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Abstract

Unimodal probability distribution has been widely used for Value-at-Risk

(VaR) computation by investors, risk managers and regulators. However, finan-

cial data may be characterized by distributions having more than one modes.

Using a unimodal distribution may lead to bias for risk measure computation.

In this paper, we discuss the influence of using multimodal distributions on VaR

and Expected Shortfall (ES) calculation. Two multimodal distribution families

are considered: Cobb’s family and distortion family. We provide two ways to

compute the VaR and the ES for them: an adapted rejection sampling technique

for Cobb’s family and an inversion approach for distortion family. For empirical

study, two data sets are considered: a daily data set concerning operational risk

and a three month scenario of market portfolio return built with five minutes

intraday data. With a complete spectrum of confidence levels from 0001 to

0.999, we analyze the VaR and the ES to see the interest of using multimodal

distribution instead of unimodal distribution.
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1. Introduction

In finance, assets and risks behavior can be represented using data. While in

theory the distributions used to model them are usually regular and unimodal,

the empirical representation are traditionally not regular and several modes

may appear. In the modern portfolio theory framework the variance is used5

to quantify risk, and this is only valid when returns are elliptically distributed.

However, if the returns follow another kind of distribution, other risk measures

would be more appropriate. The variance is a symmetric measure, so it counts

abnormally high returns as the same way as abnormally low returns. If investors

are only interested in losses (downside risk), dispersion might be of little inter-10

est. In this paper, we only consider an asymmetric risk, and risk measurements

are only useful if they reflect investors appetite, which is not necessary the case

with the variance.

Consequently, features of financial data are crucial for an appropriate rep-15

resentation and computations of risk measures. These features - such as the

support, the number of modes, the volatility clustering, the skewed property

and the tail behavior - are captured by the probability distributions which char-

acterize the data. Although the literature have been discussing features like

the tail behavior of a distribution or the volatility clustering of financial data20

quite a lot (Jorion, 1996 [14]; Chan et al., 2007 [5]), academics and risk man-

agers only paid little attention to the modes of a distribution when computing

the risk measures. Unimodal distributions (like Gaussian or Student-t distri-

butions) are widely used in financial institutions for Value-at-Risk (VaR) and

Expected Shortfall (ES) calculations. However, when the histogram of histori-25

cal data exhibits more than one modes, a unimodal distribution may provide a

biased fitting of the data due to the impact of extra modes, and lead to biased

risk measures. In this paper, we analyze the impact of fitting a multimodal

2
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distribution on data for risk measure computation. To fit the multimodal data

various approaches will be tested, for instance the Cobb’s family (Cobb et al.,30

1983 [6]) or the Lila family (Hassani et al., 2016 [12]).

A distribution from Cobb’s family is defined in the form of a probability

density, which appears as a combination of two smooth functions 1: an expo-

nential function and a polynomial function. The exponential function ensure35

that the density is positive and the polynomial function allows different shapes

for the density. Cobb’s family has three advantages: first, it permits the cre-

ation of multimodal distributions with various numbers of modes. The degree

of the polynomial drives the number of modes of the density. The roots of

the polynomial identify the locations of the modes. Besides, this family also40

includes classical unimodal distributions such as the Gaussian distribution, the

Gamma distribution or the Beta distribution; Second, Cobb’s family provides

multimodal distributions with different kinds of supports: infinite support, pos-

itive support and finite support. This is useful in practice, for instance, if an

histogram representing losses data is multimodal, we can fit a multimodal dis-45

tribution with positive support from Cobb’s family on them; Third, efficient

moments estimators for the parameters of Cobb’s family are provided. The es-

timators have a theoretical asymptotic normality property. The estimates are

easy to compute because their computation relies on the empirical moments.

50

The main disadvantage of Cobb’s family is that in general the cumulative

distribution function (c.d.f) of a multimodal distribution belonging to Cobb’s

family does not have a closed-form expression. A closed-form expression only

exists for the density. Consequently, we cannnot compute the VaR and the ES,

or generate random numbers using classical inversion methods. Thus we use55

Monte-Carlo techniques to compute the VaR and the ES for Cobb’s distribu-

tion: first, relying on a rejection sampling algorithm (Evans, 1998 [8]), a way to

1A smooth function is a function that has derivatives of all orders everywhere in its domain.

3
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simulate random numbers from a multimodal probability density belonging to

the Cobb’s family is implemented (Gilks et al., 1992 [10]); second, these simu-

lated random numbers are used to compute both the VaR and the ES through60

the empirical VaR and the empirical ES defined in section (4.1). The asymp-

totic results of these two empirical estimators are provided by Serfling (2001)

[19] and Gao et al. (2011) [9].

Along Cobb’s family, there are other ways of obtaining multimodal distri-

butions. The first one is by using a distortion operator, which is an increasing

function:

L : [0, 1]→ [0, 1], with L(0) = 0 and L(1) = 1. (1)

Wang (2000) [20] provides a class of distortion operators to analyze the price of65

risk for both insurance and financial risks. Other types of distortion operators

such as the use of polynomial functions, see Guégan and Hassani (2015) [11] and

Hassani and Yang (2016) [12]. An alternative way is by mixing distributions,

like Gaussian mixtures (Roeder et al., 1997 [18]) and Beta mixtures (Ji et al.,

2005 [13]). The mixture density is a weighted sum of various probability den-70

sity components. The estimation of parameters can be done using optimization

based approaches, like Expectation-maximization algorithm (Moon, 1996 [15]).

