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Abstract

Empirical and theoretical studies have attempted to establish the U-shape of the log-ratio of con-
ditional risk-neutral and physical probability density functions. The main subject of this paper
is to question the use of such a U-shaped pricing kernel to improve option pricing performances.
Starting from the so-called Inverse Gaussian GARCH model (IG-GARCH), known to provide
semi-closed form formulas for classical European derivatives when an exponential affine pric-
ing kernel is used, we build a new pricing kernel that is non-monotonic and that still has this
remarkable property. Using a daily dataset of call options written on the S &P500 index, we
compare the pricing performances of these two IG-GARCH models proving, in this framework,
that the new exponential U-shaped stochastic discount factor clearly outperforms the classical
exponential affine one. What is more, several estimation strategies including options or VIX
information are tested taking advantage of the analytical tractability of these models.

Keywords: Option valuation, Pricing kernel, VIX, IG-GARCH, S&P500.

JEL Classification: G12; G16; G22; G52.

1. Introduction

In the financial literature, ARCH/GARCH models, introduced by [28] and [10], have gained
widespread acceptance over the last few decades to model heteroscedasticity of asset returns
emerging as one of the most popular and flexible discrete time alternative to continuous time
diffusions because the endogenous parametric specification of the volatility makes it possible
to estimate the joint dynamics of returns and volatility only using time series of returns. From
this seminal step, GARCH models have been extended in various directions to cope, in partic-
ular, with asymmetry properties (see e.g. [51] for a recent survey). Recently, [24] was the first
to provide a strong theoretical framework, the so-called Local Risk Neutral Valuation Relation-
ship (LRNVR), to price contingent claims when the underlying dynamics is given by a GARCH
model with Gaussian innovations. While this approach outperforms the [9] benchmark it is re-
stricted to Gaussian innovations and the prices are obtained using Monte Carlo simulations.

∗Corresponding author. University Paris 1 Panthéon-Sorbonne, Maison des Sciences Économie (MSE) , 106-
112 Boulevard de l’Hôpital, 75013 Paris, France.

Email address: cchorro@univ-paris1.fr (CHRISTOPHE CHORRO)
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Following the preceding methodology, [40] considered a new conditionally-normal GARCH-
like volatility updating scheme able to cope with skews in option prices. Moreover, they derived
an interesting semi-closed form expression for call option prices making the pricing of such fi-
nancial products fast and compatible with calibration estimation methods at a reasonable com-
putational cost. Nevertheless, as this model is conditionally Gaussian, it usually fails to capture
the short term behavior of equity option smiles. In fact, it is now well documented ([17], p.41)
that Gaussian innovations can not take into account all the mass in the tails and the asymmetry
that characterize the distribution of daily log-returns even if an asymmetric GARCH filter is
applied1.

During the last decade (see [17], Chap.2 for a recent survey), researchers have intensively
investigated the way to extend the Duan’s option pricing model to incorporate in GARCH resid-
uals the skewness and leptokurtosis observed in financial datasets. In general, such a choice is
motivated by equilibrium arguments (see [2]) and/or by its compatibility with the myriad of
possible candidates for the distribution. An important contribution in this direction was the
work of [48] in which the authors used for the first time, in the GARCH setting, the conditional
Esscher transform introduced in [12] to price European options using a shifted Gamma distri-
bution. This approach is equivalent (see [33]) to considering a special parametric form for the
pricing kernel (exponential affine of the log-returns) and allows for explicit and tractable risk-
neutral dynamics in many situations2. The flexibility of the exponential affine parametrization
is probably one of its main advantages with respect to its natural competitors as the generalized
LRNVR of [25] (see also [49] and [50]) or the extended Girsanov principle of [29] (see also
[1] and [3]). Nevertheless, in spite of their differences, all the preceding specifications coincide
with the LRNVR in the Gaussian framework and depend on a single stochastic parameter re-
lated to the equity risk premium and uniquely determined by the martingale constraints.

The choice of an interesting characterization for the pricing kernel is an old topic (see [47],
[11]. [13], [22], [46] and [38] among others) that often leads to parametric forms that are
monotonic functions of the log-returns ([47], [35], [36], [31] and [12]). However, many recent
empirical studies suggest evidences against the monotonicity assumption ([7], [5], [53], [15]
and [6]). In the GARCH setting, two approaches have been proposed to overcome this problem
and take into account market and volatility risks: [43] introduced an extension of the classi-
cal Esscher transform, including a quadratic term in the pricing kernel while [21] proposed a
variance dependent pricing kernel (see also [4] for a slight different approach compatible with
non-affine models).

We propose in this paper an extension of the so-called Inverse Gaussian GARCH (IG-
GARCH) model of [18] where the authors provide a new particular affine GARCH structure
with Inverse Gaussian innovations to take into account conditional skewness. Using the pricing
kernel derived from the conditional Esscher transform, they obtained the risk neutral dynamics,
depending only on historical parameters, which gives rise to a closed-form option pricing for-

1Concerning asymmetric volatility responses, refer to the EGARCH model introduced in [44], the GJR GARCH
model of [32], the APARCH model developed in [23], as well as the TGARCH studied in [52].

2See among others, [18] for the Inverse Gaussian distribution, [1] for the mixture of Gaussian distributions,
[16] for the Generalized hyperbolic distribution.
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mula as in [40].

The main idea is to use here an extended and non-monotonic version of the exponential
affine pricing kernel, particularly well-adapted to the Inverse Gaussian distribution, in order to
increase the flexibility of the link between the historical and the risk-neutral distributions while
preserving the tractability of the model. In fact, even in the case of our3 new pricing kernel,
closed-form expressions remain available for European call options and the VIX index4. Thus,
it is possible to combine, at a reasonable computational cost, historical returns dynamics with
options or VIX information in the estimation process to build more accurate joint likelihood as
explained in [20] and [42].

Finally, we perform a GMM test to check the validity of each pricing kernel with respect
to the martingale conditions and present a comparative analysis of in-sample and out-of-sample
pricing performances of the IG-GARCH model associated with both exponential affine and
exponential U-shaped pricing kernels and estimated using options or VIX information. We
compute the Implied Volatility Root Mean Square (IVRMSE) for each model to evaluate and
compare the pricing errors. This empirical study provides strong evidences indicating that the
exponential U-shaped pricing kernel is clearly superior in approximating the price of options
written on the S &P500 for the concerned period. What is more, we show, in this framework,
that an estimation strategy based on returns-VIX information provides very interesting pricing
errors at a low computational cost because expensive calibration on options can be bypassed.

The remainder of the paper is organized as follows. The next section defines and develops
the theoretical framework giving, in particular, the risk neutral dynamics under the two different
pricing kernels and the associated closed form expressions for option prices and the VIX index.
We present in Section 3 the methods of estimation based on different joint maximum likelihood.
The numerical results are contained in Section 4. More precisely, we describe the returns, VIX
and options datasets on the S &P500 used in the paper, we perform a GMM test to validate
the martingale conditions and, finally, provide the in and out of sample pricing performances.
Concluding remarks are given in Section 5.

2. The stock price dynamics and the stochastic discount factors

This section presents the theoretical framework of the present paper. Our study uses as a
core model the inverse Gaussian GARCH (IG-GARCH) model of [18] known to cope with
conditional skewness as well as conditional heteroskedasticity and a leverage effect. First, let
us briefly remind the main lines of this approach that will be used in the following as a keystone
to price options written on the S &P500 index using different pricing kernels.

