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Abstract

The extraction of the jump component in the dynamics of asset prices has witnessed
a considerably growing body of literature. Of particular interest is the decomposition of
returns’ quadratic variation between their continuous and jump components. Recent con-
tributions highlight the importance of this component in forecasting volatility at different
horizons. In this article, we extend a methodology developed in Maheu and McCurdy
(2011) to exploit the information content of intraday data in forecasting the density of
returns at horizons up to sixty days. We follow Boudt et al. (2011) to detect intraday
returns that should be considered as jumps. The methodology is robust to intra-week
periodicity and further delivers estimates of signed jumps in contrast to the rest of the
literature where only the squared jump component can be estimated. Then, we estimate
a bivariate model of returns and volatilities where the jump component is independently
modeled using a jump distribution that fits the stylized facts of the estimated jumps.
Our empirical results for S&P 500 futures, U.S. 10-year Treasury futures, USD/CAD
exchange rate and WTI crude oil futures highlight the importance of considering the con-
tinuous/jump decomposition for density forecasting while this is not the case for volatility
point forecast. In particular, we show that the model considering jumps apart from the
continuous component consistently deliver better density forecasts for forecasting horizons
ranging from 1 to 30 days.
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1 Introduction

When it comes to forecasting the distribution of returns for risk management purposes, is

this separation between volatility and jumps equally important? In a reference paper, Ander-

sen et al. (2007a) provide empirical evidence that disentangling jumps from the continuous

component significantly help in forecasting the realized volatility at horizons up to 22 days.

The explanation for this result is the strong persistence in the continuous component and the

absence of autocorrelation in the jump component. Recently, Hansen et al. (2011), Maheu

and McCurdy (2011), and Shephard and Sheppard (2010) have suggested “complete" mod-

els of returns and volatility. In particular, Maheu and McCurdy (2011) propose a bivariate

specification of returns and volatility to obtain density forecasts at horizons up to 60 days.

They confirm, in the density context, numerous previous findings that intraday data improve

forecasts. We merge these two strands of this recent literature to investigate whether the sepa-

ration between the continuous and the jump components is of central importance in predicting

the density of returns. Our results strongly argue in favor of separating the two components

when forecasting the density of returns up to 60 days. Indeed, disentangling jumps from the

continuous component help in forecasting the density of returns.

Econometric methods used to disentangle jumps and volatility are unveiling new empirical

questions. While recent developments in financial econometrics allow to derive better fore-

casts of return densities (see Corradi and Swanson (2006) for a recent survey), the issue of

the inclusion of the jump component and its information content for such a purpose has not

been investigated to date. Hence, in this paper, we examine whether this refinement to use a

clear differentiation between jumps and volatility is empirically worth the trouble in a density

forecasting exercise. We conduct such an analysis at various horizons (up to 60 days) thus

allowing a very detailed analysis of the effects we are interested in.

Forecasting realized volatility has shown to be essential in empirical finance applications such

as portfolio choice (Fleming et al. (2003)), risk management activities (Clements et al. (2008))

or derivatives pricing (Christoffersen et al. (2014)). More generally, forecasts of the future

values of economic variables are used widely in decision making. Point forecasts, the often

traditional focus, are better seen as the central points of ranges of uncertainty. Consequently,

to provide a complete description of the uncertainty associated with the point forecast many

professional forecasters now publish density forecasts, or more popularly fan charts. In con-

trast to interval forecasts, which give the probability that the outcome will fall within a stated

interval, density forecasts provide a complete description of the uncertainty associated with

a forecast. They can thus be seen to provide information on all possible intervals. In con-

junction with the increased use of density forecasts by professional forecasters and central

banks, the academic literature has also devoted increased emphasis to density forecasting (for

surveying methods for predictive density evaluation, see among others Tay and Wallis (2000),

Clements (2005), Corradi and Swanson (2006), Timmermann (2006) and Wallis (2007) and

the corresponding chapters in Elliott and Timmermann (2016)).

This paper adopts the parsimonious specification of the Heterogeneous Autoregressive Model
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of the Realized Volatility (HAR-RV) model by Corsi (2009) to capture the well-known long-

memory dependence in volatility. We also proceed with the detection of jumps following

Huang and Tauchen’s (2005) statistical test relying on the bipower variation (BPV) estima-

tor. We adapt the test statistic to the more recently developed median realized volatility

(MedRV, Andersen et al. (2012)) following the empirical work by Theodossiou and Zikes

(2011) and Dumitru and Urga (2012) showing the interesting properties of this estimator.

By using intraday data, it is possible to extract jumps as the difference, when statistically

significant, between realized volatility and bipower variation/median realized volatility. This

decomposition allows to integrate (or not) jumps for forecasting purposes. Based on the

link between the conditional variance and the realized volatility highlighted by Maheu and

McCurdy (2011), we estimate different kinds of nested models. Those models are bivariate

models based on intraday data including separated jumps (median realized volatility) or not

(realized volatility). The motivation behind considering jump-robust measures for realized

volatility is that they simply have better predictive properties than non-jump-robust ones

(see Shephard and Sheppard (2010), footnote 3).

As mentioned above, we rely on Maheu and McCurdy’s (2011) bivariate model to simul-

taneously estimate returns and volatilities, while assuming a possible leverage effect. The

cornerstone of the model is the link that the authors establish between some realized volatil-

ity estimators and the "true" conditional volatility in light of the theory underlying these

estimators. Such a model allows to derive density forecasts from intraday data for which

models comparison can be done. These comparisons between the different bivariate specifi-

cations for daily returns and realized volatilities (both "naive" and jump-robust estimators)

are conducted using the predictive likelihood tests (Diebold and Mariano, 1995, and Amisano

and Giacomini, 2007). We rely on a three nested models: a Gaussian bivariate model using

realized variance as well as bivariate models based on median realized variance and a jump

component estimated from the dynamics of our pre-estimated intra-day jumps. To these three

models we also added two more, using for both realized variance measures and a mixture of

two-Gaussian distributions as a conditional distribution, in an effort to assess the quality of

the jump detection technique and modeling.

This paper makes two contributions. First, we extend the framework of Maheu and McCurdy

(2011) and show how to model jumps in their bivariate framework. Second, we assess the

importance of jumps when forecasting the density of returns by comparing jump-robust and

non-robust measures of realized volatilities when it comes to forecast the density of returns.

Compared to the "naive" measure of realized volatility, considering jumps specifically provides

a statistically significant improvement when it comes to forecasting the density of returns, for

forecasting horizons ranging from 1 day to 30 days. We thus extend the results in Andersen

et al. (2007a) (see also Corsi et al. (2010), Duong and Swanson (2015), Patton and Sheppard

(2015)) in showing the importance of disentangling jumps from the continuous component of

the distribution of returns for forecasting purpose.

The remainder of the paper is organized as follows. Section 2 summarizes the construction
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of the volatilities and jumps data sets used along with their summary statistics. Section 3

details our modeling and fitting of the estimated jumps’ distribution. In Section 4 presents

our modeling strategy as well as the methodology used to compare density forecasts. Section

5 discusses the empirical results. Section 6 concludes.

2 Volatilities and jumps estimation

This section briefly describes the data and well as the methodology that has been used to

estimate jumps and volatilities from four intra-day data sets.

2.1 Data description

Our data consist in four futures markets from four different asset classes: stock index, Trea-

sury bond, exchange rate and commodity. While all assets are very liquid (and are therefore

suitable for using realized estimators), we had to remove days where the trading activity has

not been sufficient to compute these estimators. To this end, we filter our four time series

with respect to three parameters: the length of the trading period in the day, the number of

zero-returns and the number of transactions. We choose to work with open-to-close returns be-

cause overnight returns have shown to follow a very different dynamics. In addition, including

overnight returns may alter our analysis when standardizing returns as we work with volatility

computed with intraday transaction data. All details about data are relegated in Appendix A.

2.2 Realized quantities

Let us assume that p(t), the logarithm of the asset price, follows the general stochastic volatil-

ity jump diffusion model:

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dJ(t) with t ≥ 0 (1)

where the mean µ(.) (predictable drift) is assumed to be continuous and locally bounded, and

the instantaneous (spot) volatility σ(.) is strictly positive and càdlàg (right continuous with

left limit). The mean, as well as the spot volatility, are both assumed to be independent from

the driving standard Brownian motion W (t).1 The finite activity counting process, noted

J(t), is normalized such that dJ(t) = 1 when a jump occurs at time t, and dJ(t) = 0 other-

wise. Finally, κ(t) is the jump size at time t, which is assumed to be random. The process in

equation (1), which belongs to the class of Brownian semimartingale processes with jumps,

allows returns to exhibit leptokurticity and volatility clustering, which are both relevant em-

pirical characteristics for financial time-series.