For the distortion approach, we select a well-studied unimodal distribution

and “distort” it by compositing a distortion operator L and the c.d.f. of this

unimodal distribution F . When we have a closed-form expression for the inverse

function L−1 of the distortion operator, given a confidence level p, the VaR

associated with the distorted distribution L(F (x)) is:

V aRLp = F−1(L−1(p)). (2)

Also, in this case we can simulate random numbers from L(F (x)) by: (i) sim-

ulate random numbers from Uniform(0, 1) distribution; (ii) map these numbers75

by F−1(L−1(x)). Then we can use these random numbers to compute the ES

4
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for L(F (x)).

However, sometimes we may not have a closed-form expression for L, for

instance when L is a polynomial with degree greater or equal to five. Never-80

theless, for the computation of V aRLp , we can use the Newton-Raphson method

to find the root of L(x) − p = 0, denoted as pL. Then V aRLp = F−1(pL). To

simulate random numbers from L(F (x)): (i) simulate random numbers from

Uniform(0, 1) distribution; (ii) for each random number r, use the Newton-

Raphson method to find the root of L(x) − r = 0; (iii) map these roots by85

F−1(x). Then we compute the ES by simulation 2.

For the empirical analysis, after introducing both theoretical features of the

distribution and algorithmic requirements, we apply the modelling strategies

presented to two empirical data sets: a daily data concerning operational risk90

and a three month scenario of market portfolio return built with five minutes in-

traday data. We use the first data set to compute the VaR and the ES with one

day risk horizon. The second data set allows to compute the three months VaR

and ES. With a complete spectrum of confidence level p from 0.001 to 0.999,

we calculate the VaR and the ES using unimodal distributions and multimodal95

distributions, in order to analyze the impact of multimodal distributions on risk

measurement. We observe: (i) a multimodal fitting from Cobb’s family provides

the best goodness-of-fit; (ii) for different confidence levels, the values of the VaR

and the ES associated with multimodal distributions may be larger or smaller

than the values associated with unimodal distributions. In particular, the mul-100

timodal fittings from Cobb’s family provide values of VaR and ES neither too

high nor too low, which avoid underestimating or overestimating the risks; (iii)

for operational risk data, the multimodal fitting based on the distortion ap-

proach provides the most conservative values for VaR and ES when p = 0.999.

It means that this fitting captures the multimodal feature of the historical data,105

2Indeed, the step (ii) may make this algorithm inefficient

5
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and at the same time provides a fat-tail allowing to take into account the poten-

tial extreme events. Consequently, using a multimodal distribution leads to a

more realistic and reasonable pricing and risk management process for financial

products, and a consistent bank capital regrading their risk profile.

110

The remainder of the paper is structured as follows. Section 2 introduces

Cobb’s distribution family and illustrates it with some examples, presenting dif-

ferent multimodal and support behaviors. Section 3 provides a way to generate

random numbers efficiently from probability densities of Cobb’s family. Section

4 presents empirical study. Section 5 concludes.115

2. A family of multimodal distributions

Let X be a random variable (r.v.), which may represent the daily loss of a

given financial asset, portfolio or an actual incident. Let F be the cumulative

distribution function of X. Traditionally, we assume X following a unimodal

distribution such as a Gaussian distribution or a Student-t distribution. In this120

paper, we extend F from unimodal distributions to multimodal distributions.

First, let us present a family of distributions (Cobb et al. (1983) [6]) and in

particular its mutlimodal behavior. The general form of the Cobb’s density can

be expressed as follows:

fk(x) = ξ(β)exp

[∫ x

−g(s)

v(s)
ds

]
, (3)

where g(x) = β0 +β1x+ ...+βkx
k and k is a positive integer. ξ(β): Rk+1 → R125

is the normalization function depends on β = (β0, ..., βk). This function ξ(β)

ensures that the integral of fk over its domain equals to 1. We refer to g(x) as

the shape polynomial of fk, as the maximum number of possible modes of fk

is determined by k, which is the degree of g(x). Regarding the differentiation

with respect to (w.r.t) x, expression (3) yields:130

f ′k
fk

= −g(x)

v(x)
, (4)

6
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meaning that the critical points of fk (i.e., all x such that f ′k(x) = 0) are exactly

the roots of g(x). Indeed, each specification of v(x) in (3) leads to a distinct

family of distributions. We consider two types of v(x) leading to two families of

distributions: (i) The Gaussian family (Nk(x)) with v(x) = 1, x ∈ (−∞,∞):

Nk(x) = ξ(β)exp[θ1x+ θ2x
2 + ...+ θk+1x

k+1], (5)

where θj = −βj−1

j , j = 1, ..., k + 1. Nk(x) has finite moments of all orders if k135

is odd and θk+1 < 0. Specially, N1 is the Gaussian density; (ii) The Gamma

family (Gk(x)) with v(x) = x, x ∈ (0,∞):

Gk(x) = ξ(β)xα−1exp[θ1x+ θ2x
2 + ...+ θkx

k], (6)

where α = 1−β0 and θj = −βj

j , j = 1, ..., k. Gk has finite moments of all orders

if α > 0 and θk < 0. Specially, G1 is the Gamma density.

