling in 2006 because of time lags between application and
grant date at the USPTO.
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down into 2,427 companies and 996 individuals. For every patent holder
we subsequently identify all the patents they filed. We also extract other
pieces of information based on this sample, which we use to construct
weights for prices and spillovers. For example, we identify all the other
patents filed by holders of at least one clean or dirty triadic patent, which
represents a total of 1,505,719 patent applications.

Tax-Inclusive Fuel Prices

To estimate the impact of a carbon tax on innovation in clean and dirty
technologies, we use information on country-level fuel prices (FP,) and fuel
taxes. Data on tax-inclusive fuel prices are available from the International
Energy Agency (IEA) for 25 major countries from 1978 onward.** We con-
struct a time-varying country-level fuel price defined as the average of diesel
and gasoline prices.” The average fuel price across countries for our regres-
sion sample period 1986-2005 is shown in panel a of figure 1. Although this
source of variation will be absorbed by the time dummies in our econo-
metric specifications, it gives a sense of the overall evolution of prices. Fuel
prices fell from the mid to late 1980s and then rose, peaking just before
the dot-com bust of 2000-2001. Prices then fell before recovering after
2003. Average fuel taxes have followed a broadly similar pattern, falling
in the late 1980s, rising throughout the 1990s, and falling back in the
2000s (panel b of fig. 1). What is more striking, however, is the high var-
iability across countries of changes in the fuel price over time, much of
it being driven by cross-country differences in tax policies (see fig. 2). Fig-
ure 3 illustrates this by showing the evolution of fuel price by country rel-
ative to the United States normalized in 1995.

Fuel prices are available only at the country-year level, whereas our de-
pendent variable has firm-level variation that we would like to exploit. A
related issue is that the auto market is global, and government policies
abroad might be at least as important for a firm’s innovation decisions

* The IEA reports some incomplete data for an additional 13 countries. We explore the
robustness of our main results to the precise range of countries considered. We find that
our results emerge even if we restrict ourselves to only the 10 largest economies.

* Diesel and gasoline are differentially taxed in many countries, which could provide an
interesting additional source of variation. However, this would also require distinguishing
innovations between these categories. This is not easily possible as internal combustion en-
gine patent classes do not explicitly separate between diesel and other types of engines. Our
interviews with engineers working in the automobile industry revealed that patent class
FO2B1 (engines characterized by fuel-air mixture compression) corresponds in practice
mostly to gasoline engines, while patent class FO2B3 (engines characterized by air compres-
sion and subsequent fuel addition) mostly corresponds to diesel engines. However, these
are only two subclasses out of over 200 used in the paper to classify dirty patents. Conse-
quently, we would not be able to classify the majority of patents into diesel or gasoline en-
gines, in particular because many engine parts, such as pistons and cylinders (see, e.g.,
FO2B55, internal combustion aspects of rotary pistons), are used indifferently in both types
of engines.
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F1c. 1.—Average fuel price (panel @) and fuel tax (panel ), 1986-2005, for all countries
available in the IEA database. The fuel price (respectively, tax) is the average between the
diesel and gasoline price (respectively, tax). There are 25 countries underlying the graph in
panel aand 24 in panel b (taxes are missing for South Korea). Both prices and taxes are in
2005 US dollar purchasing power parity (PPP). Source: IEA.
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price of fuel and the tax on fuel for each country available in the IEA database. The fuel
price (respectively, tax) is the average between the diesel and gasoline price (respectively,
tax). Prices and taxes are in 2005 US dollar PPP. Source: IEA.
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F1c. 3.—Residuals from a regression of country-level In(fuel prices) on country and year
dummies. This illustrates the variation that is driving the identification of price effects in
our main regressions. The standard deviation of the residuals is 0.107.

as policies in the country where the company’s headquarters are located.
We allow fuel prices to have a different effect across firms by noting that
some geographical markets matter more than others for reasons that are
idiosyncratic to an auto firm. First, auto manufacturers have different
styles of vehicles reflecting their heterogeneous capabilities and brand-
ing that are differentially popular depending on local tastes (e.g., Berry,
Levinsohn, and Pakes 1995; Goldberg 1995; Verboven 1999). Second,
there is typically some home bias toward “national champion” auto man-
ufacturers in government policies and national tastes. For example, the
2008 auto bailouts in Detroit where paid for by US taxpayers, whereas
the bailout of Peugeot has been shouldered by the French. The upshot
of this is that auto firms display heterogeneous current and expected
market shares across nations, and their R&D decisions will be more in-
fluenced by prices and policies in some countries than in others.

To operationalize this idea, we construct a fuel price variable for each
firm as aweighted average of fuel prices across countries based on a proxy
of where the firm expects its future market to be. Our price index for firm
1 at time ¢is defined as

In FP, = w!'In FP,, (6)

ic0

This content downloaded from 129.199.209.143 on August 30, 2017 03:19:07 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journal s.uchicago.edu/t-and-c).



20 JOURNAL OF POLITICAL ECONOMY

where P, is the tax-inclusive fuel price in country ¢ discussed above and
w!T is a firm-specific weight (this is time invariant and uses information
only prior to the regression sample period). The weight is determined
by the importance of county ¢ as a market outlet for firm ¢ so we define
w!T as the fraction of firm ¢’s patents taken out in country ¢. The rationale
for doing this is that a firm will seek intellectual property protection in
jurisdictions where it believes it will need to sell in the future (even if it
licenses the technology, the value of a license will depend on whether
it has obtained intellectual property protection in relevant markets).
For every patent applied for, we know that the patenting firm has paid
the cost of legal protection in a discrete number of countries. For exam-
ple, a firm may choose to enforce its rights in all EU countries or in only a
subset of EU countries, say Germany and the United Kingdom. Similarly,
the firm may decide to apply for patent protection in the United States
but not in smaller markets. Assuming that the country distribution of a
firm’s patent portfolio is a good indicator of the firm’s expectation of
where its markets will be in the future, we can use this distribution to con-
struct a firm-specific fuel price, FP;,, whose value is computed as the
weighted mean of the In(fuel prices) in the relevant markets, with weights
w!? equal to the shares of the corresponding countries in the firm’s pat-
ent portfolio. For example, if a firm had filed 30 patents, 20 in the United
States and 10 in Germany, the price changes in the United States would
get a weight of two-thirds and the German price changes a weight of one-
third. In addition, to account for the greater importance of larger coun-
tries, we further weight by each country’s average GDP.