If we define [p](t) as the quadratic variation of the process in equation (1), then:

1The independence assumption is discussed in length in Barndorff-Nielsen and Shephard (2006), who
explain that it rules out leverage and volatility feedback effects. The absence of leverage has been recently
shown to be empirically relevant for S&P 500 index and futures returns (see Andersen et al. (2001a), Bollerslev
et al. (2006), and Bollerslev et al. (2009) among others).
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[p](t) = plim
n−1∑

j=0

[p(τj+1 − p(τj)]
2 (2)

where 0 = τ0 < τ1 < ... < τn = t is a sequence of partitions, and supj{τj+1 − τj} → 0 for

n → ∞. The quadratic variation of process in equation (1) may then be expressed as:

[p](t) =

∫ t

0
σ2(τ)dτ +

J(t)∑

j=1

κ2(tj) (3)

where tj are times when a jump occurs, implying dJ(tj) = 1. Eq. (3) represents the continu-

ous sample path along with the jump components of total return variation.

Because most of our analysis will focus on daily returns and volatilities, we consider the daily

time interval as unity. For each day d, we consider that M + 1 evenly spaced (calendar time

subsampling2) intraday observations are available for the logarithm of the asset price, noted

pd,j , thus allowing to compute M continuously compounded intraday returns each day as

rd,j = pd,j − pd,j−1 for j = 2, ...,M . The realized variance for day d is then given by the sum

of squared intraday returns:

RVd,M =
M∑

j=1

r2d,j (4)

Note that realized variance is the estimator of the total daily variance, and for this reason it

remains dependent on the selected sampling frequency 1/M . As frequency tends to infinity

(if intraday observations are available as often as desired), then:

RVd,M →p

∫ d

d−1
σ2(τ)dτ +

J(d)∑

j=J(d−1)

κ2(tj) (5)

Equation (5) illustrates that volatility, which is by nature a latent variable, is made “observ-

able" by the theory of quadratic variation. Realized volatility for our four assets are plotted

in Figures A.1 to A.4 along with price and return series.

The next question addresses how to disentangle jumps from the continuous component. For

this purpose, measures of diffusive volatility are necessary. Barndorff-Nielsen and Shephard

(2004) tackle this issue by proposing the bipower variation (BPV) measure, which is computed

as the scaled summation of the product of adjacent absolute returns. Formally, BPV is defined

as follows:

BPVd,M = ξ1

M−1∑

j=1

|rd,j ||rd,j+1| (6)

2The case of alternative subsampling such as business (or transaction) time subsampling has attracted some
attention in the literature (Ané and Geman (2000), Oomen (2006), Andersen et al. (2010)), as it allows to
recover normality for standardized returns. Nevertheless, to our best knowledge, these ideas lack asymptotic
theory and have not been extended yet to the analysis of jump-robust estimators.

4

 
Documents de travail du Centre d'Economie de la Sorbonne - 2017.06



where ξp ≡ 2p/2Γ(1/2(p+1)
Γ(1/2) ) = E(| Z |p) denotes the mean of the absolute value of standard

normally distributed random variable3, Z. The BPV is a consistent estimator of integrated

volatility, and allows to decompose the realized volatility into its diffusive and non-diffusive

parts. As the sampling frequency increases, the presence of jumps should have no impact,

because the return representing the jump is multiplied by a non-jump return which tends to

zero asymptotically. This is true in case of rare jumps (one each day), when the probability

of two consecutive jumps is negligible.

Nevertheless, the BPV has major drawbacks in empirical applications. First, in practice,

the sampling frequency is not high enough to eliminate the influence of jumps. Indeed, the

adjacent return does not tend to zero and thus multiply the large (jump) intraday return

thus resulting in an upward bias of the BPV. Second, the presence of zero-return that are

multiplied twice (with the previous and the next intraday return) leads to a downward bias of

the BPV. Some alternative jump-robust measures have been proposed in the literature to deal

with the aforementioned issues. Among them, the median realized RV (MedRV) (Andersen

et al., (2012)) is very promising, as it has better properties in realistic settings and remains

intuitive and easy to implement.4 The MedRV estimator reads as follows:

MedRVd,M =
π

6− 4
√
3 + π

(
M

M − 2

)M−1∑

j=2

med(| rd,j−1 |, | rd,j |, | rd,j+1 |)2 (7)

With the MedRV estimator, the impact of jumps completely vanishes except in the case of

two consecutive jumps (which is extremely rare at the sampling frequencies used in empirical

applications). In addition, the estimator is more robust to the occurrence of zero-returns

except when many zero-returns are likely to be consecutive. We thus decide to consider the

MedRV as a competitive alternative for our analysis and will provide all our results for both

the BPV and the MedRV estimators.

For these three estimators of realized volatility, theory suggests that returns should be com-

puted at the highest possible frequency, so that estimators converge asymptotically towards

the true conditional volatility. However, it is well-known since Andersen and Bollerslev (1997,

1998) and Taylor and Xu (1997) that microstructure noise (due to price discreteness, bid-ask

spread, non-synchronous trading, etc.)5 may impact the realized volatility estimator at high

frequency. To deal with this issue while making our results comparable with the rest of the

literature, we follow the 5 minutes ’rule-of-thumb’. As our four series are highly liquid assets,

this sampling interval is adequate to make our realized measures not to be impacted by the

noise.

3This notation is used consistently in the paper.
4We could use other estimators to obtain measures of integrated variance, such as QRV (Christensen et al.,

2009) estimator, which are shown to be more robust in the presence of microstructure noise and zero-returns.
A comparison of these estimators and their properties for density forecasting is beyond the scope of this paper
and left for future research.

5See Hansen and Lunde (2006) for a thorough discussion of this issue and Andersen et al. (2011) for a
theoretical and empirical analysis of the impact of microstructure noise on the forecast of realized volatility.
To deal with this issue, we use staggered versions of BPV and MedRV as advocated in Huang and Tauchen
(2005).
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In what follows, we only present results for the MedRV estimator of realized volatility for the

sake of space. Results using the BPV estimator are qualitatively similar and available from

the authors upon request.

2.3 Summary statistics

Table 1 displays descriptive statistics regarding our returns and volatility measures. From

the analysis of the table, returns on the four available assets are showing features that are

consistent with the stylized facts usually reported in the empirical financial literature: the

distribution of their returns are asymmetric and leptokurtic. They show different levels of

volatilities: the WTI’s volatility is the largest, reaching 37%, when the 10-year bond futures’

is 7.2%. All skewness are negative over the portion of history investigated here. Kurtosis are

all higher than 3, while still reaching various levels. The distribution with the fatter tails is

the bond futures one, while the one with the thinner tails is the USDCAD one. The table also

provides information regarding the distribution of the two volatility measures that we will

use in our empirical experiments: the RV and MedRV measures are variance estimates, and

the table displays statistics for their square root, so that to focus on volatility-like measures.

Several comments can be raised from this second part of the table. First, the average level of

our volatility measures is lower than the standard deviation of returns, especially in the case

of the MedRV measure: for the S&P500 index, the returns’ standard deviation is 20.1% when

the average square root of the RV is 13.1% and 12.4% in the case of MedRV. Similar cases

can be raised from the other three assets. Second, the volatility skewness is positive, as it is

distributed on the positive part of the real line. Third, the kurtosis is larger than 3, and its

largest reading is obtained in the case of the S&P 500. These features are consistent for both

the RV and the MedRV results.

