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Abstract:
Thanks to new conceptual and computational tools, the analysis of kinship and marriage networks
has advanced considerably over the past twenty-five years. While in the past, the discussion
of empirical marriage practices was often restricted to a casual observation of salient network
features, it is now easy to produce a complete census of matrimonial circuits, both between
individuals and between groups. However, the abundance of structural features which have thus
become accessible raises a new question: to what extent can they be taken as indicators of
sociological phenomena (such as marriage preferences or avoidances), rather than as effects of
chance or of observer bias?

This paper presents a series of recently developed simulation techniques that deal with this
issue. Starting from a new approach to “classical” agent-based modeling of kinship and alliance
(group) networks (Section 2), we then present an automatic model discovery technique which,
instead of constructing alliance networks from given matrimonial rules, reconstructs plausible
matrimonial rules underlying given alliance networks (Section 3). While these techniques apply
to “objective” representations of kinship and alliance networks, we also present two methods that
take into account the generally lacunar and biased character of empirical kinship datasets. The
first method we propose to deal with this problem (Section 4) is a generalized version of White’s
(1999) “reshuffling” approach, which consists in redistributing marriage or descent links between
individuals or groups while keeping the numbers of links constant. (For alliance networks, the
question can be dealt with analytically by straightforward calculation of expected marriage circuit
frequencies.) The second method (Section 5) consists in simulating the processes of network
exploration by a virtual fieldworker navigating through kinship or alliance networks according to
given behavioral constraints.
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0. Introduction 
In the enterprise of confronting kinship theories (and indigenous kinship norms) with 
matrimonial practice, simulation techniques have, from the very beginning, played a cen-
tral role. When computer tools were first introduced into social anthropology in the 
1960s, simulation was one of the main techniques (Fischer 2004: 184, cf. Dyke 1981, 
Wright 2000, Fischer and Kronenfeld 2011), and marriage systems were among its first 
applications. The first anthropological article using simulation (Kunstadter et al. 1963) 
dealt with the feasibility of prescribed matrilateral cross-cousin marriage, and Gilbert and 
Hammel (1966) used it to demonstrate that agnatic first cousin marriages could be an 
epiphenomenon of territorial endogamy rather than an expression of direct matrimonial 
preferences.  

Despite the initial focus on matrimonial norms and practices, these soon ceased to 
be an object of interest in their own right. When simulation techniques implemented as-
sumptions about marriage rules, incest prohibitions, monogamy, and so on, the goal was 
generally to study their impact on other variables, such as population growth (MacCluer 
and Dyke 1976, Black 1978), the extension of personal kindreds (Wachter et al. 1997, 
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Thanks to new conceptual and computational tools, the analysis of kinship and mar-
riage networks has advanced considerably over the past twenty-five years. While in the 
past, the discussion of empirical marriage practices was often restricted to a casual 
observation of salient network features, it is now easy to produce a complete census of 
matrimonial circuits, both between individuals and between groups. However, the abun-
dance of structural features which have thus become accessible raises a new question: 
to what extent can they be taken as indicators of sociological phenomena (such as mar-
riage preferences or avoidances), rather than as effects of chance or of observer bias?  
This paper presents a series of recently developed simulation techniques that deal with 
this issue. Starting from a new approach to “classical” agent-based modeling of kinship 
and alliance (group) networks (Section 2), we then present an automatic model discov-
ery technique which, instead of constructing alliance networks from given matrimonial 
rules, reconstructs plausible matrimonial rules underlying given alliance networks (Sec-
tion 3). While these techniques apply to “objective” representations of kinship and al-
liance networks, we also present two methods that take into account the generally lacu-
nar and biased character of empirical kinship datasets. The first method we propose to 
deal with this problem (Section 4) is a generalized version of White’s (1999) “reshuf-
fling” approach, which consists in redistributing marriage or descent links between in-
dividuals or groups while keeping the numbers of links constant. (For alliance net-
works, the question can be dealt with analytically by straightforward calculation of ex-
pected marriage circuit frequencies.) The second method (Section 5) consists in simulat-
ing the processes of network exploration by a virtual fieldworker navigating through 
kinship or alliance networks according to given behavioral constraints. 
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Murphy 2010), the spatial diffusion of genes (Murphy et al. 1994) or the interaction of 
social and ecological systems (Christiansen and Altaweel 2005, McAllister et al. 2005). 
In contrast, studies using agent-based simulation to analyze the internal logic of kinship 
systems and to test simulation predictions against ethnographic data (Fischer 1986, 2006, 
Read 1998, Small 2000, White et al. 2006, Geller et al. 2011) are still relatively rare.  

One reason for the scarcity of agent-based simulations based on realistic models 
of kinship networks is the highly complex nature of the genealogical datasets used by so-
cial scientists. Not only do numerous demographic and sociological factors (fertility and 
mortality rates, marriage and residence preferences, spatial distribution and migration, 
etc.) jointly affect the form of real-world kinship networks, the datasets collected by so-
cial scientists are generally subject to (often substantial) observer bias and thus cannot be 
taken as miniature images faithfully reproducing the morphology of the actual networks 
from which they are obtained. 

In this survey article, we discuss several recently developed simulation techniques 
designed to deal with the problem posed by the multiplicity of (agent- and observer-relat-
ed) factors affecting the generation of kinship and marriage links. All result from the re-
search project “Simulations de la Parenté—Kinship Simulations.”  1

After presenting a new technique for doing “classical” agent-based modeling of 
kinship and alliance (group) networks (Section 2), we will then introduce an automatic 
model discovery technique that, instead of constructing alliance networks from matrimo-
nial rules, reconstructs matrimonial rules underlying the empirical alliance networks 
(Section 3). While these techniques (both in their “direct” and in their “reverse” form) 
apply to “objective” representations of kinship and alliance networks, we then introduce 
methods for taking into account the generally lacunar and biased character of empirical 
kinship datasets. The first method (Section 4) is a generalized version of White’s (1999) 
“reshuffling” approach and consists in redistributing marriage or descent links between 
individuals or groups, while keeping the number of links constant. (For alliance net-
works, the question can be dealt with analytically by straightforward calculation of ex-
pected marriage circuit frequencies.) The second method (Section 5) consists in simulat-
ing the processes of network exploration by a virtual fieldworker navigating through kin-
ship or alliance networks according to given behavioral constraints.  

All the techniques presented in this article have been implemented in the open 
source software Puck.   2

1. The Framework 

1.1. Basic Concepts  
We first specify several basic concepts that we will use throughout this article.  First is a 3

distinction between kinship (or genealogical) networks and alliance networks. Both kinds 
of networks are graphs that represent the outcomes of numerous matrimonial choices. 
Though both types of networks are based on marriages, they differ in other aspects. Fig. 1 
gives an example of both network types. 