140

In practice, we use either Nk(x) or Gk(x) for different kinds of data. Nk(x)

is a benchmark. We use Gk(x) when the data have a positive support, for in-

stance operational losses.

To present the multimodal behavior of Nk(x) and Gk(x), we plot three145

graphs in Figure (1): in the first graph, we plot two densities from N3(x). The

solid line has shape polynomial g(x) = 200x(x + 0.3)(x + 0.8). The dash line

has shape polynomial g(x) = 1000x(x + 0.3)(x + 0.4); in the second graph,

two densities are plotted from G3(x). The solid line has shape polynomial

g(x) = 1000(x − 0.1)(x − 0.3)(x − 0.4). The dash line has shape polynomial150

g(x) = 100(x− 0.1)(x− 0.3)(x− 0.8); in the third graph, a density from N5(x)

with g(x) = 600(x+ 0.2)(x+ 0.5)(x+ 0.55)(x+ 1.2)(x+ 1.25) has been plotted

3.

3Here, the parameters of g(x) are chosen arbitrarily. The purpose is to show the multimodal

behavior of Cobb’s family, and the relationship between the locations of modes and the roots

of g(x).
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Figure 1: In the first graph, we plot two densities from N3(x). The solid line has shape

polynomial g(x) = 200x(x + 0.3)(x + 0.8). The dash line has shape polynomial g(x) =

1000x(x + 0.3)(x + 0.4); in the second graph, we plot two densities from G3(x). The solid

line has shape polynomial g(x) = 1000(x − 0.1)(x − 0.3)(x − 0.4). The dash line has shape

polynomial g(x) = 100(x− 0.1)(x− 0.3)(x− 0.8); in the third graph, we plot a density from

N5(x) with g(x) = 600(x+ 0.2)(x+ 0.5)(x+ 0.55)(x+ 1.2)(x+ 1.25).

In Figure (1), all the densities in the left graph and middle graph have two155

modes. The density in the right graph has three modes. In the left and right

graphs, the supports of densities from Nk family have both positive and negative

sections. In the middle graph, the densities from Gk family only have a positive

support. Moreover, in all the three graphs, we observe that the locations of

the modes are exactly identified by the roots of the shape polynomials. For160

instance, in the left graph, the two peaks of the solid line are at 0 and −0.8 and

the bottom is at −0.3. These values are just the roots of the polynomial shape

g(x) = 200x(x+ 0.3)(x+ 0.8).

In order to use Cobb’s family in practice, we introduce a theorem in the165

following, which allows to fit a distribution from Cobb’s family on data set.

Note that the unknown parameters of Cobb’s family are β.

Theorem 1. Let X1, ..., Xn be a sequence of losses corresponding to the previ-

ous random variable X. Then according to Cobb et al. (1983) [6], we define

β̂ = M̂−1α̂, (7)

8
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β̂ is a consistent consistent estimator of β with asymptotic normality prop-170

erty. Where for i, j = 1, ..., k + 1, we define M̂ =
[∑n

k=1
Xi+j−2

k

n

]
(k+1)×(k+1)

,

which is a positive definite random matrix with probability one. Let αj =

E
[(
Xj−1v(X)

)′]
, then we define a vector α̂ = [α̂j ](k+1)×1 where α̂j is the

associated sample moments of αj. α̂j depends on the type of v(x), for example,

for Nk(x) with v(x) = 1, α̂j =
∑n
k=1(j − 1)Xj−2

k .175

The proof of Theorem (1) is provided in Cobb et al. (1983) [6]. Following

this theorem, we can use moments estimator to estimate β in practice.

3. An algorithm for random sample generation from Cobb’s family

In this section, we develop an algorithm to generate random samples from180

fk(x) given by equation (3), based on the rejection sampling technique intro-

duced by Evans (1998) [8]. Efficient algorithms for generating random samples

from probability densities is a necessary part of many applications related to

integral approximation, such as approximating the mean of a r.v. by Monte-

Carlo simulation according to the law of large numbers. In the next section,185

we use these simulated random samples to compute the VaR and the ES for

multimodal distributions belonging to Cobb’s family. As an example, we choose

the distribution Nk(x) in equation (5) as our target density and explain how to

generate random samples from it using following algorithm:

3.1. The algorithm190

There are three steps in the algorithm.

• Step 1: it is equivalent to perform the rejection sampling by Nk(x)/ξ(β)

instead of Nk(x) itself (Gilks (1992) [10]). We use the logarithm to trans-

form Nk(x)/ξ(β) into N∗k (x) = log(Nk(x)/ξ(β)) = θ1x + θ2x
2 + ... +

θk+1x
k+1. Initially, we need to introduce a set of points a ≤ x1 < ... <195

xm ≤ b. All the critical and inflection points of N∗k (x) should be included

9
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4. A Newton-Raphson approach is implemented to numerically solve the

equations N∗′k (x) = 0 and N∗′′k (x) = 0 to find these points. Points such

that ti(x) = 0 should be avoided.

