
Cryptologic History Symposium: « Global Perspectives on Cryptologic History »,   
 John Hopkins University, Applied Physics Laboratory, Baltimore-Washington corridor, 15-16 october 2009. 
 

1 

Probability, cryptology and meaning in Claude Shannon (1916-2001)’s works 
 
DURAND-RICHARD Marie-José  
Associated Researcher, Research Unity : SPHERE (UMR 7219 CNRS-Université Denis Diderot Paris) 
Correspondence address: 
Email : marie-jo.durand-richard@orange.fr 
 
Abstract : 

Between 1943 and 1949, the engineer and mathematician Claude Shannon (1916-2001) developped a new theory, founded 
on the measure of « information quantity ». Clearly, this quantifying design of information was supported by the theory of 
probability. But it was also fostered by cryptology, which Shannon also worked to innovate in the same period, for the needs of 
World War II and of its consequences. The first interest of my talk is to make explicit the relationship between informtion theory 
and cryptology in Shannon’s inventive approach. 
The reception of this Shannon’s work was often accompanied by a specific claim, that is, by introducing prabability theory in this 
domain, whereby Shannon effectuated a radical break between « information » and « meaning ». Nevertheless, Shannon’s texts 
insisted very systématically on the meaning of his work for the engineer. They rather introduced the idea that meaning depends 
on the observer’s point of view, specifically, that of the engineer who manages the whole communication system. In that way, 
they ar linked with the 20th century theories of language, especially the pragmatic realm. I inted to examine the epistemological 
involvements of the reception modalities of this information theory.  
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Introduction 
 

I would like to discuss the sources and impacts of probability theory and cryptology in Shannon’s investigation 
of communication processes as an exemplification of the conceptual transference in inventive thinking of this 
engineer who was very well-trained in mathematics. Claude Shannon (1916-2001) introduced probability theory in 
his definition of « amount of information », a theory that he had used prior in physical signal theory for the 
calculation of error, and – which is much less known – he had also used it in cryptology, where probability and 
statistics had long been used in cases of finite range. From the tenth century onwards, when algebra was initially 
being developed within a linguistic context, an approach now called « frequency analysis » was initiated in early 
Arab trials to decipher secret messages. Over the course of centuries up until the mechanization of cryptanalytical 
processes as developped in the XXth century, this approach was maintained in philological contexts. And when 
William Friedmann (1891-1969) introduced the index of coincidence in 1920, probability was still a tool in 
cryptanalysis. In his own work, Shannon invoked probability as a foundation for developing information as a whole 
mathematical theory, which he exhibited in a constructive way, so as to link it closely with the specific questions he 
needed to answer as an engineer at the Bell Telephone Laboratories. In this talk, I will: 
 

• Firstly, explain how I approach Shannon’s works from the perspective of an historian of mathematics, and I 
will discuss the importantce of understanding Shannon’s proper location and perspective as it was laid down before 
and during World War II. 

 
• Secundly, retrace the chronological growth of Shannon’s effective works, from his training as an engineer to 

his papers on the mathematical analysis of the theory of communication and secret systems, as published  and jointly 
conceived in 1948 and 1949 respectively. This will help to apprehend the mutually interactive fostering of these two 
fields. 
 

• Thirdly, analyze, from this chronology of Shannon’s works, ideas and papers, to show how secret systems and 
the theory of communication worked symbioltically to provide Shannon with the means of establishing theory of 
information and cryptology as a mathematical « system ». 
 

• fourthly, examine the fate of « meaning » in this new system of accounting for the exchange of messages. 
 
 
1. My work as the one of an historian of science and mathematics 



Cryptologic History Symposium: « Global Perspectives on Cryptologic History »,   
 John Hopkins University, Applied Physics Laboratory, Baltimore-Washington corridor, 15-16 october 2009. 
 

2 

 
History of science is often told in a retrospective  manner, distilling from the past whatever appears to be most 

like the present, and wondering why its advancement did not come more quickly. Moreover, wherever mathematics 
is concerned,  particularly in the history of cryptology,  historians often forget to observe that mathematics is, itself, 
in progress. For this reason, the very cumbersome advancement of cryptology before the XIXth century is not only 
due to  the  fact that there were difficulties in the transmission of secret practices, but also that, from its earliest days,  
cryptology was more strongly linked to the analysis of language than to mathematics, just as as logic had long been 
associated with language as opposed to mathematics until the XIXth century.  
 