In kinship networks (Fig. 1, left) marriage ties are between individuals who may 
also be linked to each other by chains of parent-child ties. In the conventional network 
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representation—also called an Ore-graph (Ore 1960, Batagelj and Mrvar 2008)—nodes 
represent individuals, arcs (directed links) represent parent-child ties, and edges (undi-
rected links) represent marriages (marriage edges were lacking in Ore’s original version). 
An alternative way to represent kinship networks, the P-graph (White and Jorion 1992) 
consists in letting nodes represent families, while individuals are represented by arcs link-
ing their families of origin with their (possibly multiple) families of procreation. This 
second representation is central to the reshuffling method (see below). Unless specified 
otherwise, the term ‘kinship network’ will refer to conventional Ore-graphs. Formally, 
kinship networks are weakly acyclic mixed graphs (strongly acyclic in P-graph represen-
tation).     4

In alliance networks (Fig. 1, right), by contrast, parent-child ties are not included 
and marriage ties are not between individuals but between the groups to which the re-
spective spouses belong (be they kinship groups like lineages or clans, residential, profes-
sional, or other kinds of groups, determined independently from marriage behavior and 
assumed to be fixed over the time period of the network). Formally, alliance networks are 
oriented multigraphs, where nodes represent groups, and arcs represent (possibly multi-
ple) marriages, directed from wife-givers to wife-takers. Alternatively, they can be repre-
sented as oriented valued graphs, where arc values correspond to the number of mar-
riages. An alliance network composed of m nodes (groups) and n arcs (marriages) can be 
represented by a weighted alliance matrix (xij), where xij is the number of marriage links 
connecting wife group i and husband group j.  

The basic indicators of the morphology of the networks that will be considered 
here are the number and types of circuits that appear in them. A circuit is a subgraph of a 
network which can be completely traced using a single sequence of nodes and lines with-
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Figure 1. Kinship network (left) and corresponding alliance network of patrilineal 
components (right). In the alliance network, marriage arcs are oriented from wife’s 
group to husband’s group.
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out visiting any node more than once—except the starting node, which is identical to the 
end node. When a circuit contains at least one marriage link (in alliance networks, this is 
always true by definition), it can be interpreted as the kinship-and/or-marriage chain that 
links individual spouses if it is a kinship network, or as the alliance chain that links allied 
groups if it is an alliance network. The presence or absence of such chains may have been 
a factor in the formation of the resulting marriage link. Insofar as the chains linking po-
tential spouses are themselves composed of previous marriage links or of parent-child-
links resulting from previous marriages, marriage circuits may be indicative of a self-or-
ganizing logic of the network in question. Circuits can be classified according to a variety 
of typologies; the finest definition of a circuit type is a class of structurally isomorphic 
circuits with an identical gender pattern.  

In kinship networks, we generally want to exclude triangles constituted of two 
parents and a common child, which can be achieved by imposing the single condition that 
no node in a circuit has indegree greater than one. This gives us the definition of a matri-
monial circuit . There are a large number of different matrimonial circuit types of even 5

modest dimensions, and the analysis of their mutual (logical and social) interconnection 
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Figure 2. Chimane genealogical network. Triangles are males, circles are females and 
diamonds are individuals of unknown gender. (Visualization by the Pajek software 
program.)
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forms an important part of kinship network theory, which, for circuits containing more 
than one marriage (so-called “relinkings”), is still in its beginnings. 

In alliance networks, where all links are marriage arcs, the interesting types of 
circuits—here called connubial circuits—are fewer than the types of matrimonial circuits. 
For our purposes here, we are interested in alliance network circuits that only contain up 
to three marriage arcs.  These are: loops (1 arc, representing an endogamous marriage), 
dual circuits (2 arcs, representing redoubling or exchange marriages) and triangles (3 
arcs, representing cyclic or transitive marriage triads). Most existing anthropological the-
ories of marriage alliance can be tested by focusing on these kinds of circuits. 

1.2. The Example Data Set 
As far as possible, we shall use empirical data to illustrate our methods. Our example 
dataset, created by Isabelle Daillant, stems from the Chimane of Bolivian Amazonia, who 
numbered about 7000 people at the time of data collection (see Daillant 2003). The 
dataset, which comprises 2642 individuals and 753 marriages (see Fig. 2 for a graph of 
the genealogical network), was deliberately constructed for the purpose of studying mat-
rimonial behavior.   The data were collected in a way that allowed for a largely symmetric 
and unbiased representation of male and female links (facilitated by the absence of uni-
lineal groups and an ambilocal residence rule). The Chimane have a Dravidian kinship 
system, implying prescriptive cross-cousin marriage and prohibited parallel-cousin mar-
riage rules that, contrary to many other groups with marriage rules, are rather strictly ad-
hered to, as can be seen from the matrimonial census: 30% of all unions are between real 
or classificatory cross cousins (in the Dravidian sense), and among these, 22% are be-
tween direct first-degree cross-cousins (94 marriages with the patrilateral, 95 with the 
matrilateral cross-cousin, which coincide in 25 cases).  

The Dravidian norms govern not only consanguineous marriages but also mar-
riage relinkings, since affines of the same generation are conceived of as (matrimonially 
preferred) cross-cousins, whereas affines’ affines are assimilated to parallel cousins with 
whom marriages are forbidden. The adherence to these rules can be seen from an analysis 
of the alliance network formed by marriages between the patrilineal (or “agnatic”) com-
ponents  of the Chimane genealogy, which can be interpreted as a purely formal and ge6 -
nealogical equivalent of what anthropologists call a patrilineal “lineage” (see Fig. 3, 
where the node size corresponds to the number of marriages per agnatic component, and 
line width to the number of marriages between two components). Although these compo-
nents do not correspond to any socially recognized group (such as lineages), Chimane 
marriage norms have the consequence of ruling out marriages both within components 
and between components that are linked to the same partner component, while favoring 
marriages between components already related by a marriage link. In fact, the alliance 
network formed by the 505 marriages which link the 136 agnatic components shows only 
one single loop (an incestuous marriage between agnates), a high number of dual circuits 
(repeated marriages between allies) and a number of triangles (marriages between co-
affines) which is considerably lower than the number of dual circuits, all of which is con-
trary to what would happen if marriages were made randomly.  
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2. Straightforward Agent-Based Models 

2.1. Genealogical Networks: A Birth-Centered Approach 
The most straightforward approach for creating artificial kinship networks consists in ex-
plicit, agent-based simulation of marriage and procreation in a human society. This, how-
ever, is not a trivial matter. There is an enormous range of details that could be taken into 
account, including individual preferences and characteristics, geography, age and even 
economy. Genealogical simulation programs used in demography and population genetics 
(for one of the most advanced examples see the SOCSIM project, http://lab.demog.berke-
ley.edu/socsim/) usually have to estimate numerous parameters for an entire series of di-
verse events (births, marriages, divorces, deaths, etc.) that concur in generating the kin-
ship networks. However, while a sufficiently large parameter space increases the possibil-
ity for finding a solution, it diminishes at the same time the probability that this solution 
will be meaningful. We shall present a radically simple model that preserves plausibility 
for the systems under study while keeping the parameter space as small as possible. At 
the same time, we avoid modeling aspects that cannot be based on real data.  