200

• Step 2: an upper envelop function for N∗k (x) is established. Let ti(x) be

the tangent line to N∗k (x) at xi, i.e.

ti(x) = N∗k (xi) +N∗′k (xi)(x− xi), (8)

we define xi < zi < xi+1, 1 ≤ i ≤ m−1 as the point of intersection for two

neighbouring tangent lines (i.e. ti(zi) = ti+1(zi))
5 and put z0 = a, zm = b.

Furthermore, let ci(x) be the secant line to N∗k (x) from (zi−1, N
∗
k (zi−1))205

to (zi, N
∗
k (zi)), i.e.

ci(x) = N∗k (zi) + (N∗k (zi)−N∗k (zi−1))(x− zi)/(zi − zi−1), (9)

then the upper envelop function of N∗k (x) is defined by:

u(x) =

ti(x), if zi−1 ≤ x ≤ zi and zi−1+zi
2 ≤ 0,

ci(x), if zi−1 ≤ x ≤ zi and zi−1+zi
2 ≥ 0.

(10)

By definition, we have N∗k (x) ≤ u(x) for ∀x ∈ (a, b). Since the exponen-

tial function is monotonic, we have Nk(x)/ξ(β) ≤ eu(x), where eu(x) is

a piecewise exponential function. We define h(x) = eu(x)/
∫ b
a
eu(x)dx =210 ∑m

i=1 pihi(x), where di =
∫ zi
zi−1

eu(x)dx, pi = di/
∑m
i=1 di and hi(x) =

eu(x)/di on [zi−1, zi] and is equal to 0 elsewhere. We use the composition

method of Devroye (1986) [7] to obtain random samples from h(x): we

4For a function f , x1 is a critical point for f if f ′(x1) = 0. x2 is an inflection point for f

if f ′′(x2) = 0 and f ′′′(x2) 6= 0. In our case, the critical points are also the real roots of the

shape polynomial.
5zi exists because N∗k (x) is either concave or convex in (xi, xi+1).

10
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generate an integer z in {1, ...,m} with discrete probability P (Z = z) = pz;

we use the inversion method to generate a random sample x with density215

hz
6. Then x is a sample from h(x).

• Step 3: we perform the rejection sampling algorithm as following: (i) gen-

erating x from h(x); (ii) generating v from U(0, 1) (uniform density on

(0, 1)); (iii) if N∗k (x) ≥ v ∗ u(x), then return x else go to (i).220

By definition of rejection sampling, the accepted x follows Nk(x). When the

acceptance rate α is low, where α = P (N∗k (X) ≥ V ∗u(X)) =
∫ b
a
N∗

k (x)dx∫ b
a
u(x)dx

, we can

also work in an adaptive way, i.e. we come back to step 1 and add the rejected

point x to the initial set {x1, ..., xm} each time. Indeed the sequence of u(x)225

converge to N∗k (x) when this procedure is iterated. As u(X) becomes closer to

N∗k (x), α grows (Martino, 2011 [16]). To stop the adaptive procedure, we need

to choose a value of α a prior.

3.2. An implementation of the algorithm

We illustrate how the algorithm in section (3.1) performs considering the230

distribution N3(x) with g(x) = 1000x(x+ 0.3)(x+ 0.4). The critical points are

0, −0.3 and −0.4. The inflection points are −0.1131 and −0.3535. Noticing

that ti(x) = 0 when xi = 0, we choose the initial partition: {−1,−0.4,−0.3535,

− 0.3,−0.1131, 0.005, 1}. In order to increase the acceptance rate of the re-

jection sampling algorithm, we add points to the initial partition to decrease235

the space between the upper envelop and the transformed target density. In

Figure (2): the dash lines are the upper envelops and the solid line is the

transformed target density. The plot on the left corresponds to the initial

partition. For the graph in the middle, the lattice is enlarged as we add 0.4

6Notice that hz is an exponential function having closed-form for integral and inverse

mapping.

11
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to the initial partition. The plot on the left is obtained with the partition240

{−1,−0.5,−0.4,−0.3535,−0.3,−0.1131,−0.05, 0.005, 0.05, 0.1, 0.3, 0.4, 1}. We

observe that the upper envelop converges to the transformed target density

as we add points to the partition.

Figure 2: The dash lines are the upper envelop and the solid lines are the transformed

target density. The left graph corresponds to the initial partition. For the graph in

the middle, we add 0.4 to the initial partition. The right graph is with the partition

{−1,−0.5,−0.4,−0.3535,−0.3,−0.1131,−0.05, 0.005, 0.05, 0.1, 0.3, 0.4, 1}.

Since we find an upper envelop which is close to the transformed target245

density, the rejection sampling algorithm can be implemented efficiently. We

simulate n = 1000, 10000, 100000 random samples from N3(x) with g(x) =

1000x(x+ 0.3)(x+ 0.4) using rejection sampling, and show the results in Figure

(3): the solid line is our target density; the histogram on the left of Figure

(3) corresponds to the sample size n = 1000; the histogram in the middle250

corresponds to n = 10000 and the histogram on the right has been obtained

considering n = 100000. We observe that samples obtained from our algorithm

reach the target density when n increases.

12
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Figure 3: The histogram on the left corresponds to the samples from the rejection sampling

with sample size n = 1000. The histogram in the middle corresponds to n = 10000 and the

histogram on the right has been been obtained considering n = 100000. We observe that

samples obtained with our algorithm indeed reach the target density.