We calculate the weights using the patent portfolio of each company
averaged over the 1965—-85 “presample” period, whereas we run regres-
sions over the period 1986—2005. This is to make sure that the weights
are weakly exogenous as patent location could be influenced by shocks
toinnovation. We choose 1985 as the cutoff to ensure that there is enough
presample time to construct the weights. We perform robustness tests
using different presample periods to check that nothing is driven by the
precise year of cutoff (e.g., use 1965-90 as the presample period and esti-
mate the regressions from 1991 onward).

Why do we not use an alternative weighting scheme that simply re-
flects where firms currently sell their products (e.g., as in Bloom, Schan-
kerman, and Van Reenen 2013)? First, we believe that the information
on where firms choose to take patent protection is a potentially better
measure because it reflects their expectations of where their future mar-
kets will be. Second, there is a data constraint: although sales distribu-
tions by geographic area are available for larger firms, they are not avail-
able for smaller firms—and there are many patents from these smaller
firms. We show our weights compared to sales weights for some of the
largest car firms in appendix table Al: Toyota, Volkswagen, Ford, Honda,
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and Peugeot. The correlation is generally high, suggesting that the
weights we choose do a reasonable job at reflecting market shares.*

The Firm’s Own Lagged Patent Stocks and Spillovers

Firm patent stocks are calculated in a straightforward manner using the
patent flows (PAT.,) described above. Following Cockburn and Griliches
(1988) and Peri (2005), the patent stock is calculated using the perpetual
inventory method:

K., = PATL,;L + (1 - 5)Kz,n—17 (7)

where z € {C, D}. We take 6, the depreciation of R&D capital, to be 20 per-
cent, as is often assumed in the literature, but we check the robustness
of our results to other plausible values.

To construct aggregate spillovers for a firm, we use information on the
geographical location of the various inventors in that firm. Patent statis-
tics allow us to locate an inventor geographically regardless of nationality
of the firm’s headquarters or the location of the office where the patent
was filed (e.g., the patents of Toyota’s scientists working in US research
labs are part of this US spillover pool). Implicit in our approach is the
view that the geographical location of an inventor is likely to be a key de-
terminant of knowledge spillovers rather than the jurisdiction over which
the patent is taken out (which matters more as a signal of where the mar-
ket for sales is likely to be). Many papers have documented the impor-
tance of the geographical component of knowledge spillovers in patents
and other indicators (e.g., Henderson, Jaffe, and Trajtenberg 1993, 2005;
Griffith, Lee, and Van Reenen 2011).

To construct a firm-specific spillover pool, we use an empirical strategy
analogous to that for the fuel price. The spillover weight w?, is the share
of all firm 7’s inventors (i.e., where the inventor worked) in country ¢ be-
tween 1965 and 1985. This weight is distinct from w/, in equation (6) as it
is based on the location of inventors who are more likely to benefit from
research conducted locally. Importantly, the distribution of the patent
portfolio across countries and the distribution of inventors vary consid-
erably across firms. This is illustrated for the United States in appendix
figure A5.

The spillover for firm ¢ is

SPILL., = 3 w!,SPILL.,,, (8)

* One exception is that VW appears to have a much higher patent share in Germany (its
home country) than its sales would suggest.
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where SPILL, . is the spillover pool in country cat time ¢ This is defined
as

SPILL,, = w]‘.jOKz,]-,. 9)
J#i
The spillover pool of a country is the sum of all other firms’ patent stocks
with a weight that depends on how many inventors the other firm has in
that country.””

As noted above, a common problem with patent data is that the value
of patents is highly heterogeneous. We mitigate this problem by condi-
tioning on triadic patents, which screen out the very low-value patents.
But we also perform two other checks. First, we weight patents by the
number of future citations. Second, we use “biadic” patents filed at the
EPO and at the USPTO, following Cockburn and Henderson (1994), who
argued that patents were important if they had been applied in at least
two of the three major economic regions. Our results are robust to these
two variants.

Descriptive Statistics

Figure 4 shows that aggregate triadic clean and dirty patents have been
rising over time. Dirty patents increased steadily between 1978 and 1988,
fell temporarily, and then rose again between 1992 and 2000, but they
have been decreasing during the last 5 years of our data set. The number
of clean patents was low for a decade until 1992, then began rising par-
ticularly after 1995 (at an average annual growth rate of 23 percent),
peaking at 724 in 2002 alone, before falling back slightly. Consequently,
while the number of clean patents represented only 10 percent of the
number of dirty patents filed annually during the 1980s, they repre-
sented 60 percent by 2005. Descriptive statistics for our data set used in
the regressions are shown in table 2. In any given year, the average num-
ber of dirty patents per firm is 0.23 and the average number of clean pat-
ents is 0.08. Appendix C discusses more descriptive statistics showing
more of the cross-country distribution of patent filing and citation pat-
terns that are consistent with spillovers being much stronger within the
two categories (clean or dirty) than between them.

* An alternative approach would be to define the country-level spillover as

SPILL., = S K.,
]

where K_;, = PAT,;, + (1 — 6)K_j,—; and PAT_, is the number of patents filed by inventors
of company jlocated in country ¢ at year .. Empirically, these two methods give very similar
results.
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Fic. 4.—Number of annual clean and dirty triadic patents, 1978-2005, filed worldwide.
Source: Authors’ calculations based on the PATSTAT database.

We look at the top 10 patentors in clean technologies (table A4) and
dirty technologies (table A5) between 1978 and 2005. Japanese and Ger-
man companies predominate, although most top companies’ portfolios
include both clean and dirty (the only exception is Samsung SDI, a bat-
tery specialist). Recall that this is based on triadic patents, and US com-

TABLE 2
DESCRIPTIVE STATISTICS
Standard
Mean Deviation ~ Minimum  Maximum
Clean patents (PAT;) .081 1.231 0 125
Dirty patents (PAT,,,) 227 3.424 0 355
Fuel price (In FP) —.276 .251 —1.053 438
Government R&D subsidies (In R&D) 3.885 1.447 0 5.725
Emission regulations index 1.573 1.334 0 5
Clean spillover (In SPILL,) 3.774 1.258 —9.864 7.071
Dirty spillover (In SPILL,) 5.401 991 —5.509 7.677
Own stock clean innovation (In K) —.174 790 —6.718 5.740
Own stock dirty innovation (In Kj) —-.910 1.618 —7.593 6.958

Note.—These are the values from our regression sample of 68,240 observations across
3,412 firms between 1986 and 2005. Emission regulations for maximum level of tailpipe
emissions for pollutants for new automobiles are coded between 0 and 5 following Dechez-
leprétre et al. (2012). Government R&D subsidies on clean transportation is from the IEA.
See app. B for exact definitions.
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TABLE 3
REGRESSIONS OF CLEAN AND DIRTY PATENTS
DEPENDENT VARIABLE: DEPENDENT VARIABLE:
CLEAN PATENTS DirTY PATENTS
1) @) 3) 4) (5) (6)
Fuel price (In FP) 970%xx 9pkek 843%%  — HEhFEE — HRGEEkE  — BH]HEE

