The planetary visibility tables in the second-century BC manuscript Wu xing zhan

Daniel Patrick Morgan

To cite this version:
The Planetary Visibility Tables in the Second-Century BC Manuscript Wu xing zhan 五星占

Daniel Patrick Morgan

Abstract: This article is a study of the planetary tables in the second-century BC manuscript Wu xing zhan. Products of computation in this and later texts are compared to what we know about contemporary bodies of planetary knowledge to highlight discrepancies between theory and practice, as well as pluralities of tradition, within the early imperial astral sciences. In particular, this study focuses on such tables’ apparent use of a solar calendar (as distinct from the lunisolar civil calendar) for the purposes of planetary astronomy; it also attempts to explain anomalous features of the Wu xing zhan’s planetary tables in the context of early manuscript culture.

The subject of this article is the planetary visibility tables in the second-century BC manuscript Wu xing zhan 五星占 (Divination of the Five Stars [Planets]). The Wu xing zhan is a unique document. It is at once the earliest reliable treatise on the astral sciences in China and the only one to have come down to us from this era in manuscript form. It also furnishes us with one of the only examples of calculated planetary tables from the

1 I am grateful to Professor Karine Chemla for inviting me to present an earlier version of this article at the “Histoire des tables numériques” seminar of the CNRS series Histoire des sciences, Histoire du texte (Université Paris Diderot, March 23, 2012), as well as for her invitation to publish it here, and for the many ideas that she sparked in my mind during our conversations in Paris. I am equally grateful to Professor Christopher Cullen and the Andrew W. Mellon Foundation for supporting my rewarding stay at the Needham Research Institute, were it not for which I would have made none of the discoveries presented here. I would also like to thank EASTM’s anonymous referees for their many helpful comments and suggestions.
early and medieval period in China. This study will focus on two aspects of these tables as they reflect upon what we know about the history of astronomy in China from traditional sources.

One is their status as products of practice. Almost everything that we know about mathematical astronomy in this period we know from manuals for state astronomical systems preserved in the dynastic histories, which Nathan Sivin describes as sets of “step-by-step instructions, worked out so that a minor functionary with limited mathematical skills could calculate the annual ephemeris.” If we are to construct a history of Chinese astronomy from these sources, we must take a number of hermeneutical considerations into account. As a purely functional technology, they obscure the ‘scientific process’ that went into their creation—what it was, for example, that Liu Hong (c. AD 135-210) or Zhang Zixin (fl. 526-576) were doing in the decades they spent perfecting their innovations. Nor is a manual itself able to tell us how real people used it. Furthermore, we know from excavated calendars and historical records that what appear like inviolable ‘canons’ were in practice continuously modified and reconstituted. The work of

2 The manuscript itself is untitled, as is common of this period, leaving the editors assign it the descriptive title Wu xing zhan. In addition to the Wu xing zhan, there is another manuscript on planetary astronomy/astrology, the Wu xing 五星, that was recovered from Shuanggudui 雙古堆 tomb 1 (closed in 165 BC) in Fuyang, Anhui in 1977. Unfortunately, this manuscript was badly damaged during excavation and never published. For a description of the Shuanggudui Wu xing, see Hu Pingsheng 胡平生 (1998).

4 Liu Hong is attributed with the first coherent model for lunar inequality and latitude in China, and Zhang Zixin, among other things, with the first models for solar and planetary inequality. Received sources describe them as spending 20 and 30 years on their respective systems (Jin shu 晉書, 17.499; Sui shu 隋書, 20.561). For their contributions to the history of Chinese astronomy, see Chen Meidong 陳美東 (2003), pp. 212 – 217, 298 – 303; Cullen (2002).

5 Sivin (2009) and Martzloff (2009) use the term ‘canon’ to denote what I call here the ‘system manual’ instantiation of li 曆. In addition to the scholarship on calendars mentioned in the next line, an excellent case in point concerning the mutability of these ‘canons’ is the Han Quarter-remainder system (Sifen li 四分曆; Hou Han shu 後漢書, zhi 3, 3058-3081): adopted in AD 85, the emperor ordered a change of its calendrical parameters in the following year, and we know the solar table appended to it in the Hou Han shu to have derived from AD 173. On the history of the Quarter-remainder system, see Ōhashi Yukio 大橋由紀夫 (1982).
scholars like Zhang Peiyu 張培瑜 (2007), Huang Yi-long 黃一農 (1992), Deng Wenkuan 鄧文寬 (2002), Jean-Claude Martzloff (2009), and Alain Arrault (2002) has gone a long way to reveal the complexity of pre-print calendar culture in China and the ambiguities that existed between state manuals, practice, and realia. By comparison, the case of planetary tables is less studied because there are simply fewer materials available to us.