4. Empirical study: the impact of multimodal distributions on risk255

measurement

Among others, quantile-based risk measures are the most prominent instru-

ments used by banks and supervisors, for either day-to-day internal risk man-

agement purposes or regulatory capital requirements. Consequently, it is critical

to accurately compute these risk measures for data with different features, in260

order to promote the stability and efficiency of the financial system and con-

tribute to the real economy. The VaR summarises the worst potential loss over

a target risk horizon within a given confidence level. The ES is defined as the

expected loss beyond the VaR with a given risk horizon and confidence level.

4.1. Tools265

Let F−1 be the left continuous inverse of X’s c.d.f F , i.e. F−1(x) =

min {u : F (u) ≥ x}. For a given confidence level 0 ≤ p ≤ 1, we define the

Value-at-Risk V aRp as the p-quantile :

V aRp = F−1(p). (11)

13
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For the same confidence level p, the Expected Shortfall ESp is equal to:

ESp =
1

1− p

∫ 1

p

F−1(u)du =
1

1− p

∫ 1

p

V aRudu. (12)

Although in the new standards of minimum capital requirements for market270

risk (BCBS, 2016 [3]), there is a proposal to shift from VaR to an ES measure

of risk under stress, we consider both the VaR and the ES in this paper. Be-

cause the VaR is still one of the most popular risk measures among financial

institutions (Pérignon, 2010 [17]).

275

In order to compute the VaR and the ES of a multimodal distribution, we

introduce the empirical VaR and the empirical ES in the following: we rank

X1, ..., Xn and obtain X(1) ≤ · · · ≤ X(n) and define the empirical VaR as:

eV aRp = X(m), (13)

where m = np if np is an integer and m = [np] + 1 otherwise. [x] denotes the

largest integer less than or equal to x.7. Furthermore, eV aRp is a consistent280

estimator of V aRp (Serfling, 2009 [19]).

Based on the eV aR, we define the empirical Expected Shortfall as

eESp =
m− np
n(1− p)

X(m) +
1

n(1− p)

n∑
i=m+1

X(i). (14)

It is a consistent estimator of the ESp (Acerbi 2002 [1] and Gao 2011 [9]).

Brazauskas (2008) [4] obtained strong consistency and asymptotic normality of285

the eESp. In the following, we use these empirical estimators and the algorithm

in section 3.1 to compute the VaR and the ES for empirical analysis, using an

operational risk data set and a market risk data set.

7X(m) is also called the mth order statistic, which is a fundamental tool in nonparametric

statistics.
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Besides Cobb’s family, we also consider the distortion family as alternative290

multimodal distributions. Following Hassani et al. (2016) [12], we consider the

general Double-Odd-Polynomial Seat function as a distortion operator:

L(x) =

b− b(1−
x
a )2n+1, x ≤ a,

b+ (1− b)(x−a1−a )2n+1, x > a.

(15)

Where 0 < a < 1, 0 ≤ b ≤ 1 and integer n ≤ 1. We derive the inverse function

of L(x):

L−1(x) =

a− a
2n+1
√

1− x
b , 0 ≤ x ≤ b,

a+ (1− a) 2n+1

√
x−b
1−b , b < x ≤ 1.

(16)

Hassani et al. (2016) [12] show that L(x) can transform a unimodal distri-295

bution to a multimodal distribution. We use this approach as an alternative

multimodal distribution family to compare with Cobb’s family in the following

application.

4.2. Data description300

We consider two data sets:

1. For the first data set Data1: (i) we download the valuation of CSI 300

index every 5 minutes from Bloomberg. The CSI 300 index is a free-float

weighted index that consists 300 A-share stocks listed on the Shanghai or

Shenzhen Stock Exchanges, China; (ii) the log-return of the downloaded305

data is computed; (iii) a rolling window with length 3000 is used to obtain

a three month log-return scenario of this index. The Data1 has 65327 data.

2. The second data set Data2 is provided by a European bank represent-

ing ”External Fraud Losses” risks since 2013 on a daily basis. ”External310

Fraud” risk is a sub-category of operational risk.
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The first four empirical moments of Data1 and Data2 are provided along

the number of observations in Table (1). In Data1, the minimum log-return is

−0.2369 and the maximum log-return is 0.1832. In Data2, the minimum loss is315

2032.7 and the maximum loss is 40438. From Table (1), we observe that both

Data1 and Data2 are right skewed. The empirical kurtosis of Data1 is 4.2392

and the empirical kurtosis of Data2 is 4.0112. These values are slightly larger

than 3, which means that we do not expect a tremendous fat-tailed behavior of

the data. However, we show in the following that these two data sets contain320

information in the tails.

Empirical moments

points mean variance skewness kurtosis

Data1 65327 0.0035 0.0038 0.1746 4.2392

Data2 1000 1.1129e+04 3.7242e+07 1.0768 4.0112

Table 1: In this table, we provide the first four empirical moments of Data1 and Data2 and

the number of observations.

4.3. Application

In order to compare the performances of the unimodal distribution and mul-

timodal distribution, we perform two parts empirical analysis: the first part325

concerning the market data Data1 and the second part concerning the opera-

tional risk data Data2.