Even by the XVIIth century, certain mathematical tools were missing, despite the fact that Marin Mersenne 
(1588-1648), then « la boîte aux lettres de l’Europe savante », and his close friend Pierre de Fermat (1601-1665), 
were so fond of analysing language as a combinatorial system, which led them to forge numbers that we now know 
of by the names Mersenne numbers and Fermat numbers. Today, cryptology is taught at universities as a 
mathematical subject. This is the case with the Master of Cryptology degree at University Paris 8 where I taught. 
And Shannon’s work was a turning point in the radical transformation of this domain. Until the 1920s and 1930s, the 
theory of abstract algebraical structures was not really at disposal. When the French and Duchman Auguste 
Kerckhoffs (1835-1901) first referred to cryptography in terms of « cryptographic systems », and enunciated 
conditions which are used today to characterize them, there was nothing mathematically new being described. 
Kerckhoffs was priimarily motivated by the new conditions – the « desiderata » of military cryptology – in which 
cryptography was evolving with  the telegraph: crytpgraphy was no longer concerned with private exchanges 
between isolated persons, but rather with the various levels of army commandment (Kerckhoffs, 1883, p. 12). When, 
in 1917, the engineer Gilbert Vernam (1890-1960), who was working on transmission security by teletype for 
American Telephon and Telegraph Company in Manhattan, invented  – what is today known as – the « one-time-pad 
system », he did not write it with binary digits; he simply doubled the punched tape for the message, written in the 
Baudot code with sequences of five impulses, by another similar random punched tape for the key (Vernam, 1926). 
Shannon would later prove the system was unbreakable only after the process was translated into mathematical 
language using binary digits, that had  to wait until the introduction of group theory in cryptology. Only in 1929 did 
the American Lester Sanders Hill (1890-1961) present his « Cryptography in an Algebraic Alphabet » (Hill, 1929), 
in which he explicitely considered this alphabet as a group with a law of combination modulo n, thereby introducing 
matrices  in a ring and in a field. 
 

Furthermore, it is important to keep in mind that the genius of individual scientists is not a sufficient explanation 
for why certain scientific achievements come about. Geniuses are often people who are able to generate new 
syntheses from ideas which are present in their conceptual environments. The history of mathematics overflow with 
instances in which several individuals thought of similarly new concepts at the same time but in different places. And  
we have to understand what is at stake when the special work of one of them prevails  over the others: in our case, 
for instance, why did Shannon’s 1937 algebraical analysis of relays and switching circuits prevail on that of Paul 
Ehrenfest (1880-1933) and Vladimir I. Shestakov in Russia, later in URSS, in 1910 and 1935, as well as A. 
Nakashima in Japan at the same period, as all actors worked on automatic telephone systems. 
 

For my own part, I try to highlight the novelty from the past, avoiding such references as « anticipation » and 
« precursor ». My view focuses on the effective conditions in which new ideas were produced, at times in which the 
« images of knowledge » were not necessarily the same as our own. As Leo Corry wrote it about Modern Algebra 
and the Rise of Mathematical Structures (1996):  
 

« the images of knowledge cover both cognitive and normative views of scientists concerning their own 
discipline » (Corry, 2004, p. 3). 
 

Showing how « the images of science » change implies observing at small steps in history – steps that gives us 
more of a sense of continuous scientific advancement, with permanent rearrangements between several disciplines, 
including physics and mathematics since the XVIIth century onwards, as  well  as  engineering since the Industrial 
Revolution.  
 

I intend to show how Shannon’s work drew on contemporary images of information emerging from his 
mathematical knowledge on probability theory, from his initial domains of research, to theory of communication and 
cryptology.  
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A common view of Shannon is that he was an original researcher, juggling in the corridors of the Bell Labs and 

inventing all sorts of devices, and always working as alone as possible on specific issues. What is important to me 
here rather is what he inherited from his training as an engineer at the University of Michigan in which he had been 
immersed during the Interwar period and the organization of research during World War II which helped him to 
develop new conceptions of information. These two periods created very new conditions for research and 
development. I shall present Shannon’s work in a context in which science, industry and defence became more 
intricately intertwinded.     
 
2. The chronology of Shannon’s involvments as an engineer and a mathematician   
 

Shannon’s Collected Papers were edited in 1993 ; they expanded to almost one thousand pages. Of course, they 
involved many precious sources (Sloane & Wyner, 1993). But unfortunately, the Collected Papers are ordered 
according to their historical weight, so they are not faithful to the chronology of Shannon’s achievements, and they 
do not really help to understand the route that his intellectual developments took throughout the 1930s-1940s.  
 