(.374) (.379) (.366) (.146) (.205) (.194)

R&D subsidies (In R&D) —.005 —.006 —.006 —.005
(.025) (.024) (.021) (.020)

Emission regulation —.008 .04
(.149) (.120)

Clean spillover
(In SPILL,) 268FEF - 301FEE 266%FF — 093%  —.078 —.089
(.076) (.087) (.088) (.048) (.067) (.063)

Dirty spillover

(In SPILL,) —.168%%  —207+ —165%  151¥ 182 188%
(085)  (.098)  (.098)  (.064)  (.082)  (.077)
Own stock clean (In Ko)  .806%#%  390%s%  998#x — 002  —.004 021

(026)  (.027)  (025)  (.022)  (.022)  (.020)
Own stock dirty (In K,)  .189%%%  135%k  13kk%  5E7Hex  5AQwsk 530k

(017)  (017)  (017)  (081)  (.022)  (.017)
Observations 68,240 68,240 68,240 68240 68,240 68240
Firms 3,412 3412 3412 3412 3412 3,412

Note.—Standard errors are clustered at the firm level. Estimation is by the CFX method.
All regressions include controls for GDP per capita, year dummies, fixed effects, and three
dummies for no clean knowledge, no dirty knowledge, and no dirty or clean knowledge (in
the previous year). Fuel price is the tax-fuel price faced. R&D subsidies are public R&D ex-
penditures in energy-efficient transportation. Emissions regulations are maximum levels of
tailpipe emissions for pollutants from new automobiles.

* Significant at 10 percent.

** Significant at 5 percent.

*##% Significant at 1 percent.

panies tend to file disproportionately more patents in the United States
than in Europe and Japan. Tables A6-A9 report top clean and dirty pat-
entors at the EPO and at the USPTO separately. General Motors is the
third-largest patentor of clean technologies at the USPTO, whereas it is
not even in the top 10 at the EPO.*

V. Results
Main Results

Our main results are shown in table 3. Columns 1-3 use the number of
clean patents (a flow) in a firm as the dependent variable and columns 4—

* While it is clear that there are a number of big companies active in both clean and
dirty automotive patenting, the Herfindahl index for patenting over 1978-2005 for clean
innovations is 0.023, and it is 0.038 for dirty innovations, implying low concentration. The
top 10 patent holders in clean account for 35.6 percent of patents over 1978-2005, whereas
the corresponding figure is 46.6 percent for dirty.
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6 use the flow of dirty patents. All estimates include firm fixed effects
using the CFX approach (described in Sec. III and in more detail in
app. B), year dummies, and GDP per capita. Column 1 shows that the co-
efficient on the (tax-inclusive) fuel price is positive and significant. The
elasticity of 0.97 implies that a 10 percent higher fuel price is associated
with about 10 percent more clean patents. The coefficients on spillovers
and lagged patent stocks take signs consistent with the path dependency
hypothesis. Firms that are more exposed to larger stocks of clean innova-
tion by other firms (clean spillovers, SPILL, ) are significantly more
likely to produce clean patents, whereas those benefiting more from dirty
spillovers (SPILL,, ;) are significantly less likely to innovate in clean tech-
nologies. An increase in the lagged clean spillover stock by 10 percent is
associated with an increase in a firm'’s clean innovation by 2.7 percent. By
contrast, an increase in the exposure to dirty spillovers by 10 percent re-
duces clean innovation by 1.7 percent.

In addition to path dependency at the economy level through spill-
overs, there is also path dependency at the firm level. Column 1 of table 3
suggests that firms that have innovated in clean technologies in the past
(Kgi-1) are much more likely to continue to innovate in clean technol-
ogies in the future, with a significant elasticity of 0.306. Interestingly, a
firm’s own history of dirty innovation (K ;) is also associated with more
clean innovation with an elasticity of 0.139. This coefficient is, however,
much smaller than the corresponding coefficient on past dirty innova-
tion stocks in the dirty innovation equation (col. 4), which is four times
as large (0.557). In other words, firms with a history of dirty innovation
are more likely to innovate in the future in either clean or dirty (com-
pared to those with little innovation), but this effect is much stronger
for dirty innovations than for clean innovations, leading to path depen-
dence. Moreover, note that in column 1 the coefficient on a firm’s past
dirty innovation stock on future clean innovation (0.139) is much smaller
than the effect of past clean innovations on future clean innovation
(0.306).*

Columns 2 and 3 of table 3 include a measure of R&D subsidies for
clean technologies and a control for emission regulations. R&D subsi-
dies are from the IEA’s Energy Technology Research Database, and the
emissions regulations index is from Dechezleprétre, Perkins, and Neu-
mayer (2012) with details in appendix C. In contrast to the proxy for car-
bon taxes (fuel prices), neither of these additional policy variables is sta-
tistically significant, and the coefficients on the other variables do not
change much. The absence of an R&D subsidy effect is surprising, and
we explain below why when discussing table 4.

* This effect is not predicted by the theory but could result, for instance, from cross-
technology knowledge spillovers.
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Columns 4-6 of table 3 repeat the specification in the first three col-
umns but use dirty patents as the dependent variable instead of clean
patents. The coefficient on fuel prices is negative and significant in all
columns. In column 4 a 10 percent increase in fuel prices is associated
with about a 6 percent decrease in dirty innovation. The estimates on
spillovers and knowledge stocks are symmetric to those in the clean equa-
tion. Exposure to dirty spillovers fosters future dirty innovation, whereas
clean spillovers reduce dirty patenting. The coefficients suggest that a
firm’s own history of dirty patenting has a positive association with future
dirty patenting but that there is no association between the firm’s past
clean patenting and its future dirty patents.

In summary, table 3 offers considerable support for our model. First,
higher fuel prices significantly encourage clean innovation and signifi-
cantly discourage dirty innovation. Second, there is path dependency
in the direction of technical change: countries and firms that have a his-
tory of relatively more clean (respectively, dirty) innovation are more
likely to innovate in clean (respectively, dirty) technologies in the future.

Grey Innovations

As noted above, our dirty category includes innovations relating to im-
provements in the energy efficiency of internal combustion engines.
We labeled these “grey” innovations and consider disaggregating the dirty
category into these grey and purely dirty innovations. As noted in Sec-
tion II, the effect of fuel prices is more ambiguous in this middle grey cat-
egory. On the one hand, there are incentives to substitute research away
from purely dirty into grey innovation when the fuel price rises. On the
other hand, there is also an incentive to switch away from the internal
combustion engines completely (including grey) toward alternative clean
vehicles.

