Variation in prosodic planning among individuals and across languages
Benjamin Swets, Caterina Petrone, Susanne Fuchs, Jelena Krivokapić

To cite this version:
Benjamin Swets, Caterina Petrone, Susanne Fuchs, Jelena Krivokapić. Variation in prosodic planning among individuals and across languages. CUNY, 2016, Gainesville, United States. <halshs-01459819>

HAL Id: halshs-01459819
https://halshs.archives-ouvertes.fr/halshs-01459819
Submitted on 8 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
BACKGROUND

• Previous research (Swets et al., 2007; Petrone et al., 2011) found associations between working memory (WM) and the amount of prosodic material readers and speakers package together for comprehension and production.
 – Larger WM capacity seems to lead to larger prosodic packages during speech planning: Petrone et al. (2011) showed that the scope of incremental prosodic planning increased along with WM.
 – However, Petrone et al. did not distinguish WM effects from processing speed, and had participants read prepared utterances rather than plan their own speech.

• Although previous studies have found associations between WM and planning scope in language production (Swets et al., 2014, Petrone et al., 2011) in different languages, no studies have assessed such effects cross-linguistically in the same study.

• RESEARCH QUESTIONS: Is the size of prosodic increments during language production, as measured by the occurrence of pauses, associated with individual differences in WM and speed of processing?

METHOD

French (n = 32), German (n = 31) and English (n = 30) speakers described 3-object arrays with similar-looking (contrast) or different (control) objects in Positions 1 and 3.

Target utterances

CONTRAST: "The four-legged cat moves below the train and the three-legged cat moves above the train."

CONTROL: "The cat moves below the train and the wheel moves above the train."

PROCEDURE

• Experimenter served as addressee: Moved objects around in Powerpoint to match descriptions.

DESIGN AND PREDICTIONS

VARIABLES

• Sentence type (contrast vs. control)
• Language spoken: German, English, French
• Individual differences measures (left as continuous in analyses using linear mixed effects models):
 – **WM** assessed by reading span variant (e.g., Swets et al., 2007).
 – **Processing speed** assessed by letter comparison task (Salthouse, 1996). Task: To accurately complete as many “same” or “different” judgments as possible in 30 s. Task executed twice, and average scores were used.

MEASURES: Speech initiation time and number of pauses per utterance (defined as 70 ms or more between vocalizations).

• HYPOTHESES AND PREDICTIONS
 – If WM and processing speed underlie prosodic planning chunks both variables should predict unique variance in the number of pauses speakers make during articulation. In addition, these effects should be robust to cross-linguistic differences, including difference in speech onset times.

RESULTS

Mean speech onset time varied across languages, but did not vary as a function of WM or processing speed (SE in parentheses):

<table>
<thead>
<tr>
<th>Language</th>
<th>Contrast (Mean, SD)</th>
<th>Control (Mean, SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>2.15 (.26)</td>
<td>1.45 (.09)</td>
</tr>
<tr>
<td>German</td>
<td>3.36 (.27)</td>
<td>1.82 (.09)</td>
</tr>
<tr>
<td>English</td>
<td>2.97 (.27)</td>
<td>1.80 (.09)</td>
</tr>
</tbody>
</table>

Although speed of processing was associated with contrast sentence pauses in French, this pattern did not hold in German or English:

NUMBER OF PAUSES AS A FUNCTION OF LANGUAGE, PROCESSING SPEED, AND SENTENCE TYPE

<table>
<thead>
<tr>
<th>Language</th>
<th>Contrast</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

• Individual differences in WM lead to differences in planning processes, such that higher WM supports the planning of larger prosodic “chunks”.
• Processing speed may be more useful in more “incremental” languages in which speakers begin speech more quickly and create smaller prosodic chunks, e.g. French.

REFERENCES