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Stochastic Evolution of Distributions - Applications to

CDS indices

Guillaume Bernis∗, Nicolas Brunel†, Antoine Kornprobst‡and Simone Scotti§

December 5, 2016

Abstract: We use mixture of percentile functions to model credit spread evolution, which

allows to obtain a flexible description of credit indices and their components at the same

time. We show regularity results in order to extend mixture percentile to the dynamic case.

We characterise the stochastic differential equation of the flow of cumulative distribution

function and we link it with the ordered list of the components of the credit index. The

main application is to introduce a functional version of Bollinger bands. The crossing of

bands by the spread is associated with a trading signal. Finally, we show the richness of the

signals produced by functional Bollinger bands compared with standard one with a practical

example.

1 Introduction

The modelling of both market indices and their components is an open question in
finance. Notably, there are many relevant papers (e.g. [12], [13]) focusing on the
global evolution of a market and its underlying assets. However, this analysis is
generally applies to stock assets but cannot be extended directly to other classes
and mainly to credit risk market. The aim of this paper is, first, to fill this gap
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proposing a model to describe the evolution of a credit default swap (CDS) index
and their components in a parsimonious but flexible way, second, to produce trading
signals based on this model. The trading signals are an extension of the widely used
Bollinger bands (See [17]) to infinite dimensional, functional indicators.

The guiding idea of this paper is that the distribution of the fair spreads of the com-
ponents of the index can be used to forecast the evolution of the index itself: in many
situation, the deformation of the distribution anticipates the widening or tightening
of the index fair spread. The problem of optimal investment and efficient trading
signals has been widely studied in literature. Moreover, the techniques applied span
a large class of mathematical tools, for instance by restricting to recent years (but
without any claim to being exhaustive) optimal switching [25], optimal investment
with trend detection [8], [5] and [6], adding jumps and over/under-reaction to infor-
mation [7] or using techniques from neural network [10]. The significant innovation
of the present paper is to deal with the whole components and not the only index,
using a diffusion process with values in a functional space.

The iTraxx Europe and CDX Investment Grade indices are liquid CDS indices com-
posed of the 125 most liquid single name CDS referencing, respectively, the European
and the US investment grade credit issuers. These are the typical indices on which
our method can be applied, although it is not limited to them and can be adapted
to cash credit indices. The CDS index is quoted by its fair spread and treated as a
CDS itself (and not a pool of single name CDS). Some details about CDS indices
can be found in section 2.1 in [5]. Due to technical effects, the fair spread of the
iTraxx is not the average fair spread of the pool of single name CDS, but the basis
is generally small, which can lead us to look at the distribution of the underlying
spreads in order to analyse the future spread evolution of the index.

These indices are equally weighted with standardized maturities and have a large
number of components (namely, 125). This leads us to consider the list of the un-
derlying single name CDS as a probability distribution on R+. Several references on
the question of deterministic or stochastic evolution of densities can be found across
various fields of mathematics. The scope of applications encompasses statistics, bi-
ology, physics and finance. Bellomo and Pistone [4] study the action of an abstract
dynamical system on a probability density. From a statistical point of view, some
authors analyse the density as the outcome of a Dirichlet law: Ferguson [11] or Shao
[20]. This question is also at the core of the optimal transport, see for instance Vil-
lani [23], Alfonsi et al [2] and the references therein. In this vein, Bass [3] studies the
deformation of a parameter-based family of densities. Another approach is based on
the mixture of percentiles. This method introduced by Sillitto [21] has been used,
more recently, by Karvanen [16] and Gouriéroux and Jasiak [14] to fit distributions
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of stock returns. This is the approach that we will adopt in this paper.

Let us consider some integrable probability distribution on the positive half-line, rep-
resented by its percentile function. Assume that we have a breakdown the percentile
as a sum of percentile functions of distributions on the positive half-line. Then, we
can construct deformations of the initial distribution by considering weighted sums
of the percentile function with positive coefficients. Then, we replace the mixing
coefficients by correlated diffusion processes.

This method construct a process with values in a space of probability distributions,
represented by their percentiles: hence a random measure on the positive half-line.
We show that, under mild assumptions on the underlying diffusion, regularity results
hold for the distribution-valued process. First, the process is continuous in time
with respect to the expected Wasserstein distance, see Bass [3], which is a natural
metric in this context. Second, the stochastic differential equation which drives the
cumulated distribution function is explicit. We also provide results on the average
and the variance of the cumulated distribution function.

Using this framework, at each date, we can calculate a confidence interval for the
percentile at a given (short) time horizon. We show that the upper and lower
boundaries of this interval are also percentile functions. We study trading signals
triggered when the realised percentile function crosses either the upper or the lower
band of this confidence interval. This method can be seen as a extension of the
Bollinger bands, where the bands are not only functions of the time, but functions
of the time and of the level of the percentile. Hence, it defines functional lower and
upper bands. We also analyse the link between the crossing of one of the bands and
the measure of risk according to the second order stochastic dominance.

In the first section, we introduce the mixture of percentiles method in a static setting
and analyse its properties. Topological aspects as well as differentiability of the
cumulated distribution functions are studied. Insights on the notion of stochastic
dominance, in relation with the possible deformations of the initial distribution, are
given. Then, in section 3, we use Markov diffusion processes as mixing coefficients
and provide the dynamics of the distribution. Thus, we obtain a model where
both percentile and cumulative distribution functions have some explicit diffusion
equation, and satisfies some regularity results. Last section is dedicated to a case
study for CDS indices.
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2 Decomposition of probability distributions

This section is dedicated to the analysis of the mixture of percentiles, as defined in
Sillitto [21], in a static context. We prove regularity results that will be useful for
the dynamic case, detailed in section 3. After setting our framework, we present the
mixture method and study its properties. Then, we derive results on the derivatives
of the cumulative distribution function. Finally, we investigate the deformation of
the distribution in term of stochastic dominance.

First, let us define the setting under which we will work throughout the paper. Con-
sider the measured space

(
[0,+∞),B([0,+∞)), dx

)
, where B

(
[0,+∞)

)
is the Bore-

lian sigma-field over [0,+∞) and dx the Lebesgue measure. Let f be a probability
distribution function (hereafter p.d.f.) on this space, F the cumulative distribution
function (c.d.f.) of f , and q the percentile function, i.e. the inverse1 of F . We
denote by D the set of all probability distributions on

(
[0,+∞),B([0,+∞)), dx

)
and by (f, F, q) an element of D. Where there is no ambiguity, we will indicate
only one element among the p.d.f, the c.d.f or the percentile function. The next
straightforward Lemma highlights some properties of D.