2.1. Shannon’s training and early works 
 

Shannon’s mathematical formation as an engineer in the 1920s was at least new, if not exceptional. The 
University of Michigan, where he studied, was precisely one of these state-funded universities that had begun to 
compete with the more venerable private universities of the colonial era (i. e. Ivy League schools) during the 
Interwar period, by introducing strong mathematical programs in their engineering curricula. The Massachusetts 
Institute of Technology, where Shannon would later work on the differential analyzer from 1936 onwards, as 
researcher assistant, had grown to become an exceptional center for mathematical research, both in applied 
mathematics with utilitarian objectives, and in pure mathematics, with Norbert Wiener (1894-1964) as a teacher from 
the 1920s onwards (Parshall & Rowe, 1994, p. 445).  

 
Indeed, the differential analyzer was built at the MIT by Vannevar Bush (1890-1974) and his team between 1927 

and 1931 (Bush, 1931; Crank, 1947). It was an analogue engine, intended to graph the curve corresponding to the 
solution of a differential equation, initial conditions being given. This machine was an essential tool in applied 
physics as well as in mathematical physics, since a general analytical theory of differential equations was missing. 
And its operation required the efforts of mathematicians, physicists and engineers. The main principle – an integrator 
system with a roller rolling on a disc turning on its axis – was involved in simple planimeters since the 19th century. 
Bush’s main contribution was the torque amplifier, which was built  to carry out an idea of William Thomson or 
Lord Kelvin (1824-1907). With the help of electricity in connecting together several integrators, the objective was to 
solve differential equations by successive approximations (Thomson, 1876).  

 
Essential for the effective operation of the engine were the connections between the integrators, which 

necessarily involved numerous technical feedbacks, what Shannon named « hidden sneak circuits ». Shannon 
worked in simplifying the whole organisation of the engine, in order to avoid its numerous jams. His 1936 master’s 
thesis, « A Symbolical Analysis of Relay and Switching Circuits », was defended in 1937. It circulated quickly 
among engineers (Shannon, 1938), even though it was only published by MIT in 1940, when it received the Alfred 
Noble award for American engineers. Historians of science have rightly considered that thesis to be an application of 
Boole’s algebra of logic to simplify circuits, by translating them in terms of logical equations, in which the values of 
the variables were only 0 and 1, and by applying to those logical equations the research of normal forms. But in 
Shannon’s paper, the symbol 0 was assigned to an closed circuit and the symbol 1 to an opened one, which is the 
dual manner by which we proceed nowadays. 

 
What was crucially new in this master’s thesis was that it provided for the first time a common language for both 

engineers and mathematicians, which will be of utmost importance when designing computers during the World War 
II. And Shannon’s « Mathematical Theory of the Differential Analyzer » in 1941 helps us to remember that his work 
on this engine must not be considered to be marginal. Very broad hopes were placed  on this type of engine, up to the 
Vannevar Bush’s and Samuel Hawk Caldwell (1904-1960)’s project of the huge Rockefeller Differential Analyzer, 
which was intended to be « the centerpiece of MIT’s Center of Analysis » (Owens, 1986, p. 63), and was announced, 
in spite of the Second World War, as « one of the great scientific instruments of modern times », a one-hundred-



Cryptologic History Symposium: « Global Perspectives on Cryptologic History »,   
 John Hopkins University, Applied Physics Laboratory, Baltimore-Washington corridor, 15-16 october 2009. 
 

4 

tonne machine with 2000 vacuum tubes and 150 motors. It was, however, made obsolete by the electronic digital 
computer ENIAC (Electronic Numerator Integrator Analyzer and Computer) by the end of the war. 

 
Thus, from his early works, Shannon showed a deep proficiency for expressing the technical and theoretical  

concerns in a common mathematical language. Both his previous training and the institutions in which he was 
working played a major role in shaping Shannon’s  way of thinking.  
 
2.2. The commitment of Shannon’s work in the war effort  
 

The accuracy of the Differential Analyzer was a permanent cause of concern for this community of researchers 
and practitionners. Shannon was equally concerned with it, and he invoked probabilistic methods to handle it. By 
1940, he relied upon these methods when he began to work with Hendrik W. Bode (1905-1982) and Ralph B. 
Blackman on the automated anti-aircraft gun M 9. This work took place in the Bell Telephon Laboratories from 1940 
onwards, and it was invested in the industrial war efforts within the fire control section (D-2) of the NDRC (National 
Development and Research Committee), directed by the same Vannevar Bush (Segal, 2003, p. 87-106). MIT joined 
the project from 1941 onwards. By this time, Bell Labs were the hugest private research laboratory in 
communications in the United States, and even in the world, with 1400 researchers in the 1920s. Mathematics were 
highly cultivated there too, as Bell Labs were involved in research on automatic control systems and stability  
analysis. 

