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In 1882, Richard Dedekind (1831-1916) and Heinrich Weber (1842-1913), published
Theorie der algebraischen Funktionen einer Veränderlichen ([Dedekind and Weber, 1882]),
in which they offer what we identify as an “algebraico-arithmetic” rewriting of Riemann’s
function theory. In this paper, which took them two years to write and two more years to
publish, they offer a new definition of the concept of Riemann surface, together with the
reformulation of several basic concepts of Riemannian function theory and new proofs
of important theorems.

A singular paper in the Dedekindian corpus by its subject, [Dedekind and Weber, 1882]
exhibits nonetheless typical characteristics of Dedekind’s approach in mathematics: ide-
als as a foundation, definition of new arithmetical operations for ideals, uninhibited
use of systems, pure existence proofs, lack of constructive definitions and/or proofs...
and it is, for the first half, strictly parallel – sometimes similar word for word – with
Dedekind’s previous work on algebraic numbers ([Dedekind, 1877]1). As such, it is often
considered as another example of the efficiency of Dedekind’s methods and algebraic
concepts. This certainly doesn’t mean that Weber’s input was minimal – in fact, the
letters he wrote to Dedekind while working on their paper indicate the opposite. How-
ever, it suggests that he considered Dedekind’s methods, at that point, as being the best
for their work. He later changed his position on the matter, and in his Lehrbuch der
Algebra ([Weber, 1896]), Weber does not use ideal theory (although he does use fields).
For these reasons, I will also consider [Dedekind and Weber, 1882] as intimately linked
to Dedekind’s conceptions and methods, and will make little references to Weber’s other
works.2 More specifically, I will argue that [Dedekind and Weber, 1882] is to be read
in relation with Dedekind’s conception of arithmetic. My aim, then, will be to show

∗Arbeitsgruppe Didaktik und Geschichte der Mathematik, Bergische Universität Wuppertal
1References to [Dedekind, 1877] are to Stillwell’s translation [Stillwell, 1996]. The French original

paper was published in five parts in several different issues of the Bulletin des sciences mathématiques et
astronomiques, between 1876 and 1877, making the references quite hard to follow. It was only partially
reproduced in Dedekind’s collected works.

2A clarification of Weber’s role in the writing of [Dedekind and Weber, 1882] and the changes he
chose to make to the theory of algebraic functions will be the subject of a future work.
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how their paper provides a rewriting of Riemannian function theory built on elemen-
tary arithmetical notions such as divisibility – methods which had a prominent place in
Dedekind’s approach.3

It is important to note that arithmetic is not understood, here, as being an equiv-
alent or a strict synonym for the theory of natural numbers. Rather, it is focused on
what it means to be arithmetical, in the sense that Dedekind develops an arithmetical
theory of ideals. More generally, it is important to think of arithmetic in the context
of 19th century mathematical practice in order to understand Dedekind’s position. Be-
sides, both the attempts to rigorize Riemann’s theory, and the resort to arithmetic for
more rigorous or general approaches to certain domains of mathematics can be found in
several mathematicians’ works and were not specific to Dedekind (and Weber). Hence,
it is essential to be able to relate this mathematical practice to Dedekind’s ideas about
numbers and arithmetic, and understand how these elements build up Dedekind’s ap-
proach – that is, how Dedekind elaborated his concepts and methods from elements
which were very common in the mathematical landscape in which he was evolving, and
were shared by ‘pre-modern’ mathematicians. In a first section, I will thus consider some
elements of context: practices of arithmetic in Dirichlet’s works; elements to understand
Dedekind’s conception of arithmetic and the role it played in the development of his
works; and briefly (and partially) Kronecker’s arithmetical approach.4 These elements
allow to place the arithmetical rewriting of Riemann’s theory in both a broader and a
Dedekindian context. From there, I will concentrate on Dedekind and Weber’s paper
itself, and present it – like it is written – in two parts: fields and ideals of algebraic
functions, and the new definition of the Riemann surface. The 1882 paper was mostly
written based on an exchange of letters between Dedekind and Weber, in 1879 and 1880.
Some of these letters have been preserved and recently published in [Scheel, 2014].5 I will

3The idea of “rewritings” was notably developed by Norbert Schappacher, in [Schappacher, 2010].
Schappacher explains that “rewritings on all scales make up the very fabric of mathematical activity
through the centuries” (ibid., 3260). Rewritings, at least in my use of the word, are an extension of the
idea that the meaning that a reader gives to a mathematical theorem depends on her historical and
sociological background. See [Goldstein, 1995], [Ehrhardt, 2012]. Goldstein’s and Ehrhardt’s analyses
bring to the fore how the understandings and interpretations of mathematical results, concepts and
theories are historically, sociologically and epistemologically correlated. This last point, not present in
Goldstein’s and Ehrhardt’s works, is important in my case.

4For more elements on the general mathematical context around number theory and/or algebraic func-
tions, one can refer to, for example, [Bottazzini and Gray, 2013], [Geyer, 1981], [Goldstein et al., 2007],
[Strobl, 1982].

5The letters published by Scheel are presently in the Niedersächsische Staats- und Universitätsbib-
liothek Göttingen (Cod. Ms. Riemann, and Cod. Ms. R. Dedekind) and in the Archiv der UB Braun-
schweig (G 98:11-13). Some of the letters between Dedekind and Weber were given by Paul Epstein to
Emmy Noether ([Dedekind, 1932] III, 483) and many can be found in the Göttingen University archive.
[Kimberling, 1972] and [Kimberling, 1996] explain how he recovered some of Dedekind’s correspondence
which Emmy Noether took with her in the United States. In these letters, which have since been given
to the Archiv der UB Braunschweig, one can find Weber’s letters from 1879. It is not clear what hap-
pened to the letters from 1880, however, except for two fragments by Dedekind which were published in
[Dedekind, 1932] III, 487-488. In addition, it has so far been impossible to locate Weber’s Nachlass or
ascertain what happened to it ([Scheel, 2014], 16 and personal communications). Consequently, many of
Dedekind’s letters to Weber – and in our case, all the letters he sent in 1879, are impossible to find.
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use elements of the correspondence between Dedekind and Weber for my commentary
on the definition of the Riemann surface. Indeed, the letters available concentrate on
the correspondence between Riemann’s function theory and Dedekind’s ideal theory, its
nature and how to establish it. They do not address the set up of the theory of ideals of
functions, which in the final version, runs parallel to [Dedekind, 1877].

Dedekind’s mathematics is often described as conceptual mathematics.6 Roughly
speaking, the “conceptual approach” refers to some mathematicians’ tendency in the
second half of the 19th century to try to substitute concepts to explicit forms of repre-
sentation (such as the use of indeterminate variables or of series) and/or computations
in mathematics, to avoid (or more exactly hide) long computations. A central figure of
the so-called conceptual approach is Riemann. Dedekind himself, in a letter to Lips-
chitz in June 1876 explains that his approach relies on an effort to “bas[e] the research
not on arbitrary representations or expressions but on simple fundamental concepts”
([Dedekind, 1932] III, 468, transl. slightly altered in [Edwards, 1983], 11).7 This qualifi-
cation has been largely used in the secondary literature to qualify not only Dedekind’s
approach, but also the opposition to the so-called constructive approach represented by
the Berlin tradition.

This description of Dedekind’s mathematical practice as relying essentially on ‘con-
cepts’ suggests that he successfully got rid of Darstellungsformen. However, it is well-
known that the objects of algebraic numbers theory resist to the abolition of Darstel-
lungsformen (as explained in [Avigad, 2006], 170-171). The description of the conceptual
approach should, thus, be taken with a grain of salt. Dedekind himself explains, in his
correspondence with Lipschitz, in reference to the choice of a variable to describe the
elements of the finite field, that finitely generated fields can be defined in different ways:
as corresponding to an equation, as having a finite basis, as having a finite number of
divisors. This last definition is the one that Dedekind considers as the “best” definition,
i.e., the definition based on fundamental properties of the field concept. However, this
definition is more difficult to use in that it requires to dig too much into the theory of
fields. Hence, he choses to use the definition using an equation, which he explains in the
following way:

I disfigure [by the intrusion of forms of representation], in the introduction,
the concept of a finite field Ω, by giving it a presentation (Darstellungsform),
in which all the numbers of the field are included, and which could as well

6See, for example, [Avigad, 2006], [Ehrhardt, 2012], [Edwards, 1983], [Ferreirós, 2008],
[Schappacher and Petri, 2007], [Sinaceur, 1990], [Stein, 1988]... This list is not exhaustive.

7“Mein Streben in der Zahlentheorie geht dahin, die Forschung nicht auf zufällige Darstellungsformen
oder Ausdrücke sondern auf einfache Grundbegriffe zu stützen.”. In [Dedekind, 1877], he notes that “a
theory based on calculation would not yet offer, in my opinion, the highest degree of perfection. It is
preferable, as in the modern theory of functions, to try to infer the demonstrations immediately from
the fundamental characteristic concepts rather than from calculations, and to construct the theory in a
way that it is, on the contrary, able to predict the results of the calculation”. ([Dedekind, 1877], 102).
Dedekind also explains how to go from Darstellungsformen to ideals and the advantages of this approach
– notably the fact that computations would be too complicated.
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be replaced by an infinite number of other [equivalent] presentations (...) I
have made this concession, in order to borrow as little as possible from the
general theory of fields, and in order to make the link with generally known
things.8 (10/06/1876, [Lipschitz, 1986], 60)

Here, by using this Darstellungsform, Dedekind bends his own rule to find a way to
make his theory of algebraic numbers (and later his theory of algebraic functions) easier
to develop. In [Dedekind and Weber, 1882], the same issue appears. In fact, the whole
arithmetical apparatus elaborated by Dedekind and Weber depends on the independent
variable z chosen, insofar as the ring itself depends on it – a point which Dedekind and
Weber notice, since they list which notions depend on the variable z. Dedekind and
Weber, then, did not actually completely avoid the reliance on Darstellungsformen.

My goal is not to judge to what extent Dedekind lived to his own standards, nor
to know whether it is at all possible to avoid all and any use of Darstellungsformen.
I will not be interested in comparing the so-called conceptual approach and the rival
approach(es), nor in judging which approach is the most efficient or the most fruitful.
Rather, I wish to consider which strategies were developed by Dedekind (and Weber)
to set up their new version of Riemann’s theory of algebraic functions without (or with
as little as possible) reliance on Darstellungsformen. By that, I do not mean that I will
try to unveil the hidden computations behind Dedekind and Weber’s conceptual appa-
ratus, but that I will try to make more explicit the conceptual move proposed by the
authors, i.e. how Dedekind’s conceptual reorganization is carried out by replacing (long)
computations by simpler ones (e.g. elementary divisibility properties of ideals), using
what Dedekind calls the “simplest principles of arithmetic”. Such a use of arithmetic
is recurrent in Dedekind’s mathematics, which strongly suggests that the operations of
arithmetic are given a very particular and active role in the development of mathemat-
ics. The conceptual approach, in Dedekind’s mathematics, is taken care of by means of
arithmetic and its “inexhaustible wealth” of laws,9 a strategy which finds a justification
in Dedekind’s conception of arithmetic as an activity of the human mind. Hence, my
insisting on the arithmetical aspect of his work does not stem from a desire to take
Dedekind’s mathematics away from a description as it as being conceptual. Rather, it is
an attempt to provide a more precise and contextualized characterization of his meth-
ods, which gives the possibility to situate Dedekind’s works in the rather vague idea of
a “conceptual approach” – after all, Dedekind’s and Riemann’s approach, while both
“conceptual”10 are very distinct from each other.

8“In ähnlicher Weise verunziere ich in der Einleitung den Begriff eines endlichen Körpers Ω dadurch,
dass ich eine Darstellungsform angebe, in welcher alle Zahlen des Körpers enthalten sind und welche
ebenso gut durch unendlich viele Darstellungsformen ersetzt werden könnte (...) [I]ch habe diese Con-
cession gemacht, um aus der allgemeinen Theorie der Körper möglichst wenig zu entlehnen und um an
allgemein bekannte Dinge anzuknüpfen.” Unless stated otherwise, the translations are mine.

9Zum Zahlbegriff, in [Dugac, 1976], 315
10As was remarked by Edwards ([Edwards, 2010]), Riemann’s mathematics did contain a lot of com-

putations, which is clear from his Nachlass. This “algorithmic side” of Riemann’s mathematics was
subsequently concealed by him through a reorganization, in what we can understand as an attempt by
Riemann to clarify the theory.
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It is important to separate the arithmetical approach adopted by Dedekind (and
Weber) from a structuralist reading. Of course, not all structuralist approaches are
arithmetical, and reciprocally arithmetical is not synonymous with either conceptual or
structural – Kronecker’s arithmetical theory of algebraic magnitudes is a good example
of that last point. Moreover, as Corry showed in [Corry, 2004], the concepts invented by
Dedekind, and the approach he advocated for, present strong differences with our modern
structural algebra.11Dedekind (nor Weber) does not consider a general, abstract, theory
of ideals (or fields), but always the theory of ideals (or fields) of numbers or functions.
In other words, Dedekind does not study ideal (or field) theory for the sake of ideal (or
field) theory, but as a new foundation and a tool for number theory or function theory.
And, unlike what a modern day reader will first look for in [Dedekind and Weber, 1882],
structures are not what matters to Dedekind and Weber. For them, the core of their
work is the new definition of a Riemann surface, the new approach for Riemann’s theory
of algebraic functions.

Emmy Noether, in her editor note in Dedekind’s Werke as well as in [Noether, 1919],
underlined the arithmetical nature and foundation of Dedekind and Weber’s paper. She
presents their theory as “related to” Riemann’s (especially insofar as their proofs are
existence proofs), and as preserving the “purity of methods” ([Noether, 1919], 184-185).
Her acknowledging the arithmeticity of Dedekind and Weber’s work is part of her under-
lining the structural relationships and parallels between the theory of algebraic functions
and the theory of algebraic numbers, and retrospectively placing their contribution in
the evolution of mathematics. Her reading of Dedekind, in her 1919 report and in many
other places have strongly influenced our reception of his works. From there, as is widely
known, Dedekind has been granted a key place in the genealogy with which mathemati-
cians represent the shaping of mathematical knowledge. He introduced several of the
most important concepts for the development of modern algebra to the point that he is
often said to have influenced our practice and knowledge of mathematics more than any
other mathematician of the second half of the 19th century. After the reception of his
works remained dormant for about twenty years, Dedekind’s concepts and methods even-
tually changed the face of algebraic number theory – especially through their adoption
by David Hilbert in [Hilbert, 1897] and, later, Emmy Noether’s works and lectures.

For these reasons, Dedekind’s mathematics have been the object of many works
from historians as well as philosophers.12 In these works, the 1882 paper with Weber,

11From Corry’s viewpoint, there is a distinction between the “body of knowledge” (“theories, ’facts’,
methods, open problems”, [Corry, 2004], 3) and the “image of knowledge” (“claims which express knowl-
edge about the discipline qua discipline”, ibid., 3). While Dedekind does possess a relatively extensive
part of the body of knowledge for structural algebra (groups, ideals, modules, fields), he does not have
the structural image of algebra, that is, he does not consider questions and problems about the structures
themselves, but rather about their elements.