4.3.1. Market data

In practice, the market data may present multimodal features. For instance,

traders may create portfolios containing assets with different properties to pur-330

sue the diversification bonus. Consequently, these portfolios contain different

sources of information from the market. Then the histogram of the Profit &

Loss data for these portfolios may have several modes.
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4.3.1.1 Fittings and adequacy335

For Data1, a Student-t distribution and a Normal-inverse Gaussian distribu-

tion (NIG; Barndorff-Nielsen, 1978 [2]) are fitted using maximum likelihood ap-

proach; a Student-t distribution distorted by L(x) in equation (15) with n = 1

is fitted using quantile distance minimisation method; a N5 distribution is fitted

using moments method as defined in Theorem (1). The estimates are provided340

in Appendix A.

To analyze the goodness-of-fit, two distances are computed: the first one is

the two sample Kolmogorov–Smirnov distance (DKS), which is the maximum

distance between the empirical c.d.f of two data sets; the second one, which is345

the sum of distances at different quantiles between the empirical c.d.f of two

data sets (S-DKS). The results are provided in Table (2).

Student-t NIG N5

DKS 0.012 0.009 0.0049

S-DKS 3.9453 6.9458 2.7312

Table 2: In this table, we provide the values of the DKS and the S-DKS for different fittings

of Data1.

From Table (2), theN5 fitting from Cobb’s family provides the best goodness-

of-fit. Because it provides the smallest DKS and S-DKS which are equal to350

0.0049 and 2.7312.

We provide a figure to illustrate the fittings on Data1: in Figure (4), we plot

the histogram of Data1. The dash line represents the N5 fitting; the dot-dash

line represents the Student-t fitting; the solid line represents the NIG fitting.355

In Figure (4): (i) the highest peak is located between −0.05 and 0.05. All

the three fittings capture this part of information; (ii) there is a second peak in
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Figure 4: We plot the histogram of Data1. The dash line represents the N5 fitting; the

dot-dash line represents the Student-t fitting; the solid line represents the NIG fitting.

the right tail, between 0.11 and 0.17. This part of information represents the

potential gain of this portfolio. It may be one reason for traders to hold this360

portfolio. However, only the N5 fitting, which has the second mode between

0.11 and 0.17, takes this piece of information into account. On the contrary, the

other two unimodal fittings ignore this piece of information because they quickly

decrease between 0.11 and 0.17; (iii) more importantly, we also observe a third

peak in the left tail between −0.16 and −0.24. The information in this peak365

represents the potential loss of the portfolio. According to the assumption of no

arbitrage, the peak in the left tail can be viewed as a reasonable compensation

of the peak in the right tail. Therefore, it is very important for risk managers

not to miss that part when they measure the risks of this portfolio. It is also

important for traders to decide if they should hold a position in this portfolio or370

not. Indeed, from the figure, we can see that only the N5 fitting, which exhibits

the third mode between −0.16 and −0.24, captures the information in the third

peak of the histogram. The other two unimodal fittings quickly decrease in this

area.

375
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4.3.1.2 Spectrum for market data

In the following, with a complete spectrum of confidence levels p ranging from

0.001 to 0.999, we compute the VaR and the ES with three month horizon for

Data1, using the fittings in Appendix A. Given 0 < p < 1, 10000 random num-

bers are simulated from each fitted distribution and the eV aRp and the eESp380

are computed. This approach is repeated 100 times. Then 100 values of eV aRp

and 100 values of eESp are obtained. We take the average of eV aRp and eESp

as the values of the V aRp and the ESp.

We illustrate the results for the values of the V aRp and the ESp graphically385

providing Figure (5): the results for the VaR are presented in the top graph

and the results for the ES are presented in the bottom graph. The solid line

represents the VaR and the ES values computed from the Student-t fitting; the

dot-solid line represents the VaR and the ES values computed from the NIG

fitting; the dash line represents the VaR and the ES values computed from the390

N5 fitting.

From the top graph of Figure (5): (i) for 0.33 ≤ p ≤ 0.48 and 0.005 ≤ p ≤

0.05, the N5 fitting provides the smallest values of the VaR. Because it captures

the piece of information in the peak around −0.2. However, the unimodal fit-395

tings ignore this information and put more weights at −0.1. Furthermore, for

p = 0.001, the VaR value of the Student-t fitting is equal to −0.3045, which is

smaller than the VaR value of the N5 fitting −0.2265. Because the Student-t fit-

ting put weights below the minimum of Data2 −0.2369; (ii) for 0.65 ≤ p ≤ 0.975,

the N5 fitting provides the largest VaR values. It is because the N5 fitting takes400

into account the peak associating with the profit of the portfolio. Nevertheless,

for 0.99 ≤ p ≤ 0.999, the N5 fitting gives the smallest VaR values. Instead,

the Student-t fitting provides the largest VaR values. For instance, V aR0.999 is

equal to 0.3052 for the Student-t fitting, which is larger than the maximum of

Data2 0.1832. But V aR0.999 is equal to 0.1781 for the N5 fitting. The reason405
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Figure 5: For Data1, we illustrate the results for the values of the V aRp and the ESp graph-

ically in this figure. The results for the VaR are presented in the top graph and the results

for the ES are presented in the bottom graph. The solid line represents the VaR and the ES

values computed from the Student-t fitting; the dot-solid line represents the VaR and the ES

values computed from the NIG fitting; the dash line represents the VaR and the ES values

computed from the N5 fitting.

is that the Student-t fitting shifts the piece of information in the peak around

0.15 to the area beyond 0.1832.