 
The Director M 9 was the military version of the Director T-15 first prepared by Bode in the Bell Labs. It was 

developed for the automatic  shooting down of ennemy  aircraft. The calculation of the predicted coordinates of the 
target, in order to optimize the trajectory of the shooting, mobilised a large amount of statistical analysis and  
probability theory, as did the smoothing out of the data acquired from the target by radars, intended to lessen signal 
fluctuations and noise effects. The new algorithms introduced by Bode, so as the method of finite differences  which 
he  preferred to differentiation for  the smoothing of data disturbances, and for calculating the velocity of  the target, 
already reintroduced discrete processes besides continous Fourier analysis usually involved in the  differential  
analyzer as an analogous device. So, the path was opened for Shannon to carry on with his twofold analysis of 
discrete and continuous processes of communication. The 1946 common Report of Bode, Blackman and Shannon, 
« Data Smoothing and Prediction in Fire-Control Systems », already viewed this problem as a special case of 
transmission, manipulation and use of intelligence, which referred both to « secret » and « information », and led to a 
paper by Bode and Shannon (1950). Shannon’s later collective manuscript on « The Philosophy of  Pulse Code 
Modulation »  (1948) directly inherited this trend of research (Oliver, Pierce & Shannon, 1948). 

 
As for Shannon’s knowledge of abstract algebraical structures, he still used them in his 1940 mathematical 

thesis: « An  Algebra for theoretical genetics » (Shannon, 1940 ; Smith, 1982), as well as in his analysis of electrical 
circuits of the M 9 (Shannon, 1942). If we look to the origins to his symbolical approach of circuits on the model of 
Boolean algebra, we can see that from the XIXth century, it paved the way towards mathematical operative analogies 
between several kinds of phenomena. George Boole (1815-1864) belonged to the network of English algebraists 
which, from Cambridge, developped this strictly Symbolical approach of algebra, looking for the logic of operations 
in different fields, especially complex numbers and differential operators. Babbage, De Morgan were also among 
that group. This symbolical approach of algebra was long to find its way towards the study of abstract structures, but, 
amongst the engineers, Oliver Heaviside (1850-1927) inherited of this way of thinking the resolution of differential 
equations. So, already at the beginning of World War II, the research of mathematical operative analogies between 
several communication systems was part of the engineering methodology. 

 
Already in Shannon’s 1937 memoir on the mathematical analysis of circuits, we find a move from the survey of 

the physical phenomena of propagation to that of the structure of the circuits, which could later on be applied to all 
kinds of networks. In his later papers, this move would come to concern the operative working of the transmitted 
« intelligence », and its nature for the engineer, which he would express often as: « The fundamental problem of 
communication is that of reproducing at one point either exactly or approximately a message selected at another 
point » (Shannon, 1948, p. 5).  
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2.3. Shannon’s two main contributions during World War II 
 

During Word War II, from 1943 to 1945, Shannon worked in cryptology for the Bell Labs inside the D-2 section 
of the NDRC. In september 1945, he gave a confidential report, entitled « A Mathematical Theory of Cyptography », 
which afterwards was declassified, and published in 1949 as « Communication Theory of Secrecy Systems » 
(Shannon, 1949). Meanwhile, in 1948, he published his famous « Mathematical Theory of Communication », which 
dealt with an issue that had been of special concern for him since 1939, as his  letter to Vannevar Bush on the 16th of 
February demonstrate (Shannon, 1939). Yet in this letter, although we can already find a rough outline of his famous  
representation of a channel of communication, there is no trace of probabilities, and the entire text was concerned 
with continuous  analysis. 

 
So the claims made in the two main preceeding papers was stronly entwined, and I would like to illustrate in  the 

fourth part of this paper, how the theory of probability fostered the analysis of the two domains, which were 
henceforth treated as systems in the mathematical sense. 
 
•3• Probability theory as the core of Shannon’s mathematical  unifying discourse  
   

As it is well known, Shannon used probability to define what he named « the amount of information » H as a 
measure of what have to be transmitted on a channel, and also as a mesure of the uncertainty of the occurrence of one 
message being choosen among a set of messages with given  probabilities. 

 

€ 

H = – pi
i= 0

n

∑ log2 pi     (1)
                         

    
 

Here, the pi are the probabilities of occurrences of each possible message, and log22 is chosen as the unit of 
measure. This definition accompanied what became the classical schema of a communication channel, which 
Shannon proposed both in his « Mathematical Theory of Communication », and in his « Theory of Secrecy 
Systems ». With these similar diagrams, the sending of an enciphering message could be identified with an 
information source, and the whole vocabulary of communications – particularly that of « channel » – could invade 
the domain of cryptology, just as some concepts in cryptology could be transferred for analysing communication 
processes..  

 

 
 

Fig. 1. Shannon’s 1948 diagram of a general communication system (p. 7) 
 

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION

NOISE
SOURCE

Fig. I -Schematic diagram of a general communication system.