12Dedekind’s works have been presented as bringing “the light in the darkness, the order in chaos”
by Landau in 1917 ([Landau, 1917], quoted and translated in French in [Dugac, 1976], 29). Bourbaki
considers [Dedekind, 1871] a “masterpiece” in which the theory of modules and ideals is “entirely created”
and “brilliantly exposed” ([Bourbaki, 1984], 130). It is presented by H. Edwards as the “birthplace of the
modern set-theoretic approach to the foundations of mathematics” ([Edwards, 1983]) and by Dugac as
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while recognized as a major achievement (of Dedekind and Weber, and in the history of
mathematics), is often mentioned rather quickly as yet another example of Dedekind’s
method. On the other hand, [Dedekind and Weber, 1882] has been largely acknowledged
as a milestone of algebraic geometry. Yet, few extensive commentaries have been made
on [Dedekind and Weber, 1882]. In addition to [Noether, 1919], notable exceptions are
[Geyer, 1981], [Strobl, 1982], and the introductory notes in [Stillwell, 2012].13

Commentators such as Dieudonné, Geyer and Strobl insist on the structural prop-
erties and relate Dedekind and Weber’s paper to later evolutions of mathematics. They
provide readings which set up and reformulate Dedekind’s works in a modern mathe-
matical and conceptual framework, and offer an invaluable light on the mathematical
content of Dedekind and Weber’s work. These unfoldings of Dedekind and Weber’s ap-
proach into our modern mathematical langage put forward how the first corner stones
for modern algebraic geometry were laid down, and the crucial importance of their works
for future developments of mathematics. To the modern day reader, Dedekind’s works
often have a quality of undeniable clarity, and almost a feeling of familiarity. Our expec-
tations of Dedekind’s conceptions are thus distorted by a feeling of proximity resulting
from the preponderance in our mathematics of concepts grown from Dedekind’s ideas.
As a consequence, the treatment of Dedekind’s mathematics slipped through the net of
many of the recent historiographical criticisms on retrospective history of mathematics.
Dedekind is considered as a sort of founding father of modern algebra – even though he
is barely cited in Van der Waerden Moderne Algebra if not for Emmy Noether’s famous
“es steht alles schon bei Dedekind” (“everything is already in Dedekind”). Yet, there
are no reasons not to submit historical readings of Dedekind’s works to the same criti-
cal non-retrospective analysis. Indeed, before they arrived to us, Dedekind’s ideas were
reinterpreted by mathematicians such as Hilbert, Steinitz, and E. Noether, and they are
not, in themselves, so close to present day knowledge and practice. Restating the text
in modern terms, in the case of Dedekind and Weber’s algebraic function theory, im-
plies that many elements of language are lost: the arithmetical terminology deliberately
chosen by Dedekind and Weber disappears (“divisible” is replaced by “contained in” for
example). The choice of terms is not innocent, in Dedekind and Weber’s work, as shown
by their correspondence, and it serves to underline the essential arithmetic character of
their work.

Finally, such readings tend to detach the original work from their author’s own system
of conceptions and values to be integrated into our own. The author’s epistemological
values (e.g. generality), philosophical conceptions (e.g. concept of number), and the value
attributed to certain practices (e.g. an arithmetical approach) can constitute, for the

“one of the sources of today mathematics” ([Dugac, 1976], 29). Ferreirós, in [Ferreirós, 2008], also argues
that Dedekind is one of the fathers of modern set theory. Dedekind also often plays an important role
in more global works, for example, [Corry, 2004] [Gray, 2008]. If the study of his works is not a pressing
matter for historians anymore, philosophers, on the other hand, have been increasingly interested in
Dedekind’s works in the last decade. It is not the place, here, to go over all the philosophical studies of
Dedekind’s works (neither to consider the philosophical implications of his works).

13Dedekind and Weber’s 1882 paper is also studied as a part of larger inquiries about history of
mathematics, as for example in [Dieudonné, 1974], [Houzel, 2002], or [Schappacher, 2010].
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historian, elements of great importance to understand mathematical texts.14 It has been
argued in the case of Kronecker’s mathematics that his mathematical practice should
be understood in relation to his philosophical views (and reciprocally).15 This way, it
becomes possible to get a better understanding of his statements about natural numbers,
computations and arithmetic: methods elaborated by Kronecker express and develop the
philosophical position, and one cannot understand one without the other. This point is
certainly valid for Dedekind as well (and probably many other mathematicians) and
an historian reading his works should take into account his philosophical ideas and
conception of numbers and arithmetic. To this, is also related the statement made at
the beginning of this introduction, namely that [Dedekind and Weber, 1882] should be
read in relation to Dedekind’s conception of arithmetic.

As a way to conclude this introduction, let me give a short example. On the 30/10/1880,
Dedekind sent a letter to Weber to thank him for their collaboration on this work, and
wrote:

It is a truly special feeling, to be joined by the exploration of the truth, what
Pascal in his first letter to Fermat so admirably phrased: “Car je voudrais
désormais vous ouvrir mon coeur, s’il se pouvait, tant j’ai de joie de voir notre
rencontre. Je vois bien que la vérité est la même à Toulouse et à Paris.” Often,
had I to think at this place, through the progresses of our work, which though
after many oscillations still has assumed the character of intrinsic necessity.16

([Scheel, 2014], 271)

[Geyer, 1981] suggests that this “inner necessity” is linked to the construction of normal
bases (in particular, the normal basis of the integral closure, studied in the §22 of
[Dedekind and Weber, 1882]).17 This part of their work has indeed been reworked and re-
elaborated many times over the years since [Hensel and Landsberg, 1902]. In particular,
in 1955, Grothendieck’s proof of the Birkhoff-Grothendieck theorem on vector bundles
uses “overall the same approach” as Dedekind and Weber “with no knowledge of history”
([Geyer, 1981], 126). Dedekind and Weber’s interest in normal bases of the integral
closure, at that point, mainly comes from the links between discriminant and ramification
and how it sheds light on the ramification number of the surface. And while these
technical developments are related to Dedekind’s transfer back to number theory of
results obtained in [Dedekind and Weber, 1882], it seems that Geyer’s interpretation
would require for Dedekind to have been fully aware of mathematical developments
which still lay in the future. On the other hand, the parallelism with number theory

14See, for example, [Chemla, 2003], [Chemla, 2009], and [Chemla et al., 2016].
15See [Vlădut, 1991] for more details. See also [Boniface, 2004], [Boniface, 2005], [Edwards, 1980] , the

introduction of [Kronecker, 1891], and [Smadja, 2010].
16[E]s ist ein ganz besonderes schönes Gefühl, sich so bei der Erforschung der Wahrheit zu begegnen,

was Pascal in seinem ersten Brief an Fermat so trefflich ausdrückt: “Car je voudrais désormais vous
ouvrir mon coeur, s’il se pouvait, tant j’ai de joie de voir notre rencontre. Je vois bien que la vérité est
la même à Toulouse et à Paris.” Oft habe ich an diese Stelle denken müssen bei den Fortschritten un-
serer Arbeit, die nach mancherlei Oscillationen doch immer mehr den Charakter innerer Nothwendigkeit
angenommen haben.”

17[Geyer, 1981] also provides a reformulation of these results in modern terms.
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and the inherently arithmetical character of their work can certainly be an aspect which
induced this kind of reflection from Dedekind, who considered arithmetic as intrinsically
linked to the nature of the human mind.

1 Contextual elements

1.1 Arithmetic extended? Some elements of context, before Dedekind

C. F. Gauss used to repeat, according to several witnesses, a motto inspired by a sen-
tence which Plutarch attributed to Plato: “God arithmetizes eternally.”18 As Ferreirós
underlines ([Ferreirós, 2007]), the theological assertion behind the motto is somewhat
“less interesting than the way in which his adaptation of Plato’s words reflects changing
perceptions of mathematical knowledge” (ibid., 237). From Gauss’s Disquisitiones Arith-
meticae in 1801 to the emphasis put on a “movement of arithmetization” with Klein in
1895, the meaning of the term “arithmetic” slowly moved from the theory of integers to
being associated, rather loosely, to ideals of rigor and certainty. Yet, arithmetic, in the
sense of number theory, seems to have stayed at the core of many mathematicians’ sys-
tems of values, or at least to be the roots of many of their interests, albeit with various
importance, for various reasons and in many different forms.

Gauss’s Disquisitiones Arithmeticae has often been presented as marking the birth of
number theory as a discipline in its own right in Germany. However, [Goldstein and Schappacher, 2007]
show that the situation is more complicated and requires a more finely-tuned analysis,
insofar as the developments following Gauss’s works tend to challenge the boundaries be-
tween disciplines. To account for the works of mathematicians following Gauss’s Disqui-
sitiones Arithmeticae such as Dirichlet’s, Goldstein and Schappacher propose to consider
what they call the “Arithmetic Algebraic Analysis” (ibid., 26), a new field of research
which embedded the different approaches to and following the Disquisitiones Arithmeti-
cae. Yet, it is interesting to notice that actors present their works either as a part of
number theory or as stemming from problems about numbers. In the following, I will
vary from Goldstein and Schappacher’s approach in that I will not be looking at disci-
plines per se, but will be interested in whether an actor like Dirichlet was referring to
arithmetic or number theory as leading his investigations. I will also try to identify what
Dirichlet or Dedekind would qualify as “arithmetical” – a delicate point, as the thorough
investigation in [Goldstein and Schappacher, 2007] suggests.

As Goldstein and Schappacher show, although a domain of research in itself, number
theory is developed in close relation with other areas of mathematics at that moment such
as binary quadratic forms or analysis. It was notably the case for Dirichlet who imported
tools from Fourier analysis into researches which “do not contain any element which is
not related to integral numbers” because the theorems were “difficult to establish (...)
with purely arithmetical considerations, whereas the mixed method [he used] (...) which

18The version attributed to Plato is “God geometrizes eternally”. Gauss’ quote is immortalized in an
etching of Gauss and W. Weber by A. Weger appearing in Zöllner’s Wissenschaftliche Abhandlungen
(1878, vol. 2, part I). See [Ferreirós, 2008], 236.
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is based partly on the use of quantities varying by insensible degrees, led [him] to them
by the most natural way, and so to speak, effortlessly”.19 Commenting on his own work,
Dirichlet presented the theory of quadratic forms as “one of the main branches of the
science of numbers” following its development in Gauss’s Disquisitiones Arithmeticae.20

Quadratic forms with integral coefficients played a crucial role in 19th century number
theory. Dedekind’s introduction of ideals is made in a work dedicated to binary quadratic
forms. From Gauss’ works on, quadratic forms were essentially characterized by the
concept of discriminant.21 Interested by the dependency between the determinant and
the number of corresponding distinct forms, Dirichlet is led to the distinction between
positive and negative determinants:

We identify that the expression of the number of forms corresponding to any
given determinant presents two very different cases depending on whether
the determinant is a negative or a positive number. In the first case, the
expression of the law in question has a purely arithmetical character, while
for a positive determinant, it is of a more composite nature, mixed in a
way, since, in addition to the arithmetic elements on which it depends,
it contains others which present themselves in certain auxiliary equations
present in the theory of binomial equations, pertaining thus to Algebra.22

([Lejeune-Dirichlet, 1897] I, 536)

Here, one can see that arithmetic is more a characteristic of the approach than a disci-
pline – a point that will be important for our understanding of Dedekind’s “arithmetical”
methods. Dirichlet further explains that, following the “natural” desire to expand the
results already obtained, one is led to try to “solve by [these] means other analogous
questions but of a higher order” (ibid., 536). One can either consider forms of a higher
degree, or quadratic forms with complex integers as coefficients, which is what Dirich-
let proposes to do. This “generalized number theory” opens “a new field to arithmetical

19“Quoique les théorèmes précédents ne contiennent aucun élément qui ne soit relatif aux nombres
entiers, il paraît difficile de les établir par des considérations purement arithmétiques, tandis que la
méthode mixte dont nous venons de faire usage, et qui est fondée en partie sur l’emploi de quantités
variant par degrés insensibles, nous y a conduit de la manière la plus naturelle et, pour ainsi dire, sans
effort.” (“Recherches sur les formes quadratiques à coefficients et à indéterminées complexes”, 1842, in
[Lejeune-Dirichlet, 1897] I, 618).

20Dirichlet comments on “Recherches sur diverses applications de l’Analyse infinitésimale à la Théorie
des nombres” (published in Journal für die reine und angewandte Mathematik, vol 19, 324-369; vol 21,
1-12 and 134-155, in 1839 and 1840) in the introduction of the 1842 memoir “Recherches sur les formes
quadratiques à coefficients et à indéterminées complexes”.

21The discriminant, or determinant for some authors like Dirichlet, is a positive or negative integer
which allows to distinguish classes of forms for which certain arithmetical properties can be given.

22“On reconnaît que l’expression du nombre des formes qui répondent à un déterminant quelconque
présente deux cas très distincts suivant que ce déterminant est un nombre négatif ou positif. Dans le
premier cas, l’expression de la loi dont il s’agit a un caractère purement arithmétique, tandis que pour
un déterminant positif, elle est d’une nature plus composée et en quelque sorte mixte, puisque, outre
les éléments arithmétiques dont elle dépend, elle en renferme d’autres qui ont leur origine dans cer-
taines équations auxiliaires qui se présentent dans la théorie des équations binômes et appartiennent par
conséquent à l’Algèbre.”
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speculations” (ibid., 537). Dirichlet’s goal, here, is to “import, in the thus generalized the-
ory of numbers, the previously considered question” (ibid., 537) about quadratic forms.
Hence, it appears that for Dirichlet the consideration of a wider concept of integer, here
the Gaussian integers, allows to investigate objects of number theory, here quadratic
forms, in a more general framework. By this move are opened new possibilities of “arith-
metical speculations,” as Dirichlet puts it. The idea that new possibilities in number
theory are brought forward by widening the framework through a more general notion
of number also constitutes the core of Dedekind’s approach, showing the influence of
Dirichlet.

Number theory thus developed in an intricate relation with theories such as those
of quadratic and biquadratic forms, cyclotomic equations, modular equations and the
division equations of elliptic functions.23 This widened considerably, for the actors, the
idea of what “arithmetic” consisted of, which questions pertained to arithmetic, and how
these “arithmetic speculations” were to be handled. In the same time, arithmetic was
still considered as the study of properties related to integral numbers – whose conception
was also widened with, for example, complex integers.

1.2 Dedekind’s conception of arithmetic

Dedekind’s conception of arithmetic shows the influence of Dirichlet and Gauss. For
Dedekind, arithmetic is the “science of numbers” and essentially concerned with the
investigation of divisibility properties. It can be used to investigate properties of a
“higher order” or a “higher level” – which is precisely the strategy and the termi-
nology adopted by Dedekind for his theory of algebraic numbers and transferred to
[Dedekind and Weber, 1882]. Arithmetic can and should be extended and generalized as
much as possible, in particular insofar as it holds the possibility of further discoveries, be
it because new fields of research are opened, or because results obtained can “ease to the
highest degree the discovery and proof” in certain frameworks (here, fields of algebraic
numbers, see [Dedekind, 1877]). Arithmetic conceived this way, for Dedekind, is deeply
involved in the mathematical practice.

The “science of numbers”
Dedekind characterizes arithmetic as “the science of numbers” in many places ([Dedekind, 1872],
771; [Dedekind, 1888], 791-792, 795, 809; the 1894 version of algebraic number theory in
[Dedekind, 1932] III, 24; ...). A most striking example is this quote from a manuscript
in his Nachlass, entitled “Zum Zahlbegriff ”, which can be dated from after 1888:

Of all the auxiliary means (Hilfsmitteln), that the human mind has until now
created to ease its life, i.e., the work in which the thinking consists, none is
as far-reaching and as inextricably connected to its innermost Nature, as the
concept of number. Arithmetic, whose sole subject matter is this concept, is
already by now a science of immeasurable extension, and there is no doubt

23See [Goldstein and Schappacher, 2007] for more details.
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that no limits are set to its further developments. Equally limitless is the
area of its applications, since every thinking man, even when he is not dis-
tinctly aware of it, is a number-man, an arithmetician.24 (Zum Zahlbegriff,
in [Dugac, 1976], 315)

The emphasis on the idea of arithmetic as the science of numbers is important insofar
as there is a specific meaning to “science” for Dedekind: science, for him, represents
“the course of human knowledge up to” the truth ([Dedekind, 1854], 756). For him, the
“chief goal” of science can be regarded as being “the endeavors to fathom the truth”
(ibid., 755, emphasis in the original): the pursuit of the truth is an activity of the hu-
man understanding, but truth itself does not depend on us. The theory of numbers is
the collection of truths about numbers (properties, theorems, etc., related to numbers),
whereas arithmetic is the investigation of these properties. Science, in consequence, is the
human scaffolding of reasonings which attempts to understand, grasp or deepen our un-
derstanding of the objective truth and is bound to human understanding.25 This entails
that there may be multiple, if not innumerably many, different ways of trying to fathom
or ground the truth, and that science is subjected to the finiteness and arbitrariness of
the human mind. It also implies that it is up to the scientist (here, the mathematician)
to build and/or invent the means for the development of science.26

Arithmetic, numbers, and the human mind
Dedekind famously placed at the head of [Dedekind, 1888] a quote inspired by Gauss(’s
arithmetization of Plutarch): “Man always arithmetizes”, which emphasizes the fact
that, for him, arithmetic is not only a creation of the human mind, but deeply embedded
in our thinking. By no less than replacing God by the man, Dedekind asserts two key
elements of his conception of mathematics: that mathematics, as a science, is a human
activity, and that arithmetic is intimately and constitutively linked to the nature of
human thought.27 These points about Dedekind’s conception of arithmetic are deeply
related.