S&P 500 10-year futures USDCAD WTI

Returns statistics

Average return 0.087 0.013 0.004 0.072
Volatility of returns 0.201 0.072 0.079 0.376
Skewness -1.984 -3.376 -0.150 -1.493
Kurtosis 72.849 87.579 10.057 31.039

RV statistics

Average volatility - RV 0.131 0.045 0.048 0.236
Volatility of volatility - RV 0.095 0.021 0.027 0.119
Skewness of volatility - RV 13.355 2.964 2.208 2.668
Kurtosis of volatility - RV 458.792 36.097 11.747 22.075

MedRV statistics

Average volatility - MedRV 0.124 0.043 0.045 0.221
Volatility of volatility - MedRV 0.091 0.019 0.026 0.114
Skewness volatility - MedRV 11.195 1.626 2.423 2.915
Kurtosis of volatility - MedRV 330.545 8.080 14.124 29.043

Table 1: Descriptive statistics

2.4 Detecting jumps

Our methodology closely follows Boudt et al. (2011) which highlights the importance of

consider intraweek periodicity for jump detection. Their methodology has been used in Lahaye

et al. (2011). The estimation of intraweek periodicity is inspired by the early estimator of

Taylor and Xu (1997). Boudt et al. (2011) modifies the estimator to make more robust to
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the presence of jumps in the intraday data. The estimated intraweek periodicity is then used

to test for jumps following the methodology developed in Lee and Mykland (2008) (see also

Andersen et al. (2007b)). In particular, we consider the test statistic:

Jt,i ≡
|rt,i|
σ̂t,i

(8)

where rt,i is the ith return in day t and σt,i is the latent volatility at that time. σt,i is estimated

using an estimator which is robust to jumps.

While Boudt et al. (2011) follow Lee and Mykland (2008) in choosing the BPV esimator,

we opt for the MedRV which has better finite-sample properties developed in Andersen et al.

(2012). The window on which the robust-to-jumps estimator has to be computed is a tricky

question (see the discussion in Lahaye et al. (2011) Section 2.1). We follow Andersen et al.

(2007b) and use the estimated volatility over the day t. Lee and Mykland (2008) suggests

to use the distribution of the statistic’s maximum to conclude on the presence of jumps. In

particular, if

Jt,i > G−1(1− α)Sn + Cn (9)

with n the total number of intraday returns in the full sample (number of days times number

of intraday returns each day) and

G−1(1− α) the 1− α the quantile function of the standard Gumbel distribution

Cn =
√
2 log n− log π + log(log n)

2
√
2 log n

and Sn =
1√

2 log n

The 1−α quantile function of the standard Gumbel distribution is given by − log(− log(1−α)).

We now introduce periodicity considerations in the original estimator of Lee and Mykland

(2008) following Boudt et al. (2011). The main idea is to consider that the conditional

volatility σt,i is the product of a slowly-varying component δt,i and a deterministic circadian

component ft,i whose aim is to model the intraweek periodicity. As in Taylor and Xu (1997),

Boudt et al. (2011) assume that this deterministic component of the variance process sums

to one:

∫ t

t−1
f2(s)ds = 1 (10)

The modified version of the Lee and Mykland’s test according to Boudt et al.’ work is given

as:

FiltJt,i ≡
|rt,i|
δ̂t,if̂t,i

(11)

where δ̂t,i corresponds to the daily MedRV and f̂t,i is the estimated circadian component.

7
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The computation of the circadian component is as follows. First, we standardize intraday

returns to allow for comparability across sample days. Intraday returns are standardized

using MedRV for reasons presented above (Boudt et al. (2011) rely on the BPV estimator).

Let the standardized ith intraday return for day t be

r̄t,i =
rt,i√

MedRV ∆
t

(12)

Second, we use the nonparametric Weighted Standard Deviation (WSD) which has better

efficiency under normality than classical estimators. The WSD nonparametric periodicity

estimator for the ith intraday return in the sample days is given by:

f̂WSD
i =

WSDi√
1
M

∑M
j=1 WSD2

j

(13)

with

WSDj =

√√√√1.081×
∑Nj

h=1wh,j r̄
2
h,j∑Nj

h=1wh,j

(14)

where the weights are given by wh,j = w(r̄h,j/f̂
ShortH
j ) with a weighting function w(z) = 1 if

z2 ≤ 6.635 and 0 otherwise. 6.635 represents the 99% quantile of the χ2(1) distribution.

f̂ShortH
i =

ShortHi√
1
M

∑M
j=1 ShortH2

j

(15)

The standardization in Eq. (13) ensures that the standardization condition in Eq. (10) is met.

The Shortest Half (ShortH) is defined as:

ShortHj = 0.741×min(r̄(hj),j − r̄(1),j , r̄(hj+1),j − r̄(2),j , . . . , r̄(nj),j − r̄nj−hj+1,j) (16)

where r̄(1),j , . . . , r̄(nj),j are the ordered standardized intraday returns for the jth period of

each day such that r̄(1),j < r̄(2),j < . . . < r̄(nj),j .

We implement this methodology and allow for a different periodicity each day of the week and

each year over the full sample. From Figure 1, we observe a weekly profile that is very similar

to the one in Boudt et al. (2011) and which exemplifies the variations in trading activity over

the all week. Jumps detected for the four series are plotted in Figures A.1 to A.4. From the

all Figures, it is clear that jumps tend to cluster in more volatile periods. Table 2 provides

descriptive statistics for jumps detected using the Boudt et al.’s (2011) methodology. The

number of days where a jump occurs is in line with the estimates in Andersen et al. (2007a)

as it is in a range of 4 to 8%.
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Figure 1: WSD periodicity for the four assets.

Ann. Average Ann. Std. Dev. Skewness Kurtosis % of jumpy days

S&P 500 -0.296 0.125 0.308 5.825 0.03942
WTI -0.562 0.228 0.190 2.833 0.03934

USDCAD 0.040 0.044 0.263 4.131 0.0757
TY -0.036 0.057 1.310 13.433 0.0543

Table 2: Descriptive statistics of the jump dataset

3 Fitting the distribution of intraday jumps

In standard asset pricing models jumps are usually characterized by a compound Poisson pro-

cess such as in Merton (1976)’s model: the number of jumps follows a Poisson distribution and

the jump size is distributed after a continuous distribution such as the Gaussian or the double

exponential distributions (see Kou and Wang (2004)). The type of jumps that are obtained

with the intraday methodologies described earlier present features that turns their empirical

distribution incompatible with that of continuous distributions. With those methodologies,

jumps are infrequent and potentially large. Therefore, a distribution with thin tails should

not be able to pass a goodness-of-fit test comparing it to a sample of jumps. Second, jumps

are estimated by thresholding intraday returns: this means that it is very unlikely that the

absolute value of the estimated jumps will reach a very low value. The empirical distribution

of jumps will therefore take the shape of a curve with two peaks: one for the jumps with a

negative value and one for the jumps with positive ones. With these facts in mind, standard

9
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distributions – even the fat tailed ones – will not be able to pass an adequation test to such

data-sets and another modeling direction must be explored. Descriptive statistics for our

jumps data-sets are presented in Table 2: jumps are exhibiting asymmetry and leptokurticity

levels that are not compatible with a Gaussian distribution. Then, Figure 2 displays the em-

pirical distribution of jumps estimated from a non parametric estimator: the two peaks shape

is obvious from those figures. In this section, we present our empirical approach to model the

distribution of the jump sizes.
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Figure 2: Empirical distribution of jumps for S&P 500, WTI, T-notes and USDCAD exchange
rate. The empirical distribution has been estimated using a non-parametric kernel.
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Figure 3: Empirical distribution of jumps for S&P 500, WTI, T-notes and USDCAD exchange rate. The empirical distribution has
been estimated using a non-parametric kernel.
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For the sake of clarity in this section, we focus only on dates for which a jump has been

detected and we denote by N such a set of dates. In the following, we suppose that the jumps

(Jt)t∈N are i.i.d random variables and we denote by fJ : R → R+ the corresponding density

function. From Figure 2 we clearly see that fJ is not only bimodal but also very small in a

vicinity ]a : b[ of zero. In order to reproduce this empirical feature we propose the following

natural candidate:

fJ(x) = λ
f1(x, θ1)1x<a∫ a
−∞ f1(x, θ1)dx

+ (1− λ)
f2(x, θ2)1x>b∫ +∞
b f2(x, θ2)dx

(17)

where λ ∈]0, 1[ and where f1 and f2 are two arbitrary density functions depending on two

vectorial parameters θ1 and θ2. If we denote by F1 (resp. F2) the distribution function

associated to f1 (resp. f2) we can write

fJ(x) = λ
f1(x, θ1)1x<a

F1(a)
+ (1− λ)

f2(x, θ2)1x>b

1− F2(b)
(18)

and fJ may be simply seen as a mixture of left-right truncated distributions. In order to

offer the maximum flexibility in terms of goodness-of-fit given the jumps’ asymmetric and

leptokurtic distribution as well as their two-peak properties, the set of parameters θ1 and θ2
do not need to be the same (even, f1 and f2 do not need to belong to the same family of

distributions). In addition with the mixture and the truncation parameters, fJ also depends

on θ1 and θ2 and we favor four different potential candidates for fi, i ∈ 1, 2 selected for their

parameter parsimony as well as their ability to fit the jumps’ tail behaviors: the Gaussian

distribution (mainly as a benchmark for leptokurticity), the scaled Student distribution6., the

Cauchy distribution7 and the double exponential distributions8. Some of them have been

used for modeling jump sizes – especially the first and the last one – when the other two have

the ability to better fit tail behaviors. We discarded candidates coming from the Generalized

hyperbolic distribution family: with 5 parameters, this distribution would require 12 param-

eters to be estimated when adding the threshold parameters a and b. We want to rely on

models that stand a chance to pass goodness-of-fit tests while remaining as parsimonious as

possible.