Another aspect of these tables that I intend to explore is how they reflect upon diversity within the astral sciences. The manuscript’s technical contents are inconsistent—inconsistent with later tradition, astronomical reality, and even each other. I will attempt to explain a number of contradictions by demonstrating how the Wu xing zhan tables conflate discrete forms of planetary knowledge. I will also present evidence for the pre-modern Chinese use, for the sake of computational convenience, of a solar calendar—one distinct from the lunisolar civil calendar but whose exact features spring up here and in other pre-modern sources. The question at the heart of this article is ultimately why the Wu xing zhan is the way it is, and in the final section I offer several conjectures based on what we know about early Chinese manuscript culture and the Wu xing zhan’s own textual history.

The Wu xing zhan was discovered in 1973 in Changsha, Hunan amid the manuscript horde at Mawangdui 馬王堆—a Western Han tomb sealed in 168 BC belonging, it seems, to Li Xi 利豨, the second marquis of Dai 軑. The manuscript is written on a piece of silk approximately one by one-half meter in size. The text, which amounts to 146 lines, is divided into eight units, each of which begins on a new line. The first five units are devoted to planetary omens for Jupiter, Mars, Saturn, Mercury, and Venus, respectively. Each section is prefaced with an introduction to the metaphysical and divine associations of each planet and a description of its normal behavior, followed by omen series typical of received literature. Occupying roughly the same amount of space, the last three sections are devoted to computation, providing for Jupiter, Saturn, and Venus 70-year visibility tables running from 246-177 BC and planetary models.

6 Hunan sheng bowuguan 湖南省博物館 & Zhongguo kexueyuan kaogu yanjiusuo 中國科學院考古研究所 (1974). For the case for identifying the occupant of tomb 3 as Li Xi, see Chen Songchang 陳松長 (2003).
Figure 1. Wu xing 2/16 textual units
There are now several dozen articles and chapters on the *Wu xing zhan* and complete translations into Chinese, Japanese and English. Most of the scholarship thus far has been introductory or focused on the issue of the Jovian year-count, and is synthesized in Liu Lexian (2004). Since then, Takeda Tokimasa and Christopher Cullen have resolved many of the text’s remaining technical issues and raised stimulating new questions about its function and its place in the history of Chinese astronomy. The present study attempts to address some of these questions, building off of my own work on the textuality and hybridity of the *Wu xing zhan*.

The Astral Sciences in Early Imperial China

Before coming to the tables, let us outline the phenomena with which they are concerned and the traditions of knowledge that they bring to bear upon them. Our first question is thus “what do planets do?”

The apparent motion of Jupiter is a good place to begin since ‘the Year Star’ (*Suixing* 歲星) invariably comes first in any list. Like Mars and Saturn, Jupiter is a superior planet, meaning that its orbit is larger than our own and that its apparent motion along the ecliptic is slower than that of the sun. When Jupiter is opposite the Sun in conjunction (*he 合*), it is ‘hidden’ (*fu 伏*) and nowhere to be seen. However, within a week or two the Sun moves far enough past the planet that the latter finally “emerges in the morning in the east” (*chen chu dongfang 晨出東方*) before being washed out by the break of dawn—it experiences first morning rising (FMR). For the next 12 to 13 weeks, it rises earlier and earlier each morning, traveling forward through the stars, all the while gradually slowing until it comes to a stop (*liu 留*)—first station. At this point it begins to accelerate backwards in retrograde (*nixing 逆行*), reaching opposition (*chong 冲*) about 7 weeks later. In another 7 weeks it slows and comes to another stop—second station—before again moving forward or ‘prograde’ (*shun 顺*). For the next 12 to 13 weeks it gradually accelerates while the Sun catches back up with it, setting earlier and earlier each night until it is again drowned out by the brightness of the Sun and

“enters in the evening in the west” (xi ru xifang 夕入西方)—i.e. experiences last evening setting (LES). The length of time it takes a planet to complete these actions and return to the same position vis-à-vis the Sun is its synodic period (S). This is distinct from, though proportionally related to, its sidereal period (P), which is the amount of time it takes to return to the same position among the stars. The apparent motion of Venus and Mercury, the inferior planets, is more complex, but the example of Jupiter is sufficient for our purposes here.¹

¹ For a lucid explanation of each planet’s characteristic phenomena and how early Chinese planetary models dealt with them, see Teboul (1983), esp. pp. 49-109.
The Chinese traditionally divided their astral sciences into two categories: *tianwen* 天文 ‘celestial patterns’ and *li* 历 ‘calendro-astronomy’. Generally speaking, *tianwen* generally deals with star cataloging, observation, and omenology, and *li* with predictive mathematical modeling. This distinction is fully manifest in the practices, professions, and textual genres of the Han as we know them from contemporary descriptions, bibliographies, and the titles and contents of extant works. As contemporary actors’ categories these are a good place for any modern study to begin. Of course, while we can trace core practices like sky watching, omenology, and calendrics back to the earliest written records in China, it is still wise to exercise caution in extending these specific categories backwards in time or beyond the received tradition of elite literature.*