Lemma 1 (Properties of percentile function) The set D is a convex cone i.e.
∀(q1, q2) ∈ D2 and (λ1, λ2) ∈ (R+

∗ )2, λ1q1 + λ2q2 ∈ D. Moreover, it can be endowed
with a partial order relation on the set D, equivalent to the stochastic dominance of
first order, as defined by Quirk and Saposnik [19], see also Levy [18]: q1 � q2 if,
for any ε ∈ [0, 1), q1(ε) ≥ q2(ε), which is equivalent to, ∀ x ≥ 0, F1(x) ≤ F2(x), in
terms of c.d.f. For any q1 � q2 and q, q1 + q � q2.

Throughout the paper, we consider the set D0 ⊂ D of probability distributions
satisfying the following assumption:

Assumption 1 A probability distribution (f, F, q) ∈ D is said to belong to D0 if:

1. Its p.d.f. is positive, almost everywhere (a.e.).

2. Its c.d.f. is a diffeomorphism from [0,+∞) onto [0, 1) and is twice continuously
derivable with right-derivatives at 0. Moreover, F (0) = q(0) = 0.

3. Its probability distribution has finite first two moments.

1The notion of generalized inverse should be used at this stage, but, hereafter, we will restrict
our attention to distributions for which the c.d.f is actually invertible.
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We can extend the previous Lemma 1 to show:

Proposition 1 The set D0 is a convex cone.

Proof: Let q1, q2 ∈ D0, since D0 ⊂ D, applying the results of Lemma 1 we have
that q := λ1q1 + λ2q2 ∈ D for all λ1, λ2 ∈ R+

∗ . Then we need to show the three
properties in Assumption 1:

1. The mapping q is strictly increasing, with q(0) = 0, and tends to +∞ in 1−.
Thus, it defines a bijection from [0, 1) onto [0,+∞). It is, therefore, invertible,
with an inverse denoted by F and strictly increasing. This implies that the
p.d.f is well defined and positive a.e.

2. By implied function theorem, the derivative of F exists. Moreover, as q1 and
q2 have derivatives of order up to two, so q has the same property and F too.

3. The existence of the moments of first and second orders stems from the fol-
lowing identity, obtained by the variable change x = q(ε), i.e. ε = F (x): for
k = 1, 2 ∫ ∞

0
xkf(x)dx =

∫ 1

0
(q(ε))kdε

Thus, if (f, F, q) has a second order moment so has
(

1
λf
( ·
λ

)
, F
( ·
λ

)
, λq

)
, for any

λ > 0:
∫ 1

0 (λq(ε))kdε = λk
∫ 1

0 (q(ε))kdε, k ∈ {1, 2}. Therefore, it is sufficient to
show that, for q1, q2 ∈ D0, q1+q2 and (q1+q2)2 are integrable. The integrability
of q1 + q2 is a consequence of the linearity of the integral. In order to show the
integrability of (q1 + q2)2 = q2

1 + q2
2 + 2q1q2, it is sufficient to show that q1q2 is

integrable. This is a consequence of the Cauchy-Schwarz inequality. �

In the following, we endow the space D0 with the second-order Wasserstein distance,
see for instance Vallander [22], which is defined, for any (q1, q2) ∈ D0 by

W2(q1, q2) :=

√∫ 1

0
[q1(ε)− q2(ε)]2 dε

This distance is well suited to the analysis of deformation of probability distributions,
and can be adapted in a dynamic setting. See, for instance, Bass [3] and Alfonsi et
al. [2].
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2.1 Mixture of percentile functions

In this section, following Sillitto [21], we introduce the method to construct various
percentiles functions from an initial one. We provide results on the regularity of the
functions obtained by this method. In particular, we prove that they belong to D0.
In this section, we set out (f, F, q) ∈ D0.

Definition 1 (Basis of percentile function associated to (f, F, q)) A n-uple of
mappings ψ := (ψi)1≤i≤n, is called a n-basis of percentile functions associated to
(f, F, q) if

1. The family is linearly independent;

2. For all i ∈ {1, . . . , n} ψi is non-decreasing, taking non-negative values, twice
continuously derivable on [0, 1) and

3. The total sum of the percentile functions ψi reconstruct the percentile function
q, i.e.

∑n
i=1 ψi = q.

The set of all n-basis of percentile function associated to (f, F, q) will be denoted by
Pn(q).

The following Lemma summarizes some properties of the basis representation:

Lemma 2 Let ψ be a n-basis of percentile functions associated to (f, F, q) satisfying
Assumption 1. Then, we have

1. Initial value: For all i ∈ {1, . . . , n} ψi(0) = 0

2. Existence of a diverging term: There exists i∗ ∈ {1, . . . , n} such that
lim
ε→1−

ψi∗(ε) =∞.

Proof: The first property is a direct consequence of q(0) = 0 and the fact that the
functions ψi take non-negative values. If the second property does not hold, the
limit of q, as ε goes to 1−, would be finite. Hence a contradiction with point 1 in
Assumption 1. �

Now, let us introduce a method to generate a large class of probability distribution
based on a basis of percentile functions.
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Definition 2 (Mixture Method) Let y := (yi)1≤i≤n ∈ (R+
∗ )n, and ψ ∈ Pn(q).

The mixing of ψ with coefficients y is defined by

∀ε ∈ [0, 1), q(ε, y) = q(x, y1, . . . , yn) := 〈y, ψ(ε)〉 =
n∑
i=1

yiψi(ε). (1)

where 〈·, ·〉 stands for the Euclidean scalar product on Rn.

Note that q(ε) = 〈e, ψ(ε)〉 = q(ε, e), where e := (1, . . . , 1)T ∈ Rn. In order to
maintain consistent notations throughout the paper, the first variable ε will always
denote the level of probability used in the percentile function and x and element of
[0,+∞), i.e. the variable of the p.d.f. and c.d.f., whereas the element y of (R+

∗ )n will
represent a vector of mixing coefficients. The function ε 7→ q(ε, y) will be denoted,
for short, q(·, y). Accordingly, we denote by f(·, y) the p.d.f. and by F (·, y) the
c.d.f. associated to q(·, y). Both functions are defined on [0,+∞). It is clear that
the mixing method defines an element of D. As we will see in Corollary 1, it also
defines an element of D0, this is a direct consequence of Proposition 1.