3The new form of the pricing kernel has been inspired by the work of [43] that introduce a second order Esscher
transform particularly well-adapted to the Gaussian (or mixture of Gaussian) case. In the IG-GARCH setting, the
idea is to replace in the pricing kernel, the quadratic term of [43] by an hyperbolic one that is more suitable for our
choice of distribution.

4The VIX expresses the market expectations of the 30-day volatility implied in equity index options.
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2.1. The stock price dynamics under the physical probability measure P
We consider a discrete time economy with a time horizon T ∈ N∗ consisting of a risk-free

zero-coupon bond (associated to the risk free rate r expressed on a daily basis and supposed to
be constant) and a stock (the risky asset). Following [18], we assume that, under the physical
probability measure P, the logarithm of the returns of the stock price process (S t)t∈{0,...,T } fulfills Yt+1 = log

(
S t+1
S t

)
= r + νht+1 + ηyt+1

ht+1 = w + bht + cyt + ah2
t

yt

(2.1)

where the (yt)t∈{1,...,T } are random variables generating an information filtration denoted by (Ft)t∈{0,...,T }

where F0 = {∅,Ω} and (Ft = σ(yu; 1 ≤ u ≤ t))t∈{1,...,T }. Moreover, we suppose that, given Ft−1,
yt follows an Inverse Gaussian distribution with degree of freedom δt = ht

η2
5. Classically, the

moment generating function6 of the pair (yt,
1
yy

) can be expressed as :

E
[
eθyt+

φ
yt

]
=

δt√
δ2

t − 2φ
e
[
δt−
√

(δ2
t −2φ)(1−2θ)

]
(2.2)

from which we deduce that

E[Yt | Ft−1] = r + (ν +
1
η

)ht, Var[Yt | Ft−1] = ht

and
Cov[Yt − Yt−1, ht+1 − ht | Ft−1] = Cov[Yt, ht+1 | Ft−1] = (

c
η
− η3a)ht.

In particular, ht is the conditional variance of the log-returns and 2.1 may be considered as
a GARCH-type model of conditional volatility accommodating with asymmetric volatility re-
sponses. We refer the reader to [18] for an in-depth discussion on the statistical characteristics
of this process.

To conclude the presentation of the historical dynamics, let us remind one of the key feature
of the IG-GARCH model (that may be seen in this way as a skewed analogous of the [40]
model): the historical conditional moment generating function of log(S T ) may be expressed
using backward recursive equations.

Proposition 2.1. (See [18] Appendix A) Given Ft, the moment generating function under P of
log(S T ) is characterized by :

GP
log(S T )|Ft

(φ) = E
[
S (T )φ | Ft

]
= S (t)φexp

[
A(t) + B(t)

(
w + bht + cyt + a

(ht)2

yt

)]
with A(T ) = B(T ) = 0 and

A(t) = A(t + 1) + φr + wB(t + 1) − 1
2 log(1 − 2a(η)4B(t + 1))

B(t) = bB(t + 1) + φν + (η)−2 − (η)−2
√

(1 − 2a(η)4B(t + 1))(1 − 2cB(t + 1) − 2φη).

5There exist in the literature different parametrizations of the Inverse Gaussian distribution, in this paper, defi-
nition and properties of the Inverse Gaussian distribution are presented along the lines of [41] and [8], in particular,

the associated density function is given by the one parameter family : 1{y>0}
δ√

2πy3
e−(
√

y−δ/
√

y)2
/2 where δ ∈ R∗+.

6Having option pricing in mind, the existence and the simple expression of the moment generating of the
Inverse Gaussian distribution will be fundamental to use the so-called Esscher transform (and the variant presented
in this paper) to specify stochastic discount factors.
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This property of the conditional moment generating function will be used in the option
pricing analysis to obtain prices using the fast Fourier transform methodology.

2.2. Two stochastic discount factors and the related risk-neutral dynamics
When we have option pricing in mind, conditional distributions of returns and volatility

specifications are not the only issue one should pay attention to. In fact the use of realistic
discrete time volatility structures and continuous distributions gives rise to incompleteness and
equivalent martingale measures are not unique in general. It is classically known that in the
discrete time setting the construction of such a probability measure is equivalent to the speci-
fication of a one-period stochastic discount factor process (see for example [17], Chap. 3.2.2).
The purpose of this section is to present two approaches compatible with the dynamics intro-
duced in 2.1 in order to obtain tractable risk-neutral processes. The first one, due to [12], first
applied in the GARCH setting by [48], is based on the conditional extension of the [30] trans-
form used by [31] to price contingent claims in continuous time. The second and new one,
inspired by the second order Esscher transform introduced by [43] for Gaussian GARCH mod-
els, induces more flexibility in the definition of the stochastic discount factor and permits to
obtain different realistic shapes.

2.2.1. The exponential affine stochastic discount factor
The conditional Esscher transform introduced by [12] has been a major innovation in the

discrete time financial literature providing a flexible framework to price European derivatives.
In the GARCH setting it has been combined, with empirical successes, with various families of
distributions such as Gaussian jumps in [26] and [27], the mixture of Gaussian distributions in
[1] or the Generalized Hyperbolic distributions in [16]. This approach is equivalent (see [33])
to considering a stochastic discount factor that is exponential affine of the log-returns7:

∀t ∈ {1, · · · ,T }, Mess
t = eθtYt+εt ,

where θt and εt are Ft−1-measurable random variables that may be uniquely obtained, under
mild conditions, from the pricing equations8{ EP

{
er Mess

t | Ft−1
}

= 1
EP

{
eYt Mess

t | Ft−1

}
= 1.

(2.3)

The equivalent martingale measure associated to (Mess
t )t∈{1,··· ,T } is denoted by Qess and in the

framework of the IG-GARCH model 2.1 introduced in the preceding section we obtain the
following proposition that perfectly describes the risk-neutral dynamics under Qess:

Proposition 2.2. (See [18] Appendix B) Assuming that the process (Yt)t is defined by 2.1, then,
a) ∀t ∈ {1, · · · ,T }, the system (2.3) admits a unique solution (θ∗t , ε

∗
t ) characterized by :

θ∗t = θ∗ = 1
2

[
η−1 − 1

ν2η3

[
1 +

ν2η3

2

]2]
ε∗t = −r(θ∗ + 1) − θ∗νht −

[
δt

(
1 −

√
(1 − 2θ∗η)

)]
.

7This exponential affine restriction of the stochastic discount factor is equivalent to the assumption (12) of [18]
8The equations are derived by applying the pricing formula to the risk-free and risky assets.
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b) Under Qess, the process (Yt)t is again an IG-GARCH model with changed parameters : Yt+1 = log
(

S t+1
S t

)
= r + ν∗h∗t+1 + η∗y∗t+1

h∗t+1 = w∗ + b∗h∗t + c∗y∗t + a∗ (h∗t )2

y∗t

(2.4)

where ν∗ = ν
(
η∗

η

)− 3
2
, y∗t+1 = yt+1

(
η∗

η

)−1
,

w∗ = w
(
η∗

η

) 3
2
, c∗ = c

(
η∗

η

) 5
2
, a∗ = a

(
η∗

η

)− 5
2
,

with η∗ =
η

1 − 2θ∗η
and where, given Ft−1, y∗t follows an Inverse Gaussian distribution with

degree of freedom δ∗t =
h∗t

(η∗)2 .

We remark, from the preceding proposition, that the conditional dynamics under Qess is the
same as under the historical probability with changed parameters and that the risk-neutral con-
ditional variance can be expressed as h∗t+1 = (η∗/η)

3
2 ht+1

9. One important empirical consequence
for the pricing of European call and put options is that proposition 2.1 remains valid under Qess,
thus semi-closed form formulas will be available for prices.