6In this case θi = (νi, σi) ∈ R
∗
+ ×R, fi(x, θi) =

1

σi

√
νi B( 1

2
,
νi

2
)

(

1 + x2

σ2
i
νi

)− νi+1

2

where B is the Beta function

(beta using R) and ∀x ∈ R+ (the negative values are obtained by symmetry), Fi(x) = 1 −
B̃

(

σ
2
i
νi

x2+σ
2
i
νi

,
νi
2

,
1
2

)

2B

(

νi
2

,
1
2

)

where B̃ is the incomplete Beta function (Ibeta using the zipfR package)
7In this case, θi = (ai, x

0
i ) ∈ R

∗
+ × R, f(x, θi) =

1
π

[

ai

(x−x0
i
)2+a2

i

]

and Fi(x) =
1
π
arctan

(

x−x0
i

ai

)

+ 1
2
.

8In this case θi = (µi, bi) ∈ R × R
∗
+, f(x, θi) = 1

2bi
exp

(

−
|x−µi|

bi

)

and Fi(x) =










1
2
exp

(

x−µi

bi

)

if x < µi

1− 1
2
exp

(

−
x−µi

bi

)

if x ≥ µi

.
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Single Gaussian Gaussian Scaled Student Cauchy Double exponential

S&P 500 0% 9% 41% 96% 4%
WTI 0% 16% 80% 84% 1%

USDCAD 0% 0% 31% 67% 0%
TY 0% 2% 14% 82% 0%

Table 3: Test results for the Kolmogorov-Smirnov goodness-of-fit test. The table reports the
p-values associated to the null hypothesis of an adequation of the proposed distribution to
the time series.

The parameters of each distribution is estimated over each jump dataset full sample by numer-

ically maximizing the log-likelihood associated to each model. We then run a Kolmogorov-

Smirnov test for each of the models and obtain the results presented in Table 3. "Single

Gaussian" refers to a simple Gaussian distribution fitted to each time series. The single

Gaussian distribution is rejected for the four datasets, as it is neither asymmetric nor bi-

modal. The Gaussian bi-model distribution is rejected as well: it fails at capturing the tail

behavior of the jumps’ distribution. The Double exponential distribution is always rejected

at a 5% risk level. Finally, the Cauchy and the scaled Student distributions are always ac-

cepted at a 5% risk level. However the acceptance probability are consistently higher for the

Cauchy case: for this reason9, we will rely on this distribution throughout the forthcoming

empirical analysis. Figure 3 displays the empirical distribution of the estimated models vs.

the empirical distribution of the estimated jumps, for a more graphical assessment of the

Kolmogorv-Smirnov test’s results.

4 The models

4.1 Linking conditional variance and realized volatility

An important idea in Maheu and McCurdy (2011) is to relate the conditional variance of daily

returns σ2
t to the realized volatility estimator through a cross-equation restriction. Barndorff-

Nielsen and Shephard (2002) and Andersen et al. (2003) show that under some empirically

realistic assumptions, the conditional variance of daily returns should be equal to the condi-

tional expectation of quadratic variation with respect to the past information.10 Assuming

that the realized volatility RVt is an unbiased estimator of the quadratic variation, it follows

that:

σ2
t = Et−1(RVt).

In other words, the one-period-ahead conditional expectation of the realized volatility should

equal the “true" conditional volatility assuming the unbiasedness of the realized volatility

estimator. Under the assumption of a log-normal distribution for the realized volatility11, the

9The fact that the scaled Student distribution both rely on parameters distributed over the real line and
over N could also be problematic for the rolling estimation procedure that we intend on using.

10These ideas were already developed in papers such as French et al. (1987) or Zhou (1996).
11Empirical evidence of this hypothesis can be found in early contribution such as Andersen et al. (2001a

and b, 2003). Similar evidence for foreign exchange rates, futures markets, crude oil futures and the FTSE
index may be found in Pong et al. (2004), Thomakos and Wang (2003), Wang et al. (2008) and Areal and

13
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conditional expectation may be simply written as:

σ2
t = Et−1(RVt) = exp

(
Et−1 log(RVt) +

1

2
Vart−1(log(RVt))

)
. (19)

Using the results presented in Section 2, we can extend this theory by writing the realized

volatility RV as the sum of the median realized volatility MedRV and the jump component

quadratic variation when the latter is significant:

σ2
t = Et−1


MedRVt +

J(t)∑

j=J(t−1)

κ2(tj)


 (20)

where

Et−1(MedRVt) = exp

(
Et−1 log(MedRVt) +

1

2
Vart−1(log(MedRVt))

)
. (21)

Hence, if we are interested in the impact of disentangling jumps from the rest of the volatility,

using Eq. 20 constitutes an appropriate way to proceed.

We now turn to the specification of a predictive model for realized volatility measures, namely

the HAR model. Note that the choice of this model is central for the role that conditional

expectation in Eq. (19) and (20) will play in forecasting.

4.2 Heterogeneous autoregressive model of realized volatility

The HAR-RV model initially developed by Corsi (2009) has been used with success in a

number of recent contributions (Andersen et al. (2007a), Corsi et al. (2008), Liu and Ma-

heu (2009), Duong and Swanson (2015), Patton and Sheppard (2015) among many others).

The economic intuition behind this model is that different groups of investors have different

investment horizons, and consequently behave differently (see Müller et al. (1997) for the

presentation of the HARCH original model relying on the Heterogeneous Hypothesis). The

genuine HAR-RV model is formally a constrained AR(22) model using RV as the realized mea-

sures of variance but the HAR can naturally accommodate all realized measures (as MedRV )

and transformations of these measures.12 In particular, the log transformation has been found

to perform very well and we will it in conjunction with our different realized measures RM .

The HAR model using daily, weekly and monthly13 realized volatility components may be

written as follows:

log(RMt) = ω + φ1 log(RMt−1) + φ2 log(RMt−5:t−1) + φ3 log(RMt−22:t−1) + ut (22)

where log(RMt−k:t−1) =
1
k

k∑
j=1

log(RMt−j).

Taylor (2002), respectively.
12Forsberg and Ghysels (2007) and Ghysels and Sohn (2009), note that other power transformations may

be used to model the dynamics of the realized volatility. These studies show that for a number of stochastic
volatility processes used in the financial literature the absolute value of the realized volatility is a better
predictor of the future realized volatility, particularly for longer horizons. We do not follow this approach
here.

13The optimal lag structure for the HAR model has been investigated in Craioveanu and Hillebrand (2010)
who find that the genuine structure suggested in Corsi (2009) performs the best.

14
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In the following, the error term ut is supposed to be Gaussian14 to cope with 19 and 21.

4.3 The bivariate model for daily returns and volatilities

In this section we present the bivariate model inspired by Maheu and McCurdy (2011). The

main interest behind multivariate models consists in obtaining densities forecasts. More pre-

cisely our approach is made of three key ingredients: an independent jump component15, a

conditional variance (with or without jumps) that is linked to appropriate realized volatility

measures and a conditionally Gaussian heterogeneous autoregressive model of realized volatil-

ity. Thus, in the model with at most one jump at time t the dynamics of the log-returns may

be written as

rt = µ+ σtǫt + 1tJt (23)

where σt is made observable through the relation σ2
t = Et−1(RMt) with a well chosen16

realized measure RM fulfilling

log(RMt) = ω+φ1 log(RMt−1)+φ2 log(RMt−5:t−1)+φ3 log(RMt−22:t−1)+γ1ǫt−1+γ21t−1|Jt−1|+ut.