Corollary 1 Let y and ψ as in Definition 2. Then, the p.d.f associated to q(·, y),
given by Equation (1), satisfies Assumption 1. Moreover, if ymin = min{yi|1 ≤ i ≤
n}, we have, for 1 ≤ k ≤ 2,

ykmin

∫ +∞

0
xkf(x)dx ≤

∫ +∞

0
xkf(x, y)dx ≤ 〈y, e〉k

∫ +∞

0
xkf(x)dx (2)

Proof: The first part of the proof is a direct consequence of Lemma 2. For the
integrability condition, let us write ∀ε ∈ [0, 1), q(ε)ymin ≤ q(ε, y) ≤ q(ε)× 〈y, e〉.

Therefore, we have boundaries on q(·, y) for the first order stochastic dominance.
This can be translated into the inverse order for integral of any increasing mapping,
see Levy [18]. Taking x 7→ xk, k ∈ {1, 2} yields Equation (2). �

Another result on the influence of the mixture method on the distribution is given
in Proposition 2. To this purpose, let us denote by | · | the Euclidean norm on Rn,
and by || · ||2 the L2-norm on D0.

Proposition 2 The mapping y 7→ f(·, y), from (R+
∗ )n into D0, endowed with the

Wasserstein distance W2, is Lipschitz with coefficient ||q||2.

Proof: For any y, z ∈ (R+
∗ )n, the Wasserstein distance satisfies the following in-

equality, which is a consequence of Schwarz inequality in Rn:

W2

(
q(·, y), q(·, z)

)
=

[∫ 1

0
< y − z, ψ(ε) >2 dε

] 1
2

≤

[
n∑
i=1

∫ 1

0
|ψ(ε)|2 × |y − z|2dε

] 1
2

.
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But, we have |ψ(·)| ≤ q(·) due to the non-negativity of ψ, and, thus, the following
inequality holds: W2(q(·, y), q(·, z)) ≤ ||q||2 × |y − z|. �

With these result in hand, we can investigate the topological properties of the set
of all possible mixtures given a basis of percentile functions.

Lemma 3 Let ψi ∈ D0, for i ∈ {1, . . . , n} and assume that the family ψ := (ψ)1≤i≤n
is linearly independent. Let A :=

{
q(·, y) | y ∈ (R+

∗ )n
}

be the set of mixtures
associated to the family (ψi)1≤i≤n. Then, the closure of A for W2 is the convex cone
spanned by the ψi, i ∈ {1, . . . , n} and an element of the closure is either 0 or an
element of D0.

Proof: Let (qk)k≥0 ∈ AN converging toward q∗. For each qk, there exists yk ∈
(R+
∗ )n. On the one hand, a converging sequence is also a Cauchy sequence, hence,

for any k ≥ 0, W2(qk, qk+p) tends to 0 as p goes to infinity. On the other hand,
W2

2 (qk, qk+p) = (yk+p− yk)TΨ(yk+p− yk) where Ψ is the n×n-matrix, the elements

of which are given by Ψk,i :=
∫ 1

0 ψk(ε)ψi(ε)dε for (i, k) ∈ {1, . . . , n}2. As the family ψ
is free, matrix Ψ is definite positive: it is the matrix of the quadratic form associated
to the L2-norm, with respect to the basis ψ. Thus, it implies that (yk+p− yk) tends
to 0 (for any norm on Rn) as p tends to infinity. As Rn is complete, the sequence
(yk)k≥0 is converging towards y ∈ (R+)n. It remains to show that q∗(·) = q(·, y),
which is a direct consequence of the triangular inequality for W2. Hence, any limit
of a sequence of elements of A can be written as q(·, y) with y ∈ (R+)n. This is
exactly the convex cone spanned by the ψi for i ∈ {1, . . . , n}. �

A direct consequence of the previous lemma is the following:

Corollary 2 Let the assumptions of Lemma 3 prevail. Set, for U ⊆ (R+
∗ )n, B :=

{q(·, y) | y ∈ U}. Then, if U is closed (respectively, compact) the set B is closed
(respectively, compact) for W2.

We now turn our attention to investigate the form of the derivatives of the c.d.f.
that will be used to define the dynamics of the c.d.f. in Section 3.

2.2 Derivatives of the c.d.f

Our purpose is to express the derivatives of the c.d.f. F (·, y), as given in Definition
2, in terms of y, ψ and F . These results will be at the core of the expression of the
stochastic evolution of the c.d.f. in Section 3. Indeed, in order to apply Itō calculus,
we need to obtain the expression of the first and second order derivatives.
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Corollary 1 provides the differentiability of F . In order to clarify the notations of
partial derivatives F , we set, Ḟx(x, y) := ∂F

∂x (x, y), the partial derivative with respect

to x and for y = (yi)1≤i≤n, Ḟi(x, y) := ∂F
∂yi

(x, y), the partial derivative with respect

to the ith component of the vector y, with i ∈ {1, . . . , n}. Accordingly, we set
F̈x,j(x), with j ∈ {1, . . . , n} and F̈i,j(x), with (i, j) ∈ {1, . . . , n}2, the second order
derivatives. Concerning functions on the real line, such as the ψi, i ∈ {1, . . . , n}, the
successive derivatives will be denoted by ψ′i and ψ′′i .

Proposition 3 We have the two following derivatives.

Ḟx (x, y) =
1

〈y, ψ′(F (x, y))〉
(3)

Ḟi (x, y) = − ψi (F (x, y))〈
y, ψ′ (F (x, y))

〉 (4)

Proof: As seen in the proof of Proposition 1, the mapping F (·, y) is the inverse of
q(·, y) and this relation writes, for any ε ∈ [0, 1),

F (q(ε, y), y) = ε (5)

By derivation of (5) with respect to yi, i ∈ {1, . . . , n}, we find out

ψi(ε)Ḟx (q(ε, y), y) + Ḟi (q(ε, y), y) = 0 (6)

By derivation of (5) with respect to ε, we find out

〈y, ψ′(ε)〉 Ḟx (q(ε, y), y) = 1 (7)

Substituting (7) in (6) yields, for any i ∈ {1, . . . , n},

Ḟi (q(ε, y), y) =
−ψi(ε)
〈y, ψ′(ε)〉

(8)

We recall that, if x = q(ε, y), then ε = F (x, y). Thus, Equation (8) gives us a
formulation of the first order derivatives of F with respect to yi, i ∈ {1, . . . , n}, as
a function of F (x, y), ψ and y. �

Now, let us turn to the second order derivatives with similar arguments used in
Proposition 3.
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Proposition 4 We have the following second derivatives.