�186

Figure 3. Alliance	network	of	Chimane	agnatic	components	of	size	>	1,	minimal	node	
degree	 =	 1.	 (Visualization	 by	 Pajek,	 Fruchtermann-Reingold	 spatialization	 factor	 10,	
node	and	line	size	correspond	to	node	strength	and	line	weight,	respectively).
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The basic simplification of our model consists in reducing all relevant events for 
generating the genealogical network to one single event type: births. At each simulation 
step (which corresponds to one year), the number of births is determined from a global 
fertility rate (mean number of children per agent)—a simple parameter that can be based 
on real population data—and the maximal age of an agent. Since the fertility rate is the 
number of children per parent over the whole life span, and each child has two parents, 
the number of annual births is given by the expression:  7

births = [population size / (2 × maximal age)] × fertility rate
Once the number of children is determined, we let the new-born children random-

ly “choose” their parents according to variables such as age, number of previously born 
children, and so on. These “choices” in turn trigger all other relevant events, such as mar-
riages and divorces. If a couple selected as the parents of the new born is not married, it 

�187

Table	1:	Birth-centered	Genealogy	Simulation	Model

Parameters State variables

Size of the initial population 

Number of years 

Maximal fertile age 

Fertility rate (mean number of children per 
parent)  

Weight factors 
• for current and previous marriage 
• for male, female and both divorce 
• for mean and standard deviation of 

husband’s age 
• for mean and standard deviation of 

wife’s age 
• for mean and standard deviation of 

spouses’ age difference 
• for pregnancy (default is 0) 
• for the number of children (0 to 4+) 
• for first degree cousin marriage 
• for first degree agnatic cousin mar-

riage

Number of marriages at time t 

Number of births at time t 

Marriages, births and divorces occurring at 
time t 

Children, adults, marriageable men and 
women, and fertile families at time t 

Kinship network at time t (composed of all 
individuals and families created up to time 
t)

Puck: File > New > Random Network > Birth-centered

Structure and Dynamics, 9(2) (2016)
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will be considered as married from then on. If one or both partners were married to dif-
ferent individuals before the birth, the corresponding divorce events will be triggered, and 
so on.    

For each birth, a number of potential pairs of parents are considered , each is as8 -
signed a weight, and selected according to probabilities derived from that set of weights . 9

Weights are computed by taking the product of a set of pre-defined weight factors, which 
regulate the propensity of couples to have more children, the propensity to marry at a 
given age, the preference for (or avoidance of) certain kinship degrees, and so on (see Ta-
ble 1). This weight assignment is the single place where the specificities of a given simu-
lation are defined and asymmetries can be created. 

This procedure eliminates several complexities of the system dynamics. Instead of 
modeling a set of higher-level social mechanisms that determine when agents marry, di-
vorce, have children, how many, and so on, all relevant events in the model follow from a 
single global fertility rate (easily derivable from demographic data) in combination with a 
series of weight factors that model individual behavior in an entirely relative manner and 
thus can equally be imported directly from demographic data, without having to speculate 
about absolute parameters.  

Clearly, the simplicity of this model also implies certain limits. First, the reduc-
tion of all events to births means that we are not interested in marriages that do not lead 
to births, nor in divorces that do not lead to further births with other partners, nor in the 
precise duration of marriages or divorces. Even the exact lifespan of an agent is irrele-
vant—all that matters is his or her likelihood of being the parent of a certain child at a 
certain age. The model is thus not adequate for dealing with research questions focusing 
on one or more of these variables. Second, the triggering of marriages by birth means that 
marriage preferences directly translate into procreative advantages, so that the number of 
cousin relations and the number of cousin marriages are correlated and their ratio cannot 
be used as a measure of matrimonial preferences.  

Example: the factors underlying agnatic cousin marriages 
Within these limits, the model proves an efficient instrument to study the interactions be-
tween a small number of clearly defined parameters. To illustrate its application, we shall 
use it to test the impact of potential factors that may account for a surplus of agnatic 
cousin marriages in the kinship network. The most obvious of these possible factors is, of 
course, an outright propensity of agents to marry their agnatic first cousins. This may re-
flect explicit matrimonial norms (such as the "Arab marriage" rule to marry the father’s 
brother’s daughter) or other social institutions (such as virilocal residence or patrilineal 
inheritance of land) that, by making unmarried agnates live close to each other, create 
opportunities for encounters and subsequent marriage. In our model, we lump all these 
factors together into a single weight factor that augments the chance of a close agnatic 
cousin to be chosen as a spouse.  

Marriage preferences are, however, not the only mechanism that may bring about 
a surplus of agnatic marriages. In societies where polygamy is allowed, a man’s procre-
ative capacities are no longer bounded by those of the woman. A man can, therefore, have 
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more children than a woman. Although the average number of children per man will not 
change, they may be much more concentrated (some polygamous men monopolizing 
spouses at the costs of other men who remain single), meaning that paternal siblings will 
be more numerous than maternal siblings, and, as a consequence, agnatic cousin relations 
will exceed uterine cousin relations. Agnatic cousins being more numerous, they will also 
dominate uterine cousins as spouses. In our model, we simulate polygamous behavior by 
augmenting the male probability of "divorce", that is, of taking another spouse although 
they are already married (which does not preclude the possibility of going back to the 
former spouse for creating another child). 
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Figure 4. Agnatic cousin marriages for different agnatic cousin marriage preference 
weights (right depth axis) and polygyny rates (male “divorce” probabilities) (left 
depth axis). Initial population 500, 300 years, fertility rate 2, maximum fertile age 50, 
10 runs per factor combination.
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Fig. 4 shows the combined impact of these two mechanisms on agnatic cousin 
marriages. As can be seen, they are augmented both directly by increasing preferences for 
marrying agnatic cousins (expressed by an increasing weight attached to them as mar-
riage candidates) and indirectly by increased polygyny rates (expressed by an increased 
probability of men to have a child with a woman other than the previous child’s mother). 

While the birth-centered model cannot be applied to all questions raised by kin-
ship studies, it should be taken as a paradigm encouraging the design of similar single-
event simulation models focusing on variables other than births. 

2.2. Alliance Networks: A Network Morphogenesis Model Based on Node Distance 
Simulating the formation of alliance networks is a much simpler task (see Table 2). Start-
ing from a given population of groups (which are the model agents and represented by 
network nodes), we distribute a given number of marriages among these groups by first 
randomly selecting the ego group, and then letting this group choose its (wife-giving or 
wife-taking) marriage partner group (which may be the ego group itself). The selection of 
ego groups proceeds by a weighted random selection process, which allows us to simu-
late a non-uniform distribution of marriageable men and women among groups.   