Even if the assumption of an exponential-affine stochastic discount factor is well theoret-
ically justified in the literature, in particular in equilibrium pricing models (see [2]), it is not
the only issue to obtain arbitrage-free price processes that derive from the pricing equations
(2.3). Thus, in the next subsection, we are going to see how to extend the exponential affine
pricing kernel Mess

t in order to increase the flexibility of the link between the historical and the
risk-neutral distributions while preserving the tractability of the model.

2.2.2. The exponential U-shaped stochastic discount factor
We derive in this subsection the risk-neutral dynamics of the IG-GARCH model using an

exponential U-shaped pricing kernel that extends the classical conditional Esscher transform.
Inspired by the second order Esscher transform recently introduced by [43] in the Gaussian
setting, we include the term

ρt

yt
in the specification of Mess

t to be able to generate an exponential

U-shaped function:
∀t ∈ {0, · · · ,T }, MUshp

t = eθtYt+εt+
ρt
yt

where θt, εt and ρt are Ft−1 measurable random variables10. Under the risk-neutral probability
QUshp associated to (MUshp

t )t∈{1,··· ,T }, the overall dynamics of the log-return is, once again similar
the historical one:

9Contrary to what happens for Gaussian GARCH models, the IG-GARCH framework is able to cope with the
well-known stylized fact that the risk-neutral variance is in general greater than the historical one.

10From (2.1), we obtain MUshp
t = eθtηyt+

ρt
yt

+εt+θt(r+νht). In the empirical exercise performed in section 4, we obtain,
independently of the estimation process, η < 0, θt < 0 and ρt > 0. Thus, lim

yt→0+
MUshp

t = lim
yt→+∞

MUshp
t = +∞ and

MUshp
t is an U-shaped function of yt.
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Proposition 2.3. (See Appendix) ∀t ∈ {1, · · · ,T }, if we assume a constant proportional wedge
between ht and h∗t (i.e h∗t /ht = π) the dynamics of Yt under QUshpis of the form:

Yt+1 = log
(

S t+1
S t

)
= r + ν∗h∗t+1 + η∗y∗t+1

h∗t+1 = w∗ + bh∗t + c∗y∗t + a∗
(h∗t )2

y∗t

(2.5)

where ν∗ =
ν

π
, w∗ = wπ, c∗ =

cπη∗

η
, a∗ =

aη
πη∗

,

η∗ = 3

√
π2

ν2

(
−1 +

√
1 + 8ν

27π

)
+ 3

√
π2

ν2

(
−1 −

√
1 + 8ν

27π

)
,

and where, given Ft, y∗t+1 follows an IG distribution with degree of freedom δ∗t+1 =
h∗t+1

(η∗)2 .

As before, we obtain a similar IG-GARCH structure for the risk-neutral dynamics of the log
returns. Of course, if ∀t ∈ {1, · · · ,T }, we impose ρ∗t = 0, we recover the result of the proposition
2.2. Nevertheless, the risk-neutral dynamics given by proposition 2.2 only depends on the initial
historical set of parameters while the dynamics presented in proposition 2.3 introduces a risk-
neutral parameter π. Thus, the first model may be estimated from returns using a conditional
version of the classical maximum likelihood (ML) estimation while an extra information (based
on option prices) is needed for the estimation of the second one. In the two next subsections
we show how to include this extra information in an efficient way in the estimation strategy.
More precisely, we show that for the two risk-neutral IG-GARCH models we have numerically
efficient closed form expressions not only for the price of European call options but also for the
VIX index at any time.

2.3. Pricing European call options using Fast Fourier Transform (FFT)
It is well known from the pioneering work of [39] that the price of European call options

may be expressed using the risk neutral conditional moment generating function of log(S T ) (see
also [17], p. 184): if Q is an arbitrary equivalent martingale measure, we have

e−r(T−t)EQ[(S T − K)+ | Ft] = S t
2 + e−r(T−t)

π

∫ +∞

0
Re

[
K−iφGQ

log(S T )|Ft
(iφ+1)

iφ

]
dφ

− Ke−r(T−t)( 1
2 + 1

π

∫ +∞

0
Re

[
K−iφGQ

log(S T )|Ft
(iφ)

iφ

]
dφ).

Even though this formula prevents to use slow Monte-Carlo methods to approximate the price
process, two important numerical issues stay. First, GQ

log(S T )|Ft
has to be computed effectively,

second, finding the price necessitates univariate numerical integration. For the first point, the
IG-GARCH model is particularly well designed because proposition 2.1 (combined with the
two preceding risk-neutral dynamics) provides an interesting backward recursive approach. For
the second point, the answer is given by [14] that offer a powerful strategy based on the Fast
Fourier Transform (FFT) to compute option prices efficiently for a full range of strikes and a
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given maturity11. In the empirical part, this approach will be used to estimate parameters di-
rectly from option prices minimizing an appropriate loss function.

To conclude this section, we provide, for the IG-GARCH model and the two preceding
specifications of the stochastic discount factor, a closed-form expression for the one month risk-
neutral expectation of the integrated variance to integrate information on VIX without costly
computations.

2.4. Pricing using VIX information
In a recent paper, [37] (see also [45]) derived implied VIX formulas that may be deduces

from Gaussian GARCH models combined with the so-called [24] Local Risk Neutral Valuation
Relationship. What is more, they proposed a joint likelihood estimation methodology including
returns and VIX data that was used in [42] to improve pricing performances. The aim of this
subsection is to derive analogous formulas and estimation tools for the IG-GARCH model.

The VIX index may be seen as the fair-value strike for a 21-business days variance swap and
is known as the fear index. From 2003, the VIX relies on the concept of static replication using
all calls and puts with valid quotes, and thus it does not subjected to a specific option pricing
model. Nevertheless, in discrete time and in the absence of jumps, it can be written as

1
τ

(VIXt

100

)2

=
1
Tc

Tc∑
j=1

EQ
[
h∗t+ j | Ft

]
(2.6)

where τ = 250, Tc = 21, Q is an equivalent martingale measure12 and h∗t the conditional and
risk-neutral daily variance. Concerning the IG-GARCH model, from the risk neutral dynamics
in 2.4, 2.5 and using iterative properties of the conditional expectation, the expected conditional
variance EQ

[
h∗t+ j | Ft

]
can be expressed as a linear combination of the conditional spot variance

h∗t+1 and the unconditional variance h∗0, weighted by (ψ∗) j−1 :

EQ
[
h∗t+ j | Ft

]
= h∗t+1

[
ψ∗

] j−1
+ h∗0

[
1 − (ψ∗) j−1

]
where the variance persistence ψ∗ = b +

c∗

(η∗)2 + a∗ (η∗)2 and h∗0 =
w∗ + a∗ (η∗)4

1 − ψ∗
only depend

on the risk-neutral parameters of the model13. Thus, we easily obtain (see the proof in the
Appendix)

1
τ

(VIXt

100

)2

= h∗t+1
1 − (ψ∗)Tc

(1 − ψ∗) Tc
+ h∗0

(
1 −

1 − (ψ∗)Tc

(1 − ψ∗) Tc

)
. (2.7)

11For the sake of brevity, we refer the reader to [17], p. 137, where a detailed algorithm is proposed with the
associated R source code also used in the present paper.