F̈xx (x, y) = − 〈y, ψ′′(F (x, y))〉(〈
y, ψ′(F (x, y))

〉)3 (9)

F̈x,i (x, y) = ψi ((F (x, y))
〈y, ψ′′(F (x, y))〉(〈
y, ψ′(F (x, y))

〉)3 − ψ′i ((F (x, y))(〈
y, ψ′(F (x, y))

〉)2 (10)

F̈i,j (x, y) =
ψ′i ((F (x, y))ψj ((F (x, y)) + ψ′j ((F (x, y))ψi ((F (x, y))(〈

y, ψ′(F (x, y))
〉)2 (11)

−ψi ((F (x, y))ψj ((F (x, y))
〈y, ψ′′ ((F (x, y))〉(〈
y, ψ′(F (x, y))

〉)3
Now, let us state a result that will prove itself useful to describe the form of the
volatility in Section 3.

Lemma 4 For any y ∈ (R+
∗ )n, we have the following limit

lim
x→+∞

Ḟi(x, y) = 0

for i ∈ {1, . . . , n} and this convergence is uniform with respect to y on any compact
set.

Proof: The existence of such a c.d.f and its differentiability has been proved in
Proposition 1. As q is increasing in yi, i ∈ {1, . . . , n}, F is decreasing in this variable.
This implies that the convergence of F (x, y1, . . . , yn) towards 1, when x tends to +∞,
is uniform in yi, on interval of the form (0, yi]. Without loss of generality, let us
consider the case i = 1 for some given (y2, . . . , yn). For any y1 ∈ (η, y1 − η], and for
any 0 < |h| ≤ η, set

g(x, h) :=
1

h

[
F (x, y1 + h, y2, . . . , yn)− F (x, y1, . . . , yn)

]
The function g converges to 0 when x tends to +∞, uniformly in h. It also converges
to Ḟi+1(x, y1, . . . , yn) when h tends to 0. Therefore, we can permute the limits over
x and h to obtain the result. �

Before turning to the study of dynamic distributions, i.e. stochastic processes with
values in D0, let us analyse the effect of the mixture of percentiles on the risk of the
underlying distribution.
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2.3 Mixture and stochastic order

Let us consider a basis of percentiles (ψi)1≤i≤n. Let
(
y(1)
)

and
(
y(2)
)

be in (R+
∗ )n.

If, for any i ∈ {1, . . . , n}, y(1)
i ≥ y

(2)
i , then q

(
·, y(1)

)
� q

(
·, y(2)

)
, i.e. the distri-

bution associated to y(1) dominates the distribution associated to y(2) for the first
order stochastic dominance. Now, let us investigate the case of the second order
stochastic dominance and answer the question: can we characterize a mixture which
dominates the initial distribution with respect to this order? First, let us recall that
(f1, F1, q1) ∈ D0 dominates (f2, F2, q2) for the second order stochastic dominance if,
for any x ≥ 0, ∫ x

0
F1(x)dx ≤

∫ x

0
F2(x)dx,

with a strict inequality for at least one value of x.

Lemma 5 Let q ∈ D0 and ψ ∈ Pn(q). There exists h ∈ Rn and δ̂ > 0, such that,

for any δ ∈
(

0, δ̂
]
, q(·, e+ δh) � q(·), if, and only if,

∀ε ∈ [0, 1],

n∑
i=1

hi

∫ ε

0
ψi(u)du ≥ 0, (12)

and the inequality is strict for one ε.

Proof: If q(·, e+ δh) � q(·) for any δ ∈
(

0, δ̂
]
, we have

∀x ≥ 0,

∫ x

0

[
F (u, e+ δh)− F (u)

]
du ≤ 0 .

If we divide the two members of the previous inequality by δ > 0, and let it goes to
0, we obtain

∀x ≥ 0,

∫ x

0

n∑
i=1

Ḟi(u, e)hi du ≤ 0.

By Equations (3) and (4), it yields

∀x ≥ 0,

n∑
i=1

hi

∫ x

0
ψi(F (u, e))f(u, e)du =

n∑
i=1

hi

∫ F (x)

0
ψi(v)dv ≥ 0.
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Hence, the sufficient condition. For the necessary condition, we write a second order
Taylor expansion: for any u ∈ [0, x], there exists θ(u) ∈ [0, δ], such that

1

δ

∫ x

0
[F (u, e+ δh)− F (u)] du =

∫ x

0

n∑
i=1

Ḟi(u, e)hi du

+ δ

∫ x

0

∑
i,j

F̈i,i(u, e+ θ(u)h)hihj du

As F is twice continuously derivable, its second order derivatives are uniformly
bounded on [0, 1]× [e, e+ δh]. Therefore, there exists K(h) > 0 such that

1

δ

∫ x

0
[F (u, e+ δh)− F (u)] du ≤

∫ x

0

n∑
i=1

Ḟi(u, e)hidu+ δ K(h)

This implies that, for δ small enough
∫ x

0 [F (u, e+ δh)− F (u)] du ≤ 0 and the in-
equality is strict if x 6= 0. �

According, to Lemma 5, a deviation from the initial distribution q, with increasing
second order stochastic dominance, can decrease some mixture coefficients as long
as condition (12) prevails. Let us consider an example:

Example 1 Let us consider a basis of two log-normal percentiles, i.e. ψi(ε) =
eσiΦ

−1(ε), i ∈ {1, . . . , n}, where Φ is the c.d.f. of the standard normal law, 0 < σ1 <

σ2. We have
∫ ε

0 ψi(u)du = Φ
(
Φ−1(ε)− σi

)
×e

σ2i
2 . Assuming h2 < 0 < h1, condition

(12) writes, for any ε ∈ (0, 1),

h1

|h2|
≥

Φ
(
Φ−1(ε)− σ2

)
Φ (Φ−1(ε)− σ1)

e
σ22−σ

2
1

2

The right hand side of the inequality is uniformly bounded by e
σ22−σ

2
1

2 on [0, 1) since
the numerator and denominator are equivalent in 0+. Hence, the existence of h1 and

h2. Besides, set h1 = 1 and h2 = − exp
(

(σ2
1−σ2

2)
2

)
. Condition (12) is satisfied and

the distributions f(·, e+h) and f(·) have the same expectation. In this case, the two
percentile functions do cross each over. The modified percentile function, q(·, e+ h)
is above q(·) on [0, ε0) and below q(·) on (ε0, 1), for a unique ε0 > 0. It means that,
although q(·, e+ h) has the same expectation than q(·), it puts more weight on both
low and large values: it is a so called mean-preserving spread, see Levy [18].
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3 Dynamic distributions

We now turn to the dynamic extension of the previous analysis in order to model
the evolution of distributions.