From the bottom graph in Figure (5): (i) 0.025 ≤ p ≤ 0.8, the N5 fitting

provides the smallest values of the ES. It is conservative because it captures the410

information in the peak around −0.2. The other two unimodal fittings ignores

this information; (ii) for p = 0.001, the value of the ES for the Student-t fitting

is equal to −0.395, which is nearly twice of the ES value for the N5 fitting.
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Indeed, the Student-t fitting shifts the information in the peak around −0.2

to the area below −0.2369; (iii) for 0.92 ≤ p ≤ 0.999, the N5 fitting gives the415

largest values of the ES, because it takes into account the peak around 0.15.

4.3.2. Operational risk data

As the operational risk data may contain different kinds of operational losses

coming from different activities of banks, they may exhibit multimodal behavior.420

4.3.2.1 Fittings and adequacy

For Data2, a Log-normal distribution, a NIG distribution, a lognormal distri-

bution distorted by L(x) in equation (15) with n = 1 and a G7 distribution are

fitted. Because Data2 has a positive support. We use the same estimation tech-

niques for Data2 as we use for Data1. The estimates are provided in Appendix425

A.

To analyze the goodness-of-fit, we compute the DKS and S-DKS and provide

the results in Table (3).

430

Lognormal NIG D-Lognormal G7

DKS 0.0424 0.0615 0.2948 0.0154

S-DKS 10.3246 24.6571 129.1102 4.9859

Table 3: In this table, we provide the values of the DKS and the S-DKS for different fittings

of Data2.

From Table (3), for Data2, the smallest DKS is 0.0154 obtained with the G7

fitting. The second smallest DKS is obtained with the Lognormal distribution

and is equal to 0.0424. It is more than twice as large as the DKS value obtained

using the G7 fitting. The results for the S-DKS are consistent with the results of

DKS: the G7 fitting provides the smallest S-DKS value 4.9859. The largest DKS435
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and S-DKS are obtained with the D-Lognormal fitting and are equal to 0.2948

and 129.1102. They are nearly five times as large as the values obtained using

the NIG fitting, which provide the second largest DKS and S-DKS. Therefore,

on Data1, the G7 fitting provides the best goodness-of-fit and the D-Lognormal

fitting provides the worst goodness-of-fit in the sense of DKS and S-DKS.440

We provide a figure to illustrate the fitting results for Data2: in Figure (6),

we plot the histogram of Data2. The dash line represents the G7 fitting; the

dot-dash line represents the Lognormal fitting; the solid line represents the NIG

fitting; the dot line represents the distorted Lognormal fitting445

Figure 6: We plot the histogram of Data2. The dash line represents the G7 fitting; the dot-

dash line represents the Lognormal fitting; the solid line represents the NIG fitting; the dot

line represents the distorted Lognormal fitting.

In Figure (6): (i) the highest peak is between 5 × 103 and 1.4 × 104. The

G7, Lognormal and NIG fittings capture this piece of information. But the D-

Lognormal fitting shifts part of information between 8 × 103 and 1.2 × 104 to

the tail; (ii) we also observe that the second peak in the histogram is between450

1.6 × 104 and 2.4 × 104. And here, both the G7 and D-Lognormal fittings,

which have another mode in this area, capture the information contained in the
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second peak. Furthermore, the D-Lognormal fitting puts more weights in the

second peak than the G7 fitting. The other two unimodal fittings decrease fast

in the area between 1.6 × 104 and 2.4 × 104, meaning that the information in455

the second peak are ignored by these two fittings. (iii) the second peak provides

important information in the tail, even though the empirical kurtosis of Data2

is just 4.0112. It means that the empirical kurtosis may not be a sensitive mea-

sure for the extra peaks in the tail of a distribution. However, the information

in these peaks may be important for investors and risk managers to assess po-460

tential risks, especially ”clustering of tail events” correctly.

4.3.2.2 Spectrum for operational risk data

In the following, with a complete spectrum of confidence levels p ranging from

0.001 to 0.999, we compute the VaR and the ES with daily horizon for Data2,465

using the fittings in Appendix A. The approach in section (4.3.1.2) is used for

the computation.

We illustrate the results for the values of the V aRp and the ESp graphically.

On Figure (7): the results for the VaR are presented in the top graph and the470

results for the ES are presented in the bottom graph. The solid line represents

the VaR and the ES values computed from the Lognormal fitting; the dot-solid

line represents the VaR and the ES values computed from the NIG fitting; the

dash line represents the VaR and the ES values computed from the D-Lognormal

fitting; the dot line represents the VaR and the ES values computed from the475

G7 fitting.

From the top graph in Figure (7): (i) for 0.001 ≤ p ≤ 0.38, the D-Lognormal

fitting provides the smallest values of the VaR. However, for 0.43 ≤ p ≤ 0.999,

the D-Lognormal fitting provides the largest values of the VaR. Indeed, between480

p = 0.4 and p = 0.43, there is a jump for the VaR values of D-Lognormal fitting:
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Figure 7: For Data2, we illustrate the results for the values of the V aRp and the ESp graph-

ically in this figure. The results for the VaR are presented in the top graph and the results

for the ES are presented in the bottom graph. The solid line represents the VaR and the ES

values computed from the Lognormal fitting; the dot-solid line represents the VaR and the

ES values computed from the NIG fitting; the dash line represents the VaR and the ES values

computed from the D-Lognormal fitting; the dot line represents the VaR and the ES values

computed from the G7 fitting.