By letting groups act as agents, we do not presuppose a hypothesis of collective 
marriage decisions—we only suppose that matrimonial choices are to some extent influ-
enced by the group affiliations of the potential partners. This influence operates through 
the consideration of the partner groups’ relative position in the alliance network, that is, 
of the presence or absence of paths of given length connecting them. Thus, two groups 
that have already concluded at least one marriage are connected by a path of length 1, 
two groups who share a common marriage partner are linked by a path of length 2, and so 
on. By definition, we consider the coincidence of the two groups as equivalent to a path 
of length 0. Note that all nodes in a path have to be distinct, so that loops cannot enter 
into the calculation of path length (the fact that a group has concluded endogamous mar-
riages does not turn its allies into allies’ allies). 
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Table	2:	Distance-Based	Alliance	Network	Simulation	Model

Parameters State Variables

Number of groups m  

Number of links n 

Groups’ preferences wd for choos-
ing partners at a distance d of 0, 1 
and 2 (endogamy, direct relinking, 
indirect relinking)

Ego group at time t 

Partner group chosen by ego at 
time t 

Network at time t (which is com-
posed of all groups, as well as all 
links established from 1 to t)

Puck: [Group Network Window] > File > New > Random Network (by agent simulation)
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We assume that marriage preferences or avoidances are identical for all groups in 
the network, and can thus be modeled by constant weight factors wk, where k is the length 
of the connecting path. If no path of length k exists, wk is set equal to 1. Thus, w0 ex-
presses the preference for (or avoidance of) group endogamy, w1 the preference for (or 
avoidance of) marriages with affines (marriage redoublings), and so on. From these 
weight factors on distances, weight factors on potential partners can be derived by taking 
the product of the weight factors of the distances that separate the partner node from the 
reference node. As there may be several paths connecting the two nodes, different prefer-
ences and avoidances may reinforce or neutralize each other: for instance, one and the 
same group may be preferred as an ally, but avoided as an ally’s ally. However, we do not 
treat ego as its own ally, ally’s ally, and so on, so that endogamic behavior cannot result 
as a side effect of relinking behavior of any kind.  

Contrarily to classical models of random network morphogenesis that specify 
preferences for certain node types as a function of degree—the prototype being the Al-
bert-Barabasi (2002) model —morphogenesis is thus made dependent on network dis-
tance in a non-uniform manner (see White et al. 2006 for a similar approach to genealog-
ical networks).  

Example: Connubial circuits in a Dravidian-type alliance network 
Ethnographically described marriage rules and strategies rarely go beyond the 

second affinal degree, so that the only practically relevant weight factors are those for 
length 0 (endogamy—marriage within the group), length 1 (marriage redoubling, mar-
riage with an affine) and length 2 (marriage triangulation, marriage with an affines’ 
affine). We have tested the model for various combinations of these three factors (see Ta-
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Table	3:	Connubial	Circuits:	Empirical	and	Simulated	Alliance	Networks*	

Circuit type Chimane network
Simulated network 
(redoubling preference, 
weight = 1000)

Simulated network 
(neutrality)

loops 1 1 3.7
dual circuits 3534 1088.6 13.1
parallel circuits 1850 545.2 6.8
cross circuits 1684 543.5 6.3
balance parallel-cross 
circuits

166 1.7 0.5
triangles 538 9.0 57.0
transitive triangles 474 7.8 49.1
cyclic triangles 64 1.2 7.9
* The empirical network is the alliance network of Chimane agnatic components. The two 
Dravidian-type simulated networks are constructed with identical numbers of nodes and arcs, 
weights of 1000 or 1 for redoubling marriages, all other weights = 1.  The numerical values are 
average figures for 100 simulation runs. 
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ble 3), assuming a uniform distribution of matrimonial potentials (all groups having the 
same chance of being chosen as ego groups).  

Clearly (almost by definition), preferences for marriage partners at distance 0, 1 
and 2 result, respectively, in the emergence of loops, dual circuits and triangles in the al-
liance network. For example, choosing a weight of 1000 (expressing a very high prefer-
ence) for marriage redoublings for 136 groups and 505 marriages (as in the Chimane al-
liance network case) produces a random alliance network whose circuit census shows the 
same hierarchy (many dual circuits, fewer triangles and almost no loops—see the third 
column of Table 3). For the sake of comparison, we also add the figures for an alliance 
network under the assumption of perfect neutrality (all weights equal to 1), where en-
dogamy would be higher, marriage redoublings would be much fewer in number, and tri-
angles would dominate (see the last column of Table 3).  

However, even if augmenting the weight for marriage redoublings largely aug-
ments their number, their real frequency (as well as that of triangles) still exceeds that of 
the simulated network and cannot be reached by a further augmentation of the redoubling 
propensity. This fact is due to a fundamental difference in the morphology of the two 
networks (compare Fig. 5 and Fig. 3): while the simulation gives all components the 
same chance of choosing a marriage partner, so that marriages are homogeneously dis-

�192

Figure 5. Simulated alliance network (Visualization by Pajek, Fruchterman-Reingold 
spatialization factor 10, node and line size correspond to node strength and line weight, 
respectively).
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tributed among nodes (albeit not among pairs of nodes), the real Chimane alliance net-
work is centered around a dominant component.  

Apart from the automatic effects of the various marriage weights, variation of 
their combinations reveals some non-trivial « cross » effects. Thus, any non-neutral atti-
tude towards allies’ allies (be it a preference or an avoidance) tends to augment the num-
ber of dual circuits. In fact, the formation of dual circuits is a correlate of any sort of het-
erogeneity introduced into the exogamous part of the network. However, the morphology 
of the network corresponding to a preference for marriages with affines’ affines is com-
pletely different from that of a network resulting from the avoidance of such marriages. 
In the first case, the network is disaggregated into a series of subnetworks strongly con-
nected within, but weakly (or not at all) connected with each other—marriage with 
affines’ affines tends to render alliance transitive, thus leading to the emergence of clique-
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Figure 6. Effects of increasing weights for marriages with allies (right depth axis) and 
allies’ allies (left depth axis) on the number of triangles (vertical axis) in an alliance 
network with 136 groups and 505 marriages. Based on 100 runs.
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like, quasi-endogamous clusters. In the second case (which corresponds to that of the 
Chimane example), the network tends to adopt a plurimodal structure through the emer-
gence of quasi-exogamous sets that intermarry with each other but not within themselves 
(the extreme case being that of implicit exogamous moieties). In both cases, the exclusion 
of a great number of potential partner pairs leads to an increasing number of marriages 
between the remaining partners and thus raises the probability of marriage redoublings. 
Consequently, the number of dual circuits constitutes a very imperfect indicator of net-
work morphology, unless it is complemented by a census of triangles: in the case of a 
network composed of several largely endogamous clusters their number should be high; 
in that of a network divided into largely exogamous moieties, their number should be 
low.  

Inversely, the effect of a preference for marriage redoublings on the number of 
triangles is not monotonic: while a moderate preference for marriage redoublings acts as 
a multiplier of any sort of arc configuration in the alliance network and thus tends to in-
crease the number of triangles, an extremely high redoubling preference (as modeled in 
our example case) draws arcs from the reservoir of all other circuits and thus reduces the 
number of triangles (see Fig. 6). Therefore, the brute number of triangles does not neces-
sarily indicate, in a straightforward way, a preference for (or avoidance against) triangula-
tion. Again, the frequencies of different circuit types have to be interpreted jointly in or-
der to avoid misleading conclusions.  

3. Automatic Model Discovery (Meta-Modeling) 
While the simulation techniques described in the preceding section start from a series of 
rules modeling the agents’ preferences or avoidances in order to come up with a network 
whose morphology can be studied and compared with existing networks, the approach of 
“meta-modeling” (Menezes and Roth, 2013) proceeds the other way around: starting 
from a network with a given morphology, it uses simulation in order to automatically 
suggest rules that might have generated it (see Table 4).  