Consider some f ∈ D0, with c.d.f F and percentile function q. We also set-
out some ψ ∈ Pn(q). Let (Ω,F ,P) a probability space. The operator E [·] de-
notes the expectation under P. We consider a n-dimensional Brownian motion
{W (t) := (Wi(t))1≤i≤n}t≥0, centred, with reduced volatilities, but a non-degenerated
correlation matrix C = [ci,j ]1≤i,j≤n on (Ω,F ,P). The natural filtration of W will
be denoted by F := {Ft}t≥0. We shall deal with a F-adapted diffusion process, de-
noted by

{
Y (t) := (Yi(t))1≤i≤n

}
t≥0

, with values in (R+
∗ )n. More precisely, set, for

i ∈ {1, . . . , n}, Yi(0) = 1 and

dYi(t) = µi(Yi)dt+ σi(Yi)dWi(t)

where µi and σi are Borelian mappings. We will work in the remaining of the paper
under the following assumption.

Assumption 2 For any t ≥ 0, the process {Y (t)}t≥0 is a Markov diffusion, square
integrable, with positive values P-a.s. Moreover, there exists K > 0 such that, for
any y > 0 and i ∈ {1, . . . , n}, we have µi(y)2 + σi(y)2 ≤ K × (1 + y2).

Let us provide two examples of stochastic processes satisfying Assumption 2.

Example 2 (Log-normal diffusion) Set, for any i ∈ {1, . . . , n}, σi(x) = σi × x,
with σi > 0 and µi(x) = µi × x. We have

Yi(t) = exp

[(
µi −

σ2
i

2

)
t+ σiWi(t)

]
The process Yi is positive and square integrable.

Example 3 (Jacobi process) Let 0 < m < µi < M , σi > 0, λi > 0, for any
i ∈ {1, . . . , n}, with

σ2
i

2λi
≤ µi −m
M −m

≤ 1− σ2
i

2λi

We set out

dYi(t) = λi(µi − Yi(t))dt+ σi
√

(M − Yi(t))(Yi(t)−m) dWi(t)
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The process Yi is a Jacobi process with values in (m,M),hence positive. It is also
square integrable. See, e.g., Delbaen and Shirakawa [9] or Ackerer et al. [1]. The
condition on drift and volatility functions in Assumption 2 is clearly satisfied because
the drift is linear and the volatility bounded.

Let us define the distribution-valued process.

Definition 3 We set, for any ε ∈ [0, 1), and t ≥ 0, q̃(t, ε) = q(ε, Y (t)), with q(·, y)
defined by Equation (1). The p.d.f, respectively, c.d.f., associated to q̃(t, ·) is denoted
by f̃(t, ·), respectively F̃ (t, ·).

The following lemma provides some boundaries on the expected Wasserstein distance
between the distributions at time s and t, with 0 ≤ t ≤ T . In particular, it provides
the continuity with respect to time, in terms on the expected Wasserstein distance,
which is a natural tool to control the stochastic evolution of probability densities.
The reader can refer to Alfonsi et al. [2], for applications in the convergence of Euler
schemes.

Lemma 6 For any T ≥ 0, with K as in Assumption 2, there exist a constant,
Cn,T,K such that, for any 0 ≤ s < t ≤ T ,

E
[
W2

(
q̃(t, ε), q̃(s, ε)

)]
≤ ||q||2Cn,T,K

√
1 + n

√
t− s

Proof: We use Jensen inequality and Proposition 2 to state

E
[
W2

(
q̃(t, ε), q̃(s, ε)

)]2 ≤ E
[
W2

2

(
q̃(t, ε), q̃(s, ε)

)]
≤ ||q||22 × |Y (t)− Y (s)|2

Then, by Problem 3.15, p. 306, in Karatzas and Shreve [15], under Assumption 2,
we have the existence of a constant Ln,K,T such that E

[
|Y (t)− Y (s)|2

]
≤ LK,T

(
1 +

|Y (0)|2
)
(t− s). But |Y (0)|2 = n, which yield the result. �

Now, let us turn to the explicit dynamics of the c.d.f.

Proposition 5 For any x > 0, the process
(
F̃ (t, x), Y (t)

)
t≥0

is a Markov diffusion,

with values on [0, 1]×(R+
∗ )n, with F̃ (t, 0) = 0. The dynamics of

(
F̃ (t, x)

)
t≥0

is given
by

dF̃ (t, x) =
n∑
i=1

Ai(x, Y (t))dt+
n∑
i=1

Bi(x, Y (t))dWi(t) (13)
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where the mappings Ai and Bi from (R+
∗ )n+1 into R are given by

Bi(x, y) =
−ψi(F (x, y))

〈y, ψ′(F (x, y))〉
σi(yi)

Ai(x, y) =
−ψi(F (x, y))

〈y, ψ′(F (x, y))〉
µi(yi) +

1

2
(σi(yi))

2Vi,i(F (x, y), y)

+σi(yi)
n∑
j>i

ci,jσj(yj)yjVi,j(F (x, y), y)

with, for F ∈ [0, 1] and y ∈ (R+
∗ )n,

Vi,j(F, y) :=

[
ψ′i(F )ψj(F ) + ψ′j(F )ψi(F )

〈y, ψ′(F )〉)2
− ψi(F )ψj(F )

〈y, ψ′′(F )〉
(〈y, ψ′(F )〉)3

]
(14)

Proof: By applying Itō calculus, we have

dF̃ (t, x) =
n∑
i=1

Ḟi
(
x, Y (t)

)
[µi(Yi(t))dt+ σi(Yi(t))dWi(t)]

+
1

2

n∑
i=1

n∑
j=1

F̈i,j
(
x, Y (t)

)
σi(Yi(t))σj(Yj(t))ci,jdt

(15)

Using Equations (8) and (9), we obtain, for i ∈ {1, . . . , n}, the mappings Ai and Bi.
�

The fact that x 7→ F̃ (x, t) is a c.d.f has some implication on its volatility (as a random
variable on (Ω,F ,P)), in particular, when x goes to to infinity. This property is
declined into two results, depending on the type of behaviour of the volatility of Y .