RECEIVE
SIGNAL
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Fig. 2. Shannon’s 1949 diagram of a general secrecy system (p. 89) 
 

3.1. Shannon’s new vocabulary and views 
 

 Before him, as Shannon remembered at once in 1948, two other engineers from the Bell Labs, Harry Nyquist 
(1889-1970) and Ralph V.L. Hartley (1888-1970), looked  for such a definition: both of them introduced a 
logarithmic measure for what was still merely « intelligence », but they did not refer to probabilities. What was new 
in Shannon’s paper was to apply the logarithmic measure  for  this selection  of choices, what he justified from the 
linear variations of the essential parameters in communication systems.  

 
Throughout these two main papers in 1948 and 1949, the author relied on the more recent  mathematical  

theories. The vocabulary of the theory of sets, the theory of functions and the theory of systems run throughout the 
two papers. And probabilities were there referred to the modern theory of measure, with the major works of Andrei 
N. Kolmogoroff (1903-1987), J. L. Doob and Maurice Fréchet (1878-1973) (Shannon, 1949, p. 92 ; Shannon, 1948, 
p. 15), whose Shannon was also aware of in application to physics and astronomy (Shannon, 1948, p. 11; 
Changrasekhar, 1943). These concepts sustained the structuration of the two realms. General communication systems 
were immediately treated by their different states and transitions from one state to another. The enciphering process 
could be defined as the performance of a family of transformations Ti, where i designated the key, giving the 
cryptogram E by application on a message M:   

 

€ 

E = TiM      (2) 
 
And inversible transformations were implied in order to define enciphering and deciphering as reciprocal 

processes. In that way, when these transformations were endomorphisms – as Shannon used this specific 
vocabulary – secrecy systems were investigated as « linear associative algebras », with all their mathematical 
properties (Shannon, 1949, Collected Papers, p. 88-107). Multiplication and weighted addition no longer concerned 
these transformations, but rather the whole secrecy systems, defined as « sets of transformations of one space, the set 
of all possible messages, into another space, the set of all possible cryptograms » (Shannon, 1949, p. 657). Encoding 
and decoding in communication systems were considered similar processes (Shannon, 1948, p. 25). 
   

Shannon was no longer analysing one signal corresponding  to an exchange of messages from one person to 
another one. Thanks to his definition founded on probability theory, he could consider the whole system in order to 
ensure the quality of the entire exchange, whatever  it  could be: 

 
« The significant aspect is that the actual message is one selected from a set of possible messages. The system  

must be designated  to operate for each possible selection,  not just the one which will actually  be chosen, since this 
is unknown at the time of the design » (Shannon, 1948, p. 5). 

 
Eventually, there are two fields where the practitionner does not necessarily know the « possible selection »: the 

I

ENEMY
CRYPTANALYST

MESSAGE
SOURCE

DECIPHERER
1-l

KEY
SOURCE

Fig. 1. Schematic of a general secrecy system
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receiver of messages from a communication channel (telegraphy, telephone, teletype, radio) ; and the cryptanalyst. In 
both cases, the practitionner has to restore the hidden message which was previously encoded – or enciphered – and  
decoded – or deciphered –  between emission,  transmission  and  reception, and the engineer has to think, firstly, 
how these processes ought to be managed. 

 
With the preceding formula, the definition of the amount of information as « choice and uncertainty » takes the 

same form  as that of the entropy of a system in statistical mechanics (Shannon, 1948, p. 18 ; Tolman, 1938). It helps 
Shannon to consider as mathematically similar:  

• the situation of the engineer, facing the « noise » which disturbs the quality of the transmission, which Shannon 
considered for the first time as a chance variable,  

• and the one of the cryptanalyst, facing the cryptogram, and trying to recover the initial message hidden under 
the encoded one. 

Moreover, Shannon could use all the properties of entropy elaborated by statistical mechanics to explore those of 
the « amount of information »: in his 1948 paper, he treated the entropy of a communication system, and that of an 
information source in this way; in the 1949 paper, he treated that of the set of messages and that of the set of keys. 
Entropy was also used to define the redundancy of a language, which helped to determine the maximum compression 
possible when the alphabet is encoded (Shannon, 1948, p. 24). In both cases, the statistical structure of language was 
at the core of the analysis, each message being viewed as a sequence of letters, each one chosen from a given set of 
letters with given probabilities. Moreover, in the case of natural languages, especially for communication systems, 
the set of these letters sequences was treated as a particular discrete process of Markov – namely, an ergodic process 
(Shannon, 1948, p. 15-18). And the whole 1948 paper abounded with examples and data from cryptography, mostly 
tables with letters and bigrams probabilities.      