Li

The earliest *li* manual currently extant is Liu Xin’s 刘歆 (c. 50 BC – AD 23) Triple Concordance system (*Santong li* 三統曆; *Han shu* 漢書, 21b.991-1011) of circa AD 5. The *Wu xing zhan* antedates the ‘Triple Concordance system by almost two centuries, but comparison seems apt given the extent to which their computational models resemble one another in terms of style, approach, and theory. Planetary astronomy in early *li* system manuals is comprised of four elements. The first is the *shu* 數 ‘numbers’ of the calendar and the planet’s synodic period, the latter of which are derived from a ratio of FMR to years, i.e. a resonance period. The second is the *xingdu* 行度 ‘motion-degree’ model, a formulaic

9 The difference between *tianwen* and *li* genres is most clearly manifest in the respective eponymous treatises of the dynastic histories. Generally speaking, a *tianwen* text is a catalog of facts about Heaven (i.e. descriptions, measurements, and omens) organized spatially, topically, and, in the case of observational/divinatory records, chronologically; extant *li* texts, on the other hand, are either step-by-step calculational manuals or histories of the field. While most of this literature is now lost, the bibliographic treatises of the *Han shu* and *Sui shu* confirm the self-identification of early works with these genres from the prevalence of those including the words *li*, *tianwen*, and *zhan* 占 ‘divination’ in their titles (*Han shu*, 30.1763 – 1767; *Sui shu*, 34.1018 – 1026). That *tianwen* and *li* embodied different practices and skill sets is further suggested by the bifurcation of the state astronomical office into the *li* specialists of the Grand Clerk (*taishi* 太史) and the *tianwen* specialists of the Numinous Terrace (*lingtai* 靈臺) observatory; see Deane (1989), esp. pp. 1 – 141; Chen Xiaozhong 陳曉中 & Zhang Shuli 張淑莉 (2008), esp. pp. 33 – 94. For an overview of *tianwen* and *li* practices recorded in Shang 商 (?-1046 BC) oracle bones, see Keightley (2000), pp. 17 – 53.
description of the planet’s motion over the course of one synodic period based on two premises: symmetry and a fixed angle (in right ascension) from the Sun at which the planet appears and disappears—an ‘angle of invisibility’. The third is the li yuan 昼元 ‘system origin’, a point in time and space where all calendro-astronomical cycles coincide and from which subsequent iterations are counted. Lastly, the fourth is the shu 行 ‘methods’ of calculation. The one element absent from the Wu xing zhan is the ‘methods’; otherwise, the difference between them comes down to complexity. Take for instance their respective motion-degree models:

秦始皇帝元年正月，①歲星日行廿分，十二日而行一度，終【歲行卅】度百五分，見三【百六十五日而夕入西方】，②伏卅日，三百九十五日而復出東方。【十二】歲一周天，廿四歲一周大【白】合營室。

On Qin Shihuang 1-I-[1], ① Year Star was [in Hall13], traveling $\frac{29}{240}$ du per day, traveling 1 du in 12 days, and [traveling $\frac{105}{240}$ du in a complete year. It is visible for 365 days before entering in the evening in the west], where ② it hides for 30 days. In 395 days it emerges again in the east. [In 12] years it makes one circuit through Heaven, and every 24 years it goes into conjunction with Great [White] (Venus) in Hall13 (Wu xing zhan, section 6, lines 89-90).⑩

木，①晨始見，去日半次。順，日行十一分度二，百二十一日。②始留，二十五日而旋。③逆，日行七分度一，八十四日。④復留，二十四日三分而旋。⑤復順，日行十一分度二，百一十一日有百八十二萬八千三百六十二分而伏。凡見三百六十五日有百八十二萬八千三百六十五分，除逆，定行星三十度百六十六萬一千二百八十六分。凡見一歲，行一次而後伏。日行不盈十一分度一

⑩ For more details, see Teboul (1983) and Liu Hongtao (2003). Note that the Triple Concordance system is atypical of the tradition that proceeds it in two regards: one, it builds slight asymmetries into each of its motion-degree models; two, subsequent systems count synodic periods from conjunction rather than FMR. See also note 38.

⑪ Throughout, the transcription and line numbers are those of Liu Lexian (2004). Note that while the text of the Wu xing zhan is frequently defective due to physical damage, transcriptions like Liu Lexian’s are often able to confidently reconstruct missing numbers and text through calculation and/or textual parallels with received literature.
In contrast to the Triple Concordance system, which derives comparatively precise planetary periods \(S = 398.71 \text{ days}, P = 11.92 \text{ years}\) from large resonance periods (1583 FMR: 1728 years), the Wu xing zhan adopts simple values for each \(S = 365 \frac{1}{4} \text{ days}, P = 12 \text{ years}\). Moreover, the Wu xing zhan’s periods appear to have been arrived at independent of one another since they do not exhibit the proportional relationship befitting planets’ sidereal and synodic periods.\(^{12}\)

\(^{12}\) An understanding of this proportional relationship is evident already in the Triple Concordance system, which derives the superior planets’ synodic arcs \(\Delta \alpha\) (the angular distance traveled in one synodic period) from the length of the year \(E\) (= the circumference of Heaven) and a synodic period expressed in terms of appearances \(A: \text{years}\). In symbolic form:

\[
\Delta \alpha = \frac{A - 1}{P} \times E
\]