Corollary 3 Assume that

(i) For i ∈ {1, . . . , n}, σi(x) ≤ σix

(ii) There exists L > 0 such that, for all x ∈ R+ and y ∈ (R+
∗ )n, 0 ≤ xf(x, y) ≤ L

Then, for any T > 0 and i ∈ {1, . . . , n}, lim
x→+∞

E
[∫ T

0
B2
i

(
x, Y (s)

)
ds

]
= 0.
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Proof: By Problem 315 p. 306 in Karatzas and Shreve [15], we know that, under
Assumption 2, the random variable U∗i,T := max0≤s≤T Y

2
i (s) is integrable. We write

E
[∫ T

0
B2
i

(
x, Y (s)

)
ds

]
≤ σ2

iN
2 E
[
I{U∗i,T≤N}

∫ T

0
Ḟ 2
i (x, Y (s))ds

]
+ σ2

iL
2T P

[
U∗i,T ≥ N

]
Now, set η > 0 and choose N such that P

[
U∗i,T ≥ N

]
≤ η

2σ2
i TL

2 . As a consequence

of Lemma 4, there exists XN such that, for all x ≥ XN , for any y ∈ ([0, N ])n,∣∣∣Ḟi(x, Y (s))
∣∣∣ ≤ η

2σ2
iT

Hence, E
[∫ T

0 B2
i

(
x, Y (s)

)
ds
]
≤ η, for x ≥ XN . �

Remark 1 Point (ii) of Lemma 3 is satisfied, for instance, for log-normal distri-
butions as can be seen in the proof of Proposition 6.

Corollary 4 Assume that, for i ∈ {1, . . . , n}, the process Yi takes its values in the
finite interval (m,M). Then, for any T > 0 and i ∈ {1, . . . , n},

lim
x→+∞

E
[∫ T

0
B2
i

(
x, Y (s)

)
ds

]
= 0

Proof: By Assumption 2, we have the straightforward inequality

E
[∫ T

0
B2
i

(
x, Y (s)

)
ds

]
≤ K(1 +M2)T

[
sup

y∈[m,M ]n
{Ḟi(x, y)}

]2

As a consequence of Lemma 4, the right-hand side converges to 0 as x goes to infinity.
�

We can provide a result on the regularity of the expected value of F̃ (t, ·) and its
link with the expected value of f̃(t, ·). For technical reasons, we will work with a
basis of log-normal percentile functions. Indeed, in this setting, we can show that
the derivation with respect to x and the integration with respect to P do permute.

Proposition 6 Assume that, for all i ∈ {1, . . . , n}, ψi : ε 7→ eγiΦ
−1(ε), with γi >

0, with the notations set out in Example 1. Assume that [〈Y (t), e〉]−1 is square-
integrable. Then, M(t, ·) := E {F (·, Y (t))} is the c.d.f of an element of D0, with
p.d.f m(t, ·) = E {f(·, Y (t))}.
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Proof: First of all, it is clear that M(t, ·) is increasing and M(t, 0) = 0. By
Lebesgue monotone convergence theorem, we also have M(t, x)→ 1, when x→ +∞.
Therefore, it defines an element of D. In order to show that is is, actually, in D0,
we need to show that the derivatives of F (·, Y (t)) of order 1 and 2 are uniformly
bounded. Let us start with some facts deduced from the log-normal distribution.
Set φ := Φ′. We have

ψ′i(ε) =
γiψi(ε)

φ (Φ−1(ε))
and ψ′′i (ε) =

γ2
i ψi(ε) + γiψi(ε)Φ

−1(ε)

[φ (Φ−1(ε))]2

We also notice that q(1
2 , y) = 〈y, e〉. We define γmin := min{γi | 1 ≤ i ≤ n} and

γmax := max{γi | 1 ≤ i ≤ n} and set out, for any z > 0,

K(x, z) :=

 Φ
(

1
γmin

ln
(
x
z

))
if x ≥ z

Φ
(

1
γmax

ln
(
x
z

))
if x < z

We obtain the following inequality 0 ≤ F (x, y) ≤ K(x, 〈y, e〉). This shows that,
basically, the c.d.f. F (·, y) is below the log-normal c.d.f with the smallest volatility
if F (x, y) ≥ 1

2 and below the log-normal c.d.f with the largest volatility if F (x, y) < 1
2 .

Equations (7) and (9) and the calculations above yield the following inequality:

0 ≤ f(x, y) ≤
φ
(
Φ−1(F (x, y))

)
γminx

Using the boundary K(x, 〈y, e〉), we obtain

0 ≤ f(x, y) ≤ 1

γminx

 φ
(

1
γmin

ln
(

x
〈y,e〉

))
if x ≥ 〈y, e〉

φ
(

1
γmax

ln
(

x
〈y,e〉

))
if x < 〈y, e〉

In the left hand side we recognize the log-normal densities with mean ln(〈y, e〉) and
volatility γmin and γmax, respectively. By using the mode of these densities, we
obtain the following inequality:

0 ≤ f(x, y) ≤ H(y) :=
e
γ2max

2

γmin
√

2π〈y, e〉

Hence, f(x, Y (t)) = Ḟx(x, Y (t)) is uniformly bounded in x by some P-integrable
random variable H(Y (t)). Hence, M(t, ·) is derivable and its derivative is m(t, ·).
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We can go one step further and compute the second order derivative. For x < 〈y, e〉,
we have, for some constant c1 > 0,

|F̈xx(x, y)| ≤ 1

γ3
min

φ

(
1

γmax
ln

(
x

〈y, e〉

))
×
γmaxx− x ln

(
x
〈y,e〉

)
x3

The maximum of the function in right hand side is achieved at

〈y, e〉 exp

[
−γ2

max +
γmax

2
−
√
γ4
max +

3

2
γ3
max +

5

4
γ2
max

]
< 〈y, e〉

At this point, the maximum is of the form v(γ)(〈y, e〉)−2, hence P-integrable, by
assumption. The same argument applies to the case x > 〈y, e〉. This provides the
second order derivative as the expectation of F̈xx(x, Y (t)). �

Now, we can characterize the form of the probability density of q̃(t, ·) and F̃ (t, ·).
Let us introduce the following replacing function R : Rn × {1, . . . , n} × R → Rn:
for any r ∈ Rn, i ∈ {1, . . . , n}, and u ∈ R, R(r; i, u) = z where zj = rjIj 6=i + uIj=i.
That is the replacing function R transform the original vector r in the one in which
coordinate i has been replaced by u.