This approach is characterized by two fundamental aspects. First, the representa-
tion of network generators as computer programs that drive a stochastic process of arc 
formation. This representation is designed to make use of node-centric information and to 
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Table	4:	Automatic	Discovery	Model

Parameters State variables

Original network 

Set of variables 

Set of functions 

Set of metrics

Generator program for the ith run 
(made of variables and functions) 
Network for the ith run (character-
ized by its metrics)

Puck: [Group Network Window] > Analysis > Generate Rules
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produce results that are easily readable and interpretable by humans. Second, the use of 
genetic programming, a type of evolutionary computation, in order to search for comput-
er programs that generate synthetic networks best approximating the real network. 

Our network generators are simple computer programs represented as a tree struc-
ture. Tree nodes represent functions that take the value of their child nodes as parameters. 
Tree leafs are either variables or constant values. A tree can be recursively evaluated all 
the way to the top, eventually returning a single value. The role of a program in our 
method is to quantify the plausibility of two nodes establishing a connection at a given 
moment. 

The input variables available to the program are: a numerical node identifier; in-
and out-degrees; in- and out-strength; arc weight; directed, undirected and reverse dis-
tance. The function set consists of simple arithmetic operators, general-purpose functions 
and comparators. 

A simulation run is performed to generate the synthetic network that will be used 
for comparison against the real network. The number of nodes (m) and arcs (n) in the real 
network are taken as reference for the simulation. The simulation is initialized with m 
disconnected nodes and runs for n cycles, with a new arc being generated at each cycle. 
The arc to be created is selected by a weighted random selection process, with weights 
being the result of the evaluation of the generator program.   10

The search algorithm is initialized with a population of randomly generated pro-
grams. The algorithm runs for a number of generations, where successive populations are 
generated from the previous ones, by mutating and recombining programs from the pre-
vious generation. Programs are stochastically selected to generate offspring according to 
a measure of their quality, usually called the fitness function. The fitness function is de-
fined here as the arithmetic means of the logarithms of a series of ratios, each of which 
measures the divergence of some metrics of the simulated network from the correspond-
ing metrics of the true network. The closer the synthetic network to the real one, the 
smaller the fitness function. In the case of alliance networks, we use eight such metrics, 
including, among other indicators (such as network concentration and symmetry), the 
number of loops, cross and parallel circuits, and transitive and cyclic triangles.  

Evolutionary algorithms are not guaranteed to converge on a solution, but will 
tend to approximate an optimum.  

Example: the Chimane alliance network morphology as a result of marriage ex-
change and main component pull  
We have applied this method to the alliance network formed by the agnatic com-

ponents of the Chimane dataset (see Fig. 3).  Here we simply select the shortest program 
of the five, given that the quality of the approximations found are very similar for all 
runs: 
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if (exp (targetInDegree) > targetOutStrength) 
return reverseStrength 
else 
return 8
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The first aspect to notice	is that the identity number of nodes does not enter the 
equations, which means that the explanation offered by the generator does not assume 
behavioral heterogeneity.	The generator defines two modes of operation, which are se-
lected by a comparison of the exponential of the target input degree (the number of the 
wife-taker’s wife-givers) and the target output strength (the number of the wives given by 
the wife-taker). The comparison can be roughly interpreted as an assessment of the poten-
tial wife taker’s balance between its propensity to take and its propensity to give. If the 
potential taker is a preferential taker, the group will have a preference to receive wives 
proportional to the number of wives it gave itself to the giver. This trait of the machine-
made generator program does not explicitly forbid double marriages, but strongly en-
courages exchange marriages, thus confirming the relinking propensity characteristic of 
Dravidian-type networks that equally characterized the “man-made” generator program 
of Section 2.2. If, on the other hand, the group is a preferential giver, the weight of the 
group being selected falls back to a constant value of 8. This also means that the “poor” 
taker groups below the “taking vs giving” threshold (exp(targetInDegree) 	≤	 targetOut-
Strength) 	will be more likely to be selected than groups that are above it but gave less 
than	8 wives to the giver group. This process pulls “poor” taker groups into the main 
component, and thus renders account of the heterogeneous structure of the Chimane net-
work (by contrast with the model of Section 2.2 which assumed homogeneity throughout 
the network). 

While the general reciprocity rule may be readily accessible to the ethnographer 
(and the Chimane themselves), determination of the rules necessary to reproduce the fine-
grained morphology of the empirical network would be hardly possible without the help 
of automatic meta-modeling. The task of the human researcher has not become easier, 
though: it consists in determining to what extent the fine-tuned behavioral “rules” found 
by the computer have a counterpart in the actual constraints and conditions of agent and/
or observer behavior.   

4. Reshuffling Techniques 

4.1. Genealogical Networks: A Generalized Version of White’s Algorithm 
A common feature of the methods described in the two preceding sections is that they all 
apply to presumably “objective” representations of kinship and alliance networks. Now, 
the collection of genealogical data is often heavily biased by factors that pertain as much 
to the observer’s research objectives and conditions as to the social structure itself. One 
of the main challenges in the interpretation of kinship data consists in separating the ef-
fects of matrimonial behavior, not only from the effect of chance, but also from the im-
pact of observer behavior.  The following two sections will present two different methods 
that deal with this problem.  

The first method, random reshuffling (see Table 5), consists in randomizing mat-
rimonial links while keeping the remaining features of the network morphology (such as 
children per couple) constant: the simulated network shares the main structural traits of 
the original (empirical) network, except that marriage ties have been randomly redistrib-
uted under this constraint. The idea is that the idiosyncrasies of the network deriving 
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from non-matrimonial factors—such as demography or observer bias—are thereby neu-
tralized and the remaining divergence of the empirical from the randomized network can 
be ascribed to objective factors influencing marriage behavior.  

This “permutation test” was first developed by D. R. White (1999), who applied it 
to genealogical networks in P-graph format. His model consisted in randomly redistribut-
ing the arcs of the network (which in P-graphs link families of origin to families of pro-
creation), while keeping both node degrees (number of parents and children per family) 
and the generational levels of the connected nodes constant (so as to avoid unreasonable 
marriages between very distant generations). White’s seminal model called, however, for 
improvement in two respects. First, the condition of redistribution within generations not 
only was overly restrictive, but also rendered the model dependent on existing algorithms 
for computing generations, none of which is truly satisfactory . Second, it provided only 11

one single random permutation instead of searching for an optimal one.  
Our generalized version of White’s model for genealogical networks has been de-

signed to overcome these problems. It is independent of a calculus of generations, with 
all constraints being entirely formulated in terms of arc configurations. Moreover, it inte-
grates an optimization process that maximizes the difference between the original and the 
randomized network, as measured by the distance between the two graphs.   12

The method presupposes transformation of the bimodal genealogical network into 
a unimodal network, be it an Ore-graph (in its original version, where nodes represent 
individuals that are linked exclusively by parent-child arcs), or a P-graph (where nodes 
represent families linked by arcs representing individuals). In both cases, there is no one-
to-one correspondence between the bimodal and the unimodal network. In the Ore-graph 
case, keeping track of childless marriages requires introducing fictive individuals that we 
have to remove when we re-transform the Ore-graph back to the bimodal kinship net-
work. In the P-graph case, arcs stemming from a given node can be equivalently inter-
preted as representing same-sex full siblings or a single individual having concluded sev-
eral marriages. In order to reconstruct the bimodal network from the P-graph, we there-
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Table	5:	Reshuffling	Model

Parameters State variables

Number of arc permutations per 
step 

Maximal generational distance of 
spouses 

Stop conditions (minimal percent-
age of reshuffled links, minimal 
number of stable iterations)

Reshuffled network at state t 

Distance from the original network 

Percentage of reshuffled links

Puck: Transform > Reshuffling
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fore have to re-transform P-graph arcs to single individuals or siblings according to a 
probability estimated from the mean fratry composition of the original network.  