In modern terms, \(\frac{1}{P} = \frac{1}{E} - \frac{1}{2}\), where \(P\) is the planet’s sidereal period, \(S\) is its synodic period, and \(E\) is the earth’s sidereal period. According to the the Triple Concordance’s formula, for example, the Wu xing zhan’s synodic period for
Furthermore, whereas the Triple Concordance system divides its motion-degree models into numerous stages to account for prograde, station, and retrograde motion, the Wu xing zhan gives the superior planets constant angular velocities derived from their sidereal periods (Jupiter’s $\frac{20}{240} du/\text{day} = 365\frac{1}{4} du \div (12 \text{ years } \times 365\frac{1}{4} \text{ days})$). As Takeda (2010, pp. 9–12) convincingly argues, the Wu xing zhan also appears to place visibility phenomena at 0° from the sun, which is absurd compared to the Triple Concordance system’s ‘half station’ (15°) – an appropriate average for Jupiter.

The Wu xing zhan’s system origin is also a problem. Though the manuscript itself gives us only a date (Qin Shi Huang 堑始皇 1-1-[1] or 246 BC February 3), parallels with later descriptions of the Qin Zhuanxu system (Zhuanxu li 頓頊曆) and clues within the text itself confirm that this system origin also posited the coincidence on this date of the Enthronement of Spring (li chun 立春) and the FMR of the five naked-eye planets 5 du into the lodge Hall13. It is important to remember that a system origin need not be perfectly accurate so long as functions to produce accurate results for the intended age. In fact, both the Wu xing zhan and Triple Concordance’s system origins make obvious concessions to political symbolism. The difference is that the Wu xing zhan’s is

Jupiter would produce a sidereal period of 13 rather than 12 years. The results of this incongruence are evident in the discussion of the Jupiter table below.

13 According to Liu Xiang’s 劉向 (79-8 BC) Hongfan zhuàn 洪範傳, “Calendrical records began with Zhuanxu, his high origin being the year Yanmeng-Shetige (year jiuji), month Bi-Zou (month Ji), the day of the new moon, jisi, the Enthronement of Spring, with the seven luminaries all at the fifth du of Hall13.”曆記始於顓頊，上元太始間蒙訛更之義，畢陬之月，明日己巳立春，七曜俱在營室五度 (cited in Xin Tang shu 新唐書, 27a.602 – 603). Cai Yong 蔡邕 (AD 133-192), Liu Hong, and Dong Ba 董巴 (fl. third century AD) provide similar descriptions of the Qin 堑 (221-206 BC) Zhuanxu system (Hou Han shu, 忽漢書, 2, 3039 [commentary], 3042-3043; Jin shu, 17.502). While the exact date of the Zhuanxu system origin, which scholars place in 366 BC does not coincide with the Wu xing zhan, these and other coincidences are sufficient to attribute the astronomical contents of the Wu xing zhan to the Qin Dynasty; see Mo Zihan (2011), pp. 121-122. The system origin date, Qin Shihuang 1-1-1, corresponds to 246 BC February 3 of the proleptic Julian calendar based on the reconstructions of the Qin calendar in Zhang Peiyu (2007) and Li Zhonglin 李忠林 (2010).

14 Cullen (2007) provides insightful analysis of the requirements for a system origin’s accuracy and functionality. On the politics and political significance of the Triple Concordance/Grand Inception (Tai chu li 太初曆, 104 BC) system origin, see Cullen (1991). In the case of the Wu xing zhan and Zhuanxu system origin, a five-planet convergence on the first day of the first month of the first year of the
dramatically more inaccurate: at system origin the planets were spread out over half the sky (none of them in Hall13), and half of them were invisible, their FMR having likely occurred several weeks apart (fig. 3).

Figure 3. Eastern horizon at Wu xing zhan system origin

NOTE: Figure produced by Alcyone Ephemeris v3.2 and modified by the author to show the Chinese lodge system. Distances from Hall13 5° (taking η Pegas as Hall13 0°) are given in degrees of right ascension (RA). Parentheses indicate bodies not yet visible at dawn.

first emperor of Qin in Hall13 (also known as Tianmiao 天廟 “the Celestial Temple,” which is associated with the north and the virtue water, the symbols of the Qin) is as unambiguous an affirmation of its Heavenly Mandate as is possible. The Kaiyuan zhanjing for example quotes a He tu 河圖 to the effect that, “if the chronogram essence (: Mercury : water : black) commands the five essences (planets) to converge in [one of] the seven lodges of the north, then the Black Emperor (: water : Qin) will arise by virtue of clear peace, quiet purity, and penetrating perspicacity”辰精帥五精聚于北方七宿，黒帝以清平、靜潔、通明起 (Kaiyuan zhanjing, 19.3b).
Tianwen