12In this section, we implicitly suppose that Q derives from the one period stochastic discount factor processes
defined in sections 2.2.1 and 2.2.2

13For the IG-GARCH model, the risk-neutral parameters are simple functions of the historical ones in the case
of an exponential affine stochastic discount factor while they are functions of the historical parameters and π under
QUshp.
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3. Estimation of parameters

In the literature, there exist different methods for the estimation of GARCH parameters,
the most popular one being the conditional version of the classical (the) Maximum Likelihood
Estimation (MLE). In fact, once the GARCH volatility structure and the innovations’ density
are specified, the conditional log-likelihood based on return observations is in general easy to
express and historical parameters are obtain using optimization schemes. For the IG-GARCH
model, the knowledge of historical parameters is sufficient to deduce the dynamics under Qess

because risk-neutral parameters are functions of the historical ones. For the dynamics under
QUshp, it is not a priori possible to extract the risk neutral parameter π from return data only.
An additional information, based for example on options or the VIX index, has to be exploited.
To make fair the comparison between the risk-neutral dynamics presented in this paper and to
deeply use the technical flexibility of the IG-GARCH framework, we favor in our study joint
estimation strategies using both return-option (see for example [20]) or return-VIX (see [42])
observations.

3.1. Joint MLE Estimation using option prices and asset returns
It is well-known that GARCH parameters may be efficiently extracted from option data,

when semi-closed form formulas are available for call options prices, minimizing an appro-
priate loss function. In [40] or [18] the authors minimize the root mean square error between
model and market option prices but as argued in [20] this criteria places a greater weight on
expensive in-the-money and long-maturity options. To overcome this problem, the linear vega-
approximation of implied volatility errors is a popular approach. We obtain estimates of the
set of the risk neutral parameters, denoted by ϑ∗, minimizing the Implied Volatility Root Mean
Square Error (IVRMSE)14:

ϑ̂∗ = arg Min
ϑ

IVRMS E (ϑ) = arg Min
ϑ

√√
1

NTOp

∑
t,i

(
ci,t

(
h∗t ;ϑ

)
− ĉi,t

V̂i,t

)2

. (3.8)

Here, nt is the number of option contracts in the sample at time t and NTOp =
∑TOp

t=1 nt where
TOp is the number of days in the options sample. ci,t

(
h∗t ;ϑ

)
denotes the price of the i−th option

at time t given by the model15 while ĉi,t is the price observed in the market. V̂i,t is the Vega
associated to ĉi,t that is computed using the implied Black-Scholes volatility σi,t obtained from
the market price.

To avoid the distortion of parameters that may appears performing pure calibration exer-
cises16, we present in this subsection a joint MLE estimation using both option prices and asset
returns to estimate the parameters of the model as explained in [20]. On the one hand, we
need to build the log-likelihood function associated to the log-returns (Y1, ...,YT ). Under IG

14The Implied Volatility Root Mean Square Error (IVRMSE) will be used in the empirical study to evaluate and
compare the pricing performances of the models.

15This price is computed using the FFT methodology presented in section 2.3 and depends on the risk-neutral
conditional volatility at time t, h∗t , that is obtained from the log-returns and the risk-neutral GARCH updating rule
initialized at its unconditional level.

16In fact, when calibrating model parameters, all the attention is focused on the minimization of the in-sample
error. Thus, it is possible to overfit the options dataset and to produce poor out of sample pricing errors.

9

 
Documents de travail du Centre d'Economie de la Sorbonne - 2016.74



innovations, the conditional density function of Yt given (Y1, ...,Yt−1) is given by :

f (Yt | Y1, ...,Yt−1) =
h(t)√

2π (Yt − r − νht)3
e
−

1
2


√√√√Yt − r − νht

η
−

ht

η2

√√ η

Yt − r − νht


2

,

and the conditional log-likelihood is given by

ln LR =

T∑
t=1

ln f (Yt | Y1, ...,Yt−1) (3.9)

that is a function of the historical parameters. On the other hand, in order to obtain the log-
likelihood function associated to option data, we consider the Black-Scholes Vega weighted
option valuation error:

εi,t =

(
ci,t

(
h∗t ;ϑ∗

)
− ĉi,t

V̂i,t

)
that is an approximation of the implied volatility error. Moreover, assuming that the errors (εi,t)
are independent and identically distributed Gaussian random variables the corresponding option
log-likelihood can be written (see [19]) as :

ln LOp = −
1
2

NTOp∑
t=1

ln
 1

NTOp

NTOp∑
i=1

ε2
i,t

 +
ε2

i,t

1
NTOp

∑NTOp

i=1 ε2
i,t

 (3.10)

Using both likelihoods in equations 3.9 and 3.10, the joint estimation of the parameters can be
obtained by maximizing the joint log-likelihood function:

ϑ̂∗ = arg Max
ϑ

T + NTOp

2
ln LR

T
+

T + NTOp

2
ln LOp

NTOp

(3.11)

where T is the number of days in the returns sample, and NTOp is the total number of option
contracts17.

3.2. Joint MLE Estimation using asset returns and VIX index
This subsection introduces a joint MLE estimation using both returns and the VIX index.

In a recent paper, [37] proposed a joint likelihood estimation method that incorporates VIX in-
formation to capture, in GARCH estimation, the Variance Risk Premium. Their study is based
on closed-form formulas for the VIX approximations associated to several Gaussian GARCH
pricing models. These formulas, similar to the one obtained in the present paper for the affine
IG-GARCH model, permit to compute efficiently the related log-likelihood from risk-neutral
parameters. Using a similar approach [42] have implemented a joint maximum likelihood es-
timation using returns and VIX with auto-regressive disturbances to enhance the estimation

17We have ϑ∗ = {ν, ω, b, c, a, η} in the case of the exponential affine stochastic discount factor and ϑ∗ =

{ν, ω, b, c, a, η, π} in the case of the exponential U-shaped one.
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performances of the GARCH option pricing model at a reasonable computational cost. More
precisely, in this latter study, the likelihood function on VIX is obtained considering the follow-
ing model which introduced an error process with autoregressive disturbances:{

ut = %ut−1 + et

ut = VIXMarket
t − VIXModel

t (h∗t+1;ϑ) (3.12)

where (et)t are independent and identically distributed centered Gaussian random variables with
variance Σ and where VIXModel

t (h∗t+1;ϑ) is obtained from equation 2.7. Thus,

ln LVIX = −
T
2

(
ln(2π) + ln(Σ(1 − %2))

)
+

1
2

(
ln(1 − %2)

)
−

1
2Σ

u2
1 +

T∑
t=2

(ut − %ut−1)2

1 − %2

 (3.13)

We combine this log-likelihood with the one associated to the log-returns in equation 3.9 to
solve the joint likelihood optimization problem on returns and VIX as follows :

ϑ̄∗ = arg Max
(ϑ,%)

(ln LR + ln LVIX) (3.14)

where ϑ̄∗ = (ϑ∗, %∗) and %∗ is the estimated value of the autoregressive parameter introduced
above.

4. Empirical results

Based on the preceding theoretical results, this section examines the empirical pricing per-
formances of the IG-GARCH models using the two different stochastic discount factors.

4.1. Data properties
To implement the previous joint maximum likelihood estimation strategies using VIX or

options information we use in this paper several time series data. The first one is made of daily
log-returns of the S &P500 index and the associated CBOE VIX ranging from January 07, 1999
to December 31, 2010. The series of returns is computed from closing prices. Both the return
and VIX series have 2718 daily observations available for our study. In Table 1, we provide the
descriptive statistics of the S &P500 Log-returns and VIX time series.