(24)

In the preceding equation, γ1 is a parameter capturing a feedback effect from past returns

to the subsequent increment in volatility. Finally, γ2 is meant to materialize the feed-

back effect from past jumps to increases in volatility17. In 23 and 24 we suppose that

((ǫt,1t, Jt, ut))t∈{0,...,T} are independent random variables and we denote by (Ft)t∈{0,...,T} the

associated filtration18. Assuming that the ut are i.i.d N(0, 1) we have

σ2
t = Et−1(RMt) = exp

(
Et−1 log(RMt) +

1

2
Vart−1(log(RMt))

)
. (25)

Concerning the separated jump component we suppose that 1t−1 follows a binomial distribu-

tion, with a time independent parameter p representing the probability that a jump occurs at

time t, and that the jumps Jt follows the mixture of left-right truncated Cauchy distributions

described in Section 3.

When p = 0 (and thus RM=RV), this model nests the so-called HAR-RV model developed

in Maheu and McCurdy (2011) and for our empirical investigations ǫt can either be Gaussian

or a mixture of Gaussian distributions19, the later being able to span a very large scope of

14As in Maheu and McCurdy (2011), conditional non-normality is introduced in the bivariate modeling via
return equation and not in the variance one.

15According to the empirical descriptive statistics about jumps extracted using the detection methodology
developed in Section 2, we favor in this section a model with at most one jump where the jump distribution
is carefully estimated using the parametric family of distributions described in Section 3.

16As explained in Section 4.1, when the jump probability p is null we take RM=RV and RM=MedRV
otherwise.

17On the impact of jumps in returns on volatility see for example Duffie et al. (2000), Eraker et al. (2003),
Eraker (2004), Maheu et McCurdy (2004), Aït-Sahalia et al. (2015) and Carr and Wu (2010) among others.

18We can see easily that this filtration is also generated by the observations of the log-returns and of the
realized measure RM until time t.

19The mixture of two Gaussian distributions has the density

fMN (x) = αn(x, µ1, σ1) + (1− α)n(x, µ2, σ2),
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couples of kurtosis and skewness as presented in Bertholon et al. (2006). In this case, using

the independence hypothesis, we obtain the conditional joint density of the pair (rt, RVt) and

the bivariate model is estimated by conditional maximum-likelihood.

When p 6= 0 (and thus RM=MedRV), even if the conditional joint density of the pair (rt, RVt)

is still available, we favor a two-steps estimation strategy that takes advantage of the jump

detection presented in Section 2. In fact, the probability p is first estimated by the proportion

of jumpy days in our datasets and the parameters of the jump density fJ are obtained from

the classical maximum-likelihood for independent observations. In a second step, remarking

that the conditional density of the log-returns is given by

frt(z | Ft−1) = p

∫ +∞

−∞
fǫ(

x− µ

σt
)fJ(z − x)

dx

σt
+ (1− p)fǫ(

z − µ

σt
) (26)

where fǫ is the density of the innovations in the return equation, we obtain the remaining pa-

rameters using the explicit conditional joint density of the pair (rt,MedRVt) and conditional

maximum-likelihood.

Across our empirical experiences, we focus on the following models:

– A HAR-RV-G model for which ǫt ∼ N(0, 1), p = 0 and γ2 = 0

– A HAR-RV-MN model for which ǫt ∼ MN(α, µ1, σ1, µ2, σ2), p = 0 and γ2 = 0

– A HAR-MedRV-MN model for which ǫt ∼ MN(α, µ1, σ1, µ2, σ2), p = 0 and γ2 = 0

– A HAR-MedRV-Jump-No Feedback model for which ǫt ∼ N(0, 1), p 6= 0 and γ2 = 0

– A HAR-MedRV-Jump-Feedback model for which ǫt ∼ N(0, 1), p 6= 0 and γ2 6= 0.

4.4 Test methodology

To evaluate the relative accuracy of competing forecasts, we rely on the test statistics devel-

oped by Diebold and Mariano (1995) in the context of the comparison of density forecasts

(Amisano and Giacomini (2007)). In our presentation we follow Maheu and McCurdy (2011),

focusing on the ability of the approach to test multi-period forecasts.

For M ∈ {A,B} we consider two competing models and we denote by θM the corresponding

parameters that drive the log-returns and the intraday volatility measure dynamics. Starting

from a sample (r1, ...rT ) of size T we want to test forecast horizons 1 ≤ k ≤ kmax through

rolling-window forecasting schemes of size τ20. Thus, for k ≥ 1, the average predictive likeli-

hood is given by

where (α, µ1, µ2, σ1, σ2) ∈ [0, 1]×R
2
×(R∗)2 and where n(., µi, σi) is the density of a Gaussian random variable

with expectation µi and standard deviation σi (see for example Kon (1984), Akgiray and Booth (1987), Tucker
and Pond (1998) and Alexander and Lazar (2006))

20In the empirical part, we estimate the models on a rolling window of 1,260 daily observations for all but
the MCD series (700 observations).
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DM,k =
1

T − τ − kmax + 1

T−k∑

t=τ+kmax−k

log fM,k(rt+k, θ̂
M
t+k|Ft), (27)

where θ̂Mt+k is estimated using the sample (rt−τ−kmax+1, ..., rt) and where

fM,k(rt+k, θ̂
M
t+k|Ft)

is the conditional density of the log-returns at time t+ k, given Ft and θ̂Mt+k, evaluated at the

realized log-return rt+k. The particular form of (27) allow us to obtain a term structure of

average predictive likelihoods, (DM,1, ..., DM,kmax
) to compare the performance of alternative

models, M, over an identical set of out-of-sample data points (rτ+kmax , ..., rT ).

In our setting the conditional densities fM,k(x, θ̂
M
t+k|Ft) do not have a closed form except for

k = 1 and have, in general, to be evaluated generating independent realizations of rt+k given

Ft and using classical density kernel estimators. Nevertheless, remarking that

fM,k(rt+k, θ̂
M
t+k|Ft) =

∫

R+

fM,k(rt+k, θ̂
M
t+k|σ2

t+k)p(σt+k|Ft)dσ
2
t+k (28)

we have

fM,k(rt+k, θ̂
M
t+k|Ft) ≈

1

N

N∑

i=1

fM,k(rt+k, θ̂
M
t+k|(σ2

t+k)
i) (29)

where fM,k(yt+k, θ̂
M
t+k|σ2

t+k) is now perfectly known and where (σ2
t+k)

i are independent real-

izations of σ2
t+k generated from the preceding dynamics with parameters θ̂Mt+k and starting

values σt and rt as explained in Maheu and McCurdy (2011).

According to Amisano Giacomini (2007), under the null hypothesis of equal performance, the

statistic based on predictive likelihoods of horizon k for models A and B,

tkA,B =
(DA,k −DB,k)

√
T − τ − kmax + 1

σ̂A,B,k
(30)

is asymptotically standard Normal, where σ̂A,B,k is a properly selected estimator for the

variance of

log fA,k(rt+k, θ̂
A
t+k|Ft)− log fB,k(rt+k, θ̂

B
t+k|Ft).

Here, as proposed Amisano Giacomini (2007), we use a Newey-West estimator that take into

account heteroskedasticity and autocorrelation. One of the main interest of this approach

comes from the fact that the two models can be nested or not21 and can be estimated using

very different techniques from the moment that they are based on a finite estimation window.

21In our empirical part some nested models as HAR-MedRV-Jump-Feedback and HAR-MedRV-Jump-No
Feedback will be compared.
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5 Empirical results

Tables 4, 5, 6 and 7 present the estimation results for the four datasets used in this article:

the S&P 500, the WTI, the USDCAD and the the 10-year bond futures. The estimation has

been performed over rolling windows of 1260 trading days, that is 5 years of data22. The

tables display the average values for each parameters across our rolling estimations, as well

as the 5 and 95% quantiles. For most of the parameters, both quantiles across our estimates

are of the same sign, pointing into the direction of statistically significant parameters.