Table 4 presents the results and shows that, as expected, the coeffi-
cient on the fuel price for grey innovation in column 2 (0.282) lies be-
tween the coefficients on clean (positive at 0.848 in col. 1) and purely dirty
(very negative at —0.832 in col. 3). This is consistent with fuel prices hav-
ing a positive effect on energy-efficient innovation, although smaller and
insignificant when compared to the effect of fuel prices on purely clean
innovations. Another interesting feature of the results is that the coeffi-
cient on R&D subsidies is positive and significant in the grey innovation
equation whereas it continues to be insignificant in the clean and purely
dirty equations. This is consistent with the fact that the majority of these
government subsidies are for energy efficiency (see app. C) rather than
for more radical clean technologies.

Since we have also disaggregated the spillover stocks and the firm’s
own past innovation stocks into the three categories, now we have six var-
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TABLE 4

27

DISAGGREGATING DIRTY PATENTS INTO FUEL EFFICIENCY (Grey) AND PURELY DIRTY

DEPENDENT VARIABLE

Purely Dirty

Clean Patents Grey Patents Patents
D (2) (3)
Fuel price .848%* .282 —.832%%
(.461) (.398) (.214)
R&D subsidies .031 .081%* —.02
(.047) (.034) (.030)
Clean spillover .333%% —.171% —.014
(.165) (.098) (.094)
Grey spillover 215 173 .235%%
(.228) (.112) (.102)
Purely dirty spillover —.509 045 —.208
(.377) (.136) (.161)
Own stock clean 379 —.005 .047
(.090) (.035) (.035)
Own stock grey .185% 418%H% —. 14 1%
(.106) (.035) (.025)
Own stock purely dirty —.011 192 b4
(.066) (.038) (.026)
Observations 68,240 68,240 68,240
Firms 3,412 3,412 3,412

Note.—Standard errors are clustered at the firm level. Estimation is by the CFX method.
This table disaggregates the dirty patents into those that are “grey” (related to fuel
efficiency) and those that are not (“purely dirty”). We construct all spillovers and own past
stocks on the basis of this disaggregation and include on the right-hand side (hence two ex-
tra terms compared to table 3). We estimate two dirty equations: one in which grey inno-
vations are the dependent variable (in col. 2) and one for the purely dirty (in col. 3). All
regressions include controls for GDP per capita, year dummies, fixed effects, and four dum-
mies for no own innovations in (i) clean, (ii) grey, (iii) dirty, and (iv) no clean, grey, or purely
dirty in the previous year. Fuel price is the tax-inclusive fuel price faced. R&D subsidies are
public R&D expenditures in energy-efficient transportation.

* Significant at 10 percent.

*#% Significant at 5 percent.

##% Significant at 1 percent.

iables reflecting path dependency on the right-hand side of the regres-
sion. The coefficients on these variables take a broadly sensible pattern,
but precision has fallen as there is likely to be some collinearity issues
with a large number of highly correlated variables.

Given how demanding this specification is, we find the overall results
from table 4 encouraging and consistent with the theory.

Magnitude of the Fuel Price Effect on Innovation

In quantitative terms, how do our estimates compare to others in the lit-
erature? Popp (2002) reports shortrun energy price elasticities for the
impact of prices on the aggregate number of clean patents as a share
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of all patents (we look at long-run price effects in Sec. VI below). We can
compute this elasticity (E.p) from our regression model as*

EC,P = BC,P(I - S(;) - BD.PSD7

where S;and S, are the share of clean and dirty patenting in economy-
wide patents (i.e., clean, dirty, and all others) and S, and ,, are coef-
ficients on In(price) from our clean and dirty innovation equations, re-
spectively. Compared to all patents in the economy, innovation in the
car industry is rather small. In our sample period, only 0.9 percent of
all patents are clean auto patents and 2.5 percent are dirty auto patents.
Hence, since Sc= 0 and S, = 0, B, provides a good approximation of
the elasticity. For example, using the estimates in table 3, column 1, the
elasticity would be 0.970 under our approximation and 0.981 using the
exact formula above.

Popp (2002) looks at clean innovation in power generation technolo-
gies, whereas we are focused on innovation in the auto sector. Crabb and
Johnson (2010) implement the same specification as Popp, but on the
US auto sector, finding an elasticity of around 0.4 (compared to Popp’s
0.06 for all power generation technologies clean innovations). Both
Popp and Crabb and Johnson include what we have dubbed grey inno-
vation in their definition of clean. Thus to derive a comparable elasticity,
we report a weighted average of the price coefficient for clean (8.,) and
the price coefficient for grey (Bsr) derived from our estimates reported in
table 4, where we split the dirty category into “grey” and “purely nongrey
dirty.” The elasticity becomes (again abstracting away from the small effect
on aggregate innovation)

PAT, e PAT,
PAT, + PAT, """PAT. + PAT,’

Ecigp™ B(,gp

where PAT. and PAT, are the aggregate number of clean (our defini-
tion) and grey innovations at a particular point in time. As can be seen

* The elasticity E., = 0 In S./0 In FP, where S = PAT/(PAT. + PAT, + PAT,) and to-
tal patentsPAT, = 2 exp(x,8,)n, for Ze {C, D, O} and where O represents “other,” i.e.,
nonclean or dirty patents. Consequently,

OPAT, OPAT, OPAT, & OPAT,
E. = OInFP _0lnFP OInFP _OlnFP
“"" PAT,  PAT, + PAT, + PAT,
(PAT(: + PAT())B(T,P - PATDB(;.P
PAT. + PAT, + PAT,

= 6(.‘.1’(1 - Sr?) - 61).1)81)-
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from figure 5, this elasticity ranges from 0.4 to 0.6 and so is similar in
magnitude to Crabb and Johnson’s estimates. The increase over time oc-
curs because the share of purely clean innovation relative to grey inno-
vations has been increasing over time.