24“Von allen Hilfsmitteln, welche der menschliche Geist zur Erleichterung seines Lebens, d.h. der Ar-
beit, in welcher das Denken besteht, bis jetzt erschaffen hat, ist keines so folgenreich und so untrennbar
mit seiner innersten Natur verbunden, wie der Begriff der Zahl. Die Arithmetik, deren einziger Gegen-
stand dieser Begriff ist, ist schon jetzt eine Wissenschaft von unermesslicher Ausdehnung und es ist
keinem Zweifel unterworfen, dass ihrer ferneren Entwicklung gar keine Schranken gesetzt sind; ebenso
unermesslich ist das Feld ihrer Anwendung, weil jeder denkende Mensch, auch wenn er dies nicht deutlich
fühlt, ein Zahlenmensch, ein Arithmetiker ist.”

25It should be noted that the idea of science as an activity of the human mind can be found in some
of Lotze’s writings, for example, in [Lotze, 1856], II, 152. Dedekind’s statements in [Dedekind, 1854] are
very close to Lotze’s. See also [Sieg and Morris, pear] for some specific arguments on Lotze’s influence
on Dedekind

26In the introduction to the first edition of [Dedekind, 1888], Dedekind famously advocated for the
introduction of new concepts as being particularly fruitful: “(...) the greatest and most fruitful advances
in mathematics and other sciences have invariably been made by the creation and introduction of new
concepts” ([Dedekind, 1888], 792), in which he also refers to his Habilitationsvortrag.

27In [Sinaceur, 2015], Hourya Benis Sinaceur suggests an intimate link between arithmetic and the
structure of thought, which would attribute a prominent role to arithmetic in thinking. In her view,
arithmetic is for Dedekind deeply involved in the mathematician’s endeavors to extend mathematical
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The idea of arithmetic as a science is indeed closely related to Dedekind’s ideas about
numbers as creations of the mind, which was fairly common among German mathemati-
cians in the 19th century (notably Gauss). Dedekind, thus, saw arithmetic as an ever
evolving intellectual activity and tied it with the human understanding. This aspect of
his conception of arithmetic becomes particularly explicit and important in his 1888
essay on natural numbers, Was sind und was sollen die Zahlen?, in which Dedekind pro-
vides a definition of the natural numbers which he presents as direct productions of the
laws of thought. The fact that the arsenal built with mappings and sets, the fundamental
operations of the thought,28 is exclusively used for this definition suggests, as it has been
remarked by commentators such as H. Benis Sinaceur ([Sinaceur and Dedekind, 2008]),
that Dedekind’s definition offers a justification of his conviction that numbers are cre-
ations of the mind and “flowing from the laws of thought”.

Arithmetic and divisibility
These ideas, however, give little concrete information regarding arithmetic in Dedekind’s
mathematical practice and in a process of arithmetization such as that of [Dedekind and Weber, 1882].
While one can start to understand why Dedekind would want to favor arithmetical meth-
ods, it still seems difficult, on these bases, to justify or precisely point out what can be
considered as “arithmetical” or to identify Dedekind’s practice of arithmetic. Fortunately,
Dedekind also gives more practical statements regarding arithmetic, suggesting that the
essential means of the science of numbers are its operations (addition, subtraction, mul-
tiplication, division). Dedekind follows his predecessors in giving divisibility a prominent
role.

During the 19th century, divisibility properties, which appeared to be the first prop-
erties whose study impulsed new developments in the theory of numbers (notably with
Gauss’s congruences) were at the core of most of the inquiries. In 1876/77, Dedekind
goes as far as saying that arithmetic is founded on divisibility:

The theory of divisibility of numbers, which serves as a foundation of arith-
metic, was already established in its essentials by Euclid. At any rate, the
major theorem that each composite integral number can always be repre-
sented as a product of only prime numbers is an immediate consequence of
the theorem, proved by Euclid, that a product of two numbers is not divisi-

knowledge. She states that “Arithmetic is fundamental not only because numbers are applied everywhere,
but because we can, following the arithmetical laws, calculate with things which are not numbers. What
matters is not what can be said of numbers in themselves, but as satisfying the four conditions brought
to the light [in [Dedekind, 1888]]. And it is why we can say that arithmetic is a formal structure of
our experience. The “logic of the mind” is arithmetic taken generally. [...] Hence, Dedekind’s claim that
arithmetic is a part of logic as meaning that arithmetic affords also a rational (logical) norm of thinking.”
([Sinaceur, 2015], 56)

28In Was sind und was sollen die Zahlen?, Dedekind defines the system of natural numbers by means
of “systems” and “mappings”, (Abbildungen) which are presented as mathematical representations of the
fundamental operations of the thought: to collect things with a common property (i.e. to form sets) and
to draw correspondences between things (i.e. to define mappings).
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ble by a prime number unless the prime divides at least one of the factors.29

([Dedekind, 1877], transl. modified, 53)

Arithmetic as an epistemic tool
As Dedekind wrote in the quote from Zum Zahlbegriff given above, that arithmetic is
one of the most powerful and fruitful tools at the human mind’s disposal. It is a creation
of the human mind to “ease” its work, a means to develop reasoning in all rigor.30

The conception of arithmetic as the science of numbers, a non-rigid theory susceptible
to be widened is effective in his mathematical practice and, for example, is essential
for Dedekind’s introduction of ideals in [Dedekind, 1871] as well as for the arithmetical
definition of the linear continuum in [Dedekind, 1872]. It is related to the idea that
arithmetic can be remodeled so as to ease proofs and allow more developments.

It is in particular essential for Dedekind’s approach in number theory, in which he
developed new methods in which arithmetical notions are applied to objects which are
not, properly speaking, numbers. In particular, in many of his works, Dedekind defines
new divisibility relationships between objects such as groups, modules, ideals as a way
to make the development of the theory easier:

If α is contained in [the ideal] a, we will say that α is divisible by a, and
that a divides α, since by this manner of expression we gain in facility.31

([Dedekind, 1871], 452)

He then proceeds to study their divisibility laws and to import notions and methods from
arithmetic, such as GCDs and LCMs. This allows to reformulate theories and problems
such as the study of binary quadratic forms (in [Dedekind, 1871] and [Dedekind, 1877])
or Riemannian function theory in terms emulating rational arithmetic. Arithmetic is
used by Dedekind as a tool for producing new knowledge in mathematics.

The resort to arithmetic, even if it requires to define new operations for new objets or
long preliminaries (as it is the case, for both, in [Dedekind and Weber, 1882]), is a way
to bypass the difficulties such as the long tedious computations that Dedekind dislikes
so much or the set up of an analytic framework for the study of Riemann surfaces. It is a
way to simplify the inferences by reducing the complicated computations to very simple
ones – manipulations of arithmetical operations similar to elementary number theory. As
Dedekind tells us, “if the theory has not been shortened it has at least been simplified
a little” ([Dedekind, 1877], 119). In the same way, in 1882, Dedekind and Weber’s use

29“La théorie de la divisibilité des nombres, qui sert de fondement à l’arithmologie, a déjà été établie
par Euclide dans ce qu’elle a d’essentiel ; du moins, le théorème capital que tout nombre entier composé
peut toujours se mettre, et cela d’une seule manière, sous la forme d’un produit de nombres tous premiers,
est une conséquence immédiate de ce théorème démontré par Euclide, qu’un produit de deux nombres ne
peut être divisible par un nombre premier que si celui-ci divise au moins l’un des facteurs.”

30The association between arithmetic and rigor was a rather widely spread conception among 19th
century mathematicians (albeit not all of them). On the topic of Dedekind and rigor, one can refer to
[Detlefsen, 2012] and [Haffner, 2014a].

31“Ist α in a enthalten, so sagen wir, α sei theilbar durch a, a gehe in α auf, weil die Ausdrucksweise
hierdurch an Leichtigkeit gewinnt.”
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of arithmetical notions openly aimed at a more rigorous and clearer theory, which they
obtained adopting a strongly arithmetical approach with several layers of arithmetical
notions – an approach which was not perpetuated by Weber.

1.3 A brief note on Kronecker’s theory of algebraic magnitudes

The field of research described in [Goldstein and Schappacher, 2007] was very active un-
til the 1860s. Both Dedekind and Kronecker, who were students and close collaborators of
Dirichlet and deeply influenced by Gauss, had been in contact with it during their forma-
tive years and the beginning of their mathematical career. By the time Dedekind started
to publish important works,32 what Goldstein and Schappacher coined the Arithmetic
Algebraic Analysis had mostly died off. From interactions between “higher arithmetic”
and other domains such as quadratic forms, the focus shifted towards the desire to find
the ‘right’ methods: for example, for algebraic numbers with Dedekind and Kronecker,
or for algebraic functions with Weierstrass, Riemann, Clebsch, M. Noether, Brill, and
later again Kronecker, Dedekind and Weber.

Algebraic function theory was a widely spread subject among mathematicians, at
the end of the 19th century – and not limited to the reception of Riemann’s works. For
Clebsch, Noether and Brill, the most appropriate approach for algebraic functions was
to be found in algebraic methods, working directly with specific equations,33 whereas
for Dedekind and Kronecker, the methods to be favored were arithmetical methods
(with strikingly different conceptions of what “arithmetical” meant). From their common
inheritance, Kronecker and Dedekind took diverging roads. I will give, here, a partial
presentation of Kronecker’s theory of algebraic functions.

Kronecker’s Grundzüge
Kronecker’s theory was announced as a forthcoming work by Kummer in 1857 but –
as the well-known story goes – Kronecker considered that Weierstrass’ results made
his own works unnecessary and renounced to publish them. It is only after reading
[Dedekind and Weber, 1882] and seeing the similarity of his ideas with Dedekind and
Weber’s, that Kronecker came back to algebraic magnitudes (numbers and functions).
He then published his theory in 1881 and 1882 ([Kronecker, 1881], [Kronecker, 1882])
after having delayed the publication of [Dedekind and Weber, 1882] in Crelle’s Jour-
nal. Dedekind and Weber briefly mention Kronecker’s work in a footnote, but had no
knowledge of it while writing their own theory, since they started working on their “the-
ory of ideals of functions” (Idealtheorie für algebraische Funktionen, letter from Weber,
02/02/1879, [Scheel, 2014], 220) in 1879.

Kronecker’s Grundzüge einer arithmetischen Theorie der algebraischen Größen34

32Dedekind’s first paper in number theory was published in 1857 ([Dedekind, 1857]) and what
is considered as his first major works was his theory of algebraic integers, first published in 1871
([Dedekind, 1871]).

33See [Bottazzini and Gray, 2013], especially pp. 311-343.
34Kronecker’s Grundzüge are a notoriously difficult (and long) work. [Edwards, 1990] gives a thorough

mathematical commentary on Kronecker’s theory.
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([Kronecker, 1881]) are not just a theory of algebraic functions (nor are they just a
theory of algebraic numbers) but a theory of algebraic magnitudes (Größen)35 which en-
compass both algebraic numbers and algebraic functions. For Kronecker, “magnitudes”
have only an arithmetico-algebraic meaning ([Kronecker, 1882], 249-250). This implies
an extension of the notion of magnitude to any algebraic expression, i.e. rational func-
tion with integral coefficients. The standpoint taken by Kronecker in [Kronecker, 1882]
is more general than Dedekind and Weber’s in the sense that it considers a larger scope
of objects (i.e. not only algebraic functions of one complex variable, but any algebraic
expression). Kronecker’s ideas about magnitudes are directly linked to the importance of
computations in his mathematics, often emphasized by commentators. Kronecker, who
walks in Kummer’s footprints, has a position diametrically opposed to Dedekind’s, and
considers that concepts are (must be) the result of computations.36

Algebraic magnitudes can be added, multiplied, subtracted and divided. The divisi-
bility of algebraic magnitudes is the core of Kronecker’s investigations, and leads to the
notion of divisor (Divisor).37 The aim of Kronecker’s theory of divisors is not, as it is
often claimed, the theorem of unique factorization in primes. Rather as [Edwards, 1990]
tells us, it is to define greatest common divisors. Working with greatest common divi-
sors is preferable to primality because they are independent of the field in which one
is working (see [Edwards, 1990], v). It is an essential difference with Dedekind’s (and
Weber’s) approach: primality and the unique factorization in primes are at the core
of their theory. The advantage seen by Kronecker in working with GCD is not one
that interests Dedekind. To avoid the problem of primality being linked to the domain,
Dedekind transfers primality to ideals (for algebraic numbers in [Dedekind, 1871] and its
later rewritings, then for algebraic functions in [Dedekind and Weber, 1882]). As we will
see, primality and divisibility properties are the focus of Dedekind and Weber’s works,
and transferred to many different levels and objects in function theory, leading to the
divisibility of complexes of points of a Riemann surface.

Kronecker’s theory can be understood, in modern terms, as aiming at decompos-
ing the manifold “generated by an ideal into irreducible components” ([Vlădut, 1991],
11). However, Kronecker does not refer to Riemann’s works nor to Riemann surfaces.38

Unlike Dedekind and Weber, Kronecker shows no interest in studying algebraic func-
tions with Riemann surfaces. This point is a second important difference between their

35In [Edwards et al., 1982], Dedekind puts “(?)” after uses of the word “Größe” which he considers,
at least since [Dedekind, 1872], as imprecise and avoidable.

36See [Vlădut, 1991], [Boniface, 2004], and [Smadja, 2010].
37For brevity’s sake, the modernized definition of a divisor given by Edwards is the following: “Let

K be an algebraic extension of [a ring] r. A polynomial f , in any number of indeterminates and with
coefficients in K, is said to divide another such polynomial g if g = fq, where q is a polynomial whose
coefficients are elements of K integral over r. We will say that a polynomial f (in any number of
indeterminates and with coefficients in K) represents a divisor, and will denote the divisor it represents
by [f ]” ([Edwards, 1990], 19). Edwards adds that if one wants to know what a divisor is, one should
understand it by what it does: it “divides things. Specifically, it divides (or does not divide) polynomials
with coefficients in K”.

38As far as I am aware – but my knowledge of Kronecker can certainly be challenged – direct references
to Riemann’s works by Kronecker are, to say the least, very rare.
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works. For Kronecker, algebraic functions must be part of a “general arithmetic” and
studied only as such using the theory of divisors. His 1881 and 1882 works expose this
general arithmetization of algebraic magnitudes, and the “general arithmetic” is to be
a theory in itself. Neither Dedekind nor Weber were interested in a general theory of
algebraic magnitudes. Their theories (of algebraic numbers and of algebraic functions)
are tightly framed and considered independent of each other, and they did not express
a desire to unify both theories. It shows how both arithmetizations stem from very dif-
ferent conceptions. For Dedekind and Weber, algebraic functions are an independent
theory for which Riemann introduced a very fruitful concept – the Riemann surface –
but which suffers from a crucial lack of rigor. They, thus, propose to rewrite Riemann’s
theory using Dedekind’s ideal theory. There is no desire to subsume algebraic functions
to arithmetic in Dedekind’s and Weber’s works. Rather, arithmetical strategies appear
as a tool to produce a ‘better’ (Riemannian) theory of algebraic functions of one variable.