The second dataset is made of Wednesday’s European call options written on the S &P500
from the CBOE. It contains call option prices for a large range of moneynesses and maturi-
ties. The sample period extends from January 01, 2009 to December 31, 2010. Our sample
consists of option contracts on 104 Wednesdays and we apply, as most of the empirical studies
in the literature (see [40], [18] or [42]), the same filters as [5]. To empirically study the real
option pricing performances of our models, we split up our option dataset into an in-sample
and an out-of-sample, the models will be estimated with the returns-option strategy only using
the in-sample data. The in-sample option data ranges from January 01, 2010 to December 31,
2010 and the out-of-sample data from January 01, 2009 to December 31, 2009. Table 2 (resp.
Table 3) reports the in-sample (resp. out of sample) summary statistics for option data: average
price, average implied volatility and the number of contracts for each moneyness/maturity18

18We divide the option data into 18 categories according to either moneynesses and times to expiration. The
moneyness is defined as the ratio between the forward price of the underlying asset and the option’s strike price.
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category. The in-sample contains 1332 contracts and the out-of-sample one 1533. Finally, for
the risk-free rate, that is essential to implement pricing formulas, we use the daily 3 month U.S.
Treasury bills (secondary market), obtained from the U.S. Federal Reserve website.

Table 4, contains the estimated parameters, as well as their standard errors, for the IG-
GARCH model combined with the two different stochastic discount factors using the option-
returns and the VIX-returns methodologies. All the parameters are statistically significant at
conventional 5% significance levels. Instead of focusing on the individual parameter values of
the models (that are, roughly speaking, quite stable across the estimation strategy and the choice
of the pricing kernel) we can remark that the risk-neutral persistence is high for all the models,
that the levels of annualized volatility are realistic and that the leverage effect is observed.

4.2. Testing the validity of the stochastic discount factors
Before to test more precisely the pricing performances of the IG-GARCH model, we pro-

pose, following [34], to question the consistency of the exponential affine and exponential U-
shaped forms of the stochastic discount factor. In this way, we perform a Generalized Method
of Moments (GMM) test based on the classical martingale conditions for the risky asset and the
associated derivatives. In fact, when (Mt) is a one period stochastic discount factor we need to
have  EP

{
eYt+1 Mt+1 | Ft

}
= 1

EP
{

Pt+1(K,T )
Pt(K,T ) Mt+1 | Ft

}
= 1

(4.15)

where Pt(K,T ) is the price at time t of a call option of strike K and maturity T . Thus, we test
the null hypothesis EP

{
eYt+1 Mt+1 | Ft

}
= 119 using the statistics

tS =
1
T

T∑
t=1

(
Mt+1

S t+1

S t
− 1

)
. (4.16)

Under the null hypothesis, tS /σ̂T
√

T is asymptotically standard normal where σ̂n is the Newey-
West long-run sample variance estimate for Mt+1

S t+1
S t
− 1. The results are presented in Table 5:

for each collection of estimated parameters (see Table 4), the statistics proposed in equation
4.16 is computed and compared to the 5% level critical values for standard normal distribution.
We find that the null hypothesis is accepted for each stochastic discount factor and estimation
methodology. More precisely, the values of the GMM test statistics obtained in Table 5 are
between −1.96 and 1.96 and the null hypothesis that the moment condition is equal to zero
is not rejected at a 5% risk level. This preliminary analysis is not sufficient to discriminate
both stochastic discount factors and estimation methodologies that are all compatible with the
martingale restriction. In the next subsection, we investigate in details the related pricing per-
formances.

19We perform a similar analysis to test the moment condition for the returns on the options for different mon-
eynesses and different time to maturities. The results are presented in Table 6, Table 7, Table 8 and Table 9 with
similar conclusions.
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4.3. Pricing performances
Observing the general pricing performances reported at the bottom of Table 4, one might

reach, without ambiguities, to the conclusion that, independently of the estimation method, the
IG-GARCH model combined with an U-shaped pricing kernel provides a much better fit (in-
sample and out-of-sample) than the classical exponential affine approach.

In fact, the in-sample implied volatility roots mean square error IVRMSE for the period
2009 with 1322 contracts is 0.0523 for the exponential affine SDF model using the joint MLE
estimation with option-returns data, while the U-shaped SDF performs slightly better with an
IVRMSE of 0.04215, which represents a 19.40% improvement as observed in Table 11. Anal-
ogous in-sample results are observed when estimating the models using the joint MLE with
VIX-returns data, the IVRMSE is smaller when the U-shaped SDF is used: the IVRMSE for
the exponential affine SDF is now 0.0544 versus 0.0440 for the U-shaped SDF, which repre-
sents a 19.11% improvement. We can also observe from Table 12 to Table 15 the values of
the in-sample IVMRSE for different moneynesses and maturities. Thus, the in-sample analysis
strongly favor the U-shaped specification. Concerning the choice of the estimation methodol-
ogy, even if the results are quite similar, in terms of computational time, we can observe from
Table 10 that the results associated to the VIX approach are clearly faster to obtain than results
from option prices.

The preceding conclusion is not really surprising because an extra parameter is introduced
in our approach allowing for more flexibility in calibration exercises. Thus, it is now interesting
to focus on the true test for a pricing model, the out of sample pricing performances for the
period 2010 when the models are evaluated using the parameter estimates from the 2009 sample
period. As observed in Table 4, when the model is estimated using option-returns information,
the IVRMSE drops from 0,1285 to 0,09727 with the U-shaped pricing kernel which represents a
24.65% improvement. The same holds when VIX-returns observations are used to estimate the
model with a 28.29% improvement. What is more, we can observe from Table 16 to Table 19
that this result is homogenous regarding moneynesses and time to maturities. It is now clear that
the out of sample results largely confirm the in-sample ones, the IG-GARCH model provides
better pricing performances when the U-shaped SDF is used to obtain risk-neutral dynamics.

5. Conclusion

In an important paper, [18] proposed an option pricing model based on an IG-GARCH pro-
cess and the conditional Esscher transform to underline the importance of modelling conditional
skewness. One of the main features feature of this approach is to provide, as in [40], semi-closed
form formulas for call options but for non Gaussian innovations. Recently, the monotonicity
of the stochastic discount factor (often supposed to be exponential affine of the log-returns)
was discussed in the literature (see for example [19] and [43]) to favor U shapes. In this pa-
per we have explored an extension of [18] using an U-shaped pricing kernel that increases the
flexibility of the link between the historical and the risk-neutral distributions while preserving
the tractability of the model. Our empirical results are clear, the in and out of sample pricing
performances of the IG-GARCH are improved by the choice of this new pricing kernel. What
is more, we show, in this framework, that an estimation strategy based on returns-VIX infor-

13

 
Documents de travail du Centre d'Economie de la Sorbonne - 2016.74



mation provides very interesting pricing errors at a low computational cost because expensive
calibration on options can be bypassed.
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Appendix: Proofs

Proposition 2.3. Let us first suppose that the pricing equations
EP

{
er MUshp

t+1 | Ft

}
= 1

EP
{
eYt+1 MUshp

t+1 | Ft

}
= 1

π =
h∗t+1

ht+1

(5.17)

have a unique solution denoted by (θ∗t+1, ε
∗
t+1, ρ

∗
t+1). The preceding system can be expressed

using the conditional moment generating of the pair (Yt+1, y−1
t+1) under P :

GP
(Yt+1,y−1

t+1)|Ft
(θ∗t+1, ρ

∗
t+1) = e−r−ε∗t+1

GP
(Yt+1,y−1

t+1)|Ft
(θ∗t+1 + 1, ρ∗t+1) = e−ε

∗
t+1

π =
h∗t+1

ht+1
.