 
In both cases, the uncertainty of the situation was characterized in the same mathematical way, by a same  

quantity, called « equivocation ». It was defined as « the conditional entropy of the transmitted signal when the 
received signal is known » (Shannon, 1949, p. 113), and was introduced:   

• in communication, «  to measure the average ambiguity of  the  received signal » (Shannon, 1949, p. 33): 
 
« Roughly then, [the equivocation] is the amount of additional information that must be supplied per second at 

the receiving point to correct the receiver message » (Shannon, 1948, p. 34) 
 
• in cryptology, «  to measure in a statistical way how uncertain is the ennemy of the  original message after 

intercepting a cryptogram », and more precisely « how near the average cryptogram of N letters is to a unique 
solution » (Shannon, 1949, p. 87). Here too, the equivocation concerned the key as well as the message. For instance, 
for the key:   

 
HE(K) = H(M) + H(K) – H(E)   (3) 
 

where H(M) is the entropy of message, H(K) is the entropy of key –  i. e. its a priori uncertainty –, H(E) is the a 
priori uncertainty of key, and HE (K) is the equivocation of key (from the cryptogram E).  
 

This introduction of conditional entropy provided Shannon with the opportunity to specify his parallel treatment 
of communication and secrecy systems: 
 

«  A similar situation arises in communication theory when a transmitted signal is perturbed by noise. It is 
necessary to set up a suitable measure of the uncertainty of what was actually transmitted knowing only the 
perturbed version given by the received signal. In Mathematical Theory of Communication it was shown that a 
natural mathematical measure of this uncertainty is the conditional entropy of the transmitted signal when the 
received signal is known. This conditional entropy was called, for convenience, the aquivocation. 

From the point of view of the cryptanalyst, a secrecy system is almost identical with a noisy communication 
system. The message (transmitted signal) is operated on by a statistical element, the enciphering system, with its 
statistically chosen key. The result of this operation is the cryptogram (analogous to the perturbed signal) which is 
available for analysis » (Shannon, 1949, p. 113) 
 

We can see there the operative analogy which led Shannon to consider the « noise » as a chance variable, and to 
view a secrecy system and a noisy communivation system as mathematically similar.  
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3.2. The constructive exhibition of secrecy and communication systems 
 

In these two main papers of 1948 and 1949, Shannon developed his mathematical theory in a very constructive 
way. He systematically started from simple examples to lead the reader to more complex situations. And above all, 
he always specified first the requested operative needs for each new introduced notion, and could thus assess the 
mathematical properties as « natural ». So, Shannon caustiously isolated the mathematical conditions of the problem 
before giving his definitions, and he came back to the real situation after exhibiting the mathematical formulae. From 
this perspective, Shannon did not only worked as a mathematically minded engineer, he also enforced the 
methodology and vocabulary of Boole’s symbolical approach of algebra, where experiment helped to « suggest » the 
« laws of combination » that were, in turn, followed by their meaning or « interpretation », as Shannon used Boole’s 
vocabulary. Unlike for Boole, these interpretations were always existing in Shannon’s developments, which were 
always carried by economical requirements of optimizing communication work. This was not the case in Boole’s 
thought, for which mathematical laws of thought were always existent in the mind, even if no interpretation could be 
found in the external world. 

 
For instance, in 1948, Shannon firstly introduced  his definition of the « amount of information »  after he gave 

the requested conditions for such a « measure »: to address parameters important for the engineer, to be linear and  
mathematically more suitable from the choice of the bit as the unit of information measure. In 1949, the definition of 
a secret system as a « family  of unique reversible transformations » was preceded by the characterisation of a 
cryptographic system, as a suitably idealised situation for mathematical expression, i. e. separated from physical 
phenomena. Each time Shannon introduced a new mathematical expression, he indicated how it was suitable to the 
engineer’s intuitive approach of the situation. Each time he introduced a new mathematical concept for information 
or crytpological theory, he gave many examples and diagrams to illustrate and visualise his subject. 

 
In this constructive way of thinking, we can follow in several ways the manner in which cryptology was closely 

linked with this constructive introduction of probability in Shannon’s work. I shall give there characteristic 
examples: 

 
• in his 1948 paper, Shannon first characterized a discrete stochatic process by means of what he called 

« artificial languages » consisting of five letters, and of « approximation of languages », built on probability of 
letters,  more and more close to natural English language. The author gave examples of such approximations from 
order 0 to order 5, built on the probabilities of letters, digrams, trigrams, and words, in the English language. All 
these probabilities came from recent crytpological books, referred to in the notes (Shannon, 1948, p. 13 ; Dewey, 
1923 ; Pratt, 1939).  