Once the network has been put into unimodal form, the procedure consists in 
swapping, at each iteration step, the target nodes of a selected set of arcs, subject to the 
constraints that gender-specific in- and out-degrees are conserved and that the genera-
tional distance between the newly linked nodes in the original network must not exceed a 
certain maximal level. This local measure of generational distance—computed in an ego-
centered manner from the numbers of ascending and descending arcs in the connecting 
chains—does not involve any global generational partition. Moreover, we impose the 
condition that no oriented cycles (and, a fortiori, no loops) should be formed—no node 
can become the descendant of a descendant or of itself.   

This process is stopped as soon as a certain minimal percentage (which may be 
100%) has been redistributed, and a certain maximal number of iterations have been run 
without augmenting the distance of the randomized from the original network.  

Example: Testing the significance of Chimane consanguineous marriages 
Let us apply this procedure to the Chimane dataset. As we are only interested in 

marriages, we first eliminate all unmarried individuals from the genealogy, thus reducing 
the number of parent-child links and, as a consequence, the constraints restricting the 
freedom of permutation. We then transform the Chimane-network into P-graph format 
and then repeatedly switch arcs (subject to the specified constraints) until 100% of all 
arcs have been reshuffled and 1000 iterations have been run without improving the dis-
tance from the original network. Permutations of marriages shall only take place within a 
generation.  The maximal distance thus achieved is about 43%.  13

Fig. 7 shows the reshuffeled network. Table 6 gives an overview of the changes 
the reshuffling process has brought about in the numbers of consanguine marriage cir-
cuits (up to degree 3).  As expected, the Chimane cross-cousin marriages clearly exceed 
the frequencies found in a reshuffled network, although the latter still exhibits a high per-
centage of consanguineous marriages (7%, vs. 30% in the original network). However, 
the “Dravidian-type” structure has disappeared: parallel cousin marriages emerge, while 
some of the most preferred cross cousin marriages no longer show up at all.  As con-
firmed by the reshuffling test, the high frequency of cross cousin marriages in the Chi-
mane network is not an artefact of demography or observer bias, but clearly indicative of 
other constraints—such as social norms—restricting matrimonial choice.  

4.2. Alliance Networks: An Analytical Model 
The case is quite different for alliance networks, whose simple structure as valued orient-
ed graphs makes it possible to formulate an analytical solution for the problem of expect-
ed circuit frequencies in reshuffled networks (Roth et al., 2013). This is achieved by con-
structing a multinomial model on the alliance matrix whose parameters are limited to the 
total outgoing and incoming marriages for each group . We model this through a pair of 14

vectors k and k’ describing the numbers of incoming and outgoing marriage arcs for each 
group in the alliance network, such that each marriage goes to a cell ij of the random ma-
trix with a probability proportional to kik’j. This formalism makes it possible to analyti-
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Figure 7. Reshuffled Chimane Network (without single individuals). Reshuffled in P-
graph mode, 2 arc permutations per step, maximal generational distance 0, stop after 
100% reshuffling and 1000 stable iterations. Graph distance from original 42.96%.

Table	6:	Circuit	Numbers	Before	and	After	Reshuffling*
Circuits Original Reshuffled Circuits Original Reshuffled Circuits Original Reshuffled
Z 0 6 FFBDD 29 3 FMBDD 0 1

FZ 1 0 FFZSD 50 3 FMZSD 0 2

FBD 0 13 FFZDD 0 3 FMZDD 23 0

FZD 93 3 MFBSD 27 6 MMB-
SD

1 2

MBD 94 7 MFB-
DD

0 1 MMB-
DD

45 3

MZD 0 1 MFZSD 0 1 MMZS
D

31 6

FZDD 2 0 MFZDD 53 1

FFBSD 0 3 FMBSD 45 6

* The original network is the Chimane genealogical network. Consanguineous circuits are listed up to 
degree 3.
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cally express expectations of weights of the corresponding directed network, and, by ex-
tension, the exact expectations of patterns of interest in the alliance network (Puck: 
[Group Network Window] > Analysis > Morphology). The problem has thus found an 
analytical solution, and simulation—while remaining useful for exploration and illustra-
tion—is no longer required in order to determine the numbers of circuits (or other mor-
phological indicators) which are to be expected if marriages were at random.  

Example: expected connubial circuits in the Chimane alliance network  
Table 7 shows the results of this model for the circuit frequencies in the alliance 

network of Chimane agnatic components.  The salient features of this morphology—one 
single endogamous marriage (where one would have expected as many as 38), a number 
of dual circuits almost 4 times higher than expected, and an extremely low number of tri-
angles (two percent of what would be expected)—clearly confirm the rules of a Dravidi-
an marriage alliance system, which prohibits marriage both within one’s own group 
(loops) and with one’s allies’ allies (triangles), while favoring replication of marriages 
with established allies (dual circuits), without differentiation between wife-givers and 
wife-takers (reflected in the roughly equal surplus of cross and parallel circuits over their 
expected values).  

5. Observer Bias Simulation (Virtual Fieldwork) 
The second approach, virtual fieldwork (Hamberger and Gargiulo, 2014) consists in ex-
plicitly simulating the data collection process, subject to the constraints of observer and 
informant behavior.  

5.1. Genealogical Networks: Modeling Mobility and Memory Constraints 
In our model (see Table 8), informants are successively chosen from a subset of the indi-
viduals in the original network by an observer whose relative immobility is modeled by 
assigning preference weights to potential informants according to their kinship relation to 
the previous informant. This immobility may be interpreted socially (previous informants 
facilitate access to their relatives as subsequent informants) or spatially (related infor-
mants live close together and are thus easier to reach). It is modeled by assigning higher 
weights to potential informants who are close to the current informant, where closeness 
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Table	7:	Connubial	Circuits	in	the	Chimane	Alliance	Network
circuit type observed expected ratio observed/expected

loops 1 38.0 0.03
dual circuits 3534 844.3 4.19
parallel circuits 1850 461.0 4.01
cross circuits 1684 383.3 4.39
triangles 538 24418.2 0.02
transitive triangles 474 13502.9 0.04
cyclic triangles 64 10915.3 0.01
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may be defined both quantitatively (by network distance) and qualitatively (by the type of 
kinship relation, e.g. agnatic, linear, and so on). In the simplest case, a constant weight > 
1 is assigned to “close relatives”, while all others receive weight 1.   