As is well known, there are many interesting similarities between Dedekind and
Kronecker: both were deeply influenced by Gauss and Dirichlet, as well as by Kummer
whose works they both wanted to pursue and generalize. They often worked on the
same subjects and both insisted on the importance of developing them with the ‘right’
arithmetical approach... but with very different conceptions of arithmetic, to the point
that the ‘arithmeticity’ of the other’s work would be a central point of discord. Both of
them acknowledged that the core of their dissensions can be found in two aspects of their
practices: their conceptions of arithmetic, and their opinions on constructivity and actual
infinity. When Kronecker qualifies his own works as being “arithmetical”, Dedekind
denies him this quality. In Dedekind’s view, Kronecker’s extensive use of indeterminate
variables and polynomials implies that his work is too formal to be arithmetical and
rather belongs to algebra. In comments about Kronecker’s Grundzüge, Dedekind wrote:

Neither from this introduction nor from the essay itself is it clear why ex-
actly this theory should be called an arithmetical one. Under this name, one
should expect that the consideration of the realm of numbers (the absolute
constants) would form the main foundation, but it is by no means the case.
I would very much like to rather call this theory formal, because it predomi-
nantly is based on the “auxiliary methods of indefinite coefficients” (p. 47, 48,
69) and the “association of forms (formed by these coefficients or auxiliary
variables u, u′, u′′) (§15 and §22, p. 93-96).39 ([Edwards et al., 1982], 54)

39“Weder aus dieser Einleitung noch aus der Abhandlung selbst wird es deutlich, weshalb diese Theorie
gerade eine arithmetische genannt wird. Nach diesem Namen sollte man vermuthen, daß die Betrachtung
des Reiches der Zahlen (der absoluten Constanten) die hauptsächliche Grundlage bilden würde, was
keineswegs der Fall ist. Viel eher möchte ich diese Theorie eine formale nennen, weil sie vorwiegend auf
dem ‘methodischen Hülfsmittel der unbestimmten Coefficienten’ (S. 47, 48, 69) und der ‘Association der
(aus diesen Coefficienten oder Hülfsvariabelen u, u′, u′′ ... gebildeten) Formen’ (§15 und §22, S. 93-96)
beruht.”
Dedekind’s “Bunte Bemerkungen” are comments in which he wrote about Kronecker’s Grundzüge, and
which were never published by Dedekind – although according to H. Edwards, he seemed to intend
to do so. Edwards, Neumann and Purkert edited and published the “Bunte Bemerkungen” in 1982
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I will not develop further the comparison between Kronecker’s Dedekind’s (and We-
ber’s) arithmetizations. While such a comparison would certainly give us a better un-
derstanding of these works, and more generally of the importance of arithmetic in the
19th century, it is not the point of this paper... and it would require more space than is
possible in one paper.

2 Rewriting Riemann
Dedekind and Weber’s correspondance started with their collaboration on the edition
of Riemann’s Gesammelte Werke, in 1874. It was the beginning of a long friendship
between Dedekind and Weber, as attested by their rich correspondence. One of the most
significant side-effects of their collaboration and correspondance, and on a longer term, is
the co-writing of [Dedekind and Weber, 1882], in which Dedekind and Weber transfer to
algebraic functions of one complex variable, the methods elaborated by Dedekind for the
theory of algebraic integers. The goal of their paper was to redefine the basic notions of
Riemann’s function theory and to set up a solid ground for the investigation of complex
functions and Riemann surfaces. Their paper is presented as a criticism of previous
treatments of Riemann’s ideas (such as the algebraization of his ideas by Clebsch, Brill
and Noether) and an attempt to go back to (what they took to be) Riemann’s ‘true’
methodological and epistemological principles. Dedekind and Weber do not explicitly
refer to any of their contemporaries’s works, and one can only try to guess which works
they might be alluding to. Considering the specificity of their reproaches, it is likely
that the criticisms were meant for approaches relying on algebraic equations (Clebsch,
Noether, Brill, Gordan) or even on explicit series (Weierstrass).

Dedekind and Weber propose a new definition for the notions introduced by Rie-
mann (the surface, the ramification, the genus...) attempting to follow these guidelines,
which were for them a most essential advantage of Riemann’s work. On the other hand,
Clebsch, Noether, Brill, and Gordan, attempted an algebraization of the theory, relying
on explicit equations and studying restricted cases, because they considered the general-
ity of Riemann’s works to be “bewildering” ([Clebsch and Gordan, 1866], v). And Roch
and Prym considered that the Dirichlet’s principle was at the core of Riemann’s theory
– they saw it as Riemann’s true way to “create” functions.

2.1 Dedekind and Weber and Riemann

Dedekind and Riemann
Dedekind greatly admired Riemann’s works and followed his lectures while they were
both Privatdozenten in Göttingen. While the main focus of Dedekind’s mathematical
works, throughout his career, was number theory, he was deeply influenced by Rie-
mann’s mathematics and claimed to pursue, in his own number-theoretical works, the
epistemological and methodological principles adopted by Riemann, which he considered
to be “to seek to infer the proofs immediately from the fundamental characteristics of

([Edwards et al., 1982]). References are to their paper.
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concepts, rather than from calculation, and indeed to construct the theory in such a way
that it is able to predict the results of calculation” ([Dedekind, 1877], transl. slightly
altered, 102). It was for him the best way to avoid founding a theory on computations,
which would be problematic for two reasons: firstly it made the difficulties much greater
when one would try to adopt a more general viewpoint (e.g. not only for cyclotomic
integers, but for any algebraic number) and even made mistakes more likely, secondly it
“would still not be of the highest degree of perfection” ([Dedekind, 1877], 102).

For Dedekind, the avoidance of these computations or Darstellungsformen is related
to the setting up of a “higher level”, the resort to collections of numbers or functions
to simplify and to avoid, or hide away, the computations – and, to some extent, it was
already the case for Riemann.40 This point is explicitly stated by Dedekind when he intro-
duces ideals in [Dedekind, 1871] or explains the genesis of his theory in [Dedekind, 1877].
In particular, ideals allowed to hide away long arduous computations (on algebraic num-
bers or functions) by replacing them with the simple(r) ones between ideals – as we will
see in the following paragraphs.

A (very cursory) note on Weber
Weber was recognized as a specialist of function theory and knew Riemann’s works
well, as testified by the fact that he was brought in by Dedekind to take over on the
edition of Riemann’s Werke. In 1870, Weber was one of the very few mathematicians
to take interest in (and the defense of) Riemann’s Inauguraldissertation. He tried to
prove the Dirichlet principle in [Weber, 1870], an article which went unnoticed by his
contemporaries. Weber was able to point out, before Weierstrass’s publication of his own
criticisms, that the core of the problem with the Dirichlet principle was the assumption
of arbitrary functions. Weber explains that he does not want to try to prove the Dirichlet
principle on the basis of “essentially new foundations” but rather wishes to “complete, at
some vulnerable points, the proof that was more suggested than carried out by Riemann”
([Weber, 1870], 29). The important point, for us, is the fact that Weber, in his 1870
paper, is tackling a prevailing problem, and does so with the desire to provide a rigorous
ground to Riemann’s theory without departing from Riemann’s initial proposal.

Another important point regarding Weber’s practice in Riemannian function theory
is the observation that he wants to adopt an approach valid for any algebraic func-
tion, in keeping with [Riemann, 1857]. It is, for example, noticeable in his 1873 paper
“Zur Theorie der Transformation algebraischer Functionen”. It is not the place, here,
to give a detailed account of Weber’s works. However, it seems important to underline
that in many of his papers, he adopted an approach which did not present the kind
of strong methodological and/or mathematical statements against Riemann of some his
contemporaries, such as Clebsch or Weierstrass.

The edition of Riemann’s Gesammelte Werke
The edition of Riemann’sGesammelte Werke started under the responsibility of Dedekind

40See, for example, [Ferreirós, 2008].
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and Alfred Clebsch. In 1874, two years after Clebsch’s death, Dedekind contacted We-
ber to ask him to take over the editorial work. From 1874 to 1876,41 Weber did a large
part of the editorial work on Riemann’s Werke, which contains in addition to Riemann’s
published works a selection of twenty-two texts from his Nachlass, during which he regu-
larly sought Dedekind’s help who is credited as second editor of Riemann’s Werke. Their
editorial work was very careful, and most of it was done through letters.42

From 1 November 1874 to the end of 1876, Dedekind and Weber exchanged about 70
letters. These letters show us most clearly that Dedekind and Weber read very thought-
fully and thoroughly all the texts which they edited – and a few which were ultimately
not published. It was very important for them to publish works which would be good
for Riemann’s standing, which would be interesting for the readers, relevant to his pub-
lished works, true to his thought (and obviously correct). They proofread Riemann’s
published works, and embarked in the tedious process of deciphering, clearing up and
reconstructing Riemann’s (sometimes messy and often elusive) manuscripts.

For them, the editorial process was a real, deep, important mathematical work: their
reading Riemann’s papers implied to redo and verify the proofs, the computations, and
reconstruct Riemann’s reasoning in some of the less developed manuscripts.43 Dedekind
and Weber, the letters tell us, also sent each other Riemann’s manuscripts, their notes
on the manuscripts, and as time passes, they start sending each other notes from some
of their personal works which they saw as related to what they were studying for Rie-
mann’s Werke. It was, thus, truly a part of their mathematical activity, which likely
had an important impact on their future works – as suggested by the recurrence of their
discussions around the subjects studied by Riemann such as Abelian functions, or of
course the 1882 paper which is studied in this paper.

This first collaboration around Riemann’s works was the foundation of their collab-
oration and their common reading of Riemann. While there is no textual evidence that
their desire to rewrite Riemann’s theory of algebraic functions was actually born while
they were editing his Werke, Dedekind wrote to Weber early in their exchanges that he
thought that himself would only truly understand Riemann’s works when he would be
able to “overcome in [Dedekind’s] way, with the rigor that is customary in number the-
ory, a whole series of obscurities” in them (11/11/1874, [Scheel, 2014], 50). However, of
course, at the time of the edition of Riemann’s Werke, the version of Dedekind’s theory
of ideals transferred to algebraic functions was not written. The fact that this new theory
of ideals of algebraic functions is first mentioned in early 1878 suggests that using ideals
for algebraic functions was only considered after the publication of [Dedekind, 1877].

41Considering that Dedekind and Clebsch worked together on the edition before Clebsch’s death and
that Dedekind tried to continue on his own, the overall editorial work probably lasted five to six years.

42See [Scheel, 2014].
43It was notably the case for “Fragmente über die Grenzfälle der elliptischen Modulfunctionen”,

[Riemann, 1876], 427-447. I study Dedekind and Weber’s correspondence on the edition of Riemann’s
Werke in a forthcoming paper published by the FMSH, and in a forthcoming paper to be published in
the proceedings of the conference in honor of the 100th anniversary of Dedekind’s death as a special
issue of the Mathematische Semesterberichte.
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2.2 On writing the 1882 paper

A couple of years after the edition of Riemann’s Werke and the in depth study of Rie-
mann’s works that accompanied the process, Dedekind and Weber started exchanging
letters regarding a “ideal theory of algebraic functions” ([Scheel, 2014], 220). Throughout
1879 (and probably 1880), Dedekind andWeber’s correspondence is essentially concerned
with the investigation of this new theory. The letters written in 1879 are partially re-
produced in [Scheel, 2014] and give us insights of the slow process of setting up this new
theory.44

Weber’s first letter referencing this theory indicates that the initial idea of an “ideal
theory for algebraic functions” came from Dedekind. Dedekind sent his work to Weber,
who responded with undeniable enthusiasm on 18/01/1879:

Although I am not yet completely finished with studying your last message, I
wanted already to thank you for it today, and inform you that I am extremely
interested in it. It also promises great benefits for the theory of Abelian
functions. Maybe we will manage, this way, to successfully obtain a useful
normal form for Abelian functions.
I can’t write more about the details, today, because I need first to study the
matter more precisely. In any case, I also hope at this occasion to penetrate
for the first time deeply into your ideal theory.45 ([Scheel, 2014], 220)

His following letter goes through Dedekind’s ideas point by point, answering difficulties
and proposing alternative approaches (for example for the basis of the field). After this
first exchange on what Weber called the “ideal theory of algebraic functions”, there is
in [Scheel, 2014] more than 50 pages of letters from Weber on this theory. Weber sent a
letter every two weeks, and most of the elaboration of their paper is done through these
letters, with only a few visits.

Weber’s letters in 1879 explore the relationships between function theory and ideal
theory, linking, for example, the discriminant of the field to the ramification points or
attempting to provide a satisfying proof of the Riemann-Roch theorem ([Scheel, 2014],
239-251). His letters show that he tries to translate Riemann’s theory into the language
of Dedekind’s ideal theory:

There is something, in the concept of an integral algebraic function which
seemed strange to me from the beginning, and which in fact makes it a
difficulty, namely the different behavior in the different sheets at infinity.

44As mentioned in the introduction of this paper, Dedekind’s letters from 1879 and most of the letters
from 1880 seem to have been lost.

45“Obgleich ich noch nicht vollständig mit dem Studium Deiner letzten Mittheilung durch bin, will ich
Dir doch schon heute dafür danken und Dir mittheilen, daß mich dieselbe über die Maßen interessirt. Ich
verspreche mir großen Nutzen davon auch für die Theorie der Abelschen Functionen. Vielleicht gelingt
es auf diesem Wege zur eher brauchbaren Normalform für die Abelschen Functionen zu gelangen.
Ueber Einzelnes kann ich Dir heute noch nicht schreiben, da ich erst die Sache genauer durch-
studieren muß. Jedenfalls hoffe ich bei dieser Gelegenheit auch einmal gründlich in Deine Ideal-Theorie
hineinzukommen.”
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I have therefore wondered already, whether one should not also here intro-
duce something similar to order, by considering the collection (Inbegriff ) of
those integral functions which stay finite in determinate sheets at infinity.46

(05/03/1879, ibid., 229)

This exploration was difficult and Weber was both enthusiastic and cautious. In the
same letter, after considering how to prove, for ideals, some results which are easy to
prove in the Riemannian setting, Weber wrote to Dedekind:

We must wait and see if the whole thing is going to lead to something new.
What we have so far is not fundamentally new. Anyway, it is a very elegant
and neat presentation for known propositions, and in this respect, it satisfies
an esthetic requirement. What I expect from this in the first place is in
fact a rigorous, or at least more general foundation for Riemann’s theory.47

(05/03/1879, ibid., 230)

In their published paper, Dedekind and Weber, indeed, do not provide any new results,
but give new definitions (e.g. of the genus) and new proofs (e.g. of the Riemann-Roch
theorem). But despite their difficulties and the disappointment of not being able to
provide new results, Weber is insistent that their work is worth pursuing and writes in
December 1879:

What we have done so far is however too nice to abandon it completely
(...). It would however be good now, if soon we could come forward with
something, when precisely so many [works] appear in this field which are not
so good as ours, for example a thick book by Briot on Abelian functions.48

(26/12/1879, ibid., 265)

Dedekind and Weber did not reach Weber’s goal, and Abelian functions do not appear
in their paper. In the letters from 1879, Weber uses notions and elements of language
which disappear from the 1882 presentation, such as the reference to the sheets of the
surface.

Insofar as more than half of the letters are missing, a tentative genesis of their theory
would be a dangerous enterprise and will not be attempted in this paper.

46“Es ist mir in dem Begriff der ganzen algebraischen Function etwas von vorn herein fremdartig
vorgekommen, was auch in der That Schwierigkeiten macht, nämlich das verschiedene Verhalten in den
verschiedenen Blättern im Unendlichen. Ich habe deshalb schon daran gedacht, ob man nicht auch hier
etwas den Ordnungen Analoges einführen müßte, indem man den Inbegriff derjenigen ganzen Functionen
betrachtet, die in bestimmten Blättern im Unendlichen endlich bleiben.”

47“Ob die ganze Sache zu Etwas Neuem führen wird, müssen wir abwarten. Was wir bis jetzt haben
ist im Grunde nicht neu. Immerhin ist es eine sehr elegante und hübsche Ausdruckweise für bekannte
Sätze und genügt insofern einem ästhetischen Bedürfnis. Was ich zunächst davon hoffe ist übrigens eine
strenge oder wenigstens allgemeinere Begründung der Riemannschen Theorie".

48“Was wir darin gemacht haben, ist doch zu hübsch, um es ganz liegen zu lassen (...). Es wäre doch
schön wenn wir jetzt bald einmal mit etwas hervortreten könnten, wo gerade so vielerlei auf diesem
Gebiete erscheint, was entschieden nicht so gut ist als unseres, z. B. aber ein dickes Buch von Briot über
Abel’sche Functionen.”
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2.3 Motivations for the 1882 paper

For Dedekind and Weber, since Riemann’s works,49 mathematicians had failed to follow
some of the key precepts of his elaboration of the concept of Riemann surface, namely,
to treat entire classes of functions without distinguishing between special cases, without
relying on individual or explicit expressions, and without taking computations as a
ground of the theory.50 Dedekind and Weber explain, in the introduction of their paper,
that by proposing approaches to the theory attached to definite equations or to explicit
representations in series, the previous authors had to impose initial restrictions on the
functions treated (e.g., on their singularities). This is something which Dedekind and
Weber want to avoid. They wish to offer a “general” theory, that is to treat, in one move,
entire classes of functions, to avoid restrictive initial hypotheses, distinctions between
cases and the “so-called exceptional cases” which, according to Dedekind and Weber,
were often “mentioned casually as limit cases, or even left aside entirely” in previous
works ([Dedekind and Weber, 1882], 238, transl. [Stillwell, 2012], 41).