(5.18)

To obtain the dynamics under QUshp, we compute the risk-neutral conditional moment gen-
erating function of Yt+1:

GQUshp

Yt+1 |Ft
(u) = EQUshp

[
euYt+1 | Ft

]
= EP

[
euYt+1er MUshp

t+1 | Ft

]
= er+ε∗t+1GP

(Yt+1,y−1
t+1)|Ft

(θ∗t+1 + u, ρ∗t+1).

Using the first equation in (5.18), we can express the risk-neutral moment generating func-
tion simply using the historical one:

GQUshp

Yt+1 |Ft
(u) =

GP
(Yt+1,y−1

t+1)|Ft
(θ∗t+1 + u, ρ∗t+1)

GP
(Yt+1,y−1

t+1)|Ft
(θ∗t+1, ρ

∗
t+1)

.

Given Ft, we know that yt+1 follows, under the historical probability P, an IG distribution
with degree of freedom δt+1 = ht+1

η2 . Thus, using (2.2), we obtain

GQUshp

Yt+1 |Ft
(u) =

GP
(Yt+1,y−1

t+1)|Ft
(θ∗t+1 + u, ρ∗t+1)

GP
(Yt+1,y−1

t+1)|Ft
(θ∗t+1, ρ

∗
t+1)

= eu(r+νht+1) e
[
δt+1−
√

(δ2
t+1−2ρ∗t+1)(1−2(θ∗t+1+u)η)

]

e
[
δ∗t+1−
√

(δ2
t+1−2ρ∗t+1)(1−2θ∗t+1η)

]
and

GQUshp

Yt+1 |Ft
(u) = e[u(r+νht+1)]+δ∗t+1

[
1−
√

1−2(u)η∗
]

where η∗ =
η

1 − 2θ∗t+1η
20 and δ∗t+1 =

√
(δ2

t+1 − 2ρ∗t+1)(1 − 2θ∗t+1η). Therefore, we can write

20A priori, the parameter η∗ depends on time through θ∗t+1 but as we are going to see below, θ∗t+1 is time indepen-
dent.
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Yt+1 = r + νht+1 + η∗y∗t+1

where, given Ft, y∗t+1 follows an IG distribution with degree of freedom δ∗t+1. In particular the
risk neutral volatility at time t + 1 fulfills h∗t+1 = η∗δ∗t+1 and we deduce from

Yt+1 = r + νht+1 + η∗y∗t+1 = r + νht+1 + ηyt+1

that yt+1 =
η∗y∗t+1
η∗

. Thus, using that π =
h∗t+1

ht+1
, (2.1) gives

h∗t+1 = w∗ + bh∗t + c∗y∗t + a∗
(h∗t )2

y∗t
where

w∗ = wπ, c∗ =
cπη∗

η
, a∗ =

aη
πη∗

.

To conclude the proof it only remains to express η∗ using the historical parameters of the
model and π. We start from

δ∗t+1 =
h∗t+1

(η∗)2 =

√
(δ2

t+1 − 2ρ∗t+1)(1 − 2θ∗t+1η).

The martingale condition for the risky asset implies GQUshp

Yt+1 |Ft
(1) = er from which we can

extract ρ∗t+1 as a function of θ∗t+1:

ρ∗t+1 =
δ2

t+1

2

1 − ν2η4

(1 − 2θ∗t+1η)
[
1 −

( √
1 − 2η∗

)]2

 .
Thus,

h∗t+1

(η∗)2 =
−νht+1

1 −
√

1 − 2η∗

and

π =
−ν[

1 −
( √

1 − 2η∗
)] [

η∗
]2 .

Then, the parameter η∗ is obtained as the solution of the following cubic equation:

(η∗)3 +
2π
ν
η∗ + 2

π2

ν2 = 0.

It is well known that this equation has a unique real solution if and only if21:

4
(
2π
ν

)3

+ 27
 √2π
ν

4

> 0 ⇔ 27π > −8ν.

21From the empirical values of the parameters obtained in Table 4, this condition is always fulfilled in our
framework.
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More precisely, we get

η∗ =
3

√
−

q
2

+

√
q2

4
+

p3

27
+

3

√
−

q
2
−

√
q2

4
+

p3

27

where p =
2π
ν

and q = 2
π2

ν2 and we can simplify this expression to obtain

η∗ =
3

√√
π2

ν2

−1 +

√
1 +

8ν
27π

 +
3

√√
π2

ν2

−1 −

√
1 +

8ν
27π

.
Finally, we may deduce from the preceding equality that

θ∗t+1 =
1
2η
−

1

2
 3

√
π2

ν2

(
−1 +

√
1 + 8ν

27π

)
+ 3

√
π2

ν2

(
−1 −

√
1 + 8ν

27π

)
and that the pricing system (5.17) has a unique solution depending on the historical parameters
and π.

VIX as a function of the spot volatility (Section 2.4). Under both specifications of the pricing
kernel, the risk-neutral dynamics of the IG-GARCH model may be written as Yt+1 = log

(
S t+1
S t

)
= r + ν∗h∗t+1 + η∗y∗t+1

h∗t+1 = w∗ + b∗h∗t + c∗y∗t + a∗ (h∗t )2

y∗t

where, given Ft, y∗t+1 follows an IG distribution with parameter h∗t+1
η∗

under the risk-neutral prob-
ability Q. Thus22,

EQ
[
h∗t+ j | Ft+ j−2

]
= w∗ + bh∗t+ j−1 +

c∗

(η∗)2 h∗t+ j−1 + a∗EQ

 (h∗t+ j−1)2

y∗t+ j−1
| Ft+ j−2


= w∗ +

[
b +

c∗

(η∗)2 + a∗ (η∗)2
]

h∗t+ j−1 + a∗ (η∗)4

= h∗t+ j−1ψ
∗ + h∗0

[
1 − ψ∗

]
where ψ∗ = b +

c∗

(η∗)2 + a∗ (η∗)2 is the variance persistence, and h∗0 =
w∗ + a∗ (η∗)4

1 − ψ∗
is the

unconditional volatility, under the risk-neutral probability. Now, using the tower property of the
conditional expectation operator, the j−step ahead prediction of the risk-neutral volatility under
the risk neutral measure is given by

EQ
[
h∗t+ j | Ft

]
= h∗t+1

[
ψ∗

] j−1
+ h∗0

[
1 − (ψ∗) j−1

]
and (2.7) follows easily from (2.6).

22Using the fact that an IG random variable Z with degree of freedom δ fulfills E[ 1
Z ] = 1

δ
+ 1

δ2 .
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Tables and figures

Table 1: Descriptive statistics of the S &P500 and VIX datasets covering the period January 7, 1999-December 22,
2010.

Number of Min Max Mean Std Dev Skewness Kurtosis
observations

Price index 2718 676.53 1565.15 1182.75 190.14 −0.0959 −0.6909
Log returns 2718 −0.0947 0.1096 −0.0001 0.0139 −0.1214 7.3758
VIX index 2718 9.8900 80.8600 22.1859 9.6098 1.8853 5.6964
Log VIX 2718 −0.3506 0.4960 −0.0001 0.0613 0.5697 4.1682
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Table 2: Properties of the in-sample options data (2009), the table shows the number of contracts, the average
price, and the average implied volatility across moneynesses and times to maturities.