Alternative Econometric Specifications

Table 5 considers the alternative econometric approaches for dynamic
count data models with firm fixed effects discussed in Section III. First,
we follow Hausman et al. (1984) in column 1 for clean patents and col-
umn 3 for dirty patents. The signs of coefficients are generally the same
as in our baseline model of table 3, but the marginal effect of fuel price is
much greater in absolute magnitude for dirty innovation and smaller
(and insignificant) for clean. Indeed, the magnitude of the estimated elas-
ticity for dirty patents seems unreasonably large (—2.496). We suspect that
the assumption of strict exogeneity underlying the Hausman et al. (HHG)
method is problematic in our context, as we have a highly dynamic spec-
ification. Columns 2 and 4 implement the Blundell et al. (1995, 1999) es-
timator. The pattern of the spillover effects and dynamics remains sim-
ilar to those of the baseline regression, and we still obtain a positive and
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F1c. 5.—Aggregate price elasticities (clean plus grey share) with respect to In(fuel price)
over time implied by our firm-level estimates. The detailed methodology is explained in
the text.
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TABLE b5
ALTERNATIVE ECONOMETRIC MODELS

DIFFERENCE
BETWEEN CLEAN
AND DirTY: In(1 +
PAT.,) — In(1 +

DEPENDENT DEPENDENT PAT,,,): Quasi
VARIABLE: VARIABLE: Linear within
CLEAN PATENTS DIrTY PATENTS Groups

HHG  BGVR  HHG  BGWR
(1) (2) (3) (4) (5) (6)

Fuel price 189 B71FE —2.496%E — 617w ]42%* 154
(1.148) (.330) (.913) (.196) (.062) (.064)
Clean spillover A7 29FwkE 380%  — ]134%%  — 008 —.011
(.233) (.077) (.221) (.055) (.007) (.008)
Dirty spillover —.437 =277 243 201 —.015 .022
(.489) (.084) (.293) (.065) (.014) (.014)
Own stock clean A26% 883k 045 —.004 048k 49k
(.052) (.032) (.037) (.021) (.007) (.007)
Own stock dirty 182 091%  649%E ] 06THE — (1 4%E — (] 4%k
(.086) (.030) (.042) (.021) (.004) (.004)
Country x year effects No No No No No Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Observations 22,420 68,240 42,300 68,240 68,240 68,240
Firms 1,121 3,412 2,115 3,412 3,412 3,412

NotEe.—Standard errors are clustered at the firm level. Regressions are the same speci-
fications as in table 3, i.e., col. 3 for clean and col. 6 for dirty. Fuel price is the tax-inclusive
fuel price faced by the firm. The dependent variable is the flow of clean patents in cols. 1
and 2, the flow of dirty patents in cols. 3 and 4, and the log-ratio of clean to dirty patents in
cols. 5 and 6. Different columns control for fixed effects in different ways: HHG is the
Hausman etal. (1984) method, BGVR is the Blundell et al. (1999) method, and last two col-
umns are simply within groups (i.e., adding a dummy variable for every firm).

* Significant at 10 percent.

** Significant at 5 percent.

**% Significant at 1 percent.

significant effect of fuel prices on clean innovation and a negative and sig-
nificant effect on dirty innovation. The fuel price coefficients are compa-
rable to those in the baseline case.”

The final two columns of table 5 uses relative patenting In(1 +
PAT.,) — In(1 + PAT,,) as the dependent variable in an ordinary least
squares regression with firm dummies (i.e., the linear within-groups es-
timator). Column 5 shows that there is a significant and positive effect
of fuel prices on relative innovation. Column 6 shows that this result is

* However, notice that we find larger values for the effects of clean knowledge stocks on
clean patenting and dirty knowledge stocks on dirty patenting than in both the baseline
CFX and the HHG specifications. This could mean that the BGVR approach is not fully
controlling for all the fixed effects by relying on presample patenting only.
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TABLE 6
REGRESSIONS FOR SAMPLE OF FIRMS WITH AT LEAST ONE PRESAMPLE
CLEAN OR DIRTY PATENT

DEPENDENT VARIABLE: DEPENDENT VARIABLE:
CLEAN PATENTS DirTY PATENTS
CFX HHG BGVR CFX HHG BGVR
(1) (2) (3) (4) (5) (6)
Fuel price 713%% — 297 946%*  — 435%kE —Q 196FHE  — 4Ok
(.299) (1.091) (.322) (.139) (.738) (.181)
Clean spillover 263%%* 452% 313%#F — 048 358 —.124%*
(.067) (.247) (.077) (.039) (.230) (.058)
Dirty spillover —.178%%  —.293 =277k ()83 .395 196% %%
(.072) (.473) (.086) (.051) (.280) (.069)
Own stock clean 32Q%* A403%F*E 836%EE (008 26 003
(.027) (.060) (.038) (.019) (.037) (.021)
Own stock dirty 148+ 130 L090%##* - 52k A468%HE ] (4] F**
(.017) (.089) (.033) (.014) (.046) (.022)
Observations 25,400 7,900 25,400 25,400 13,340 25,400
Firms 1,270 395 1,270 1,270 667 1,270

Note.—Standard errors are clustered at the firm level. This is a subsample of the data in
table 8 in which we condition on firms having at least one patent in the presample period.
All regressions include controls for GDP per capita, fixed effects, year dummies, and three
dummies for no clean knowledge, no dirty knowledge, and no dirty or clean knowledge (in
the previous year). Fuel price is the tax-inclusive fuel price faced by the firm. HHG is the
Hausman et al. (1984) method, BGVR is the Blundell et al. (1999) method, and CFX is the
control function fixed-effect method.

* Significant at 10 percent.

*#* Significant at 5 percent.

##% Significant at 1 percent.

robust to including a full set of country by year fixed effects to absorb
any potential country-specific time-varying policy variables.™

Could the results somehow be driven by firms that were not patenting
prior to 1986? Table 6 repeats the baseline regressions for our three count
data models (BGVR, HHG, and CFX) restricting the sample to firms with
atleast one patent before 1986. This leads to only small changes in the co-
efficients and no change in the overall qualitative patterns.

Electricity Prices

Most clean car technologies depend on electricity.”> We can therefore hy-
pothesize that electricity prices have the opposite effect from fossil fuel

* The country here is based on the headquarters whereas the previous country variables
such as fuel price were based on weighted averages using patent weights. It was computa-
tionally infeasible to include the full set of country by time dummies in the nonlinear count
data models.

* Hydrogen for hydrogen cars can be produced via electrolysis of water. It can also be
derived from natural gas in a process called steam reforming. However, steam reforming
still leads to CO, emissions. Consequently, many experts suggest that in the long run, most
hydrogen would be derived from electrolysis using electricity from renewable sources.
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prices on the direction of technical change. In table 7 we find that, as
expected, electricity prices have a negative effect on clean innovation
(col. 1) and a positive effect on dirty innovation (col. 4), although the co-
efficients are less precisely determined than those on the fuel price. Look-
ing simultaneously at fuel and electricity prices can also be seen as a fur-
ther robustness check for our main results. One concern might be that
our results on fossil fuels are driven by unobserved factors such as a gen-
eral concern for climate change or other climate-related regulation that
we do not control for. However, for most such unobserved factors we
would expect that they have a similar effect on both fossil fuel and elec-
tricity prices, whereas the coefficients take opposite signs in the regres-
sions. Columns 2 and 4 use the relative fuel to electricity price as the co-
efficients in columns 1 and 3 are opposite and have a similar magnitude.
The coefficients on the relative price look very similar to our baseline
estimates.