 
• in his 1949 paper, Shannon characterised « the generalized problem of cryptanalysis » as  « the calculation of a 

posteriori probabilities ». He carefully distinguished between: 
- the a priori probability, which comes from the statistical structure of lanugage, considered as an ergodic 

process, and which is known, for this reason, by the sender of the message as well as by the ennemy or the 
cryptoanalyst, 

- and the a posteriori probability, which constitutes the cryptanalyst knowledge of the message and the key after 
interception. As he symetrically worked from the point of view of the « ennemy » or of the cryptanalyst, he claimed 
that: « Knowledge » is thus identified with a set of propositions having associated probabilities » (Shannon, 1949, p. 
85). 

 
The a priori probability and the a posteriori probability are linked by Bayes’ theorem: 
 

€ 

PE (M) =
P(M).PM (E)

P(E)
   (4) 

 
in which P(M) is the a priori probability of message M, P(E) is the probability of obtaining cryptogram E from any 
cause, PM(E) is the conditional probability of cryptogram E if message M is chosen, and PE(M) the a posteriori 
probability of message M if cryptogram E is intercepted » (Shannon, 1949, p.  108). 
 

Through this analysis, the paper goes on to use Bayes’ theorem  between these two kinds of probabilities in 
order to specify several species of secret systems, which had to help the optimization of cryptanalysis: 
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•  « pure secrecy », where all keys lead to the same a posteriori probabilities (Shannon, 1949, p. 101-106). 
Shannon there used the properties of a group and showed that such a system can be subdivised in closed subsystems. 

• « perfect secret system », when the a posteriori probabilities are equal to the a priori probabilities, and so, 
when « intercepting the message has given no information to the cryptanalyst » (Shannon, 1949, p. 107-111). In this 
case, the entropies of message and key are equal, and the equivocation of key HE(K) equals the a priori uncertainty 
of key H(K). Such a system is particularly useful for « correspondence between the highest levels of command » 
(Shannon, 1949, p. 111). It required  an infinite amount of key, and can be exemplified by Vernam cipher.  

• « ideal system », for which the equivocations of key and message never vanished when the number of 
intercepted letters increases ; and « strongly ideal system », for which the equivocation of key remains constant at the 
entropy of key. Such a system prevents fhe enemy to find a unique solution from an intercepted cryptogram. It could 
fairly replace a perfect secret system, for which the making and transmission of keys was a delicate affair.   
 
3.3. How probability theory supported the optimization of communication problems 
 

Even if Shannon treated cryptology and information theory as a mathematician, he still constantly worked as an 
engineer, whose main concern it was to optimize the quality of communication or the work of cryptanalysis. It is the 
reason why, if he followed the way Kerkchoffs characterized a cryptographic system from the birth of telegraph by 
assuming that the ennemy could know the system itself, he rather referred to Von Neumann and Morgernstern’s 
Theory of Games (1947 ; Shannon, 1948, p. 91 & p. 132), and he explicitly identified the cryptanalysis problem with 
a « zero-sum game ». Then he could use Morgenstern’s min-max technics to « maximise the minimum amount of 
work the enemy must do to break [the cipher] » (Shannon, 1949, p. 132)  

 
The whole of his two papers was organised by a systematic investigation of the better means – the more 

economic ones in time and work – to treat communication problems: either to render more difficult the attacks on 
enciphered messages, or to investigate the efficiency of encoding systems, so that to ensure the best transmission in a 
communication channel according to its capacity. And the whole project was realised by means of probability theory. 
In both cases, Shannon had to determine the different ways to obtain, from the ambiguous received message, the 
uniqueness of the possible solutions for the original message. 

 
The major issue for the engineer and the cryptanalyst was to determine the original message, and for the designer 

of the secrecy system to make this work as difficult as possible. In the pursuit of that goal, Shannon investigated the 
variations of the equivocation from the variation of the number N of intercepted letters of the message. He named the 
courve « equivocation characteristics of secrecy systems » and showed that it approached zero when N tends to 
infinity. Thus, he could define « how much intercepted material is required to obtain a solution to a secrecy system » 
(Shannon, 1949, p. 88) which is for N the « unicity distance ». It approximates H(K)/D, where D is the redundancy 
of the language, from which it was possible to try to find a unique solution for the original message from the 
cryptogram. 

 
So, as we can see, cryptology was strongly involved in Shannon’s design of communication theory, first as an 

heuristic way to view and to present his mathematical theory of communication. With this heuristic function, 
cryptology played a major role in inducing Shannon to assess that « the discrete case forms a foundation for the 
continuous [one] » (Shannon, 1949, p. 8). The whole structure and methodology of the paper was built accordingly 
to this assumption. Shannon did not give an axiomatical foundation, but this assumption was more than just a 
pedagogical one. It was rather a mathematical methodology for solving problems, from the known to the unknown, 
treating first the simple cases, and building on them solutions form more complicated situations. In fact, the outset of 
the 1948 paper was built upon cryptological knowledge of English language, such as the probabilies of letters, 
bigrams, and so on. However, the continuous case would be treated only in 1949, in his book with William Weaver 
(1894-1978), entitled The Mathematical Theory of Communication (Shannon & Weaver, 1949). 