T < 60 60 6 T 6 180 T > 180 All

Number of call option contracts :
0 < S/K < 0.975 112 300 118 530

0.975 < S/K < 1.00 19 48 16 83
1.00 < S/K < 1.025 16 40 24 80
1.025 < S/K < 1.05 17 45 12 74
1.05 < S/K < 1.075 17 39 16 72

1.075 < S/K 90 267 126 483
All 271 739 312 1322

Average call price :
0 < S/K < 0.975 9.213 27.174 48.402 28.263

0.975 < S/K < 1.00 30.933 63.110 89.545 61.196
1.00 < S/K < 1.025 43.823 71.326 96.972 70.707
1.025 < S/K < 1.05 57.645 87.631 105.020 83.432
1.05 < S/K < 1.075 74.122 97.937 124.152 98.737

1.075 < S/K 137.727 163.161 177.191 159.360
All 58.911 85.056 106.880 83.616

Average implied volatility from call options :
0 < S/K < 0.975 0.246 0.245 0.251 0.247

0.975 < S/K < 1.00 0.273 0.268 0.282 0.275
1.00 < S/K < 1.025 0.262 0.261 0.264 0.262
1.025 < S/K < 1.05 0.279 0.272 0.274 0.275
1.05 < S/K < 1.075 0.297 0.277 0.272 0.282

1.075 < S/K 0.342 0.300 0.283 0.308
All 0.283 0.271 0.271 0.275
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Table 3: Properties of the out of sample options data (2010), the table shows the number of contracts, the average
price, and the average implied volatility across moneynesses and times to maturities.

T < 60 60 6 T 6 180 T > 180 All

Number of call option contracts :
0 < S/K < 0.975 89 311 168 568

0.975 < S/K < 1.00 21 55 28 104
1.00 < S/K < 1.025 20 56 30 106
1.025 < S/K < 1.05 18 48 25 91
1.05 < S/K < 1.075 20 54 24 98

1.075 < S/K 69 293 143 505
All 237 817 418 1472

Average call price :
0 < S/K < 0.975 5.654 19.504 36.922 20.693

0.975 < S/K < 1.00 25.600 55.743 81.932 54.425
1.00 < S/K < 1.025 41.917 72.037 96.380 70.111
1.025 < S/K < 1.05 61.682 87.728 111.314 86.908
1.05 < S/K < 1.075 80.434 106.678 126.177 104.430

1.075 < S/K 146.301 178.813 196.600 173.905
All 60.264 86.751 108.221 85.079

Average implied volatility from call options :
0 < S/K < 0.975 0.161 0.174 0.182 0.172

0.975 < S/K < 1.00 0.177 0.198 0.205 0.194
1.00 < S/K < 1.025 0.202 0.207 0.211 0.207
1.025 < S/K < 1.05 0.202 0.210 0.213 0.208
1.05 < S/K < 1.075 0.226 0.222 0.211 0.220

1.075 < S/K 0.260 0.235 0.228 0.241
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Table 4: Estimated parameters for the IG model and the two stochastic discount factors.

Joint-Estimation Returns-Option Returns-VIX

Model Mess
t MUshp

t Mess
t MUshp

t

Parameters :
w 6.5759 e−06 6.4945 e−06 4.0781 e−06 1.9930 e−06

Stand.Dev (5.9687 e−09) (1.340 e−07) (6.953 e−08) (9.798 e−08)
b 1.4019 e−03 5.4045 e−01 1.2642 e−03 6.4464 e−01

Stand.Dev (3.5485 e−06) (1.165 e−04) (1.659 e−04) (2.301 e−05)
c 5.1407 e−05 1.1031 e−05 5.0538 e−05 8.4884 e−06

Stand.Dev (1.931 e−03) (4.318 e−04) (9.735 e−09) (6.968 e−04)
a 3.0174 e+03 3.6359 e+02 3.3177 e+03 6.7459 e+02

Stand.Dev (2.339 e−04) (1.853 e−01) (2.621 e−01) (1.883 e−01)
η −8.252 e−03 −5.0328 e−03 −8.2753 e−03 −5.03224 e−03

Stand.Dev (2.450 e−10) (1.6027 e−06) (2.535 e−04) (4.392 e−07)
ν 1.2122 e+02 1.9460 e+02 1.2122 e+02 1.9445 e+02

Stand.Dev (7.1635 e−03) (8.0899 e−02) (7.509 e−02) (1.437 e−02)
π − 1.2453 − 1.3138

Stand.Dev − (5.0449 e−02) − (1.341 e−02)
% − − 9.9585 e−01 9.9161 e−01

Stand.Dev − − (1.118 e−04) (2.280 e−04)
Model Properties :

Persistence 0.9649 0.9777 0.9702 0.9911
Annualized volatility 0.20358 0.24513 0.3281 0.2885
Leverage coefficient −0.0042 −0.0026 −0.0043 −0.0020

Pricing performances :
IVRMSE in sample (2009) 0.0523 0.04215 0.0544 0.0440

IVRMSE out of sample (2010) 0.1285 0.09727 0.1375 0.0986
For the returns-option strategy, the model is estimated using the log-returns dataset obtained

from the closing prices of the S &P500 between January 07, 1999 and December 31, 2009 and
the in sample (2009) option contracts minimizing (3.11). For the returns-VIX one, the model
parameters are obtained minimizing (3.14) using the log-returns and VIX data from January

07, 1999 to December 31, 2009.

Table 5: GMM tests for the estimated models to test the moment condition on returns

Estimation\ SDF Mess
t MUshp

t

Returns-option 0.003113 0.002287
Returns-VIX −0.031945 −0.001627

We compute the statistics tS for the IG model both combined with the Esscher and the
U−shaped stochastic discount factors. In each case, the model parameters are estimated using

the Returns-option and the Returns-VIX strategies.
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Table 6: GMM tests, desegregated by moneynesses and times to maturities, to test the moment condition on options
for the IG model combined with Mess

t and estimated using the returns-option strategy.

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 −0.017258101 −0.0136872098 −0.07538249 −0.014646453
0.975 < S/K < 1.00 −0.039620826 0.0129173186 −0.09619293 −0.010465128
1.00 < S/K < 1.025 −0.129469574 −0.0456363351 −0.15851951 −0.055335364
1.025 < S/K < 1.05 0.003544071 0.0004430793 −0.14311745 −0.010701396
1.05 < S/K < 1.075 −0.108593938 −0.0242357128 −0.19067001 −0.045369457

1.075 < S/K −0.041329272 −0.0214402374 −0.06120986 −0.020496088
All −0.014862593 −0.0087567933 −0.04112527 −0.009686458

Table 7: GMM tests, desegregated by moneynesses and times to maturities, to test the moment condition on options
for the IG model combined with MUshp

t and estimated using the returns-option strategy.

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 −0.0004344452 0.0011770689 −0.04185127 −0.0034510578
0.975 < S/K < 1.00 0.0159685870 0.0320895639 −0.09320900 0.0095889416
1.00 < S/K < 1.025 −0.1495197908 0.0155962006 −0.04853216 −0.0108747469
1.025 < S/K < 1.05 0.0620291249 0.0281280309 −0.02678905 0.0173579275
1.05 < S/K < 1.075 −0.0952223260 0.0227545857 −0.02405072 −0.0005099153

1.075 < S/K −0.0085787816 −0.0004703747 −0.02814252 −0.0047468849
All −0.0020122851 0.0015137772 −0.01882751 −0.0017628326

Table 8: GMM tests, desegregated by moneynesses and times to maturities, to test the moment condition on options
for the IG model combined with Mess

t and estimated using the returns-VIX strategy.