Next to the *Wu xing zhan*, the earliest reliable self-described works of *tianwen* are the *Huainanzi* 淮南子 (139 BC) “Tianwen xun” 天文訓 and the *Shiji* 史記 (91 BC) “Tianguan shu” 天官書 treatises. Equally valuable are later compendia like the *Kaiyuan zhanjing* 開元占經 (AD 729), which preserve numerous quotations from omen literature dating to the centuries before and after the aforementioned works. Planetary models are one of the places that the spheres of *tianwen* and *li* literature overlap. Both genres value quantitative knowledge, but they deploy it to contrary ends: *li* manuals, to the end of prediction (and retrodiction), and *tianwen* omen series, as normative bases for the identification and interpretation of celestial anomalies. Distinct in function, *tianwen*- and *li*-literature planetary models tend to take distinct forms. In general, *tianwen* models are simpler and more conservative than contemporary *li* models, and many are embedded in the idiom of observational astronomy, concerning themselves with altitude, angular measures of ‘inches’ (cun 寸) and ‘feet’
Author: Planetary Visibility Tables

13 (chi 尺), and so on. The most distinctive feature of early tianwen planetary models, however, is the intellectual influence of hemerology (calendar divination).15

As we now know from an increasing number of excavated ‘daybooks’ (rishu 日書), hemerology appears to have enjoyed massive popularity in the early imperial period. Hemerology features a wide variety of schemes for determining the auspiciousness of times and directions for performing everyday activities, the more complex of which involve calendar deities and mantic functions moving through schemata arranged around the tiangan dizhi 天干地支 ‘heavenly branches and earthly stems,’ e.g. the chord-hook diagram common to shipan 式盤 diviner’s boards. The clearest example of how hemerology and early planetary astronomy bled together is Taiyin 太陰. Taiyin is a terrestrial deity that moves clockwise through the twelve branches at the rate of one per year, mirroring Jupiter’s roughly 12-year sidereal period. Once referred to as ‘Counter-Jupiter,’ it is actually Taiyin that determines the planet’s position, month of FMR, and the progression of the twelve so-called ‘Jovian years.’ The Wu xing zhan, with ample parallels to early sources like the Huainanzi and Shiji, offers us the following descriptions:

歲處一國，是司歲。①歲星以正月與營宮晨【出東方，其名為攝提格。②其前歲以二月與東壁晨出東方，其名為單閼。③其前歲三月與胃晨出東方，其名為執徐。④其前歲以四月與畢晨【出】東方，其名為大荒【落。⑤其前歲以五月與東井晨出東方，其名為敦牂。⑥其前歲以六月與柳【晨出東方，其名為汁給。⑦其前歲以七月與張晨出東方，其名為荼。⑧其前歲以八月與【晨出東方，其名為閹茂。⑨其前歲以九月與亢【晨出東方，其名為閹茂。⑩其前歲以十月與心【晨出東方，其名為大淵獻。⑪其前歲以十一月與斗【晨出東方，其名為囷敦。⑫其前歲以十二月與虚【晨出東方，其名為赤奮若。⑬其前歲與營室晨出東方，復為攝提 格，十二歲而周。皆出三百六十五日而夕入西方，伏卅日而晨出東方，凡三百九十五日百五分【日而復出東方】。

15 An excellent sampling of such tianwen planetary models can be found in juan 23, 30, 38, 45, and 53 of the Kaiyuan zhanjing. On the use of linear measures in Chinese observational astronomy, see Wang Yumin 王玉民 (2008). On hemerology, see Kalinowski (1986) and Liu Lexian (2002). The following discussion of the hemerological mechanics of tianwen planetary models is developed from Mo Zihan (2011).
Jupiter) occupies one state per year, this is why it officiates the year. In month I, Year Star [emerges] in the morning in the east with Hall113, and its name is Shetige. In month II of the next year, it emerges in the morning in the east with Eastern Wall114, and its name is Chanye. In month III of the next year it emerges in the morning in the east with Stomach115, and its name is Zhiyu. In month IV of the next year it emerges in the morning in the east with Net116, and its name is Dahuang117, and its name is Dunzang. In month VI of the next year it emerges in the morning in the east with Willow118, and its name is Zhiji. In month VII of the next year it emerges in the morning in the east with Strung Bow119, and its name is Ruijian. In month VIII of the next year it emerges in the morning in the east with Baseboard120, and its name is Zuoe. In month IX of the next year it emerges in the morning in the east with Neck121, and its name is Yanmao. In month X of the next year it emerges in the morning in the east with Heart122, and its name is Dayuanxian. In month XI of the next year it emerges in the morning in the east with Dippers123, and its name is Qundun. In month XII of the next year it emerges in the morning in the east with Tumulus124, and its name is Chifenruo. The next year it emerges in the east with Hall115, and is again Sheti[ge]. In 12 years it makes its circuit. It always emerges for 365 days before entering in the evening in the west and hides for 30 days before emerging in the morning in the east. In a total of 395 1(65)/240 [days it reemerges in the east] (Wu xing zhan, section 1, lines 1-5). 16

The Year Star and Taiyin correspond. When Taiyin occupies a corner (hook) chronogram (earthly branch), Year Star occupies the two corner lodges, and when Taiyin occupies a center (chord) chronogram, Year Star