 
4. The destiny of « meaning » in Shannon’s work  
 

Concerning this mutual fostering of both communication and cryptological problems in Shannon’s work, I  
would like  to conclude on the meaning issue. 
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I would insist on the fact that Shannon dit not at all eliminate the issue of meaning in his work, as it is commonly 
assessed from his 1949 book, where Weaver tried to reintroduce meaning inside the communication process, and 
afterwards with the latest developments of information theory (Segal, 2003, p. 143-538).   

 
On the contrary, meaning was always an essential issue for Shannon, for instance, as we can see when he 

expressed his theorems, both in mathematical language and in engineering language. always specifying what 
mathematical formulae he was implying. Moreover, when Shannon treated of cryptanalysis from Bayes’ theorem, he 
explicitly tackled the difficult epistemological questions connected with subjective probabilities, distinguishing 
between the logical validity of probability, and its application to physical situations (Shannon, 1949, p. 92). 
Eventually, Shannon did not say meaning does not matter in information theory, he specified, rather, that  « the 
semantic aspects of communication are irrelevant to the engineering problem » (Shannon, 1948, p. 5 ; emphasis 
mine).  

 
But the issue of meaning was greatly renewed by Shannon’s work, as he showed that meaning depends on the 

location of the enunciation: meaning for Shannon as an engineer was not at all the same as meaning for « Alice and 
Bob », as his cryptological followers would often referred to, i. e. from inside the system, when the engineer and the 
organizer of the communication channel were outside. 

 
Nowadays, Shannon’s theory of communication is invading the whole field of communication,  and seem to do 

so as if the issue of meaning was not a significant concern. But eventually, it is fully significant in the following 
ranges: 

• firstly, it is crucial for those who organize and control communication systems, as it was for Shannon and the 
military requirements he adressed in his work during the Second World War; 

• secundly, it makes significant that the meaning issue depends of the enunciation location: meaning is not the 
same for the practitionners inside the system, and for those who build and control it from outside the system.  Along 
with contemporary linguistics theories, Shannon’s work contributed to make clear that, for each situation, one has to 
keep in mind the perspective from which people are speaking in order to generate an appropriate manner of treating 
what they say.  

 
In mathematics too, especially in applied mathematics, the issue of meaning remained an open one. Shannon 

wrote in a note  of his 1949 paper: 
 
« The word « ennemy » stemming from military applications, is commonly used in cryptographic work to denote 

anyone who may intercept a cryptogram » (Shannon, 1948, note p. 5). 
 
As  cryptology  to day is expanding in very  broad  areas  of  public  life,  we  have  to  be cautious  about  the   

possible  implication of  this  way  of  thinking  on  our  perception  of  the  unknown. 
 

Conclusion 
 

Shannon was educated and professionalized both into engineering and mathematics. He first worked on devices 
where these two domains were closely interwined. In each of his two major contributions on communication theory 
and on secrecy systems, he used mathematics, and especially modern probability theory, to express in the same way 
the operative working of the two processes, in an inventive turn of mind in which they mutually enriched one 
another. I think it is important to underline this point, as the history of cryptology has been somewhat ignored until 
these past few years (Kahn, 1978). Both the mathematisation of the engineering training, and the closeness of 
disciplines during World War II, stood as conditions of possibility of such an explicitation. 

 
From this step, mathematics occurred as a unifying discourse, giving a common language for both engineers and 

academics. As such, this unifying discourse sustained a closer vicinity for the whole scientific achievement of the 
period, including that of the digital computer. It marked the mathematization of cryptology, which was a radical 
turning point in its history. With cryptological analysis crossing the quantizing of continuous signal, it made 
proeminent of the discrete foundation of information theory, as well as its probabilistic approach, where the 
operative structure and running of the whole system became more important than the specific meaning of each 
message. This new foundation characterized Shannon’s own view of knowledge. It was also a determining step in the 
theory of probability, which conversely tended to be founded back on information theory in the following next 
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decades.  
 
After World War II, information theory also invaded whole sections of knowledge theory, which soon became 

« cognitive sciences ». But we have to keep in mind that, from the perspective of human history, language could not 
be reduced to a quantitative probabilistic approach, and that, paradoxally, security in peace time requires more 
complex means of proceeding than security of communication systems in wartime.      
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