V aR0.4 is 8126 and V aR0.43 is 12789. It’s because the D-Lognormal fitting shifts

most of the information between 8126 and 12789 to the area beyond 12789; (ii)

for 0.65 ≤ p ≤ 0.92, the G7 fitting gives the second largest values of the VaR.

Nevertheless, for 0.99 ≤ p ≤ 0.999, the G7 fitting provides the smallest values of485

the VaR. Between p = 0.95 and p = 0.99, we observe jumps for the VaR values

of Lognormal fitting from 23650 to 34324, and the VaR values of NIG fitting

from 22256 to 31314.
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From the bottom graph in Figure (7) associated with the ES results: (i) for490

all 0 < p < 1, the D-Lognormal fitting provides the largest Values of the ES.

Thus it associates with the most conservative values of ES. The reason of the

conservative is that the distortion operator shifts the weights in the center to

the far tail. Notice that ES0.999 is equal to 74499 for the D-Lognormal fitting,

which is nearly twice as large as the maximum of Data1 40438. That means495

the ES provided by the D-Lognormal fitting may be over conservative; (ii) for

0.05 ≤ p ≤ 0.77, the G7 fitting provides the second largest values of the ES. But

for 0.92 ≤ p ≤ 0.999, the G7 fitting provides the smallest values of the ES; (iii)

for the unimodal fitting, the Lognormal fitting ignores the information in the

second peak by decreasing fast between 16000 and 40000. It leads to the values500

of ES for Lognormal fitting jump from 51298 to 60168 between p = 0.997 and

p = 0.999.

5. Conclusion

In this paper, we discuss the necessity of considering multimodal distribu-505

tion as an alternative for Value-at-Risk and Expected Shortfall computation. We

compare two types of multimodal distributions - Cobb’s family and distorted

family - with several unimodal distributions. An adapted rejection sampling ap-

proach is proposed for generating random numbers from Cobb’s family, in order

to compute the VaR and the ES by Monte-Carlo simulation. For the distortion510

family, we suggest using the inversion method for risk measure computation.

Given the full spectrum of confidence levels from 0.001 to 0.999, by computing

the VaR and the ES for an operational risk data set and a market data set

with daily and three month risk horizons, our empirical study shows that: first,

the Cobb’s family provides the best fitting in the sense of Kolmogorov-Smirnov515

distance. However, the distortion family provides the worst fitting; second, the

curves of the VaR and the ES corresponding to multimodal fittings are some-
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times above and sometimes below the others; third, the values of risk measures

computed from the Cobb’s family neither go too high or too low. Furthermore,

they are bounded by the maximum and minimum of the historical data. That520

means if the risk measure is used for regulatory or economic capital purposes,

then using a multimodal distribution may help generating a charge consistent

with the risk profile of a bank; finally, the multimodal fitting from the distorted

approach can capture the multimodal behavior of the historical data, and at

the same time consider the information in the far tail. It allows to provide con-525

servative risk measures. We understand that the use of parametric multimodal

distribution is still at its infancy, however, we believe that building a set rules

relying on this tool might help improving risk management.
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Appendix A. Estimates of the distributions for Data1 and Data2

In order to compare the performances of the unimodal distribution and590

multimodal distribution: (i) For Data1, a Student-t distribution and a

Normal-inverse Gaussian distribution (NIG; Barndorff-Nielsen, 1978 [2])

are fitted using maximum likelihood approach; a Student-t distribution

distorted by L(x) in equation (15) with n = 1 is fitted using quantile

distance minimisation method; a N5 distribution is fitted to Data1 using595

moments method as defined in Theorem (1); (ii) For Data2, a Log-normal
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distribution, a NIG distribution, a lognormal distribution distorted by

L(x) in equation (15) with n = 1 and a G7 distribution are fitted.

Because Data2 has a positive support. We use the same estimation tech-

niques for Data2 as we use for Data1. The results are provided in Table (A.4).600

Data1

location scale shape

Student-t 0.0004 0.0477 4.5204

tail skewness location scale

NIG 18.3885 4.32 -0.0126 0.066

n a b df location scale

D-Student-t 2 N/A N/A N/A N/A N/A

β0 β1 β2 β3 β4 β5

N5 6.8301 668.1 -4.396e+3 -6.658e+4 2.0518e+5 1.7579e+6

Data2

location scale

Lognormal 9.1721 0.5466

tail skewness location scale

NIG 0.0116 0.0115 -204.0365 1756

n a b location scale

D-Lognormal 1 0.6143 0.4239 9.1714 0.5461

n a b location scale

D-NIG 1 N/A N/A N/A N/A

β0 β1 β2 β3 β4 β5 β6 β7

G7 -28.39 0.019 -5.156e-6 7.2e-10 -5.365e-14 2.141e-18 -4.286e-24 3.365e-28

Table A.4: We provide the fitted parameters for Data1 and Data2.
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