Other Extensions and Robustness Tests

Oil prices are broadly global, so most of the country-specific variation over
time in fuel prices comes from differential taxation. Consequently, table 8

TABLE 7
CONTROLLING FOR ELECTRICITY PRICES
DEPENDENT VARIABLE: DEPENDENT VARIABLE:
CLEAN PATENTS DirTY PATENTS
(1) (2) (3) (4)

Fuel price 1.261%** —.642%%%

.361 .249
Electricity price —.996%* .402

(.594) (.478)
Fuel price/electricity price 1,122 — .88

(.390) (.241)

Clean spillover .24k 2247 —.070 —.061

(.074) (.074) (.044) (.043)
Dirty spillover —.146%* —.116 .104* 107

(.074) (.079) (.055) (.056)
Own stock clean 37 ] e 3H 3k .026 .033%

(.032) (.029) (.021) (.020)
Own stock dirty 126%%* 138%#% 533k 528

(.018) (.018) (.013) (.013)
Observations 68,240 68,240 68,240 68,240
Firms 3,412 3,412 3,412 3,412

Note.—Standard errors are clustered at the firm level. Estimation is by the CFX (control
function fixed-effect) method described in Sec. III. All regressions include controls for
GDP per capita, year dummies, and three dummies for no clean knowledge, no dirty
knowledge, and no dirty or clean knowledge in the previous year.

* Significant at 10 percent.

*#% Significant at 5 percent.

*#% Significant at 1 percent.
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TABLE 8
REGRESSIONS WITH FUEL TAXES INSTEAD OF FUEL PRICE
DEPENDENT VARIABLE: DEPENDENT VARIABLE:
CLEAN PATENTS DirTY PATENTS
CFX HHG BGVR CFX HHG BGVR
(1) 2) (3) (4) (5) (6)

Fuel tax A400%*  —.969 227 —.220%¥*%  —2 643%F*  — F(]H**

(.167) (.901) (.203) (.069) (.850) (.091)
Clean spillover 284kE%k 449% 286%**F  — (085* 394 —.142%%*

(.075) (.228) (.077) (.047) (.257) (.049)
Dirty spillover —.193%*%  —.433 —.27h%HE 4]k .093 2043k

(.084) (.487) (.077) (.061) (.288) (.063)
Own stock clean B2k 43(%Hk 884%HE — (08 .051 —.005

(.027) (.052) (.032) (.021) (.036) (.021)
Own stock dirty A34%%E 126 09T1%#%k  H4eH** 645%x ] (7]

(.017) (.087) (.029) (.028) (.041) (.022)
Observations 68,240 22,420 68,240 68,240 42,300 68,240
Firms 3,412 1,121 3,412 3,412 2,115 3,412

Note.—Standard errors are clustered at the firm level. All regressions include controls
for GDP per capita, year dummies, and three dummies for no clean knowledge, no dirty
knowledge, and no dirty or clean knowledge in the previous year. HHG is the Hausman
et al. (1984) method, BGVR is the Blundell et al. (1999) method, and CFX is the control
function fixed-effect method.

* Significant at 10 percent.

** Significant at 5 percent.

##% Significant at 1 percent.

substitutes fuel taxes for fuel prices showing again a similar pattern of re-
sults. One difference is that the point estimates of the fuel tax response
are smaller in absolute terms for both types of innovation. This is to be ex-
pected as demand is driven by the final price the consumer pays rather
than the fuel tax itself.

Choosing 1986 as the first year for the regression sample is somewhat
arbitrary, so we experimented with changing the cutoff year to check ro-
bustness. For example, we used 1990 instead and ran the regressions for
1991-2005 using data from 1965-90 to construct the weights. The results
in table 9 are quite comparable to our baseline, although standard errors
are a little larger as we would expect from using a smaller sample for the
regressions.

Table 10 reports alternative dynamic specifications for fuel prices. Col-
umns 1-5 are for clean innovation and use fuel prices dated in the cur-
rent year in column 1, lagged 1 year in our baseline of column 2, lagged
2 years in column 3, and lagged 3 years in column 4. In column 5 we con-
struct a geometrically weighted average of past fuel price levels as pro-
posed by Popp (2002).>* We repeat these specifications in columns 6—

** Popp (2002) uses an adaptive expectations model of prices in which the expected fu-

ture price of energy is a weighted average of past prices: P, = 2 N'P,,_,. The parameter \
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TABLE 9
ALTERNATIVE SAMPLE PERIOD: PRESAMPLE PERIOD FOR WEIGHTS FROM 1990
AND BEFORE, REGRESSIONS RUN ON DATA FROM 1991-2005

DEPENDENT VARIABLE: DEPENDENT VARIABLE:
CLEAN PATENTS DirTY PATENTS
CFX HHG BGVR CFX HHG BGVR
(1) (2) (3) 4) (5) (6)
Fuel price .806%*  —.891 —.013 —.235 —3.153%**  — H14%
(.341) (1.306) (.307) (.233) (.933) (.274)
Clean spillover 177 756% 372%x - — (b 714% —.074
(.077) (.407) (.105) (.066) (.391) (.073)
Dirty spillover —.106 —.571 —.367%kx  136% .037 141%*
(.084) (.584) (.133) (.075) (.339) (.073)
Own stock clean 349k 271Fwx - Qo]HER ()09 .063 .016
(.023) (.060) (.031) (.032) (.046) (.023)
Own stock dirty 136%%* 138 129 5] QR 492k ] 39k
(.018) (.093) (.041) (.053) (.054) (.033)
Observations 50,820 15,105 50,820 50,820 23,985 50,820
Firms 3,388 1,007 3,388 3,388 1,599 3,388

Note.—Standard errors are clustered at the firm level. All regressions include controls
for GDP per capita, year dummies, and three dummies for no clean knowledge, no dirty
knowledge, and no dirty or clean knowledge in the previous year. Fuel price is the tax-
inclusive fuel price faced by the firm (using presample patent portfolios as weights). HHG
is the Hausman et al. (1984) method, BGVR is the Blundell et al. (1999) method, and CFX
is the control function fixed-effect method.

* Significant at 10 percent.

** Significant at 5 percent.

*##% Significant at 1 percent.