16 For the correction of the text’s “395 105/240 days” to “395 165/240 days,” see Mo Zihan (2011), pp. 126–129.
occupies the three center lodges. ... [Year Star] occupies Tai, and Basket. Taiyin shifts left (clockwise) and they meet at the boundaries of yin and yang, circling Heaven and Earth, respectively, in 12 years (Wu xing zhan, section 1, lines 42-43). 17

All of this makes perfect sense in the mechanics of hemerology, where we might expect Jupiter (and its visibility phenomena) to cycle incrementally forward through chronograms, years, and months like proper calendar deities, but these mechanics contradict contemporary astronomical knowledge in two regards. First, when the Jovian cycle repeats, FMR skips from 12-XII to 1-I (i.e. 13-I, exactly one month later) rather than 14-I (a full 13 months later, as we would expect), because this 12-year sidereal period is incompatible with a 13-month synodic period. The fact that Jupiter’s mean sidereal period is actually 11.86 years further complicates matters, and the Triple Concordance system—which compensates by having the planet “exceed a chronogram” (chao chen 超辰) every 144 years—witnesses the first and last attempt to salvage the Jovian year count in li literature.

Second, while hemerological systems treat the 28 lodges that constitute the Chinese celestial coordinate system as even counters, they are in actuality zones of uneven width (compare fig. 4 and fig. 5). In the ‘ancient degree’ system used by the Wu xing zhan, for example, the Taiyin model has Jupiter travel two- and three-lodge zones varying from 15 to 44 du in equal durations of time (365⅔ du = 360°). Likewise, the omenological portion of the Wu xing zhan parallels early tianwen models in positing that Mercury appears four times a year at the solstices and equinoxes at stark odds with its mean synodic period of 115.88 days (cf. the Triple Concordance’s 115.91 days). 18 It also parallels models that describe Saturn as traveling one lodge per year for 28 years, though in the computational portion of the text it later attributes the planet a sidereal period of 30 years (cf. its actual mean sidereal period of 29.49 years):

17 I have not corrected the names of the Jovian years to accord with received parallels as does Liu Lexian (2004), pp. 30-32. Note that received sources combine the Jovian year-count and Taiyin model (also known as Taisui 太歲, and Suiyin 岁陰); for parallels see Erja zhushu 爾雅注疏, 5.17b-18a; Han shu, 26.1289-1290; Huainan honglie jijie 淮南鴻烈集解, 3.117-120; Kaiyuan zhanjing, 23.2b – 10a; Shiji, 27.1313-1316. Important studies of the Jovian/Taiyin year-count include Wang Shengli 王勝利 (1989) and Tao Lei 陶磊 (2003), pp. 73-97.

18 Tebouil attempts to explain these models in (1983), pp. 134-137, 143-145.
Verily, the star that quells provinces (Saturn), each year... If it has already dwelt there but leaves to the [west] or east, that state is ill-fortuned (Wu xing zhan, section 3, line 51)

歲填一宿，其所居國吉。... 又西東去，其國失土。... 岁行十三度百十二分度之五，日行二十八分度之一，二十八歲周天。

Each year [Saturn] quells one lodge. The state in which it dwells is fortuned. ... If it leaves to the west or east, that state will lose earth (territory)....

It travels $\frac{1}{240}$ du per year — du per day — and completes one circuit of Heaven in 28 years (Shiji, 27.1319-1320).¹⁹

Compare these to the computational model following the Saturn table:

秦始皇帝元年正月，填星在營室，日行八分，卅日而行一度，終歲行【十二度疇二分】，【見三百四十五】日，伏卅二日，凡見三百七十七日而復出東方，卅歲一周于天，廿歲與歲星合爲大陰之紀。

Qin Shihuang 1-I-[1], Quellar Star is in Hall13. It travels $\frac{1}{240}$ du per day, traveling 1 du in 30 days, and $[12\ 62\ 240]$ in one complete year. [It is visible for 345] days and hidden for 32 days. In total, it emerges again in the east 377 days after [first] appearing. In 30 years it makes one circuit around Heaven, and in 20 years it goes once into conjunction with Year Star for a Taiyin era (Wu xing zhan, section 7, lines 121-122).

* * *

The Wu xing zhan contains what later actors would categorize as distinct bodies of planetary knowledge: li-like mathematical models, which count out cycles to a precision of 1/240 of a day and du, and tianwen-like omenological models, which use cruder measures like years, months, and lodges, and which are bound up in the mechanics of hemerology in a way that conflicts with the logic of mathematical models. When compared to the motion-degree models of later li literature the models in the Wu xing zhan's computational sections look less like coherent systems than independent pieces of observational and theoretical knowledge that have been cobbled together. Nonetheless, the fact that they occur in the

¹⁹ For parallel descriptions, see also Huainan honglie jijie, 3.90; Kaiyuan zhanjing, 38.2b–5b.
same manuscript with, but clearly segregated from, hemerological tianwen models suggests that something like the tianwen/li distinction does go back to the time of the Wu xing zhan.