At each time step, the observer asks the informant to reveal his entire kinship en-
vironment (as far as memory reaches) and then passes on to a different informant. The 
simulated network is thus gradually constructed as the sum of the memorized network 
environments of subsequently chosen informants.  Each virtual "interview" consists in 
exploring the personal network of the informant by a (depth first) search process which 
recursively visits all direct neighbors (parents, spouses and children) of every visited 
node (starting with ego). We assume that informants share the same uniform memory ca-
pacity, which we assume to decrease with genealogical distance from the informant at a 
given exponential rate smaller than one (the recall rate).  The recall rate represents the 15

(constant) probability of recalling the relative of a recalled individual.  

Example: distorting the balance of agnatic and uterine ancestor chains 
As an example, let us look at the effects that an agnatically biased data collection 

would have on the Chimane dataset. Let us, for the purpose of illustration, assume that 
our network represents in miniature form the true morphology of the Chimane genealogy. 
As has been said, the Chimane have a cognatic kinship reckoning and an ambilocal resi-
dence rule, which renders Daillant’s network largely balanced (although, even in this 
network, there is a moderate bias in favor of agnatic over uterine linear chains). Now as-
sume that another observer explores this network, choosing his or her informants from 
the generational level G-2 (fortunately the Chimane dataset includes information on gen-
erational levels in emic terms as ethnographic data, so we do not have to compute them).  

Fig. 8 and Table 9 show the effect that an increasing agnatic “inertia” of the ob-
server—that is, a preference for choosing informants among the close agnates of previous 
informants—has, for increasing rates of genealogical recall, on the balance of agnatic and 
uterine linear chains (of length 3) in the network. We measure this balance as the surplus 
of persons for whom the agnatic great-grandfather is known over those for whom the 
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Table	8:	Virtual	Fieldwork	Model	for	Genealogical	Networks
Parameters State variables

Real network (number of individu-
als, number and type of links, inci-
dence of links and individuals) 
Subset of potential informants  
Observer inertia (preference for 
close informants) w 
Informants (uniform) recall rate r 
Number of informants n 

Actual informant at time t 
Memorized subnetwork yielded by 
the informant at time t 
Observed network at time t (which 
is the sum of all memorized sub-
networks from 1 to t)

Puck: Transform > Virtual Fieldwork
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uterine great-grandmother is known, normalized by the number of persons for whom ei-
ther the one or the other is known. In the real Chimane network, there is a moderate ag-
natic surplus of 9.8 percentage points.  

As expected, the bias generally diminishes with improving recall rates. The effect 
of observer behavior, however, is not so clear-cut. Initially the redundancy of reconstruct-
ed agnatic pedigrees introduced by an increasing propensity to stay within a group of 
close agnatic kin leads to higher rates of known agnatic ancestors and thus increases the 
agnatic bias. From a certain point onwards, however, the potential gains of this agnatic 
redundancy are exhausted, and further interviews add no more information to their own 
agnatic pedigree, while the observer’s preference for sticking to the same agnatic group 
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Figure 8. Surplus of agnatic over uterine linear chains (3 generations) (vertical axis) 
for various preferences (weights) for agnatically (maximal chain length: 6) related 
informants (left depth axis) and recall rates (right depth axis). Based on 100 runs. 
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prevents him or her from exploring the pedigree of other agnatic groups, thus reducing 
the agnatic bias of the network.   

This non-linear effect of observer bias characterizes not only its impact on linear 
chains, but also on cousin relations and on cousin marriages, whose ratio may be affected 
both in a positive and in a negative way, depending on the overall genealogical memory. 
This is bad news for comparative anthropology, for it means that neither absolute circuit 
frequencies nor closure rates (percentages of kinship chains that link spouses) can serve 
as an unbiased indicator of matrimonial preferences.  

5.2. Alliance Networks: Modeling Observer “Endogamy”  
The model for alliance networks (see Table 10) shares the basic properties of the model 
for genealogical networks, with the difference that informants are now groups (rather 
than individuals), which we assume to be equally accessible as informants and to have 
perfect memory of their members’ marriages. Contrary to the case of genealogical net-
works, the length of the interview now forms part of the observer’s choice to stay with 
the same group or to pass to the next one after each single bit of information (that is, each 
revealed marriage link). Accordingly, the duration of the virtual fieldwork process is now 
limited by the predetermined number of searched marriage links rather than by the prede-
termined number of informants.  

Again, we assume the observer to be constrained by social or spatial immobility, 
which we now can model simply as a preference for (or aversion against) staying with the 
same group (in other words, choosing the informants with a network distance of zero to 
the previous informant group). In addition, the observer may show a preference for (or 
aversion against) following a “snowballing” process and visiting the groups named as 
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Table	9:	Agnatic	Bias	Variations	in	Virtual	Fieldwork*

recall/inertia 1 10 100 1000 10000 100000

0.1 6.9 20.5 26.0 48.0 45.3 39.0
0.2 17.0 9.4 22.5 38.1 34.4 29.8
0.3 18.4 14.5 22.2 30.3 28.7 23.2
0.4 5.5 13.2 18.4 20.7 22.7 17.8
0.5 11.9 10.4 17.3 16.2 19.0 15.3
0.6 12.7 12.3 14.5 15.9 13.7 15.0
0.7 11.4 11.3 12.9 12.9 14.4 13.7
0.8 9.3 9.5 9.1 9.1 9.3 9.1
*Surplus  of  agnatic  over  uterine  linear  chains  (3  generations)  in  virtually 
“observed” Chimane genealogy for various preferences (weights) for agnatically 
(maximal chain length 6) related informants (columns) and recall rates (rows).
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allies by previous informant groups (that is, groups at a network distance of 1). The re-
construction of alliance networks by the virtual fieldwork process thus follows a process 
that is structurally similar to the generation of alliance networks as such (see Section 2.2); 
the difference being that the random selection weighted according to network distance 
now characterizes the choice of informants and not of marriage partners: social or spatial 
immobility thus corresponds to endogamy, snowballing to relinking, and so on.  

Example: the effects of observer immobility on the over- or underestimation of 
circuits 
To illustrate the method, we shall examine the effect of different combinations of 

observer inertia and snowballing behavior on the number of observed dual circuits (mar-
riage redoubling or exchange configurations) in an alliance network, as compared with 
their number in the real network. The diagram on the left in Fig. 9 shows the results for 
the Chimane alliance network of agnatic components; the one on the right for the alliance 
network we have simulated in Section 2.2, starting from the same number of groups and 
marriages, by applying a weight for marriage redoublings that corresponds to the Chi-
mane rules.  