The γ1 parameter is found to be negative and different from zero for the S&P 500 and the

WTI, highlighting that negative returns contribute positively to the subsequent volatility. In

the case of bond futures and in the case of USDCAD, this parameter is not found to be sta-

tistically significant when the conditional distribution of returns is chosen to be asymmetric.

This conclusion both holds for the mixture of Gaussian distribution and the discontinuous

jump distribution introduced in Section 3. Overall, across all models, when using both types

of non-Gaussian conditional distribution, the γ1 parameter is found to be weaker. Now, when

comparing the samples, leverage effects – that is an asymmetric feedback from past returns

into subsequent volatilities – seem to be weaker for the US 10-year bond futures and the

Canadian Dollar than for the rest of the assets considered here.

Turning to the jump-to-volatility feedback parameter γ2, our results suggest that only in the

case of the WTI is this parameter significantly different from zero. In the S&P 500 case, the

estimates vary from -4.807 to 58.218: despite the negativity of the 5% quantile, this jump-to-

volatility feedback might be playing a role as well. Turning finally to the jump parameters,

our estimates depict distributions that are consistent with the descriptive statistics provided

in Table 2: the jump distributions exhibit a negative average for all datasets but one, as the λ

parameter that is found to be greater than 0.5 across all samples. Its lowest value is obtained

for the USDCAD dataset for which λ is estimated to be equal to 0.52 while the average value

of the jumps is 0.4. Then, the strongest asymmetry is found for the 10-year futures in Table

2, and in Table 7 as it is the only dataset for which |µa| < |µb|. Also, the jump volatility

estimates presented in Table 2 are well represented across the estimation tables: σa, σb, a

and b have a higher absolute value in the case of the WTI and of the S&P500, where jump

volatility is the greatest. Finally, the frequency of the estimated jumps, i.e. the p parameter

of the Bernouilli distribution, is found to range between 7.8% in the USDCAD case to 3.8%

in the WTI one: the estimated jumps are rare events indeed.

22Here, we use the same window length as in Maheu and MacCurdy (2011) given that our empirical method-
ology has been inspired by theirs.
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RV - Gaussian

ω φ1 φ2 φ3 γ1

Average value -1.501 0.204 0.377 0.268 -0.11
95% quantile -0.446 0.344 0.551 0.479 -0.072
5% quantile -2.985 0.099 0.152 0.152 -0.145

RV - MN

ω φ1 φ2 φ3 γ1 α µ1 σ1 µ2 σ2

Average value -1.58 0.21 0.377 0.262 -0.103 0.325 -0.308 0.888 0.37 1.318
95% quantile -0.532 0.334 0.549 0.448 -0.069 0.50 0.277 1.19 0.677 1.636
5% quantile -2.985 0.113 0.188 0.163 -0.131 0.023 -1.058 0.472 0.07 1.125

MedRV - MN

ω φ1 φ2 φ3 γ1 α µ1 σ1 µ2 σ2

Average value -1.623 0.221 0.356 0.271 -0.096 0.3 0.147 1.105 0.276 1.399
95% quantile -0.59 0.323 0.495 0.431 -0.056 0.5 1.641 2.138 0.641 1.68
5% quantile -2.985 0.138 0.155 0.166 -0.134 0.026 -0.557 0.568 -0.051 1.123

MedRV - Jumps - No feedback

ω φ1 φ2 φ3 γ1 a b µa µb σa σb λ p

Average value -1.433 0.217 0.365 0.275 -0.1 -0.001 0.002 -0.005 0.005 0.002 0.003 0.575 0.039
95% quantile -0.469 0.371 0.504 0.436 -0.053 -0.001 0.003 -0.004 0.007 0.003 0.005 0.632 0.055
5% quantile -2.709 0.109 0.147 0.162 -0.136 -0.002 0.001 -0.007 0.003 0.001 0.001 0.519 0.024

MedRV - Jumps - Feedback

ω φ1 φ2 φ3 γ1 γ2 a b µa µb σa σb λ p

Average value -1.458 0.216 0.365 0.274 -0.099 16.898 -0.001 0.002 -0.005 0.005 0.002 0.003 0.575 0.039
95% quantile -0.469 0.37 0.505 0.438 -0.05 58.218 -0.001 0.003 -0.004 0.007 0.003 0.005 0.632 0.055
5% quantile -2.758 0.108 0.149 0.158 -0.136 -4.807 -0.002 0.001 -0.007 0.003 0.001 0.001 0.519 0.024

Table 4: Parameters estimates for the HAR based models using the returns on the S&P 500

The estimates presented in this table are obtained by maximizing the log-likelihood associated with of the models presented in Section 4 and using the S&P 500 data. The
estimation has been performed over a 1260 days rolling period. "Average" presents the average value obtained across the estimation. The table also displays the associated
5 and 95% quantiles.
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RV - Gaussian

ω φ1 φ2 φ3 γ1

Average value -1.212 0.098 0.305 0.451 -0.043
95% quantile 0.112 0.222 0.504 0.588 -0.013
5% quantile -3.003 0.003 0.137 0.304 -0.074

RV - MN

ω φ1 φ2 φ3 γ1 α µ1 σ1 µ2 σ2

Average value -1.331 0.126 0.324 0.406 -0.035 0.07 -1.045 2.3 0.087 1.334
95% quantile -0.515 0.308 0.489 0.546 -0.013 0.173 0.982 3.582 0.148 1.487
5% quantile -2.478 0.017 0.178 0.284 -0.066 0.006 -4.463 0.535 0.024 1.221

MedRV - MN

ω φ1 φ2 φ3 γ1 α µ1 σ1 µ2 σ2

Average value -1.399 0.116 0.305 0.433 -0.031 0.094 -0.14 2.74 0.077 1.413
95% quantile -0.548 0.289 0.445 0.572 -0.015 0.201 1.085 3.595 0.162 1.529
5% quantile -2.587 0.007 0.16 0.311 -0.057 0.012 -3.508 2.16 0.016 1.277

MedRV - Jumps - No feedback

ω φ1 φ2 φ3 γ1 a b µa µb σa σb λ p

Average value -1.2 0.081 0.291 0.483 -0.041 -0.005 0.004 -0.009 0.008 0.005 0.005 0.595 0.038
95% quantile 0.403 0.19 0.468 0.661 -0.017 -0.001 0.008 0 0.012 0.011 0.011 0.692 0.047
5% quantile -3.297 0.003 0.102 0.293 -0.065 -0.008 0.002 -0.014 -0.003 0.003 0.001 0.508 0.029

MedRV - Jumps - Feedback

ω φ1 φ2 φ3 γ1 γ2 a b µa µb σa σb λ p

Average value -1.235 0.081 0.29 0.481 -0.04 6.904 -0.005 0.004 -0.009 0.008 0.005 0.005 0.595 0.038
95% quantile 0.346 0.184 0.464 0.66 -0.016 16.958 -0.001 0.008 0 0.012 0.011 0.011 0.692 0.047
5% quantile -3.305 0.003 0.105 0.293 -0.065 0.345 -0.008 0.002 -0.014 -0.003 0.003 0.001 0.508 0.029

Table 5: Parameters estimates for the HAR based models using the returns on the WTI

The estimates presented in this table are obtained by maximizing the log-likelihood associated with of the models presented in Section 4 and using the WTI data. The
estimation has been performed over a 1260 days rolling period. "Average" presents the average value obtained across the estimation. The table also displays the associated
5 and 95% quantiles.
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RV - Gaussian

ω φ1 φ2 φ3 γ1

Average value -2.765 0.118 0.251 0.399 -0.045
95% quantile -0.442 0.308 0.4 0.691 0
5% quantile -5.441 0 0.103 0.036 -0.075

RV - MN

ω φ1 φ2 φ3 γ1 α µ1 σ1 µ2 σ2

Average value -2.328 0.137 0.259 0.422 -0.034 0.158 0.097 2.622 0.022 1.395
95% quantile -0.659 0.289 0.353 0.668 -0.003 0.456 0.384 3.647 0.168 1.691
5% quantile -4.107 0.001 0.164 0.115 -0.06 0.055 -0.29 1.137 -0.119 1.239

MedRV - MN

ω φ1 φ2 φ3 γ1 α µ1 σ1 µ2 σ2

Average value -2.413 0.128 0.251 0.436 -0.033 0.213 0.09 2.742 0.016 1.436
95% quantile -0.766 0.255 0.356 0.724 -0.002 0.366 0.414 3.689 0.166 1.629
5% quantile -4.356 0.043 0.095 0.145 -0.058 0.063 -0.162 2.123 -0.118 1.267