The Tables

When discussing the Wu xing zhan tables, it is best to work backwards from Venus. Due to the complexity inherent in the planet’s apparent behavior (and the text’s model thereof), the table for Venus is more complex than those for Jupiter and Saturn and, thus, provides an
important point of reference concerning the tables that precede it. The computational portion of the *Wu xing zhan*, it will be remembered, is silent on Mars and Mercury. The case of Mars is easy to understand: earlier on, the manuscript complains that “[its advancing and retreating] are without constancy and cannot be taken as [a standard]” 【進退】無恒, 不可為【極】 (section 2, line 45). Surprisingly, the *Wu xing zhan* is rather more sanguine about the prospects of modeling Mercury—a planet whose apparent behavior is, to make things worse, as difficult to see as it is to model—but since it attributes the planet with an idealized seasonal pattern (above), the same from year to (solar) year, a year-by-year table would seem unnecessary.

On the Venus table (lines 123-142), each column describes the ‘month’ (yue 月) of a visibility phenomenon, the lodge in (yu 與, lit. ‘with’) which the planet/sun rise, and the period between this and the next phenomenon. Every other column or so are also numbers marked with yu 余 ‘remainder’ and qu 取 ‘take’ and the year in which said phenomenon occurs. The years are counted in reign periods, and those above 10 are abbreviated, such that years 11, 21, and 31 revert to 1. These years run (right to left) across several rows, each row (top to bottom) representing Venus’ resonance period of 5 FMR : 8 years, such that the planet’s visibility phenomena are shown to repeat exactly in each subsequent eight-year period. The number of days between each phenomenon is an exact match to the (li-like) motion-degree model following the table in lines 143-146. It is clear, therefore, that this table is the product of calculation rather than observation.20

First, let us consider the lodge-positions. Because the mean sun travels 1 du/day, and because the sun and planet are at the same position at ‘emergence’ and ‘entry’, the number of du traveled over each period necessarily equals the number of days elapsed. Thus, if we count out from a system origin with the sun and planets 5 du into Hall13 (as we can assume the compiler might have done), we should be able at assess whether and how the planet’s lodge-positions were calculated. Doing so, Mo Zihan (2011, pp. 125-126, 132-134) shows that each and every position on the Venus table accords with calculation performed in this manner.

20 Initially declared “records of actually observed astronomical phenomena” (Liu Yunyou 劉雲友 [1978], p. 33), historians of astronomy now agree that the *Wu xing zhan* tables were computed. In reality, the planets’ visibility phenomena are rather more capricious, dependent as they are on a host of geometric, atmospheric, and subjective variables. For an example of the later *li* tradition’s attempt to address some of these variables, see Sivin (2009), pp. 516-550.
NOTE: These tables abbreviate “emerge in the morning in the east” to FMR (first morning rising), “enter in the morning in the east” to LMR (last morning rising), “emerge in the evening in the west” to FES (first evening setting), and “enter in the evening in the west” to LES (last evening setting). Where present, the ‘remainder’ and ‘take’ numbers are marked +−, respectively. Reign periods: QSH = Qin Shihuang 秦始皇 (r. 246/221-210 BC); RoC = Rise of Chu 楚; XHui = Han Xiaohuidi 漢孝惠帝 (r. 192-188 BC); GE/Rgncy = Regency of Empress Lü 吕. Note that the table reverts to 1 in 179 BC at the beginning of Han Wendi’s 文帝 reign (r. 179-157 BC). Underlining indicates contradiction.
<table>
<thead>
<tr>
<th>Item</th>
<th>FMR with Hall₁₃</th>
<th>1 QSH</th>
<th>Hall₁₃</th>
<th>E. Wall₁₄</th>
<th>[Crotch₁₅]</th>
<th>Pasture₁₆</th>
<th>Stomach₁₇</th>
<th>Mane₁₈</th>
<th>Net₁₉</th>
<th>Beak₂₀</th>
<th>Attack₂₁</th>
<th>E. Well₂₂</th>
<th>[E.] Well₂₂</th>
<th>Demons₂₃</th>
<th>Willow₂₄</th>
<th>Seven Stars₂₅</th>
<th>Strung bow₂₆</th>
<th>Wings₂₇</th>
<th>Baseboard₂₈</th>
<th>Horn₁</th>
<th>Neck₂</th>
<th>Root₃</th>
<th>Chamber₄</th>
<th>Heart₅</th>
<th>Tail₆</th>
<th>Basket₇</th>
<th>Dipper₈</th>
<th>Led Ox₉</th>
<th>Serv. Maid₁₀</th>
<th>Tumulus₁₁</th>
<th>Rooftop₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 9 8 7 6 5 4</td>
<td>3 2</td>
<td>1 2 3</td>
<td>2 1 2 3</td>
<td>4 3 2 1</td>
<td>3 2 1 4</td>
<td>6 7 8 9</td>
<td>12 3 4</td>
<td>5 6 7</td>
<td>8 9 10</td>
<td>10 9 8 7 6 5 4</td>
<td>3 2 1 4 5 6 7 8 9 10</td>
<td>2 1 3 4 5 6 7 8 9 10</td>
<td>2 1 3 4 5 6 7 8 9 10</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 2. Wu xing zhan Saturn table (lines 91-120)
Table 3. *Wu xing zhan* Venus table (lines 123-142)