10 but use dirty patents instead. With all these approaches we find price
coefficients that are very similar to our earlier estimates, with a positive
elasticity of clean patents with respect to fuel price of around unity and a
negative elasticity of dirty patents of around —0.6.%

We conducted many other robustness tests. First, our outcome vari-
able is triadic patents, those filed at all three main patent offices in the
world (USPTO, EPO, and JPO). A concern is that this screens out too
many of the lower-value patents. To address this, we ran our regressions
using biadic rather than triadic patents; that is, we included all patents
in the construction of the innovation and knowledge stock variables that
are filed at the EPO and the USPTO but not necessarily the JPO. Ta-
ble A10 shows that the results are robust to this experiment. Second, we

captures the speed at which agents adjust their expectations on the basis of the gap be-
tween the predicted and the realized values. For comparison purposes we use the same ad-
justment factor of X = 0.83 as in Popp’s paper.

* We tried to pin down more precisely the dynamic response structure by including
multiple lags of price simultaneously, but autocorrelation in prices made it difficult as
all coefficients tended to be zero, as in Popp (2002).
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constructed the patentstock variables—including the spillover variables—
using citation-weighted counts from all worldwide patents (table All).
This led to qualitatively similar results; for example, the fuel price re-
sponse is larger for clean patents than for dirty patents.”® Third, we exper-
imented with a wide range of other country-specific variables and report
that the results are robust to these additional covariates. For example, in
table A12 we included total GDP in addition to GDP per capita. The co-
efficient on GDP is insignificant, and the basic pattern of our results is ro-
bust to this extra control. Fourth, we were concerned that the results
could be driven by high price volatility in the smaller countries in our
data, so we reconstructed the weights for the fuel price on the basis of
subsamples of the largest countries in GDP terms. Table A13 shows that
the results are robust when just using the larger countries in our sample.
Fifth, as discussed in Section IV.B, it may be that it is not correct to classify
hybrid cars as clean innovation, so we experimented with dropping them
from our definition of clean technologies. The results are robust to this
change (table A14).”” Finally, we wanted to make sure that our results
were not driven by firms that rarely patent, so we dropped the least inno-
vative firms, which collectively accounted for only 5 percent of aggregate
patents. The results were robust to this test.

VI. Simulation Results

To obtain a better sense of the aggregate magnitude of the results, we
report a number of counterfactual experiments. We explore the implica-
tions of our econometric models for the evolution of future clean and
dirty knowledge stocks and how this is affected by an increase in the fuel
price (generated, e.g., byan international carbon tax). We recursively com-
pute values of expected patenting under different policy scenarios, use
those to update the knowledge stock variables (including the spillover
variables), and feed these into the next iteration. Hence, if we split the
right-hand-side variables x, into variables that are functions of the lagged
knowledge stock (k;) and other variables such as the fuel price (p,), we
can write x; = [k, p;] and a particular iteration T periods after year ¢ as
defined by

* If anything, the results are generally stronger with elasticities that are larger in mag-

nitude.

* We also reran table 4 reclassifying all hybrids as grey innovations. The resulting point
estimate on price in the clean equation is somewhat lower (0.565 instead of 0.848) and loses
significance. However, the coefficient on price in the grey equation drops even more, so
that the gap in elasticities between clean and grey gaps becomes slightly larger. We attribute
these changes to the somewhat reduced power of this specification and conclude that hy-
brid technologies are not the main drivers of the clean advantage in our main specifica-
tions.
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PATz,iH'I' = eXp(kizH‘—lﬁkz + Pﬁiy@u)nzm

_ — (10)

Rivir :f(kzxﬁr—l, PAT ¢ s, PATDJHT),
where P/A?FCJH»,« and man are vectors of predicted patent flows
for firms in the sample and p{", are potentially counterfactual values
of the policy and other control variables. Our empirical results have im-
plied that there is path dependence in the type of innovation pursued,
through both internal firm-level knowledge stock effects and external
countrywide spillovers. In this section we explore how important this path
dependence is in quantitative terms by studying the evolution of both
clean and dirty knowledge stock implied by our fitted models into the fu-
ture. We do this for every firm in the data set and then aggregate across the
world economy in each period.

More specifically, we are looking for conditions under which the clean
knowledge stock for the aggregate economy exceeds the dirty knowledge stock. In
line with Acemoglu et al. (2012), this would be a requirement for clean
technologies to be able to compete with dirty ones, even without policy
intervention. Our projections should be considered as a rough explora-
tion into the importance of carbon taxes and path dependency rather
than precise forecasts of future innovation.™

We focus on the period up to 2030 with 2020 as a focal point. This is
somewhat arbitrary but is in line with scenarios of the IEA,* suggesting
that globally fossil fuel use must peak by 2020 to avoid highly risky cli-
mate change. It is also consistent with the European Commission’s 2020
targets."’

We first check the within-sample performance of the model by imple-
menting simulation runs providing recursively generated knowledge stocks
over the regression sample period (1986-2005) in appendix figure A6."
Clean and dirty patent stocks are reported on the y-axis. Comparing pre-
dicted aggregate patents to the actual values suggests that our preferred
CFX model does a reasonably good job at tracking the aggregate changes
in clean and dirty patenting (panel a). The alternative BGVR and HHG es-
timates are not too bad but do much less well in later years (panels band c¢).

* Technically, the tipping point at which the market starts innovating more in clean
technologies than in dirty technologies without policy intervention occurs when the clean
technology is more productive than the dirty technology. Our stock of knowledge vari-
ables, respectively, on clean and dirty innovation are natural proxies for measuring the rel-
ative productivity of clean vs. dirty technologies.

* See http://blogs.ft.com/energy-source/2009/11/10/fossil-fuel-use-must-peak-by
-2020-warns-iea/#axzz1tQmZylLoy.

" See http://ec.europa.eu/news/economy/100303_en.htm.

* For the simulations we restrict the sample to the firms for which we have presample
information. In this way we do not have to make further assumptions as to how changes
in the spillover and policy variables would affect firms for which these variables are essen-
tially missing.
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Figure 6 reports simulations based on the regressions from table 6,
columns 1 and 4, for years through to 2030. In panel a we report the
baseline case keeping fuel prices (and time dummies) at their 2005 val-
ues.*” The regressions imply a strong enough path dependency for the
gap between dirty and clean knowledge stocks to remain far apart for
a considerable period of time. Clean innovation catches up with dirty in-
novation only well after 2030. This catch-up occurs because of delayed
reaction to fuel price hikes leading up to 2005 and GDP per capita growth,
which tends to relatively favor clean innovation.

To what extent can carbon taxes speed up this convergence process?
We examine the effects of a permanent worldwide increase in fuel prices
in 2006 (and fixed at this level thereafter) of 10 percent, 20 percent, 30 per-
cent, 40 percent, and 50 percent in panels b—f, respectively. In panel b
we see that the gap between clean and dirty becomes smaller with a fuel
price increase of 10 percent both because there is more clean innovation
and because there is less dirty innovation. However, parity is achieved be-
tween clean and dirty only after 2030. It would take an increase of 40 per-
cent in fuel prices in order to achieve parity in 2020 according to our model
(panel e). Thisis a pretty large increase, comparable with the increase that
took place in the 1990s in figure 1.