In both cases, increasing inertia tends to increase the normalized number of dual 
circuits observed in the alliance network due to the concentration of observed marriages 
in the environment of the observer, which gives relinking marriages a greater chance of 
being observed. The effects of snowballing are somewhat more ambiguous. It clearly 
tends to augment the number of dual circuits as long as observer inertia is relatively low, 
since it keeps the mobile observer within a cluster of strongly interconnected nodes, but it 
may also mitigate the overestimation of circuits for high values of observer inertia, by 
pushing the observer to move from one node to another.  
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Table	10:	Virtual	Fieldwork	Model	for	Alliance	Networks

Parameters State variables

Real network (number of groups, 
number of links, incidence of links 
and groups) 

Observer’s informant choice pref-
erences (inertia w1 and snowballing 
w2) 

Number of links to be observed n 

Actual informant group at time t 

Marriage link and partner group 
revealed by the informant group at 
time t 

Set of potential informant groups 
(whose marriage links have not yet 
been totally revealed) 

Observed network at time t (made 
up of all groups and links revealed 
from 1 to t)

Puck: [Group Network Window] > Transform > Virtual Fieldwork
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However, while changes in observer behavior appear to operate roughly in the 
same direction for both cases, they operate on quite different levels: in the case of the true 
Chimane network, the number of dual circuits is generally largely underestimated, and a 
strong local immobility and/or snowballing strategy is required to approach their true 
values. In the case of the simulated network, on the contrary, the numbers of dual circuits 
are roughly correctly estimated by the neutral observer, while observer immobility as 
well as snowballing lead to their overestimation. This is due to the fact, noted in Section 
2.2, that the simulated network is locally homogenous—all nodes being structurally simi-
lar, even if there are large differences between node-pairs—while in the true Chimane 
network, marriages are concentrated in the proximity of a large main component, so that 
the observer has to stick to this component and its environment in order to record the cir-
cuits of the network. The (distorting or elucidating) effect of local in-depth studies de-
pends crucially on the homogeneity or heterogeneity of the social environment. 

6. Conclusion 
The various simulation techniques presented in this paper serve a variety of different pur-
poses. Some of them, such as the straightforward agent-based simulation techniques and 
the virtual fieldwork models, are first and foremost exploratory and experimental tools 
destined to get a clear idea of the impact of a factor (or combination of factors) on the 
morphological properties of kinship networks in general—insights which may then guide 
the interpretation of empirical networks. Other techniques, such as the automatic rule dis-
covery or the reshuffling models, are instruments to examine the morphology of concrete 
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Figure 9. Effects of observer inertia (right depth axis) and snowballing (left depth axis) 
on the over- or underestimation of the normalized number of dual circuits (vertical 
axis), for the Chimane alliance network (left) and the simulated homogenous alliance 
network (right). 10% of arcs explored. Based on 100 runs.
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empirical networks by focusing on the rules that may have brought them about, or the 
degree to which they may be due to chance.  

Most of these methods are not restricted to the domain of kinship. They are ap-
plicable to all kinds of social networks in which past (direct or indirect) links between 
agents are supposed to promote or hamper the formation of future links, and where the 
exploration of the network by observers is likely to follow certain types of links at the 
cost of following other types of links. Thus, meta-modeling techniques advance the state 
of the art in the discovery of generative models for complex networks. For example, 
Menezes and Roth (2014) propose explanatory generative models for a simple brain, an 
Internet social network and a network of protein interactions. The multinomial model for 
calculating expected morphological indicators of alliance networks is equally applicable 
to networks of migration flows or international trade. The virtual fieldwork model can be 
generalized to other types of search processes, such as net mining algorithms (see Gargiu-
lo and Roth 2013). 

All of the models we have presented should be viewed as methodologies open to 
further development. Their value mainly consists in being exploratory and critical tools. 
They serve to grasp the horizon of potential causes of kinship network phenomena, and to 
scrutinize the validity of (theoretical or emic) models claiming to render account of these 
phenomena. Rather than furnishing ready-made keys to the interpretation of empirical 
kinship networks, they help improve our insight into the complexity of network-generat-
ing processes, and to make us skeptical regarding any theory postulating a one-to-one re-
lationship between network phenomena and behavioral rules. As our experiments have 
shown, many behavioral parameters have non-linear effects on morphological indicators. 
These effects are, moreover, often contingent on the presence or absence of other mor-
phological traits. This does not mean that the factors underlying the generation of kinship 
networks are too complex to be analyzed. However, their analysis depends crucially on 
the availability of data permitting us to get a handle on this complexity; that is, on having 
access to precise, comprehensive and transparent ethnographies. Computer simulation 
reminds us, ultimately, of the vital importance of rigorous qualitative research.  
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 ANR grant “Simpa,” 09-SYSC-013-02.1

 Downloadable from  http://kintip.net.  The source code is available at  2

http://sourceforge.net/projects/tip-puck. For a presentation of the software see Hamberger et al., 
2014. The Puck commands for each method are indicated at the bottom of the tables listing its 
parameters and state variables. 
 For a more detailed presentation of the conceptual framework of kinship network analysis see 3

Hamberger et al. 2011.
 Both kinds of unimodal kinship networks can be derived from a bimodal kinship network where 4

both individuals and families figure as nodes. This bipartite network is the standard model 
underlying most genealogical computer programs, including Puck.
 This definition applies to the Ore-graph representation of kinship networks. In P-graph 5

representation, all circuits are matrimonial circuits. 
 That is, the maximal connected subnetworks formed by father-child links (see Fig. 1 above for 6

an illustration). By convention, we do not count single individuals as components. Moreover, we 
exclude components that do not contain any married individual.
 If this number is not an integer, we adopt a technique of probabilistic rounding. We truncate the 7

value to an integer and use the fractional part as a probability. Over the course of the simulation, 
this will lead to a good approximation of the intended ratio. 
 In order to keep the model reasonably fast, the set of potential parents is generated by a sam8 -

pling procedure: every time a new individual is to be generated, s pairs of living agents of oppo-
site sexes are selected randomly from the entire living population. 
A weight factor of 1 corresponds to neutrality, so that the overall product remains unchanged. 9

Weight factors greater than 1 correspond to preference, weight factors smaller than 1 to avoid-
ance. The probability for a candidate to be selected is calculated by dividing its weight by the sum 
of all weights. The technique of assigning relative weight factors not only allows us to avoid 
speculations about absolute probabilities, but also makes the model easily extendible by permit-
ting for free-form composition of supplementary weight factors. 

 If all weights are 0, one arc is selected amongst all possible pairs according to a uniform 10

distribution.
 The algorithm of Mrvar used by White tends to artificially increase generational levels, thus 11

reducing the scope of each generation and rendering the constraint even more restrictive.
 For a P-graph, distance is a value in [0, 1] that we define here as the summation of “node-to-12

node” distances between equivalent nodes in the original and the reshuffled network, divided by 
the total number of nodes. The “node-to-node” distance is in turn computed by comparing the (at 
most) two arcs going to the nodes. If both are different (origin in different nodes), then the dis-
tance is 1; if both are equal, the distance is 0; if one is different, the distance is 0.5. 

 Since generational comparability in our model presupposes the presence of at least one 13

common ascendant or descendant, reshuffling will lead to better results in well-connected 
networks, where this condition proves to be less restrictive. 

 This simplification is possible as long as considerations of generational distance between the 14

members of different groups can be neglected. 
 Alternatively, the recall rate can be modeled so as to vary as a function of the kinship relation in 15

question as well as of the gender of ego, alter or the informant. While Puck incorporates the pos-
sibility of such a fine-tuning for exploratory purposes, the parameter space based on all these 
(difficult to measure) variables is not suitable for the purpose of modeling. 
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