Fast Comprehension of embedded geometrical Primitives and Rules in human Adults and Preschoolers

Marie Amalric, Liping Wang, Pierre Pica, Santiago Figueira, Mariano Sigman,
Stanislas Dehaene

- To cite this version:

Marie Amalric, Liping Wang, Pierre Pica, Santiago Figueira, Mariano Sigman, et al.. Fast Comprehension of embedded geometrical Primitives and Rules in human Adults and Preschoolers. Association for Psychological Science, May 2016, Chicago,, United States., 2016. halshs-01496623

HAL Id: halshs-01496623
https://shs.hal.science/halshs-01496623
Submitted on 27 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. and rules in human adults and preschoolers
${ }^{1}$ Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif//vette, France Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 place Jussieu, Paris, France ${ }^{7}$ Collège de France, Paris, France

INTRODUCTION: ARE HUMANS ENDOWED WITH A GEOMETRICAL LANGUAGE?

* Studies of sequence learning have outlined one possible mechanism by which complex mental representations are constructed out of simpler primitives: the human ability to extract complex nested structures from sequential inputs.
* Experiments in infants, preschoolers, and adults without
access to education have demonstrated the existence of innate "core knowledge" for space, endowing humans with spontaneous intuitions of geometry.
* The question therefore arises whether a capacity for the internal representation and manipulation of nested
sequences also underlies the acquisition of mathematics.
- We propose to formalize the human sensitivity to mathematical rules through a "language of thought" that allows the formation of complex representations from a small repertoire of primitives.

METHOD: COMPLETION TASK

Subjects saw the first locations of a given sequence and had to point to the next ones. If they were mistaken, the sequence restarted.

Participants:
23 French adults and 475 -years-old children, and 14 Munduruku teenagers and adults.

GEOMETRICAL LANGUAGE

		$\begin{array}{\|l\|} \hline \text { Repeat }+1 \\ 01234567 \\ \mathrm{~K}=5 \end{array}$	$\begin{aligned} & \text { Repeat +2 } \\ & 02460246 \\ & \mathrm{~K}=5 \end{aligned}$
		[$\left.+0,[+1]^{7}\right]$	[+0, [+2$\left.]^{7}\right]$
		Alternate 0213243546 $\mathrm{K}=8$	$\begin{array}{\|l\|} \hline \text { 2arcs } \\ 01237654 \\ \mathrm{~K}=8 \end{array}$
		$\left.[+0,+2]^{8}\{+1\}\right]$	$\left[\left[+0,[+1]^{3}\right]^{2}<\mathrm{V}>\right.$]
$\begin{aligned} & \text { 2squares } \\ & 02467135 \\ & \mathrm{~K}=8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 4segments } \\ & 01726354 \\ & \mathrm{~K}=7 \end{aligned}$	$\begin{aligned} & \text { 4diagonals } \\ & 04152637 \\ & \mathrm{~K}=7 \end{aligned}$	$\begin{aligned} & \text { 2points } \\ & 02020202 \\ & \mathrm{~K}=7 \end{aligned}$
[$\left.\left[+0,[+2]^{3}\right]^{2}<-1>\right]$	[[$\left.+0, \mathrm{H}]^{4}\{-1\}\right]$	[$\left.[+0, \mathrm{P}]^{4}\{+1\}\right]$	[+ +0, +2] $\left.{ }^{4}\{+0\}\right]$
$\begin{aligned} & \text { 2rectangles } \\ & 05416327 \\ & \mathrm{~K}=10 \end{aligned}$	$\begin{array}{\|l} \text { 2crosses } \\ 04512673 \\ \mathrm{~K}=7 \end{array}$	$\begin{array}{\|l} \text { Irregular } \\ \text { O4715236 } \\ \mathrm{K}=16 \end{array}$	$\begin{array}{\|l\|} \text { 4points } \\ 02360236 \\ \mathrm{~K}=11 \end{array}$
$\left[\left[[+0,-3]^{2}\{P\}\right]^{2}<-2>\right]$	[[+0, P] $\left.{ }^{4}\{-3\}\right]$	[$+0, P, B,+2, P, B,+1, H$]	$\left[[+0,+2,+1,+3]^{2}<+0>\right]$

MODEL FITS

CONCLUSIONS

- Simple rotations and axial symmetries were all detected and quickly used by human adults and 5 -years-old children. Point symmetry was more challenging for French preschoolers or Munduruku adults than for French adults

Human subjects were able to detect most of the embedded expressions we used to define our visuospatia sequences such as simple repetition, concatenation, and some repetition with variation.

- The analysis of error patterns provided direct evidence for hierarchical embedding: superficial rules were acquired more quickly and induced fewer errors than deeper rules.

With age, a geometrical language endowed with nested rules seems to

Kolmogorov complexity well predicts subjects' performance

REFERENCES

arise even in the absence of forma schooling, as Munduruku adults who lacked school-based education, performed better than 5 -years-old kids. In children, the failure with complex sequences could arise from limitations in working memory and not necessarily to a lack of understanding nested structures.

The theoretical complexity of a sequence was an excellent predictor of its mean error rate, and we confirm that minimal description length is a reasonable approach of adult sequence learning capacity
Additional primitives, both geometrical and non-geometrical still need to be added to our model to complete its description of "core geometry".