One criticism of the simulation is that we would expect such a large
increase in the fuel prices to have a negative effect on GDP per capita
because of deadweight costs of taxation, adjustment costs, and so on.
This, in turn, could slow down the growth of clean innovation (e.g., Gans
2012). To obtain some insight into the magnitude of these effects, fig-
ure 7 considers the 40 percent fuel tax hike scenario coupled with a neg-
ative effect on GDP per capita growth. Panel a reproduces the baseline
case in which there is no effect on GDP (as in fig. 6, panel ¢). Panel b con-
siders a fall in the growth rate by 0.25 percentage point (e.g., from 1.5 per-
cent to 1.25 percent per year). This postpones the crossover year because
income growth has a stronger positive effect on clean innovation than
dirty innovation in our estimates. But the effect is rather small, moving
the crossover year from 2020 to 2022, only 2 years. Larger tax-driven falls
in GDP per capita growth postpone things further, but it would take a full
1 percentage pointayear fall in the growth rate to postpone the crossover
year beyond 2030. We view it as very unlikely that fuel taxes would knock a
percentage point off annual growth for 15 years or more, and this also ig-
nores the damaging effects of global warming itself on economic growth
over the medium run. We therefore take some comfort from figure 7 that
incorporating output effects would not dramatically change the conclu-
sions from figure 6.

** We assume that per capita GDP grows at 1.5 percent per year but report alternative
assumptions in fig. 7.
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Fi1c. 7.—Simulations over time of the effect of a 40 percent increase in fuel prices allow-
ing for a negative effect of the carbon tax on GDP per capita growth. a, Baseline case, no
effect of carbon tax on GDP per capita growth. b, Tax reduces GDP per capita growth by
0.25 percentage points. ¢, Tax reduces GDP per capita growth by 0.50 percentage points.
d, Tax reduces GDP per capita growth by 0.75 percentage points. ¢ Tax reduces GDP per
capita growth by 1.0 percentage points. These graphs show the simulated evolution of
the aggregate clean and dirty knowledge stocks between 2005 and 2030 after a fuel price
increase of 40 percent using the model in table 6, columns 1 and 4. We consider a negative
effect on per capita GDP growth of the carbon tax of between zero as in the baseline case
(panel a replicates panel ¢ of fig. 5) and 1 percentage point (in panel e).
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Fic. 7 (Continued)

In figure 8 we explore the importance of path dependence for the
simulations. First, we repeat the baseline specifications allowing for all
dynamic adjustments in the cases of no fuel price change (panel «)
and of a 40 percent increase (panel b). In panels ¢ and d we repeat this
exercise while fixing all innovation stock variables—that is, both spill-
overs and own knowledge stocks—at their 2005 levels. As a consequence,
both clean and dirty innovation and thus the growth rate of knowledge
stocks reduce markedly as firms no longer benefit from standing on the
shoulders of either their own or others’ past innovation success. Also
note that in panel ¢, where we keep prices fixed, the gap between clean
and dirty is now narrower than in the equivalent panel a. Despite this,
the 40 percent increase in fuel prices in panel d is much less effective
than in panel b, where the dynamic effects from knowledge stocks are
switched on. This illustrates that path dependency is a double-edged
sword as pointed out by Acemoglu et al. (2012). In the absence of effec-
tive policies, it creates a kind of lock-in for dirty innovation. But if effec-
tive policies are introduced such as a carbon tax or R&D subsidy, path
dependency can help reinforce the growth of clean innovation as the
economy accumulates clean knowledge more rapidly. Hence, if we switch
off the two path dependency channels, innovation trends become less
responsive to tax policy.
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VII. Conclusion

In this paper we have combined several patent data sets to analyze di-
rected technical change in the auto sector, which is a key industry of con-
cern for climate change. We use patenting data from 3,412 firms and in-
dividuals between 1965 and 2005 across 80 patent offices. We exploit the
fact that tax-inclusive fuel prices (our proxy for a carbon tax) evolve dif-
ferentially over time across countries in our data set and that firms are
differentially exposed to these price changes because of their heteroge-
neous market positions in different geographic markets. Consistent with
our theoretical predictions, we find that clean innovation is stimulated
by increases in the fuel prices whereas dirty innovation is depressed.
Our second key result is that there is strong evidence for “path depen-
dency” in the sense that firms more exposed to clean innovation from
other firms are more likely to direct their research energies to clean in-
novation in the future (a directed knowledge spillover effect). Similarly,
firms with a history of dirty innovation in the past are more likely to fo-
cus on dirty innovation in the future. The fact that such path dependency
holds for clean (as well as dirty) innovation highlights the desirability
of acting sooner to shift incentives for climate change innovation. Since
the stock of dirty innovation is greater than that of clean, the path depen-
dency effect will tend to lock economies into high carbon emissions, even
after the introduction of a mild carbon tax or R&D subsidies for clean
technologies. So this may make the case for stronger action now, which
could be relaxed in the future as the economy’s stock of knowledge shifts
in more of a clean direction. Increases to carbon prices can bring about a
change in direction. For example, our baseline results suggest that an
increase of 40 percent of fuel prices with respect to the 2005 fuel price
will allow clean innovation stocks to overtake dirty stocks after 15 years.
Our analysis could be extended in several directions. First, we could
analyze output effects beyond the macro adjustments in the simulations
of table 6 to examine the firm-level effects. This would require a large ex-
tension in terms of using data on sales, however. Second, we could use our
framework to simulate other policies, such as country-specific changes
in carbon taxes (or R&D subsidies), to see how this would affect the inno-
vation profiles in specific countries rather than just globally. Third, the
same basic approach could be taken to look at sectors other than automo-
biles such as the energy sector as in Acemoglu et al. (2016). Finally, we
could use microdata to estimate the relative efficiency of R&D invest-
ments in clean versus dirty innovation and also the elasticity of substitu-
tion between the two types of production technologies. As argued in
Acemoglu et al. (2012), these parameters play as important a role as the
discount rate in characterizing the optimal environmental policy. We ac-
knowledge that a limitation of our analysis is that we assume that non—
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combustion engine cars are needed for radically reducing carbon emis-
sions in transport. It may be that innovation in grey technologies will be
sufficient, although we view this as unlikely. To close the model, one would
further need to measure the emissions impact of each type of innovations
(clean, grey, or purely dirty) and include a simultaneous analysis of emis-
sions in electricity production. All these and other extensions of our anal-
ysis in this paper are left for future research.
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