They also wish to avoid any use of geometric intuition, especially if it is taken as a
reason to admit the truth of certain theorems about functions, such as their developa-
bility. Facing what they perceived as conspicuous lack of rigor and recurring restrictive
assumptions that can be found in the treatments of Riemannian function theory they
opposed, Dedekind and Weber wish to reformulate the fundamental concepts of the
theory, so as to solve these issues. In addition, from Dedekind and Weber’s viewpoint,
the treatments of function theory before their work had a tendency to unduly accept
the validity of certain unproven theorems at the basis of their researches. The authors
explicitly state so, in the introduction of the paper:

The purpose of the investigations communicated in what follows is to found
the theory of algebraic functions of one variable, one of the most important re-
sults of Riemann’s creation, from a standpoint which would be simple, and at
the same time rigorous and completely general.51 ([Dedekind and Weber, 1882],
238, transl. modified [Stillwell, 2012], 41)

To do so, they import in algebraic function theory the concepts and methods introduced
by Dedekind in algebraic number theory, namely the concepts of field, module and ideal,

49Riemann’s core ideas were first presented in 1851 in his doctoral dissertation, “Grundlagen für eine
allgemeine Theorie der Functionen einer veränderlichen complexen Grösse” ([Riemann, 1851], which
was never published (e.g. in Crelle’s journal) but only printed and distributed to a number of German
universities, as was customary, and later reproduced in [Riemann, 1876]). Riemann published his theory
six years later in a reworked and extended form, with an application to Abelian functions in “Theorie
der Abel’schen Functionen” ([Riemann, 1857]).

50The amount of problems to investigate and of possible directions that could be taken after Riemann’s
function theory is very wide, and is well illustrated by the variety of authors studied in works such as
[Houzel, 2002], [Chorlay, 2007], or [Bottazzini and Gray, 2013], to which the reader can refer for a more
comprehensive overview.

51“Die im nachstehenden mitgeteilten Untersuchungen verfolgen den Zweck, die Theorie der algebrais-
chen Funktionen einer Veränderlichen, welche eines der Hauptergebnisse der Riemannschen Schöpfung
ist, von einem einfachen und zugleich strengen und völlig allgemeinen Gesichtspunkt aus zu begründen.
”
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and methods of proofs developed for them. In particular, the core of their approach is
the definition of arithmetical operations for ideals in such a way that it becomes possible
to “calculate” with ideals:

With a proper definition of multiplication, it is possible to calculate with
these ideals using exactly the same rules as for rational functions.52 ([Dedekind and Weber, 1882],
240, transl. slightly altered [Stillwell, 2012], 42)

Since the notion of field of functions, as Dedekind and Weber write in the introduction,
“coincides completely with that of Riemann’s class of algebraic functions”, they first
study in depth the properties of the field. On this basis, in the second part of the paper,
they exhibit the said “coincidence” by establishing a one-to-one correspondence between
the field and the surface. The arithmetical methods used for ideal theory are transferred
to the Riemann surface as well, through the new definition itself.

The Riemann surface remains the core of the theory, despite the lengthy technical
preliminaries. Dedekind and Weber explain, in fact, that for the time being, providing
a rigorous foundation to the theory is too difficult to be done directly:

Admittedly, all these results can be obtained from Riemann’s theory with a
much more limited investment of means, and as special cases of a much more
extensive general presentation. However, it is known that a rigorous founda-
tion of this theory still presents certain difficulties, and until one has managed
to completely overcome these difficulties, it may very well be that the path
we have taken, or at least one related to it, is in fact the only one leading
to this goal for algebraic function theory with satisfactory rigor and gener-
ality.53 ([Dedekind and Weber, 1882], 240, transl. modified [Stillwell, 2012],
42)

While Dedekind and Weber keep the central ideas of Riemann surfaces, the theory is
stripped of any geometrical component. Dedekind and Weber also give up the infamous
Dirichlet principle, without even discussing it. Any kind of infinitesimal characterization
or the idea of a mobile point to join the sheets of the surface completely disappear from
their work.

3 Fields of algebraic functions of one complex variable
In the first part of their paper, which will be studied in this section, Dedekind and Weber,
even if they are not telling their readers so, set up the framework and the toolbox which

52“Mit diesen Idealen läßt sich nach gehöriger Erklärung der Multiplikation ganz nach denselben Regeln
rechnen, wie mit rationalen Funktionen.”

53“Freilich ergeben sich alle diese Resultate durch einen weit geringeren Aufwand von Mitteln und als
Spezialfälle einer vielumfassenden Allgemeinheit aus Riemanns Theorie; allein es ist bekannt, daß diese
Theorie bezüglich einer strengen Begründung noch gewisse Schwierigkeiten bietet, und bis es gelungen ist,
diese Schwierigkeiten vollständig zu überwinden, dürfte der von uns betretene Weg oder wenigstens ein
verwandter, wohl der einzige sein, der für die Theorie der algebraischen Funktionen mit befriedigender
Strenge und Allgemeinheit zum Ziele führt.”
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serves to establish what they hope to be a more general and more rigorous treatment of
Riemann’s function theory. Most of the considerations about the arithmetical structure
of the field Ω and the definition of special ideals will have a counterpart in the definition
of the surface.

In order to develop the “theory of ideals of algebraic functions”, Dedekind and Weber
take as a basis

a generalization of the theory of rational functions of one variable, in partic-
ular of the theorem according to which every polynomial54 of one variable
admits a decomposition into linear factors.55 ([Dedekind and Weber, 1882],
238, transl. modified [Stillwell, 2012], 41)

In the case of surfaces of genus 0, such as the sphere, the approach has already been
studied and is “simple and well known”. Dedekind and Weber’s aim is to treat the general
case, that is, to provide a treatment valid for any genus p. This general case is related
to the surfaces of genus 0 “in the same way that general algebraic numbers are related
to rational numbers” (ibid.).56 To treat the general case, they will thus transfer and
adapt to functions of one complex variable the number theoretical methods “derived
from Kummer’s creation of ideal numbers”, which proved to be “most successful” in
Dedekind’s own works in number theory.

This comparison is the core of the so-called analogy between fields of numbers and
fields of functions, for Dedekind and Weber: the similarity of two relations presented as
a proportion (A : B :: C : D) – a rather classical view of analogy. This comparison guides
the “transfer” (Übertragung) of methods from number theory to function theory. It does
not indicate, thus, a structural conception of the notions of field and ideal. For Geyer,
the “fundamental idea and fundamental result” ([d]ie Grundidee und das Grundresultat,
[Geyer, 1981], 113) of the first part of their paper is “the exposition” (Aufzeigen) of the
analogy between fields of numbers and fields of functions. It is important, however, to
underline that Dedekind andWeber are not investigating ‘structural similarities’ between
fields of functions and fields of numbers. Not only is it not their aim, but Dedekind and
Weber don’t show any interest in thinking about fields and ideals in and for themselves –
rather, fields and ideals appear as new fundamental notions and tools for specific theories
(of numbers, of functions). Fields, ideals or modules are not thought of as abstract
concepts, in the sense of (our) modern algebra. Although fields, ideals and modules have

54Dedekind and Weber, as it was common at the time, use “integral rational function” (ganze rationale
Funktion) to designate polynomials. To avoid confusion with the integral functions defined later in the
text as the integers of the field, I will use the term “polynomial”.

55“Eine sichere Basis für die Grundvorstellungen sowie für eine allgemeine und ausnahmslose Be-
handlung der Theorie läßt sich gewinnen, wenn man von einer Verallgemeinerung der Theorie der ra-
tionalen Funktionen einer Veränderlichen, insbesondere des Satzes, daß jede ganze rationale Funktion
einer Veränderlichen sich in lineare Faktoren zerlegen läßt, ausgeht.”

56Dedekind uses “rational numbers” and “rational integers”, since algebraic numbers (and integers)
are defined as an extension of rational numbers (and integers). He does not consider “natural numbers”,
here. I will use “rational integers” in the same way. In particular, since it is, for Dedekind a way to
contrast the properties of algebraic integers as an extension of the concept of integer, I will be talking
about “rational number theory” to designate number theory done with rational integers.
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an ‘abstract’ definition (which Weber calls “pure formalism” ([Weber, 1893], 521) and
Dedekind calls “invariant” ([Edwards et al., 1982], 63)), that is, a definition that does
not refer to the individual nature of their elements, never is a general theory of these
concepts developed by Dedekind himself.57 Moreover, Dedekind’s concept of field is
linked to equations (see [Dedekind, 1873], 409) rather than structures.

3.1 The transfer

The main idea behind the transfer of algebraic number methods to the theory of alge-
braic functions is to study divisibility in a field of algebraic functions. While they do
mention Dedekind’s algebraic integer theory and its relation to the 1882 paper, they
also emphasize that they do not expect their reader to be acquainted with that theory,
and consequently do not want to presuppose any of the definitions and theorems to be
already known. All definitions and proofs are given in extenso: every result, although
already proved in 1877, is proved again. The fact that module and ideal theories are
entirely developed for the theory of functions without relying on their development and
validity in number theory emphasizes the idea that Dedekind and Weber are proceed-
ing to a “transfer” or “translation” of the methods, implying no presupposition of the
validity of the methods in a different (or general) framework.

Dedekind andWeber take full advantage of the analogy mentioned in the introduction
and the well-known similarities between the arithmetical behaviors of numbers and of
functions, and define a notion of field of algebraic functions:

In an analogy with number theory, a field of algebraic functions is understood
to be a system of such functions with the property that application of the four
fundamental operations of arithmetic (Spezies) to the functions of this system
always leads to functions of the same system.58 ([Dedekind and Weber, 1882],
239, transl. slightly altered [Stillwell, 2012], 42)

For the transfer of methods from number theory, they follow the analogy and define,
for functions, counterparts of the notions used in number theory, in order to be able to
unfold the ideal theory in function fields:

rational integers → polynomials
rational numbers → rational functions
algebraic numbers → algebraic functions
algebraic integers → integral algebraic functions

Thus, one has to identify the integers of the field. A notion of integral algebraic function
can thus be defined in very similar way as the algebraic integers were defined:59

57It will be developed in the works of Steinitz, E. Noether, etc. On these matters, see [Corry, 2004].
58“Versteht man, analog der Zahlentheorie, unter einem Körper algebraischer Funktionen ein System

solcher Funktionen von der Beschaffenheit, daß die Anwendung der vier Spezies auf Funktionen des
Systems immer zu Funktionen desselben Systems führt.”

59See [Geyer, 1981], 116, for a modern presentation of Dedekind and Weber’s concept of integral
algebraic function.
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A number θ is an algebraic integer if it
satisfies an equation

θn + a1θ
n−1 + ...+ an−1θ + an = 0

of finite degree n and whose coefficients
a1, a2, ..., an are rational integers.

A function ω is an integral algebraic func-
tion of z if in the equation of lowest degree
satisfied by ω

ωe + b1ω
e−1 + ...+ be−1ω + be = 0

the coefficients b1, b2, ..., be are all poly-
nomials of z.

The development of ideal theory is very much similar to what was done in 1877, it is
sometimes the same word for word, with “function” in place of “number”. However, it
is not strictly identical. In particular, some results are simpler to prove for functions –
although, as Dieudonné mentions, Dedekind and Weber do not seem to clearly know why
it is simpler and, in any case, do not attempt to explain it. Dedekind and Weber mention,
in footnotes, the differences when they appear, but their aim is not to try to expose what
the theory of algebraic numbers and the theory of algebraic functions have in common.
They do not explain these differences and do not try to extract a common core for the
two theories.60 Following their lead, I will make few references to [Dedekind, 1877], in
this paper. This allows to stress the fact that the arithmetical aspect of the 1882 paper
should not be taken as a mere result of the application of number theoretical methods.

The strategy adopted by Dedekind and Weber allows them to transfer all the ques-
tions, theorems and proofs regarding divisibility of algebraic functions to divisibility of
ideals. Indeed, as they explain themselves, with an appropriate definition of arithmetical
operations between ideals, it becomes possible to “calculate with ideals using the same
rules as for rational functions”, to define notions such as “prime ideal” and to prove
the validity of divisibility theorems such as the existence of a unique factorization in
primes for ideals of algebraic functions. The arithmetic properties appear, then, to be of
a striking simplicity. Such a strategy, the study of divisibility properties for systems of
elements, is the basis for their overall approach in the paper and used for the definition
of the Riemann surface as well.

3.2 Fields of functions

An algebraic function θ of an independent variable z is defined as the root of a polynomial
equation of degree n in θ whose coefficients are polynomials (without common divisors)
in z ([Stillwell, 2012], 45). Dedekind and Weber establish that θ does not satisfy any
equation of lower degree in θ as well as in z, and that the “system Φ(θ, z) of all rational
functions of θ and z” is “a field Ω of algebraic functions of degree n” (ibid., 46, emphasis
in the original). Dedekind and Weber’s first and essential move is thus the introduction of
the notion of a field of functions. While mathematicians were well aware that rational and
polynomial functions reproduce themselves (sich reproduzieren) by the four fundamental
operations of arithmetic (+,−,×,÷), the choice to consider this very property as the
ground of the theory is an important departure from the usual approaches to the theory.

60For such a comparison, see [Noether, 1919] and [Strobl, 1982].
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Having defined integral algebraic functions, Dedekind and Weber work in the integral
closure o. The system o is proved to be closed under addition, subtraction and multi-
plication (in §3, 5.). Arithmetical operations (including divisibility of functions61) are
defined for the integral functions, following the known rules of manipulation of rational
functions. Dedekind and Weber mainly investigate arithmetical properties of algebraic
functions as elements of o such as the transitivity of divisibility. The complete study
of the divisibility laws governing fields of algebraic functions is done further down the
paper by resorting to ideal theory.

Dedekind and Weber do not introduce a notion of ring, or a notion similar to a ring,
as are Dedekind’s Ordnungen in number theory. As it was pointed out to me by Norbert
Schappacher, if Dedekind and Weber were to work in Dedekind’s theory of Ordnungen
rather than simply in the integral closure, they would not succeed in avoiding the sin-
gularities as they do here – a point of which they are very proud. It is not clear whether
they purposely avoided to work in Ordnungen, or whether they just did not see the point
in doing so. Indeed, the importance of Ordnungen, only became clear later for Dedekind:
they are especially important in the 1894 version of his algebraic number theory (yet
still very different from our rings). Dedekind, in [Dedekind, 1877], uses Ordnungen as a
change of setting to bypass a difficulty in ideal theory (namely the proof that the set-
theoretic definition of the divisibility of ideals is equivalent to the arithmetical definition
of divisibility, see page 31 of this paper). They do not have the status and role that
rings have for modern algebra. In algebraic function theory, this result is not difficult to
prove. Hence, the need for Ordnungen does not arise. Following Dedekind and Weber, I
will avoid using the term “ring”, which will lead me to write about ideals in a field. This
slight misuse highlights that Dedekind and Weber’s work is far from our contemporary
conceptual setting.

While I do not intend to consider this in any detail here, it seems important to un-
derline that before the introduction of modules and ideals, Dedekind and Weber develop
for the field Ω notions such as the norm of a function, the determinant, the trace62 and
the discriminant. The “analogy” with number theory likely played an important role in
the set up of these notions, which are most useful in the proofs.63 Indeed, in number
theory, since the norm of an algebraic number is a rational number, using norms allows
to reduce the problems to the study of rational numbers. This strategy was used by
Gauss and Kummer (e.g. [Kummer, 1851]) and was well-known. In the case of algebraic
functions, the norm is a rational function, which continues further the correspondence

61[Dedekind and Weber, 1882], 249
62“Trace”, in German Spur, was not a very widespread term (although the concept was known) and

seems to have been introduced by Dedekind in algebraic number theory. It was usually solely referred
to as a “coefficient of the characteristic equation” ([Hawkins, 2008], 500). As such, it was well-known,
and in 1895, Dedekind referred to “norms, discriminants and traces” as “common” ([Dedekind, 1895], in
[Dedekind, 1932] II, 59). According to Hawkins, it was not such a common expression, and Frobenius,
“following the lead of Dedekind”, was the one to begin to popularize it in his works on matrices. Weber
also uses it in [Weber, 1896].