Proposition 7 Let Kt : (R+
∗ )n → R+ be the density Y (t). Let η(t, ε, x) and ρ(t, ε, x)

denote, respectively, the derivative of the percentile and the p.d.f., at fixed time t.
Assume also that there exists i? ∈ {1, . . . , n} such that ψi? ∈ D0.

Then, the derivative function satisfies, for any x ≥ 0 and ε > 0,

η(t, ε, x) =

∫
(R+
∗ )n−1

Kt
[
R
(
z; i?,

x−
∑

i6=i? ψi(ε)zi

ψi?(ε)

)] ∏
i6=i?

dzi

Proof: The result is obtained by a change of variable zi? = 〈ψ(ε), y〉, zi = yi, i 6= i?,
and the fact that ψi?(ε) > 0 as soon as ε > 0. �

In order to construct the functional Bollinger bands, we need to be able to define
a confidence interval for F (t, x), seen as a random variable on (Ω,F ,P). For this
purpose, we use the following functions:

Definition 4 For any η ∈ (0, 1), t > 0 and x > 0, Hη(t, x) is the solution (in

H ∈ [0, 1)) of P
[
F̃ (t, x) ≤ H

]
= η. For any η ∈ (0, 1), t > 0 and ε ∈ (0, 1), Iη(t, x)

is the solution in I ≥ 0 of P
[
q̃(t, ε) ≤ I

]
= η
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The functions x 7→ Hη(t, x) and ε 7→ I1−η(t, ε) are, respectively, a (non random)
c.d.f and a (non-random) percentile function, associated to the same probability
distribution. This is, basically, what is proved in next proposition. These functions
can be used to define the confidence interval on F̃ (t, x) or q̃(t, ε), respectively.

Proposition 8 Let the assumption of Theorem 7 prevails. Assume that Y takes its
values in a open (possibly not bounded) subset of (R+

∗ )n, with unattainable bound-
aries, and, for every non empty ball B in this subset P[Y ∈ B] > 0. Then,
the mapping ε 7→ Iη(t, ε) is derivable, increasing, with limε→0+ Iη(t, ε) = 0 and
limε→1− Iη(t, ε) = +∞

Proof: First, let us denote by Kt(y) the density of Y (t). Set, for any ε ∈ [0, 1),
h ≥ 0,

Q(ε, h) := P [q(ε, Y (t)) ≤ h] =

∫
y∈(R+

∗ )d
I{q(ε,y)≤h}Kt(y)dy

First, if ε > 0, the mapping h 7→ Q(ε, h) is increasing, with Q(ε, 0) = 0 and
limh→+∞Q(ε, h) = 1. The fact that Q(ε, 0) = 0 is clear, because q(ε, y) > 0 if
and only if ε > 0. It is increasing because, if 0 ≤ h1 < h2, {q(ε, y) ≤ h1} 6=
{q(ε, y) ≤ h2}. Indeed, as at least one of the ψi is not equal to 0 (because q(ε) > 0),
it is always possible to increase q(ε, y) by increasing the corresponding component
of y. Therefore, there is an open ball included in the second interval and not in the
first. By assumption of this proposition, it is given a positive weight by K(t, ·). The
limit when h goes to infinity is a consequence of the Beppo-Levi monotone conver-
gence theorem. Besides, the mapping (ε, h) 7→ Q(ε, h) is also derivable. This is a
consequence of theorem 7.

The mapping Q(ε, ·) defines a (continuous) bijection from [0,+∞) onto [0, 1). Hence,
η 7→ Iη(t, ε) is well defined and continuous with respect to both variable. It is increas-
ing because q(·, y) is increasing. Set Qmax(h) := P(〈Y (t), e〉 ≤ h) and Qmin(h) :=
P
[

mini{Yi(t)} ≤ h
]
. From the inequality mini{Yi(t)}×q(ε) ≤ q(ε, Y (t)) ≤ 〈Y (t), e〉×

q(ε), we deduce that

Qmax

(
Iη(t, ε)

q(ε)

)
≤ η ≤ Qmin

(
Iη(t, ε)

q(ε)

)
The first inequality yields the limit when ε goes to 0+ and the second the limit when
ε goes to 1−. By definition of F (x, y), we have q(ε, y) ≤ h ⇒ ε ≤ F (h, y). Hence,
the inverse of Iη(t, ·) is H1−δ(t, ·). �

At this stage, we can define the functional Bollinger bands by
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Definition 5 Set η ∈
(
0, 1

2

)
, the functional Bollinger bands, for the percentile, at

horizon t are defined by the mappings ε 7→ Iη(t, ε) (the lower band) and ε 7→ I1−η(t, ε)
(the upper band). The functional Bollinger bands, for the c.d.f., at horizon t are
defined by the mappings x 7→ Hη(t, x) (the lower band) and x 7→ H1−η(t, x) (the
upper band). These mappings are elements of D, as proved in Proposition 8.

An interesting property of this approach is that the lower and upper bands for
the percentile (respectively, the c.d.f) are percentiles (resp., c.d.f). Moreover, the
percentile upper band is the inverse of the c.d.f lower band (and symmetrically for
the other bands). Hence, the percentile F̃ (t, ·) can be compared to the lower and
upper bands Hη(t, ·) and H1−η(t, ·) through the concept of second order stochastic

dominance. If F̃ (t, ·) dominates Hη(t, ·) for the second order stochastic dominance, it
implies that the distribution at time t involves more risk than what was expected at
time 0, with a confidence level of 2 η. This situation can occur even if the averages of
the two distributions are the same. Such a situation could be a good trading signal.
This is what we want to illustrate in the following subsection.

