Intuitions for Multiplication in Amazonian Adults and in U.S. Adults and Children

Véronique Izard, Pierre Pica, Stanislas Dehaene, Elizabeth Spelke

- To cite this version:

Véronique Izard, Pierre Pica, Stanislas Dehaene, Elizabeth Spelke. Intuitions for Multiplication in Amazonian Adults and in U.S. Adults and Children. Biennal Meeting of the Society for Research in Child Development, Apr 2009, Denver,, United States. . halshs-01495495

HAL Id: halshs-01495495
https://shs.hal.science/halshs-01495495
Submitted on 25 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Véronique Izard ${ }^{1}$, Pierre Pica ${ }^{2}$, Stanislas Dehaene ${ }^{3,4,5,6}$, Elizabeth Spelke ${ }^{1}$

Psychology Department, Harvard University, Cambridge, MA 02138, USA; ${ }^{2}$ Unité Mixte de Recherche 7023 «Formal Structure of Language », CNRS and Paris VIII University, Paris, France; ${ }^{3}$ INSERM, Cognitive Neuro-imaging Unit, IFR 49, Gif sur Yvette, France; ${ }^{4}$ CEA, NeuroSpin center, IFR 49, Gif sur Yvette, France; ${ }^{5}$ Univ Paris-Sud, IFR49, F-91191 Gif $/$ Yvette, France; ${ }^{6}$ Collège de France, Paris, France.

Inserm

INTRODUCTION

Success at non-symbolic addition and subtraction has been documented with diverse populations: preschool children, occidental adults (in conditions preventing counting), and also an indigene group from the Amazon, the Mundurucu, who speak a language with a restricted number lexicon (Barth et al., 2005; Pica et al., 2004). In all these populations, performance shows a characteristic ratio effect: the sums and differences that participants estimate are

Studies of brain-damaged patients (Lemer et al, 2003), brain imaging (Dehaene et al., 2003), or task interference (Lee \& Kang, 2002) suggest that multiplication and division, on the contrary, may be mediated by language and rotelearned tables. Nevertheless, the existence of a universal capacity for nonsymbolic multiplication has not been investigated directly.
knowled investigated whether multiplication is part of humans universal symbolic multiplication problems to three different populations: US adults,
Amazonian Adults, and US children at two ages, before and during the first years of Amazonian Adults, and US children at two ages, before and during the first ye
learning multiplication (respectively Preschool-1st grade, and 3rd-5th grade).

DESIGN, BASIC RESULTS	age	Number of trials	Product sizes (n1*n2)	$\begin{gathered} \text { Comparison ratios } \\ (\mathrm{n} 1 * \mathrm{n} 2 / \mathrm{n} 3) \end{gathered}$	Comparison to Chance (T)	Effect of comparison ratio (ANOVA)	No effect of product size (ANOVA)
US adults ($\mathrm{N}=16,9$ females)	$\begin{gathered} 34.3 y \\ (19-58) \end{gathered}$	96	$\begin{aligned} & 36: 4 * 9,6 * 6,9 * 4 \\ & 49: 5 * 10,7 * 7,10 * 5 \\ & 64: 6 * 11,8 * 8,11 * 6 \\ & 81: 7 * 12,9 * 9,12 * 7 \end{aligned}$	1.2, 1.5, 2.0	$\begin{aligned} & 82.3 \%, \\ & \mathrm{P}<0.0001 \end{aligned}$	$\mathrm{P}<0.0001$	$P=0.081$ (Fluctuations; no systematic dependency)
Mundurucu adults ($\mathrm{N}=12,10$ females)	$\begin{gathered} 40.8 y \\ (17-75) \end{gathered}$	48	36, 49 (cf above)	1.2, 1.5, 2.0	$\begin{aligned} & 70.8 \%, \\ & \mathrm{P}=0.00028 \\ & \hline \end{aligned}$	$\mathrm{P}=0.029$	F<1
US Preschoolers, Kindergardeners and 1st graders ($\mathrm{N}=18,11$ females)	$\begin{gathered} 6.7 y \\ (5.0-7.6) \\ \hline \end{gathered}$	12	36, 49 (cf above)	1.2, 1.5, 2.0	$\begin{aligned} & 72.7 \%, \\ & \mathrm{P}=0.00014 \\ & \hline \end{aligned}$	F<1	F<1
US 3-5th graders ($\mathrm{N}=16,11$ females)	$\begin{gathered} 9.8 y \\ (8.1-12.2) \end{gathered}$	12	36,49 (cf above)	1.2, 1.5, 2.0	$\begin{aligned} & 81.3 \%, \\ & \mathrm{p}<0.0001 \end{aligned}$	$\mathrm{P}=0.071$	F<1

All groups performed well above chance. Except for the younger US children, performance followed the same pattern as in the addition/subtraction tasks. effect of comparison ratio,
his first analysis suggests that intuitions for multiplication are universal (in the sense hat they emerge spontaneously from a certain age), as is the case for addition/ subtraction. As a second step, in the following analyses, we investigated whether all
groups were really performing the task in the same way.

DISPLAYS

1. Look, in this bucket, I have some seeds [n1]

2. In fact, I have many buckets [$\mathbf{n 2}$] and they all have the same quantity
box.
3. Here, there are some more seeds [n3].
Where are there more seeds: inside the box [$\mathrm{n} 1 \mathrm{*}_{\mathrm{n} 2]}$, or outside the box [n3]?

Could participants have responded based on the range of the probe (n3) alone, instead of computing the multiplication? If participants are truly multiplying, then their choices of n3 will be modulated by the size of $\mathrm{n} 1 * \mathrm{n} 2$.

US 3-5th graders

${ }^{39.8}$

US young children

Likelihood analyses ${ }^{1}$ indicate that the responses are better modeled by several responses curves vs. only one in all US multip : responses were modulated
multiplication problem presented. The subjective equivalence point (50% of choices on eithe sides) read from the fits correspond the subjective estimate of the number of seeds in the box.

1. (Aikike's Information Criterion, corrected for the n
model and the sample size - Glover \& Dixon, 2004)

How did participants use the numeric information about n1, n2? Were they really multiplying?
Extending the previous analysis, we computed the subjective estimates of the operation separately for the different decompositions of the products (eg $4^{* 9}$ vs. $6^{* 6}$ vs. $9 * 4$). The following graphs depict these estimates in function of n 1 alone, n 2 alone, or $\mathrm{n} 1^{*} \mathrm{n} 2$.

$\mathrm{n} 1 * \mathrm{n} 2=49$
$\square \mathrm{n} 1 * \mathrm{n} 2=64$
$\square \mathrm{n} 1 * \mathrm{n} 2=81$

CONCLUSION

Contrary to addition, intuitions for multiplication are not universal in humans. Although US Adults can multiply sets of numbers quite accurately, and US childr
hints of this ability, this competence is not fully present in another culture, the Mundurucu. Instead of performing a mental multiplication on two numbers, Mundurucu participants approximated the multiplication based on only one of the two operands given, which they scaled by a constant factor. These results highlight both the limits and the possibilities of intuitive arithmetic: Multiplication of two numbers is not universally present in humans, but scaling by a constant factor seems to be (Barth, 2008).

In occidental populations, intuitions about multiplication may start developing even prior to formal instruction with multiplication. Therefore, the Mundurucus' limitation
with multiplication may not be related to a lack of instruction with multiplication per with multiplication may not be related to a lack of instruction with multiplication per se, but to more basic differences pertaining to the representation of sets.