63See [Stillwell, 2012], 47-55. See also [Geyer, 1981], 116-117, and [Strobl, 1982], 235-246, for modern
expositions of some of their results.
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stated earlier. Determinants and discriminants were usual tools for the theory of forms,
and can be found in works from Gauss, Sylvester, Gordan, Kronecker... The notion of
discriminant is also particularly important because of its relations with the ramification
of the field, which we will see later. Dedekind’s and Weber’s innovations thus stem from
prevalent methods in number theory.64

3.3 Ideals of functions

Dedekind and Weber define and study modules before considering ideals – a step that
is considered “tedious” by Dedekind (in the letter from 30/10/1880, in [Scheel, 2014],
271) but necessary, if only to simplify ideal theory. A module is defined by the following
closure conditions:

A system of functions (in Ω) is called a module if its functions reproduce
themselves by addition, subtraction and multiplication by a polynomial func-
tion of z.65 ([Dedekind and Weber, 1882], 251-252, transl. modified [Stillwell, 2012],
55)

An important aspect of their approach is the definition of (new) arithmetical operations.
The idea used here is the one that constitutes the core of Dedekind’s algebraic number
theory and allowed him to prove the general validity of the propositions and theorems
of arithmetic in fields of algebraic numbers. A new notion of divisibility is defined for
modules:

A module a is said to be divisible by a module b, or b is said to be a divisor
(Teiler (Divisor)) of a, or a a multiple (Vielfaches (Multiplum)) of b (b
taken up in a [b geht in a auf ]), if every function in a also belongs to b.
We call b a proper divisor of a if a is divisible by b but not identical to b.66

([Dedekind and Weber, 1882], 251, transl. [Stillwell, 2012], 57)

This definition, which will be given again for ideals, gives Dedekind and Weber the
means to develop an arithmetic of ideals emulating rational arithmetic – arithmetic at
the “higher level” of ideals – a strategy which will be consistently used in their paper,
including for other objects such as complexes of points.

Modules are said to be an “auxiliary theory”, to which Dedekind referred in earlier
works as an “independent” general theory whose interest “lies mainly in [its] applications”
([Dedekind, 1877], 62). Dedekind and Weber explain that since “every ideal is at the
same time a module, all the terms and notations defined for modules can be applied to

64[Geyer, 1981] and [Strobl, 1982] offer modern expositions and interpretations of this part of Dedekind
and Weber’s works.

65“Ein Funktionensystem (in Ω) heißt ein Modul, wenn sich die Funktionen desselben durch Addition,
Subtraktion und durch Multiplikation mit ganzen rationalen Funktionen von z reproduzieren.”

66“Ein Modul a heißt durch einen Modul Ib teilbar, oder b ein Teiler (Divisor) von a, a ein Vielfaches
(Multiplum) von b (b geht in a auf), wenn jede Funktion in a zugleich in b enthalten ist. b soll ein echter
Teiler von a heißen, wenn a durch b teilbar, aber nicht mit b identisch ist.”
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ideals”67 ([Dedekind and Weber, 1882], 264, transl. [Stillwell, 2012], 66). In particular,
the notions of divisibility and product are carried over to ideals. For this reason, and
because they play a much more crucial role in the theory, I will focus on ideals.68

In the field Ω, an ideal is a system a of integral algebraic functions (i.e., contained
in o) defined by the following necessary and sufficient conditions:

I. The sum and difference of every pair of functions of a are again functions
of a.
II. The product of any function in a by any function in o is again a function of
a.69 ([Dedekind and Weber, 1882], 264, transl. slightly altered [Stillwell, 2012],
66)

An ideal a is said to be divisible by an ideal b if every function of a is also contained
in b. Since every ideal is contained in o (which is of course itself an ideal), each ideal is
divisible by o which plays the role of the unit for the arithmetic of ideals.

The definition of divisibility for ideals here is a way of expressing the relation of
inclusion: to divide is to contain. Thus, the divisor “contains a greater quantity of
functions” than the ideal it divides (ibid., 57), which simply corresponds to the idea that
the multiples of a are included in the multiples of b. Once accepted this definition of
divisibility, the study of divisibility properties will be developed following the lines of
rational integer divisibility. Dedekind and Weber rely on the reformulation of inclusion
of ideals as a divisibility relation to put into play arithmetical notions and methods of
proof in their study of the properties of the field.

Having defined a “principal ideal” oµ as the system of all the integral functions
divisible by µ (with µ any non-zero function in o), Dedekind and Weber consider the
divisibility between functions and ideals:

A principal ideal oµ is divisible by a principal ideal oν if and only if the
integral function µ is divisible by the integral function ν. (...)
A function α in o is said to be divisible by the ideal a if the principal ideal
oα is divisible by a or, which means the same thing, if α is a function in a.70

([Dedekind and Weber, 1882], 265, transl. slightly altered [Stillwell, 2012],
68)

67“Jedes Ideal ist also zugleich ein Modul und alle für die Moduln erklärten Begriffe und Bezeichnungen
können auf die Ideale angewandt werden.”

68The reader who wishes to refer to Dedekind and Weber’s original text will find that observations
made here about divisibility of ideals were made by Dedekind and Weber regarding modules. They only
refer to the definitions and propositions given for modules, for the basis of the divisibility of ideals.

69“Ein System a von ganzen Funktionen von z im Körper Ω heißt ein Ideal, wenn es die beiden
folgenden Bedingungen erfüllt: I. Summe und Differenz je zweier Funktionen in a ergeben wieder eine
Funktion in a. II. Das Produkt einer jeden Funktion in a mit einer jeden Funktion in o ist wieder eine
Funktion in a.”

70“Ein Hauptideal oµ ist dann und nur dann teilbar durch ein Hauptideal oν, wenn die ganze Funktion
µ teilbar ist durch die ganze Funktion ν. (...) Eine Funktion α in o soll durch das Ideal l a teilbar heißen,
wenn das Hauptideal oα durch a teilbar, oder, was dasselbe sagt, wenn α eine Funktion in a ist.”
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From there, it can easily be seen that the divisibility for principal ideals is equivalent
to the divisibility for the integral functions generating them. Then the study of the
divisibility of the functions of the field is equivalent to studying the laws of divisibility
governing the ideals. Dedekind and Weber show that the laws of divisibility for ideals
are the same as the laws governing the polynomials. Having shown that, Dedekind and
Weber have thus shown that the laws of divisibility governing the (integral) algebraic
functions are the same as the laws governing polynomials (thus, the same as those
governing the rational integers). Hence, Dedekind and Weber set up an arithmetical
framework for the study of ideals, so that they can transfer the study of the divisibility
laws of the field Ω from integral algebraic functions to modules and ideals and handle
ideal theory with methods of proof that are similar to those in elementary number theory.
The reformulation of inclusion as a divisibility relation is not an ad hoc introduction of
some familiar denomination, the inquiry takes an overall arithmetical form, and the
theorems and their proofs are given under an arithmetical form.

Additional definitions and properties for the divisibility of ideals are given, presenting
a striking similarity with rational arithmetic. Dedekind and Weber develop the ideal
counterparts of familiar arithmetical notions. For example, the least common multiple
and greatest common divisor of two ideals a and b are defined:

– The collection m of all the functions belonging to both ideals a and b, unless it
consists only of the “zero” function, is an ideal called the least common multiple
of a and b.

– If α is an arbitrary function in a, β an arbitrary function in b, then the collection
of all the functions of the form α+ β forms an ideal d called the greatest common
divisor of a and b.71

– Two ideals are said to be relatively prime when their GCD is o.
A prime ideal is defined as “an ideal p different from o” which is such that “no other
ideal than p and o divides p” ([Dedekind and Weber, 1882], 266, transl. slightly altered
[Stillwell, 2012], 68).72 The propositions and theorems given about the divisibility of
ideals appear familiar to the reader, as they are parallel to well-known theorems about
the divisibility properties of rational integers, such as:

71Dedekind and Weber justify the choice of an arithmetical terminology by explaining that any ideal
which is a multiple of both a and b (i.e., included in both a and b) is also a multiple of m (i.e., contained
in their intersection). The justification for the GCD goes along the same lines.

72Dedekind and Weber prove, later in their paper, that an ideal is prime if and only if it is an ideal
of first degree (i.e., its norm is a linear polynomial), which is, for them, the most essential difference
between the theory of algebraic numbers and the theory of algebraic functions. The difference lies in the
notion of norm of an ideal. In algebraic number theory, the degree of an ideal is defined in the following
way: the norm of an ideal a is a rational integer, the (always finite) number of incongruence classes in
o modulo a (i.e., the number of integers in o which are not congruent modulo a). In the case of a prime
ideal p, its norm is a rational integer divisible by p and which put together with all the rational numbers
divisible by p forms a module [p] in which p is the smallest rational number greater than 0 divisible by
p. This p is necessarily indecomposable (or it wouldn’t be the smallest number divisible by p) and it
cannot be 1, because in that case p = o. Since op is divisible by p, N(op) = pn is divisible by the norm
of p which is thus of the form pf and not necessarily of the first degree. See also [Strobl, 1982], 238-239.
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Each ideal a different from o is divisible by a prime ideal p. (...)
If a is relatively prime to c and ab is divisible by c, then b is divisible by c.73

([Dedekind and Weber, 1882], 267-268, transl. [Stillwell, 2012]., 69-70)
In order to completely unfold and explain the divisibility laws governing ideals, and
bring to the fore the fact that these laws are the same as the ones governing polynomials,
Dedekind and Weber give additional properties, labelled “Laws of divisibility of ideals”.
In particular, two core results are the existence of a unique decomposition in primes for
every ideal, and the equivalence between the notion of divisibility defined as an inclusion
relationship and the arithmetical notion of divisibility, that is:

If c is an ideal divisible by an ideal a, then there exists one and only one
ideal b that satisfies the condition ab = c. It is called the quotient of c by a.74

([Dedekind and Weber, 1882], 271, transl. slightly altered [Stillwell, 2012],
73)

There is a clear distinction made between the quotient and the notion of divisibility.
With the proof of this theorem, it becomes clear that the notion of divisibility given
for ideals can indeed be considered as an extension of the arithmetical notion. This
equivalence between the ‘set-theoretic’ notion of divisibility and the arithmetical one
was, in algebraic number theory, a difficult property to prove – Dedekind even presents
it as the main difficulty of the theory. For algebraic functions, the property is easier to
prove. In fact, the paragraph on the laws of divisibility of ideals in algebraic function
theory “proceed[s] significantly more simply than” algebraic number theory (ibid., 70)
according to Dedekind and Weber.75 This simplification of the (proofs for the) study of
the divisibility laws of ideals is a second important difference (with the one mention in
note 72) between the study of divisibility in fields of algebraic and in fields of algebraic
functions which Dedekind and Weber notice. Dedekind and Weber do not explain this
simplification.76

Ideal theory is developed with no other means than these arithmetical notions77

and following a path very similar to rational number theory. Dedekind and Weber are
73“Jedes von o verschiedene Ideal a is durch ein Primideal p teilbar. (...)

Ist a relativ prim zu c und ab durch c teilbar, so ist b durch c teilbar.”
74“Ist ein Ideal c teilbar durch ein Ideal a, so gibt es ein and nur ein Ideal b, welches der Bedingung

ab = c genügt, welches der Quotient von c durch a heißt.”
75It results from the fact that it is possible to prove early in the theory that for an ideal a and an

arbitrary polynomial k, one can choose a function α in a such that there is no common divisor between
k and the norm of oα relative to a (defined – in modern terms for brevity’s sake – as the determinant up
to units of a change of basis from a to oα). See [Stillwell, 2012], 61-65. [Geyer, 1981], 116-117, provides
a modern reconstruction and proof of the theorem. In Geyer’s reconstruction of Dedekind and Weber’s
result, the arithmetical terminology naturally disappears and the result is no longer a divisibility result as
it was in [Dedekind and Weber, 1882] – recall that it is the first in the paragraph “§9 Laws of divisibility
of ideals” and holds the key to the other divisibility results.

76It is, in fact, related to peculiar properties of polynomials, in particular the possibility to use linear
methods ([Geyer, 1981], 116-117 and [Stillwell, 2012], 70).

77In keeping with their strategy of transferring number-theoretical notions to the level of ideals,
Dedekind and Weber also define a notion of norm for ideals. See [Stillwell, 2012], 66-67. [Strobl, 1982],
239-242 gives a modern presentation and a comparison with norms of ideals in algebraic number theory.
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able not only to give analogous theorems, but also demonstrations mirroring the proofs
given in rational number theory. They can prove non-trivial results by means of methods
emulating elementary arithmetic. Indeed, everything is done by means of divisibility of
ideals, the statements of propositions and theorems and their proofs. The proofs of the
theorems, such as the unique factorization theorem, are modeled on the same tactics as
in algebraic number theory in which Dedekind, very carefully, proves the theorems by
using only operations of elementary arithmetic between ideals, giving demonstrations
strikingly resembling the usual ones in rational number theory.78 By moving the study
of the properties of algebraic functions up to the level of systems of such functions
and setting up a new arithmetical framework for these systems considered as objects,
Dedekind and Weber are replacing the long tedious computations by very simple ones.

The set up of the theory of ideals and their divisibility leads to more algebraic
investigations: the first part of the 1882 paper continues for four more sections, in which
Dedekind and Weber pursue their analysis of the properties of the field.79 An essential
new concept for the definition of the Riemann surface is what they call the “ramification
ideal” (Verzweigungsideal). This notion, as its name indicates, will later in the paper be
used to define the ramification on the Riemann surface (in modern terms, they describe
the ramification of the field). It is defined as an ideal z such that

z =
∏

pe−1

in which the product is “taken over all the prime ideals p for which a power higher
than the first, namely the eth, divides their norm” (ibid., 83). One of the first and most
remarkable properties of the ramification ideal is that its norm is the discriminant of the
field: N(z) = D.80 The ramification ideal is introduced without mention of its relation
with the ramification of the (to be defined) Riemann surface.

4 The new definition of the Riemann surface
Dedekind and Weber qualify the first part of their paper as “formal”:

The previous considerations on the functions in the field Ω were of purely
formal nature. (...) The numerical values of these functions did not come
under consideration at any moment. (. . . ) But now that we have carried

78See, for example, [Stillwell, 2012], 73-74.
79In particular, Dedekind and Weber study linear properties of the field, related to the basis of the field.

See [Geyer, 1981] and [Strobl, 1982] for more on that matter. They also prove the birational invariance
of their results ([Stillwell, 2012], 91).

80See [Strobl, 1982], 242-244, for a modern presentation as part of a comment on Dedekind and Weber’s
concept of point on which I will come back in the next section. [Geyer, 1981], 118-119, gives a modern
presentation of the ideal of ramification, with links to number theory. I will not develop this aspect. See
also [Stillwell, 2012], 75-85. Dedekind, in [Dedekind, 1882], transferred the ramification ideal (renamed
Grundideal, fundamental ideal) back to number theory. The back transfer is allowed by the generality
and the “formal” character of the investigations conducted here, as it was the case for the transfer from
number theory to function theory.
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the formal part of the investigation this far, the pressing question is to what
extent is it possible to assign particular numerical values to the functions in
Ω so that all rational relations (identities) existing between these functions
become correct numerical equalities?81 ([Dedekind and Weber, 1882], 293,
transl. slightly altered [Stillwell, 2012], 94)

The formal aspect of the study of the field Ω is a requirement for the assurance of
a general ground of Riemann’s theory. The next step is, thus, to attribute numerical
values (in C ∪ {∞})82 to the functions, to verify if the “rational relations” investigated
in the first part are preserved in the numerical domain. This statement appears to be a
conservativity requirement for the relations between functions on the so-called Riemann
sphere. “Formal” refers to the fact that all results are inferred from the equation and
the manipulation of the four fundamental operations of arithmetic (+,−,×,÷).83

4.1 Point of the Riemann surface

The attribution of numerical values is the core idea for the definition of the point of a
Riemann surface. Dedekind andWeber define the point of the surface as a correspondence
from the field of functions into the field of numerical constants:

If all the individual elements α, β, γ, ... of the field Ω are replaced by definite
numerical values α0, β0, γ0, ... in such a way that:

(I) α0 = α if α is constant, and in general,
(II) (α+ β)0 = α0 + β0

(III) (α− β)0 = α0 − β0

(IV) (αβ)0 = α0β0

(V) (αβ )0 = α0
β0
.