MedRV - Jumps - No feedback

ω φ1 φ2 φ3 γ1 a b µa µb σa σb λ p

Average value -2.858 0.101 0.234 0.427 -0.044 -0.001 0.001 -0.001 0.001 0.002 0.001 0.52 0.078
95% quantile -0.369 0.296 0.416 0.791 0.003 -0.001 0.001 0.002 0.003 0.003 0.003 0.575 0.112
5% quantile -5.933 0.001 0.048 0.043 -0.079 -0.001 0 -0.003 -0.004 0.001 0 0.411 0.059

MedRV - Jumps - Feedback

ω φ1 φ2 φ3 γ1 γ2 a b µa µb σa σb λ p

Average value -2.892 0.103 0.237 0.418 -0.044 12.599 -0.001 0.001 -0.001 0.001 0.002 0.001 0.52 0.078
95% quantile -0.618 0.298 0.429 0.791 0.002 58.71 -0.001 0.001 0.002 0.003 0.003 0.003 0.575 0.112
5% quantile -5.925 0.001 0.057 0.049 -0.08 -31.095 -0.001 0 -0.003 -0.004 0.001 0 0.411 0.059

Table 6: Parameters estimates for the HAR based models using the returns on the USDCAD

The estimates presented in this table are obtained by maximizing the log-likelihood associated with of the models presented in Section 4 and using the USDCAD data.
The estimation has been performed over a 1260 days rolling period. "Average" presents the average value obtained across the estimation. The table also displays the
associated 5 and 95% quantiles.
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RV - Gaussian

ω φ1 φ2 φ3 γ1

Average value -2.446 0.073 0.148 0.567 -0.008
95% quantile -0.827 0.229 0.308 0.8 0.009
5% quantile -4.878 0 0 0.328 -0.031

RV - MN

ω φ1 φ2 φ3 γ1 α µ1 σ1 µ2 σ2

Average value -2.369 0.113 0.181 0.515 -0.002 0.028 -3.654 7.397 0.092 1.337
95% quantile -0.718 0.243 0.301 0.787 0.013 0.081 -0.148 31.008 0.186 1.457
5% quantile -4.528 0.048 0 0.327 -0.019 0 -15.703 0.99 0.048 1.24

MedRV - MN

ω φ1 φ2 φ3 γ1 α µ1 σ1 µ2 σ2

Average value -2.326 0.123 0.23 0.463 -0.003 0.057 -3.61 8.578 0.088 1.403
95% quantile -0.635 0.202 0.316 0.728 0.011 0.125 0.321 26.833 0.184 1.566
5% quantile -4.309 0.072 0.141 0.306 -0.019 0.002 -14.217 0.788 0.025 1.267

MedRV - Jumps - No feedback

ω φ1 φ2 φ3 γ1 a b µa µb σa σb λ p

Average value -2.162 0.146 0.131 0.534 -0.01 -0.001 0.001 -0.001 0.002 0.002 0.002 0.563 0.049
95% quantile -0.58 0.384 0.277 0.833 0.01 0 0.001 0.001 0.002 0.003 0.002 0.623 0.066
5% quantile -4.8 0.035 0 0.338 -0.03 -0.001 0.001 -0.002 0 0.001 0.001 0.448 0.04

MedRV - Jumps - Feedback

ω φ1 φ2 φ3 γ1 γ2 a b µa µb σa σb λ p

Average value -2.312 0.142 0.131 0.526 -0.011 4.071 -0.001 0.001 -0.001 0.002 0.002 0.002 0.563 0.049
95% quantile -0.639 0.377 0.277 0.834 0.009 37.485 0 0.001 0.001 0.002 0.003 0.002 0.623 0.066
5% quantile -5.1 0.032 0 0.334 -0.031 -22.575 -0.001 0.001 -0.002 0 0.001 0.001 0.448 0.04

Table 7: Parameters estimates for the HAR based models using the returns on the US 10-year futures

The estimates presented in this table are obtained by maximizing the log-likelihood associated with of the models presented in Section 4 and using the US 10-year bond
futures. The estimation has been performed over a 1260 days rolling period. "Average" presents the average value obtained across the estimation. The table also displays
the associated 5 and 95% quantiles.
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Figure 4: Average log density per forecasting horizon for each model across the four datasets.
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Tables 8, 9, 10 and 11 and Figure 4 display the results of the Amisano and Giacomini (2007)

forecasting density test. From these tables and graphs, several conclusions can be raised. First,

for forecast horizons ranging from 1 and 30 days, the models using the MedRV volatility mea-

sure as well as jumps based on the discontinuous distributions introduced earlier statistically

dominate the rest of the models across the four datasets. This conclusion is the main conclu-

sion of this article: for forecasting horizon of up to a month and a half, disentangling jumps

from volatility improve our ability to forecast the distribution of the four very diverse types of

returns on financial assets that are considered in this article. Second, the jump-to-volatility

feedback component does not improve the forecast ability of the models for all assets but in

the cases of a forecast horizon of 60 days for USDCAD and for the WTI, for which a sta-

tistically significant parameter had been found: the jump-to-volatility feedback component

only seems to matter in the case of oil prices for forecast horizons of 20 and 60 days. In the

case of oil, for distant horizon density forecasts, the Gaussian RV model still outperforms the

rest of its competitors. Finally, in the case of the S&P 500, for a 60-day forecast horizon the

Gaussian RV model dominates the rest of tested models. Still, for such a forecast horizon,

the jump-based models remain equivalent to the MedRV-MN model, a sign that the jump

estimation methodologies yield accurate jump estimates.

Horizon = 5 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G -2.3 -2.37 46.14 49.29
RV-MN -2.09 14.55 14.7
MedRV-MN 12.22 12.29
MedRV-Jump 1 -0.32
MedRV-Jump 2

Horizon = 20 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G 0.22 -1.4 25.56 24.64
RV-MN -1.85 23.17 25.66
MedRV-MN 17.21 18.06
MedRV-Jump 1 0.98
MedRV-Jump 2

Horizon = 60 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G 13.74 8.38 4.43 3.31
RV-MN -6.12 -4.65 -4.16
MedRV-MN -1.18 -1.06
MedRV-Jump 1 -0.25
MedRV-Jump 2

Table 8: S&P 500 forecasting test results

This table presents the Amisano and Giacomini (2007) forecasting density test results for various forecasting horizons,
ranging from 5 to 60 days. The table reads as follow: for a forecasting horizon of 5 days and when comparing the
density forecasts obtained with a MedRV-Jump 2 model vs. a MedRV-MN model, the statistics is equal to 12.29. The
MedRV-Jump 2 model is therefore found to dominate the MedRV-MN model given the sample used here.
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Horizon = 5 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G -5.99 -5.68 46.52 48.72
RV-MN -1.14 28.03 27.96
MedRV-MN 26.3 26.88
MedRV-Jump 1 -1.68
MedRV-Jump 2

Horizon = 20 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G -7.52 -9.15 31.08 34.15
RV-MN -4.35 32.22 44.97
MedRV-MN 33.57 48.53
MedRV-Jump 1 -1.76
MedRV-Jump 2

Horizon = 60 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G -3.57 -5.5 13.18 9.8
RV-MN -2.65 15.34 13.92
MedRV-MN 16.88 14.98
MedRV-Jump 1 -2.61
MedRV-Jump 2

Table 9: USDCAD forecasting test results

This table presents the Amisano and Giacomini (2007) forecasting density test results for various forecasting horizons,
ranging from 5 to 60 days. The table reads as follow: for a forecasting horizon of 5 days and when comparing the
density forecasts obtained with a MedRV-Jump 2 model vs. a MedRV-MN model, the statistics is equal to 26.88. The
MedRV-Jump 2 model is therefore found to dominate the MedRV-MN model given the sample used here.
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Horizon = 5 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G -4.8 -5.13 33.29 29.32
RV-MN -7.7 11.54 9.92
MedRV-MN 10.39 9.11
MedRV-Jump 1 -1.04
MedRV-Jump 2

Horizon = 20 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G -1.64 -5.25 10.49 7.9
RV-MN -17.31 7 5.34
MedRV-MN 9.46 8.73
MedRV-Jump 1 -2.87
MedRV-Jump 2