4 Application to Credit Indices

In this section, we consider the evolution of the spreads of all the 125 components
of a the iTraxx Europe (with maturity 5 years). Although this index is rolled every
6 months, we will consider - for a purely illustrative purpose - a fixed composition,
corresponding to one given series of this index.

Given these samples, we can calculate, at each date tj , with t1 = 0 < · · · < tm, the
empirical percentiles function, denoted by q(tj , ·).

Consider n elements of D, represented by their percentile functions v := (vk)1≤k≤n,
assuming that one of those is in D0. We also assume that these elements are linearly
independent. As a typical example, we consider vk(ε) := exp(γkΦ

−1(ε)), where Φ
is the c.d.f of the standard normal law and the γk are positive, two by two distinct
real numbers. In this case, each vk is the percentile of a log-normal law.

A each date tj , we will perform a constrained regression of q(tj , ·) on v, using the
Wasserstein distance. A short calculation shows that it amounts solving the following
(constrained) quadratic program in Rn:

(R)j :

{
minz∈Rn

[
zT ·Ψ · z − 2Q(j)T · z

]
s.t. ∀k ∈ {1, . . . , p} zk ≥ δ > 0
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where Ψ is defined in the proof of Lemma 3, and Q(j) is a vector of Rn with
Qk(j) =

∫ 1
0 ψk(ε)q(tj , ε)dε. As in Lemma 3, the matrix is invertible because the

family of log-normal percentiles is free as soon as the volatilities are distinct.

In many practical cases that we will analyse in this section, the constraints of
program (R)j are not binding and this program amounts to a classic least-square
method.

Let us denote by ẑ(j) the solution of program (R)j , and set Ŷk(tj) := ẑ
(j)
k × (ẑ

(0)
k )−1

and ψk(·) = ẑ
(0)
k × vk(·), k ∈ {1, . . . , n}. By definition, ψ is an element of Pp(q̂0)

where q̂0 := 〈ẑ(0), v(·)〉 ∈ D0. Hence, we are in the framework developed above, and
we have obtained a sample path for Y , on the basis of which we can calibrate the
parameters defined in Section 3. For each date tj , we have q̂j(·) = 〈v(·), ẑ(j)〉.

Once the parameters of the diffusion Y are calibrated, according to Definition 3, we
have the full dynamics of q̃(t, ·).

In the following examples, we shall develop our method based on the function
Bollinger bands, defined in 5. Let us emphasize the analogy with the standard,
one dimensional case. For a single valued process, in the trading strategies area,
the Bollinger bands method consists, basically, to look at a confidence interval on
the price of a financial instrument, based on historical trailing volatility and aver-
age. Hence, implicitly a Gaussian case. Trading signals are triggered when the price
crosses the bands. See Kaufman [17], for definition and use in trading strategies, or
Bernis and Scotti [6] for applications to credit indices in the context of non-linear fil-
tering. In our setting, the equivalent of crossing the upper (respectively, lower) band
will be the case where the current distribution F (t, ·) dominates the upper (resp.,
lower) functional band Hη(t, ·) (resp. H1−η(t, ·)) for the second order stochastic dom-
inance. More precisely, we denote by F (tj , ·) the c.d.f. at time tj , stemming from
the fit of the empirical percentiles at this date. Given the calibration of the diffusion
parameters for Y on the sample 0 ≤ ti ≤ tm, we calculate at time tm, the lower
and upper functional bands, at horizon tm+l, Hη(tm+l − tm, ·), H1−η(tm+l − tm, ·),
with l > 0 some fixed horizon. Then, we can compare F (tm+l − tm, ·) to the bands.
This formulation can be transposed to the lower and upper functional bands on the
percentiles.

As an example, we display in Figure 1 the upper and lower bands on July the 13th

2015 (tm+l), as well as the c.d.f at this date. We take n = 2, γ1 = 25% and γ2 = 85%.
The dynamics of Y1, Y2 is assumed to be log-normal, with no drift. Calibration on
market data (1 year) yields σ1 = 29%, σ2 = 80% and a correlation of some 23%.
The lower and upper bands are computed using a normal approximation over the
last 5 business days, according to formula (13). It can be interesting to observe that
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the drift has a second order effect in this example. At this date, the c.d.f dominates
the upper band, for the SOSD, which means that the distribution is significantly
less risky than expected. In the same time, the average spread on July the 13th

2015 (tm) is around 75 bps (a rather high level over the last weeks) and is about 68
bps at tm+l. We can reasonably expect that the index average spread will keep on
tightening over the next few days: 5 business days later, it is around 63 bps.

Figure 1: Lower (5%) and upper (95%) bands, c.d.f on July the 13th 2015 and
July the 6th 2015.

We propose, for a deeper understanding of this example, to have a look at the form
of the volatility functions Bi(·, Y (tm)), 1 ≤ i ≤ 2. The two mappings are represented
in Figure 2, in the context of Figure 1. The volatility function B1(·, Y (tm)) is smaller
than B2(·, Y (tm)) for average and large values of x. This is due to the fact that the
mapping ψ2, associated to a large value of γ2, mainly controls the extreme percentiles
values. This basis function requires more volatility stemming from Y2, in order to
fit the percentiles in case of turmoil. In these periods, the extreme percentiles tend
to increase sharply, showing some decorrelation from the lower percentiles. The
same effect is captured by B2, which remains larger than B1 for large values of x.
However, as given by Corollary 3, both functions tends to 0 as x goes to +∞.

It may be interesting to investigate a criterion less restrictive than SOSD. For in-
stance, as displayed in Figure 3, on February the 1st 2016 the c.d.f began to cross
the lower band (even if not dominating it for SOSD). The average spread at tm is
close to its level at tm+l: respectively, 111 and 112 bps. However, the band crossing
detects the increase of the risk in the index distribution: 5 days later the average
spread is around 130 bps. The c.d.f. dominates the lower band in terms of SOSD
shortly after this date, but when it occurs most part of the spread widening has
already occurred.

 
Documents de travail du Centre d'Economie de la Sorbonne - 2017.07



23

Figure 2: Volatility functions Bi(·, Y (tm)), 1 ≤ i ≤ 2, where tm is July the 13th 2015.

Figure 3: Lower (5%) and upper (95%) bands, c.d.f on July the 13th 2015 and
July the 6th 2015.
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