Then, to such a conjunction of definite values must be assigned a point P
(...) and we say that α = α0 at P or that α has the value α0 at P. Two

81“Die bisherigen Betrachtungen über die Funktionen des Körpers Ω, waren rein formaler Natur. (...)
Die numerischen Werte dieser Funktionen kamen nirgends in Betracht. (...) Nachdem nun aber der
formale Teil der Untersuchung soweit geführt ist, drängt sich die Frage auf, in welchem Umfange es
möglich ist, den Funktionen in Ω solche bestimmten Zahlenwerte beizulegen, daß alle zwischen diesen
Funktionen bestehenden rationalen Relationen (Identitäten) in richtige Zahlengleichungen übergehen.”

82Dedekind and Weber state that it will be useful to include “∞” as “one definite (constant) number”.
The rules of computation with arithmetic operations can be extended to the domain of numbers to
which ∞ has been added, as long as no “indeterminacy” (e.g. ∞±∞, 0.∞, etc.) is encountered. If such
indeterminacy were to appear, Dedekind and Weber affirm that the equation just does not have any
truth value.

83Stillwell translates “Spezies” by “algebraic operations”. While it is understandable if one is to look
at the 1882 paper as a part of algebraic geometry, I believe it is misleading. Uses of the term “Spezies”
were essentially made to refer to the four fundamental operations of arithmetic, as a synonym for
“Grundoperationen der Arithmetik” (see [Müller, 1900]). It is, for example, the term used by Gauss in
[Gauss, 1929] to designate the operations of arithmetic.
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points are called different if and only if there is a function α in Ω which
has a different values for these two points.84 ([Dedekind and Weber, 1882],
293-294, transl. modified [Stillwell, 2012], 94)85

Dedekind and Weber suggest that one might like to consider the point as “repre-
sented sensibly somehow located in space” (den man sich zur Versinnlichung irgendwie
im Raume gelegen vorstellen mag, [Dedekind and Weber, 1882], 294, transl. modified
[Stillwell, 2012], 94). However, in a footnote, they immediately advice against it, for
such a “geometric representation” is “not necessary and does not make comprehension
easier” (ibid.). Any geometrical meaning of the word point is to be taken out of Dedekind
and Weber’s concept of a point, which designates only “the coexistence of values” (ibid.,
294). Geyer suggests that by this move Dedekind and Weber are giving up on the “char-
acter of manifold” (Mannigfaltigkeitcharakter, [Geyer, 1981], 114) of the Riemann surface
and only consider it as a system of points. Indeed, Dedekind and Weber want to strip the
definition of the Riemann surface of any geometrical, infinitesimal, or (what we would
call) topological aspects, so as to concentrate on the algebraico-arithmetical relationships
between points – which, as we will see, are related to prime ideals.86

The definition of the point allows to show the conservation of the rational relations
between functions (i.e. the relations given by the rational operations +,−,×,÷) when a
numerical value is attributed to it: all rational relations between functions correspond to
numerical equalities. It seems to yield the assurance of the consistency of their “formal”
results. Indeed, the morphism appears to be giving content to the formal investigations,
the equalities translated in numbers granting a certain guarantee of the coherence of the
relationships between functions. In fact, it seemed to be a point that particularly pleased
Dedekind, as he mentions in a letter from January 1880. Commenting on the “shadowy”
(schattenhafte) treatment of fields, from which one would “shy away” at a higher degree
and to which he has nothing to object but its “vastness” (Weitläufigkeit), he confesses
to Weber that

the terrible confinement in which the field Ω thus appears, and the complete
84“Wenn alle Individuen α, β, γ, ... des Körpers Ω durch bestimmte Zahlwerte α0, β0, γ0, ... so ersetzt

werden, daß (I) α0 = α falls α konstant is, und allgemein: (II) (α+β)0 = α0+β0 (III) (α−β)0 = α0−β0
(IV) (αβ)0 = α0β0 (V) (α

β
)0 = α0

β0
wird, so soll einem solchen Zusammentreffen bestimmter Werte ein

Punkt P zugeordnet werden (...) und wir sagen, in P sei α = α0, oder α habe in P den Wert α0.
Zwei Punkte heißen stets und nur dann verschieden, wenn eine Funktion α in Ω existiert, die in beiden
Punkten verschiedene Werte hat.”

85The evaluation of the functions, here, is thus what we call a field morphism (and Dedekind calls
a “substitution”). The mapping from Ω to the “numerical constants” is defined exactly (albeit with-
out alluding to it) as field morphisms were defined by Dedekind in his algebraic number theory (see
[Dedekind, 1877], 108-109, [Dedekind, 1879], 470). Note also that Dedekind and Weber are considering
an application for a function ω of Ω taken as variable, such that ω 7→ ω(x), with ω(x) a constant in
C ∪ {∞}. This move, Bourbaki tells us, has become such a common thing to do in mathematics, that
we do not notice anymore how original it is ([Bourbaki, 1984], 134). Geyer considers this definition to
be revolutionary and a “provocation by abstraction” ([Geyer, 1981], 114).

86See [Geyer, 1981], 119 and [Strobl, 1982], 242-244 for modern reconstructions and explanations of
Dedekind and Weber’s definition of the point of a Riemann surface and its relation to the modern notion
of place.
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rigid determination of each individual entity (Wesen-Individuum) ω con-
tained in it pleases me very much. And yet, it is alway nice when this world,
by magic, suddenly raises into numerical life (Zahlen-Leben)!87 (19/01/1880,
[Scheel, 2014], 270)

Weber, who had the same use of the term “formal”, wrote, in his 1893 paper on Galois
theory, that the only way for the “pure formalism” to “[gain] meaning and life” is by
“the substitution of the individual elements with number values” ([Weber, 1893], 521), in
reference to the passage from a formal treatment to the attribution of numerical values.

The definition of the point, as Strobl pointed out, was identified early by Weber as
being the “main difficulty” of their work (letter from Weber to Dedekind, 18/12/1879,
[Scheel, 2014], 265, repr. in [Strobl, 1982], 242). The key role of this definition is also
explicitly pointed out in the introduction of their paper, in which they explain that in
order to propose new bases for Riemannian function theory, one important task presents
itself as essential: to supply the mathematicians with

a completely precise and rigorous definition of the “point of a Riemann sur-
face” that can also serve as a basis for the investigation of continuity and re-
lated questions.88 ([Dedekind and Weber, 1882], 241, transl. [Stillwell, 2012],
42-43)

Weber also points out, in the letter from 18/12/1879, that in order to obtain a sat-
isfactory definition of the point, “the best could be to return to [Dedekind’s] original
foundation of the theory of ideals, where then as long as possible, we are not talking
about points, but only about prime ideals” ([Scheel, 2014], 265) – as, indeed, is done in
[Dedekind and Weber, 1882], in which the points are only introduced halfway through
the paper. Dedekind and Weber had been working for a year on setting up their theory
of ideals of algebraic functions and their new definition of the Riemann surface, at the
time of this suggestion by Weber. In the previous letters, many of the basic ideas for
their paper are studied in a more or less rough form, and the theory-to-be is yet to be
arranged to have the structure of the published version. Nevertheless, some of the core
ideas, such as the idea of a one-to-one correspondence between points and ideals, are
already present in Weber’s first letter.

The relation between ideals and points is the following: the collection of all the
integral functions π of z which have the value 0 in a certain point P is a prime ideal p.

87“die furchtbare Abgeschlossenheit, in welcher der Körper Ω so erscheint, und die vollständige starre
Bestimmtheit jedes einzelnen in ihm enthaltenen Wesen-Individuums ω mir sehr wohl gefällt; und schön
ist es doch, wenn diese Welt durch einen Zauberschlag plötzlich zum Zahlen-Leben erweckt wird!”
It seems that, here, “furchtbare” (literally horrible, terrible) is used in a slightly ironic sense, as denoting
a sense of wonder. Indeed, the closeness of the concept of Körper is an aspect which Dedekind values, as
he explains in [Dedekind, 1894]: “This name [Körper ] should, just as in the natural sciences, in geometry
and in the life of human society, designate here too a system which possesses a certain completeness,
perfection, closure, whereby it appears as an organic whole, as a natural unity” ([Dedekind, 1894], 20).

88“(...) eine vollkommen präzise und strenge Definition des ‘Punktes der Riemannschen Fläche’ (...),
welche auch als Basis für die Untersuchung der Stetigkeit und der damit zusammenhängenden Fragen
dienen kann.”
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The point P is said to “generate” the prime ideal p, and there is always one and only one
point P generating the prime ideal p. This point is called the “null point” (Nullpunkt)
of the ideal p (ibid., 95). The idea for the null points is present in Weber’s first letter on
the subject (letter from the 02/02/1879, in [Scheel, 2014], 220-224):

The collection of all the functions of ν which vanish at a determinate num-
ber of fixed points with a determinate order obviously form an ideal.89

([Scheel, 2014], 222)

Weber initially proposed to call “this null point, (...) the fundamental point of the
ideal” (Grundpunkte des Ideals, ibid., 222). It is not clear why they preferred the name
Nullpunkt in the final version of their theory. A likely possibility is that the implication
that the null point is somehow fundamental to the ideal it generates, which is suggested
in the name Grundpunkte des Ideals, could have been an issue for Dedekind. Indeed,
ideals do not depend on the null points in any way – as the so-called “formal” first
part shows. In addition, the name Nullpunkt – which was a fairly common expression
– points to the defining property of this notion, which also would seem preferable from
Dedekind’s viewpoint.

In the same letter, Weber also gives a first proof of the existence of a one-to-one
correspondence between null points and prime ideals (ibid., 223). This result is the
key point for the correspondence between the field Ω and Riemann’s notion of class of
algebraic functions. In [Dedekind and Weber, 1882], the characterization of the concept
of point is completed by an indication on how to obtain “all the existing points P exactly
once”, that is to form a collection of all the points P at which the variable z remains
finite, and all the “complementary points” P′ at which it is infinite.90 The collection
of all the points is said to be the “Riemann surface”. Yet this Riemann surface is a
mere collection of points, a “simple totality” in which each point appears only once: it
does not have any structure, doesn’t describe the singularities of the functions, nor the
multiplicity and ramification of the surface. As such, the surface as such is not fully
described.

4.2 Polygons

The definition of a point is an “invariant concept” of the field: it does not depend on
the choice of a variable z, but only on the functions of Ω. The importance of founding
the definition of the Riemann surface on an invariant concept of the field was pointed
out by Dedekind in an undated fragment of letter to Weber:

I believe that the whole theory must be built from the beginning even more
on the quest for invariant concepts, and in doing so, I always come back

89“Der Inbegriff aller Functionen aus ν welche in einer bestimmten Anzahl fester Punkte verschwinden
in bestimmter Ordnung bildet offenbar ein Ideal.”

90Rather unsurprisingly, Dedekind and Weber do not give an effective procedure to construct the null
points.
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again to Riemann.91 ([Scheel, 2014], 12)

Here, coming back to Riemann seems to be coming back to a characterization of functions
by their points, their multiplicities, and the singularities (zeros and poles). To do so,
Dedekind and Weber start by introducing the notion of “order number” (Ordnungszahl).
An order number r > 0 is attributed to the functions π of Ω vanishing in P, and r < 0
to the functions which become infinite.92 The order of a function π is defined as the
positive integer r such that π

%r is neither 0 nor ∞ at P. Such a number r always exists
for any function π. The same is valid for the quotient π

%′r and thus

π receives the order r or is said to be infinitely small of order r at P. We also
shall say that π is 0r atP or that π is 0 atPr.93 ([Dedekind and Weber, 1882],
297, transl. [Stillwell, 2012], 97)

Dedekind and Weber are using Riemann’s vocabulary to designate the singularities of
the function. They also adopt the convention that if a zero is of order r, then it is the
same as having the function vanishing at r superposed points, introducing the idea of
multiple points. But their adopting Riemann’s “infinitely small of order r” does not mean
that their approach involves uses of infinitesimals such as one can find in Riemann’s
works. In the undated fragment of letter from Dedekind to Weber mentioned above,
Dedekind makes the first step towards the characterization of singularities that is given
in [Dedekind and Weber, 1882]. He writes:

Above all, when the algebraic equation between s and z is given (from which
the field Ω is produced), each point must be defined clearly and the collection
(Inbegriff ) T of all these points exactly described in such a way that really all
the functions in Ω appear as univalent local functions (Ortsfunctionen) in T .
Then, it seems advisable that the systems of m points (m-gons) be described
as products of m points, and again multiplied with each other. Each system
of point is the product of powers of points.94 ([Scheel, 2014], 12)

Here, the discrete definition of point as the coincidence of values acts as the characteri-
zation of functions as univalent and local. T is the simple totality of all points. Insofar
as they wish to characterize the functions by their 0 and poles, they want to be able to
work with the collection of all the points in a way that takes into account their orders.

91“Ich denke mir, die ganze Theorie müßte von Anfang an noch mehr mit dem Streben nach invarianten
Begriffen aufgebaut werden, und dabei komme ich immer mehr wieder auf Riemann zurück”

92A function η has the value ∞ in P, when 1
η
vanishes at P. See [Stillwell, 2012], 98.

93“π erhält die Ordnungszahl r oder heißt unendlich klein in der Ordnung r im Punkte P. Wir werden
auch sagen, π ist 0r in P oder π is 0 in Pr.”

94“Vor Allem müßte, wenn die algebraische Gleichung zwischen s und z gegeben ist (aus der sich der
Körper Ω entwickelt), jeder Punct deutlich charakterisirt und der Inbegriff T aller dieser Puncte genau
beschrieben werden, in der Weise, daß wirklich alle Functionen in Ω als einwerthige Ortsfunctionen
in T erscheinen. Dann scheint es zweckmäßig, Systeme von m Puncten (m-ecke) wie Producte von m
Puncten zu bezeichnen und wieder mit einander zu multipliciren; jedes Punctsystem ist Product von
Punctpotenzen.”
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Such collections are named “polygons”95 in [Dedekind and Weber, 1882], and will be of
great use in the rest of the paper:

We give the name polygons to complexes of points, which may contain the
same point more than once and denote them by A, B, C, ....
We also let AB denote the polygon obtained from the points of the polygons
A and B put together, in such a way that a point P that appears r-tuply in A
and s-tuply inB, appears (r+s)-tuply in AB.96 ([Dedekind and Weber, 1882],
299, transl. modified [Stillwell, 2012], 98)

From the definition of the product of polygons, one can deduce the “meaning” (Bedeu-
tung) of the power of a point Pr, which was used in the definition of the order number:
it is a point that appears n times in the polygon, and thus is repeated n times on itself.
Here, the multiplicity of the surface starts to appear. It is possible, therefore, to decom-
pose a polygon into the product of all its points, each with its own power (the number of
times it appears in the polygon): A = PrPr1

1 Pr2
2 ... – which is basically a decomposition

into prime elements. We have, here, the product of points, mentioned by Dedekind in
his letter, to define the collection of points and their orders. Dedekind and Weber call
the number of points in a polygon its order, and a polygon of order n is called an n-gon.

The approach proposed by Dedekind, here, relies again on an arithmetical treatment
of the points and will allow to have a perfect correspondence with ideals. Indeed, from
the decomposition of a polygon into the product of its points, one deduces that polygons
are in correspondence with the composite (non prime) ideals:

A = PrPr1
1 Pr2

2 ...

corresponds to the ideal
a = prpr1

1 pr2
2 ...

whose prime factors correspond to the points of the polygon. The ideal a is said to be
generated by the polygon A. Dedekind and Weber call this polygon A the “Nullpolygon”
of a. This allows Dedekind and Weber to study the laws of divisibility of polygons,
established by the one-to-one correspondence between (composite) ideals and polygons:

the laws of divisibility of polygons agree completely with the laws of di-
visibility of integers and of ideals. Points play the role of prime factors.97

([Dedekind and Weber, 1882], 299, transl. slightly altered [Stillwell, 2012],
98)

95A polygon corresponds to what is today called a positive divisor, see [Dieudonné, 1974] or
[Stillwell, 2012] note 39, page 98.

96“Komplexe von Punkten, welche denselben Punkt auch mehrmals enthalten können, nennen wir
Polygone and bezeichnen dieselben mit A, B, C, .... Es bedeute ferner AB das aus den Punkten von
A und von B zusammengesetzte Polygon in der Weise, daß, wenn ein Punkt P r-mal in A, s-mal in B
auftritt, er (r + s)-mal in AB vorkommt.”