Horizon = 60 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G 15.11 12.6 -7.33 -9.14
RV-MN -21.32 -12.17 -12.57
MedRV-MN -11.04 -11.53
MedRV-Jump 1 -2.91
MedRV-Jump 2

Table 10: WTI forecasting test results

This table presents the Amisano and Giacomini (2007) forecasting density test results for various forecasting horizons,
ranging from 5 to 60 days. The table reads as follow: for a forecasting horizon of 5 days and when comparing the
density forecasts obtained with a MedRV-Jump 2 model vs. a MedRV-MN model, the statistics is equal to 9.11. The
MedRV-Jump 2 model is therefore found to dominate the MedRV-MN model given the sample used here.
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Horizon = 5 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G -5.55 -4.1 25.28 24
RV-MN 6.58 15.29 13.68
MedRV-MN 14.84 13.86
MedRV-Jump 1 -1.4
MedRV-Jump 2

Horizon = 20 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G -9.35 -0.12 35.14 33.01
RV-MN 11.21 31.95 27.12
MedRV-MN 35.02 28.4
MedRV-Jump 1 0.66
MedRV-Jump 2

Horizon = 60 days

RV-G RV-MN MedRV-MN MedRV-Jump 1 MedRV-Jump 2

RV-G 5.77 12.95 23.57 27.46
RV-MN 8.33 17.03 20.98
MedRV-MN 16.34 16.28
MedRV-Jump 1 1.05
MedRV-Jump 2

Table 11: 10-year futures forecasting test results

This table presents the Amisano and Giacomini (2007) forecasting density test results for various forecasting horizons,
ranging from 5 to 60 days. The table reads as follow: for a forecasting horizon of 5 days and when comparing the
density forecasts obtained with a MedRV-Jump 2 model vs. a MedRV-MN model, the statistics is equal to 13.86. The
MedRV-Jump 2 model is therefore found to dominate the MedRV-MN model given the sample used here.
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6 Concluding remarks

With the growing recognition that point forecasts, the traditional focus, are better seen as

the central points of ranges of uncertainty, in recent years increased emphasis has been given

to density forecasts. More generally, it is important to provide a quantitative indication of

the uncertainty associated with a point forecast, along with the balance of risks (skewness)

on the upside and downside and the probability of extreme events (fat tails or kurtosis). This

is achieved by publishing a density forecast. Importantly, the density forecast gives any users

of the forecast an indication, in advance, of the health risks associated with its use.

Based on a set of nested competing models, this article aims at testing whether disentangling

jumps from volatility using intraday datasets helps forecast the density of returns. Using four

different datasets – equities, bonds, commodities and currencies – we find consistent evidence

that for short to medium term horizons, the density forecasts based on such an approach

improves over its competitors. This result is obtained by relying on a jump modeling that

takes into account the specificities of the intraday-based jump estimates. Whilst numerous

authors have considered the informational content of continuous vs. jump components for

volatility forecasting, none have thought to address the particular question of density fore-

casting. Detection of such information for different classes of assets would indicate the ability

of new econometric models to anticipate the evolution of density returns in a fundamentally

different way compared to more traditional forecasting models.

As potential extensions to the present work, other jump detection techniques may be used

(see Christensen et al. (2010) among others). Nevertheless, collectively taken, our results are

sufficiently strong so that we can believe they would be robust to alternative jump detection

methods. Another potential extension would be to consider additional economic variables

such as in Christiansen et al. (2012) or Paye (2012).
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Appendix A – Data

The S&P 500 futures data is a very liquid contract traded on the CME which is a tradable asset in
opposition with the underlying S&P 500 cash index. The time span for the S&P 500 futures is from
January 1, 1996 to July 31, 2008 (3,192 trading days originally). As is usual, we consider the con-
tinuous series of the front month contract using a rollover procedure which selects the largest volume
each day to jump from one contract to the next.23. Trading of the S&P 500 futures contract occurs
from 8:30 AM to 3:15 PM which should, on normal days, provide 81 intraday returns when using a
sampling interval of 5 minutes. We remove days with less than 81 returns which is generally an indi-
cation of part closure of the trading place. We check that all accepted days have a sufficient number
of transactions, and a limited number of zero-returns as well. After cleaning the data, we obtain a
sample of 3,135 days. For these selected days, the average number of trades for the continuous rollover
series is 3,090 (the total number of ticks is equal to 9,809,697). We observe a relative stability of the
number of transactions each day during the whole period.

The 10-year U.S. Treasury Note futures is the second asset and received a treatment very similar to
that of the S&P500 futures.

The USD/CAD exchange rate is the third asset for our study. As in previous contributions (see An-
dersen et al. (2001) among many others), we consider the period going from 9:00 PM to 8:59 PM the
next day as a unit period, because the FX market is opened on a 24-hour window.

Our fourth asset is the West Texas Intermediate (WTI) light sweet crude oil futures contract, traded
on the New York Mercantile Exchange (NYMEX) now a branch of CME. The rollover series is built
as explained previously for the S&P 500. The period considered is from October 8, 2001 to January
15, 2010. The WTI contract is one of the most traded futures contract throughout the world and, as
such, the total number of ticks for the continuous time series of the front month contract is equal to
52,099,419. The trading period for the WTI futures is from 9:00 AM to 2:30 PM, which should pro-
vide 60 intraday returns each day (54 intraday returns for the September 2001/January 2007 period
where trading began at 10:00 AM). Similarly to the previous asset, we remove days with less than 60
(54) intraday returns, days with more than 15 zero-returns, and days with less than 700 registered
ticks. The number of observations is therefore reduced from 2,140 days to 2,081 days when all these
requirements are met. The mean number of trades is equal to 25,035. In contrast to S&P 500 futures,
this figure is very different before and after mid-2006, which is mainly due to the launch of electronic
trading.24

Table A.1: Futures data.

Futures contract Exchange Sample Trading Hours Nb of days

S&P 500 CME 04/21/1982–08/16/2013 8:30 a.m.–3:15 p.m. (CT) 7,662
10-year U.S. Treasury Bond CME-CBOT 01/03/1989–08/16/2013 7:20 a.m.–2:00 p.m. (CT) 5,713
$/CAD CME 07/21/1980–08/16/2013 7:20 a.m.–2:00 p.m. (CT) 6,869
WTI Crude Oil CME-NYMEX 01/02/1987–08/16/2013 9:00 a.m.–2:30 p.m. (CT) 6,279

23We do not build our continuous series using a fixed number of days prior to maturity, thus avoiding
calendar effects.

24We have an average number of 2,214 ticks per day during the September 4, 2001 / August 31, 2006 period
vs. 57,054 ticks for the September 1, 2006 / January 15, 2010 period.
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Figure A.1: Detected jumps for the WTI crude oil futures using Lee and Mykland (2008) test
associated with intraweek periodicity as in Boudt et al. (2011). The sampling interval for
intraday returns is 15 minutes and the threshold for the jump test filtered statistic is α = 0.01.

34

 
Documents de travail du Centre d'Economie de la Sorbonne - 2017.06



1985 1990 1995 2000 2005 2010

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Le
ve

l s
er

ie
s

1985 1990 1995 2000 2005 2010
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

D
ai

ly
 L

og
 R

et
ur

n

1985 1990 1995 2000 2005 2010
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
ea

liz
ed

 V
ol

at
ili

ty

1985 1990 1995 2000 2005 2010
−0.01

−0.005

0

0.005

0.01

0.015

Ju
m

p 
S

iz
e

Figure A.2: Detected jumps for USD/CAD futures using Lee and Mykland (2008) test associ-
ated with intraweek periodicity as in Boudt et al. (2011). The sampling interval for intraday
returns is 15 minutes and the threshold for the jump test filtered statistic is α = 0.01.
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Figure A.3: Detected jumps for the S&P 500 index futures using Lee and Mykland (2008)
test associated with intraweek periodicity as in Boudt et al. (2011). The sampling interval for
intraday returns is 15 minutes and the threshold for the jump test filtered statistic is α = 0.01.
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Figure A.4: Detected jumps for the 10-year Treasury Note futures using Lee and Mykland
(2008) test associated with intraweek periodicity as in Boudt et al. (2011). The sampling
interval for intraday returns is 15 minutes and the threshold for the jump test filtered statistic
is α = 0.01.
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