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 −0.017491375 −0.0138173612 −0.07569169 −0.014753708
0.975 < S/K < 1.00 −0.039761880 0.0129714548 −0.09639429 −0.010483069
1.00 < S/K < 1.025 −0.130020198 −0.0464413950 −0.15901562 −0.055659121
1.025 < S/K < 1.05 0.002894318 0.0001089329 −0.14438269 −0.011002377
1.05 < S/K < 1.075 −0.108907777 −0.0247088917 −0.19152152 −0.045649178

1.075 < S/K −0.041522823 −0.0215391411 −0.06145062 −0.020580660
All −0.014995412 −0.0088290586 −0.04128875 −0.009745392
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Table 9: GMM tests, desegregated by moneynesses and times to maturities, to test the moment condition on options
for the IG model combined with MUshp

t and estimated using the returns-VIX strategy.

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 −0.004684884 −0.006401658 −0.06216133 −0.008551977
0.975 < S/K < 1.00 0.003587144 0.029941636 −0.09484246 0.005369085
1.00 < S/K < 1.025 −0.157457464 −0.020157752 −0.12658172 −0.044397168
1.025 < S/K < 1.05 0.050213884 0.021417297 −0.05051933 0.010863591
1.05 < S/K < 1.075 −0.100132796 0.001191484 −0.09977091 −0.023839605

1.075 < S/K −0.017754327 −0.009652761 −0.04613641 −0.011797260
All −0.005418894 −0.003197436 −0.03144532 −0.005322943

Table 10: Computation times (in hours) to estimate the IG model with the different estimation and risk-
neutralization strategies

Estimation\ SDF Returns-Option Returns-VIX

Mess
t 21.038 0.018 (66.8 sec)

MUshp
t 20.697 0.025 (92.4 sec)

Table 11: Comparison, based on the IVRMSE, of empirical pricing performances of the IG-GARCH model using
Mess

t or MUshp
t

Model Returns-Option Returns-VIX

IVRMSE (2009) 19.40% 19.11%
IVRMSE (2010) 24.65% 28.29%

For example, the value 19.40% represents the improvement (in percentage) of the pricing error
for the IG-GARCH model estimated using the returns-option strategy when we use the

U-shaped pricing kernel instead of the exponential affine one.

Table 12: In-sample IVRMSE, desegregated by moneynesses and time to maturities, using the returns-option
estimates and Mess

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.066110446 0.019277028 0.010511988 0.034037343
0.975 < S/K < 1.00 0.009949488 0.008492271 0.007982866 0.008755149
1.00 < S/K < 1.025 0.011276463 0.009500098 0.009308076 0.009825972
1.025 < S/K < 1.05 0.014463079 0.010109781 0.009355752 0.011153583
1.05 < S/K < 1.075 0.024128216 0.012097448 0.010811183 0.015578917

1.075 < S/K 0.153035884 0.054426843 0.024207488 0.078449833
All 0.098225453 0.035279455 0.017255154 0.052381679
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Table 13: In-sample IVRMSE, desegregated by moneynesses and time to maturities, using the returns-VIX esti-
mates and Mess

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.07227001 0.021782920 0.01213094 0.037484197
0.975 < S/K < 1.00 0.01072347 0.009648779 0.00937507 0.009854289
1.00 < S/K < 1.025 0.01164509 0.010511643 0.01057072 0.010765267
1.025 < S/K < 1.05 0.01505117 0.011304843 0.01084214 0.012199214
1.05 < S/K < 1.075 0.02470578 0.013244516 0.01228675 0.016513078

1.075 < S/K 0.15466605 0.057546436 0.02677213 0.080467683
All 0.10085421 0.037658544 0.01924780 0.054454451

Table 14: In-sample IVRMSE, desegregated by moneynesses and time to maturities, using the returns-option
estimates and MUshp

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.050523634 0.008753392 0.005154439 0.024263375
0.975 < S/K < 1.00 0.006403037 0.004431021 0.003908261 0.004866656
1.00 < S/K < 1.025 0.007428218 0.005296823 0.004840060 0.005664954
1.025 < S/K < 1.05 0.010003493 0.005720761 0.004867728 0.006836157
1.05 < S/K < 1.075 0.019205732 0.007315557 0.006293074 0.011175024

1.075 < S/K 0.130926105 0.040796905 0.016189430 0.064672512
All 0.082360855 0.025299360 0.011019208 0.042154206

Table 15: In-sample IVRMSE, desegregated by moneynesses and time to maturities, using the returns-VIX esti-
mates and MUshp

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.058999947 0.007328361 0.004096775 0.027744223
0.975 < S/K < 1.00 0.008001028 0.005065256 0.004373989 0.005760217
1.00 < S/K < 1.025 0.008296737 0.005342967 0.004654264 0.005877029
1.025 < S/K < 1.05 0.011189721 0.006266320 0.006028062 0.007650846
1.05 < S/K < 1.075 0.018965308 0.007764575 0.006372408 0.011251906

1.075 < S/K 0.136322195 0.040442062 0.016504625 0.066618316
All 0.087460457 0.024930153 0.011067243 0.044095221
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Table 16: Out of sample IVRMSE, desegregated by moneynesses and time to maturities, using the returns-option
estimates and Mess

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.15519418 0.09680432 0.02294874 0.09518761
0.975 < S/K < 1.00 0.01695327 0.01295548 0.01222848 0.01367695
1.00 < S/K < 1.025 0.01624557 0.01322850 0.01241347 0.01363293
1.025 < S/K < 1.05 0.02396978 0.01510924 0.01348541 0.01685302
1.05 < S/K < 1.075 0.03521808 0.01675262 0.01489015 0.02149575

1.075 < S/K 0.35368801 0.13933129 0.18258228 0.19441065
All 0.21368395 0.10288149 0.10798550 0.12859895

Table 17: Out of sample IVRMSE, desegregated by moneynesses and time to maturities, using the returns-VIX
estimates and Mess

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.17214693 0.10976845 0.02586650 0.10695164
0.975 < S/K < 1.00 0.01768244 0.01411207 0.01359858 0.01477300
1.00 < S/K < 1.025 0.01661613 0.01437070 0.01375944 0.01465533
1.025 < S/K < 1.05 0.02498530 0.01637078 0.01497219 0.01806735
1.05 < S/K < 1.075 0.03588704 0.01816551 0.01646552 0.02260656

1.075 < S/K 0.35961954 0.15016354 0.19984799 0.20509211
All 0.22133149 0.11286499 0.11826782 0.13758423

Table 18: Out of sample IVRMSE, desegregated by moneynesses and time to maturities, using the returns-option
estimates and MUshp

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.10472832 0.062781860 0.014702687 0.062774694
0.975 < S/K < 1.00 0.01276129 0.008812444 0.007908489 0.009528476
1.00 < S/K < 1.025 0.01161843 0.009172681 0.008095419 0.009405722
1.025 < S/K < 1.05 0.01836763 0.010680433 0.009056761 0.012224422
1.05 < S/K < 1.075 0.02657740 0.011782546 0.009975221 0.015653134

1.075 < S/K 0.27586165 0.111926742 0.137738553 0.151784399
All 0.16243596 0.077588868 0.081220584 0.097276679
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Table 19: Out of sample IVRMSE, desegregated by moneynesses and time to maturities, using the returns-VIX
estimates and MUshp

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.11187002 0.071848201 0.013216852 0.069563609
0.975 < S/K < 1.00 0.01163551 0.007950823 0.007108631 0.008624016
1.00 < S/K < 1.025 0.01115946 0.008678356 0.007351717 0.008864643
1.025 < S/K < 1.05 0.01742428 0.009819353 0.008223511 0.011379420
1.05 < S/K < 1.075 0.02534974 0.011699993 0.009747100 0.015160497

1.075 < S/K 0.26477928 0.119580344 0.131830590 0.150986449
All 0.15877875 0.084364490 0.077669321 0.098602385
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