97“[D]ie Gesetze der Teilbarkeit der Polygone in vollkommener Übereinstimmung mit denen der Teil-
barkeit der ganzen Zahlen und der Ideale. Die Rolle der Primfaktoren übernehmen dabei die Punkte.”
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If one wants to have a unit, for this new notion of divisibility, one has to admit the
polygon containing 0 points, denoted by O (called “Nulleck”).

These developments lead Dedekind and Weber to define the GCD and the LCM of
two or more polygons:

The greatest common divisor of two polygons A and B is the polygon that
contains each point the least number of times it occurs in A and in B. If it
is [the empty polygon] then A, B are called relatively prime.
The least common multiple of two polygons A and B is the polygon that
contains each point the greatest number of times it occurs A and in B.
If A, B are relatively prime, then AB is their least common multiple.98

([Dedekind and Weber, 1882], 299, transl. [Stillwell, 2012], 99)

Note that this corresponds exactly to the definition of the GCD and the LCM by powers
of prime numbers, in number theory – which can also be given for ideals. The GCD
(resp. the LCM) of two ideals is generated by the GCD (resp. the LCM) of the polygons
which generate the said two ideals. The null-gon O generates the ideal o. These notions
are used in later paragraphs in [Dedekind and Weber, 1882] as tools for the proofs.

This way, Dedekind and Weber write, is established “the complete coincidence be-
tween ideals and the collection of integral functions equal to zero at the same fixed
points” (ibid.).

Dedekind and Weber only defined polygons with positive powers, which implies that
only positive order numbers (i.e. when the functions vanish) had been taken into account.
To characterize the negative order numbers (i.e. when the functions become infinite),
Dedekind and Weber introduce quotients of polygons, rather than defining an arbitrary
polygon. In fact, they appear to be following their arithmetical approach and the corre-
spondence between polygons and ideals, and propose to “symbolically set” the function
η = A

B , in which A is called the upper polygon and describes the 0 of the function,99 and
B is the lower polygon and describes the poles.100 Thus, Dedekind and Weber introduce
negative powers – those of the lower polygon – without adopting an approach which
would not agree with the arithmetic of ideals as developed in the first part. In fact,
by adopting the presentation of negative powers as the powers of the denominator of a
quotient, they seem to lean even more towards an arithmetical treatment of the theory.

98“Der größte gemeinschaftliche Teiler zweier Polygone A, B ist dasjenige Polygon, welches jeden
Punkt so oft enthält, als er in A und B mindestens vorkommt. Ist dies O, so heißen A, B relativ prim.
Das kleinste gemeinschaftliche Vielfache von A und B ist dasjenige Polygon, welches jeden Punkt so
oft enthhält, als er in A und B höchstens vorkommt. Sind A, B relativ prim, so ist AB ihr kleinstes
gemeinschaftliches Vielfache.”

99And its degree is the number of sheets of the surface, see [Geyer, 1981], 120.
100A similar notion of quotient was defined for ideals, see [Stillwell, 2012], 86-89.
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4.3 Definition of the Riemann surface

From there, Dedekind and Weber can define the Riemann surface with its structure and
not as a mere collection of points. They call the Riemann surface with ramification the
“‘absolute’ Riemann surface”.

The Riemann surface is defined as the product of all polygons “moving through” (sich
bewegen), i.e., taking successively all the values in C∪ {∞}. As they proved just before,
for any numerical value c, there is a polygon A with n points (not necessarily distincts)
for which the variable z takes the value c. These n points are said to be “conjugate”
for z. This entails that z can take continuously all the values in C ∪ {∞}. This is what
Dedekind and Weber designate as the polygon A “moving through” all the possible
values “and indeed in such a way that all its points change simultaneously.” This allows
for the discrete characterization used so far to adequately describe the surface associated
to the field Ω. In this way, one obtains all the existing points, including several times
the points for which z − z0 or 1

z vanishes101 for an order higher than 1 (which always
happens only a finite number of times for algebraic functions). Hence, if one takes the
product of all these polygons, one obtains:∏

A = TZz

where T is the “simple totality” formed by collecting all the points once, and Zz
is “a particular finite polygon called the ramification or winding polygon of T in z”
([Dedekind and Weber, 1882], 301, transl. [Stillwell, 2012], 100). The Riemann surface
is an invariant concept of the field, since it is defined as a product of polygons (hence a
product of products of points) which are themselves invariant concepts of the field.

The ramification polygon Zz is a finite polygon whose points describe the ramification
of the Riemann surface. These points are called winding points or ramification points
(Verzweigungs- oder Windungspunkt) of T in z, and each point is said to be “of order s
if it appears s-tuply in Zz.” (ibid., 100). If z− z0 or 1

z is infinitely small of degree e, then
s = e − 1. The order of the ramification polygon is called “the ramification or winding
number wz”102 Moreover, as its name suggests:

The points of the ramification polygon at which z has a finite value together
generate the ramification ideal in z.103 ([Dedekind and Weber, 1882], 301,
transl. [Stillwell, 2012], 100)

The correspondence between surface and field implies that the singularities of the surface
can be expressed in terms of (divisibility of) ideals: the ramification of the surface is
thus translated into what we would now call the ramification in the field Ω, and which
is characterized for Dedekind and Weber by the “ramification ideal” z.

101Dedekind and Weber define the points at which the function of z becomes infinite as the points at
which 1

z
vanishes.

102Further down the paper, Dedekind and Weber also show that the ramification number is necessarily
an even number (ibid., 113). See also [Geyer, 1981], 121 and [Strobl, 1982], 242-243.

103“Diejenigen Punkte des Verzweigungspolygons, in welchen z einen endlichen Wert hat, erzeugen
zusammen das Verzweigungsideal in z.”
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The change of framework of Dedekind and Weber’s rewriting of Riemann’s theory im-
plies a reformulation of all the notions of Riemann’s theory: genus, ramification number,
number of double points, etc., all are rewritten in the algebraico-arithmetical framework
using polygons. The definition of the “‘absolute’ Riemann surface” given by Dedekind
and Weber has no geometrical component and its link with the Riemannian idea of a Rie-
mann surface seems difficult to grasp. Dedekind and Weber mention that to “pass from
this definition of the ‘absolute’ Riemann surface to the well-known Riemannian concep-
tion”, it suffices to “think the surface spread over a z-plane which is then covered n-tuply
everywhere except at the ramification points” ([Dedekind and Weber, 1882], 301, transl.
[Stillwell, 2012], 100). But they don’t explore this possibility further, which appeals at
least to a geometrical representation – if not to spatial intuition. The Riemann surface
defined by Dedekind and Weber is rather detached from any spatial consideration. By
relying exclusively on rational relations between functions, Dedekind and Weber develop
their theory in such a way that (what we would call) topological notions are not needed
in the definition but should eventually follow from the notions introduced. Dedekind
and Weber, however, do not go as far as developing the “investigation of continuity and
other related questions”, among which one counts Abelian functions, but hope to do so
“on another occasion” ([Dedekind and Weber, 1882], 241).

Let me close this paper with a few word about the rest of Dedekind and Weber’s
paper. Indeed, for several more paragraphs, Dedekind and Weber continue to redefine,
in their new framework, the basic notions of Riemann’s theory such as the genus of the
surface, and give new proofs of several important results such as Abel’s theorem or the
Riemann-Roch theorem.

The attempts to prove the Riemann-Roch theorem occupy a considerable place in
Dedekind and Weber’s correspondence,104 and seem to allow them to test, so to speak,
the conceptual framework they are setting up. After having met, in April 1879 in Braun-
schweig ([Scheel, 2014], 238), Dedekind and Weber start discussing at length the proof
of the Riemann-Roch theorem, exchanging tentative proofs and correcting each other’s
mistakes. It is a very slow process, which reinterprets the theorem in a new framework,
and attempts to provide a rigorous proof of the result. By 1879, however, the conceptual
framework of [Dedekind and Weber, 1882] is not completely developed, and the proof(s)
(or the attempts to give a proof) largely differ from that given in the paper.

The proof of the Riemann-Roch theorem in [Dedekind and Weber, 1882] illustrates
well how Dedekind andWeber are able to rewrite and prove important results using solely
the arithmetico-algebraic arsenal developed in their paper. The Riemann-Roch theorem
has been described as the most striking example of the intimacy of the relationships
between topological notions and properties of functions.105 This seems to be lost in
Dedekind and Weber’s version of it. Their treatment of the Riemann-Roch theorem

104[Scheel, 2014], 239-251.
105See the Introduction of [Stillwell, 2012], as well as [Bourbaki, 1984] and [Bottazzini and Gray, 2013],

337-339, [Gray, 1987], [Gray, 1998].
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involves manipulations of (quotients of) polygons, classes of polygons106 and families
of polygons (Polygonscharen) – an equivalent of our modern vector space. For each
notion introduced (class of polygons, family of polygons, ...) – which are used in the
definitions and proofs – Dedekind and Weber introduce notions of product, divisibility
and/or divisor, so as to handle them with the same arithmetical approach they used
throughout their paper.

At no point do Dedekind and Weber venture out of the conceptual framework they
set up. Since their notion of Riemann surface lacks the possibility to set up the appropri-
ate structure for an integration theory, Dedekind and Weber introduce notions related
to integration theory by purely algebraic means, without any recourse to “continuity”.
Dedekind and Weber define (algebraically) differentials of different “kinds” (Gattung)
according to the classification given by Riemann (following Legendre).107 Dedekind
and Weber also shed further light on differentials of second and third kind, using the
Riemann-Roch theorem and relating them to the singularities of the surface. They de-
fine the residues of an algebraic differential. They are able to prove, with the conceptual
apparatus developed in the previous paragraphs, the theorem stating that the sum of
the residues of an algebraic function is zero.

5 Conclusion
Dedekind and Weber’s paper had a sparse and delayed reception. Dedekind himself saw
the risk that his contemporaries might not react as well as he hoped to their paper:

It shall bring me so much joy, if the thing finds some success, which for the
time being, I am not really counting on, because many will shy away from
the tedious modules.108 (30/10/1880, in [Scheel, 2014], 271)

In fact, a few years later, Weber himself departed considerably from the approach they
used in 1882. Rather than using modules and ideals, Weber used the notion of “Func-
tionale”109 for the theory of algebraic functions and for the theory of algebraic integers.
For algebraic integers, the introduction of Dedekind’s concept of ideal is followed imme-
diately by the properties relating it to functionals:

One can refer functionals and ideals to each other in such a way that the
following rules prevail:
1. Any integral function corresponds to a determinate ideal, and associate
functionals correspond to the same ideal.

106Two polygons A,A′ with the same number of points are called equivalents if there is a function η in
Ω such that η = A

A′ ([Stillwell, 2012], 105). All the polygons equivalent to a given polygon A constitute
a polygon class A (ibid., 105).

107For more details, see [Stillwell, 2012], 110-133 and [Haffner, 2014b].
108“Es soll mich nun auch herzlich freuen, wenn die Sache einigen Beifall finden wird, worauf ich aber

vorläufig nicht allzu sehr baue, weil die langweiligen Moduln gewiß manchen zurückschrecken werden...”
109A functional is an algebraic function that can be written as the quotient of two algebraic integral

functions.
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2. Any ideal corresponds to infinitely many but only to associate integral
functionals.
3. The product of two or more integral functionals corresponds to the product
of the corresponding ideals.
4. An integral number corresponds to a principal ideal.
5. Units correspond to the ideal o.110 ([Weber, 1896] II, 548)

In particular, the prime ideals correspond to prime functionals, and “the decomposition
of ideals into prime factors, and actually the laws of divisibility of ideals, ensue in
complete agreement from the corresponding theorems of the theory of functionals” 111

(ibid., 550). All considerations of divisibility are thus completely taken care of with the
notion of Functionale and Dedekind’s arithmetic of ideals is not developed.

While Hilbert did use some of their ideas for his Nullstellensatz, the adoption of the
ideal theory as a basis for a treatment of Riemannian function theory did not stir up
much enthusiasm. A first significant response can be found in Hensel and Landsberg’s
1902 book (dedicated to Dedekind, [Hensel and Landsberg, 1902]). However, Hensel and
Landsberg change the basis of the theory from ideal theory to function theory, so as to
be able to penetrate deeper into Riemann’s theory, in particular as regards Abelian
functions. In [Brill and Noether, 1892], Brill and Noether explicitly exclude Dedekind
and Weber’s “theory relying on number theory” (as well as Kronecker’s) from their
report on algebraic functions.112 Dedekind andWeber’s theory is considered as mainly an
application of number theory to function theory. However, Dedekind and Weber do not,
themselves, present their treatment of the theory of functions as a mere “application”
of number theoretical methods.

Rather, as I tried to show in this paper, their theory is an arithmetical rewriting
of the basic concepts of Riemann’s theory of functions – a conceptual reconstruction of
Riemann’s ideas using elementary arithmetical notions such as divisibility for new objects
(ideals, polygones, ...). Both the arithmetical aspect of their work, and the fact that it is,
indeed, a rewriting of Riemann’s theory are essential to understand their paper. Indeed,
the relationship to Riemann’s theory allows to understand the path followed by Dedekind
and Weber, and their desire to re-define the concept of Riemann surface and the related
notions. As such, it allows to see that their work is not about investigating fields for
themselves. The arithmetical aspect of their work, on the other hand, highlights how

110“Man kann nun die Ideale und Functionale in der Weise auf einander beziehen, dass dabei folgende
Gesetze obwalten: 1. Jedem ganzen Functional entspricht ein bestimmtes Ideal, und associirten Func-
tionalen entspricht dasselbe Ideal. 2. Jedem Ideal entsprechen unendlich viele, aber nur associirte ganze
Functionale. 3. Dem Producte zweier oder mehrerer ganzer Functionale entsprechen die Producte der
den Factoren entsprechenden Ideale. 4. Einer ganzen Zahl entspricht ein Hauptideal. 5. Den Einheiten
entspricht das Ideal o.”

111“die Zerlegung der Ideale in Primfactoren und überhaupt die Gesetze der Theilbarkeit der Ideale
ergeben sich in völliger Uebereinstimmung mit den entsprechenden Sätzen aus der Theorie der Func-
tionale.”

112An additional reason for them do so, they explain, is the fact that Klein’s lectures on Riemann
surfaces in 1892 did give a detailed account of their work ([Brill and Noether, 1892], v) – which does not
mean that Klein adopted their approach.
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their work is part, at the same time, of a larger effort to provide a ‘better’ presentation
for Riemann’s theory and to arithmetize parts of mathematics. Finally, it also is essential
to understand the strategy chosen for their rewriting and brings out specific elements of
practice and the key role played by arithmetic. The core of the “arithmetical” approach
proposed by Dedekind and Weber, here, is the definition of new arithmetical operations,
relationships between objects reinterpreted into arithmetical terms. Such arithmetical
terminology and the design of arithmetical notions and methods of proofs are used
throughout all of Dedekind and Weber’s paper up to the proof of the theorems such as
the Riemann-Roch theorem.

Here, and in many other works, Dedekind seems to suggest, by his practice itself,
that to give oneself the possibility of using only the “simplest principles of arithmetic”
justifies abstract and technical detours. For that purpose, arithmetic operations are
performed at several levels, as if there were several layers of arithmetic(s). For Dedekind,
numbers and arithmetical operations defined for them can be considered and used as
“auxiliary means”, as helps for rigorous reasonings. They can, as is clearly illustrated in
the strategies implemented in [Dedekind and Weber, 1882], be used as epistemic tools
involved in the production of new mathematical knowledge, in the design of new concepts
and new methods of proof, and/or to strengthen the foundation of certain theories.

This specific use of arithmetic is intimately related to Dedekind’s conception of
number and his foundational works. Arithmetic, intrinsically linked to the nature of
human mind, possesses a character of “of intrinsic necessity” which Dedekind saw in
[Dedekind and Weber, 1882] ([Scheel, 2014], 271). From this viewpoint, underlining the
inherently arithmetical nature of [Dedekind and Weber, 1882] also gives us the possibil-
ity to show that Riemann’s function theory influenced Dedekind’s foundational works,
and thus stimulated foundational reflections outside of the sole well-known criticism of
the Dirichlet principle. Indeed, a close study of the texts suggests that the possibil-
ity to develop arithmetical methods of proofs in several different domains modulated
Dedekind’s conception of arithmetic and through this of number, and led to the very
general and abstract definition of number given in [Dedekind, 1888]. Dedekind indeed
spent almost two decades working on his definition of natural numbers113 and this long
genesis suggests that his mathematical works had a strong impact on his foundational
views.
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