<table>
<thead>
<tr>
<th>4d and 9g parts and FMR with Eastern Wall (Hall) in I</th>
<th>4d and 9g parts and FMR with Devil’s in IX</th>
<th>224d LMR with Western Wall in XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>239</td>
<td>240</td>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
<td>246</td>
<td>247</td>
<td>248</td>
<td>249</td>
<td>250</td>
<td>251</td>
<td>252</td>
<td>253</td>
<td>254</td>
<td>255</td>
<td>256</td>
<td>257</td>
<td>258</td>
<td>259</td>
<td>260</td>
<td>261</td>
</tr>
<tr>
<td>231</td>
<td>232</td>
<td>233</td>
<td>234</td>
<td>235</td>
<td>236</td>
<td>237</td>
<td>238</td>
<td>239</td>
<td>240</td>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
<td>246</td>
<td>247</td>
<td>248</td>
<td>249</td>
<td>250</td>
<td>251</td>
<td>252</td>
<td>253</td>
</tr>
<tr>
<td>223</td>
<td>224</td>
<td>225</td>
<td>226</td>
<td>227</td>
<td>228</td>
<td>229</td>
<td>230</td>
<td>231</td>
<td>232</td>
<td>233</td>
<td>234</td>
<td>235</td>
<td>236</td>
<td>237</td>
<td>238</td>
<td>239</td>
<td>240</td>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
</tr>
<tr>
<td>215</td>
<td>216</td>
<td>217</td>
<td>218</td>
<td>219</td>
<td>220</td>
<td>221</td>
<td>222</td>
<td>223</td>
<td>224</td>
<td>225</td>
<td>226</td>
<td>227</td>
<td>228</td>
<td>229</td>
<td>230</td>
<td>231</td>
<td>232</td>
<td>233</td>
<td>234</td>
<td>235</td>
<td>236</td>
<td>237</td>
</tr>
<tr>
<td>207</td>
<td>208</td>
<td>209</td>
<td>210</td>
<td>211</td>
<td>212</td>
<td>213</td>
<td>214</td>
<td>215</td>
<td>216</td>
<td>217</td>
<td>218</td>
<td>219</td>
<td>220</td>
<td>221</td>
<td>222</td>
<td>223</td>
<td>224</td>
<td>225</td>
<td>226</td>
<td>227</td>
<td>228</td>
<td>229</td>
</tr>
<tr>
<td>199</td>
<td>200</td>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
<td>205</td>
<td>206</td>
<td>207</td>
<td>208</td>
<td>209</td>
<td>210</td>
<td>211</td>
<td>212</td>
<td>213</td>
<td>214</td>
<td>215</td>
<td>216</td>
<td>217</td>
<td>218</td>
<td>219</td>
<td>220</td>
<td>221</td>
</tr>
<tr>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>195</td>
<td>196</td>
<td>197</td>
<td>198</td>
<td>199</td>
<td>200</td>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
<td>205</td>
<td>206</td>
<td>207</td>
<td>208</td>
<td>209</td>
<td>210</td>
<td>211</td>
<td>212</td>
<td>213</td>
</tr>
<tr>
<td>185</td>
<td>186</td>
<td>187</td>
<td>188</td>
<td>189</td>
<td>190</td>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>195</td>
<td>196</td>
<td>197</td>
<td>198</td>
<td>199</td>
<td>200</td>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
<td>205</td>
<td>206</td>
<td>207</td>
</tr>
<tr>
<td>179</td>
<td>180</td>
<td>181</td>
<td>182</td>
<td>183</td>
<td>184</td>
<td>185</td>
<td>186</td>
<td>187</td>
<td>188</td>
<td>189</td>
<td>190</td>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>195</td>
<td>196</td>
<td>197</td>
<td>198</td>
<td>199</td>
<td>200</td>
<td>201</td>
</tr>
</tbody>
</table>

Author: Planetary Visibility Tables
against the ‘ancient degree’ lodge system. Thus, the lodge-positions were not only calculated, they were calculated correctly—correctly, that is, in terms of internal consistency.

The dates are a more complicated matter. Features of the Wu xing zhan tables are inconsistent with the civil calendar. First, the civil calendar of the time began on month X (Oct/Nov) not, as the tables do, on month I (Jan/Feb). Second, the civil calendar was lunisolar, fixing the nian 年 ‘civil year’ of 12 or 13 lunar months (of 354/355 and 384/385 days, respectively) to the sui 歲 ‘solar/agricultural year’ of 365¼ days by means of a 19-year intercalation scheme (19 years = 19 × 12 + 7 lunations = 235 lunations). The tables, however, make no mention of intercalary months; nor are the 12, 30-, and 8-sui patterns of repetition around which they are compiled compatible with a 19-year intercalation scheme.

The yue ‘month’-dates of the Venus are, as Cullen (2011b) details, an even bigger problem. First, because Venus’ 8-year cycle does not fit neatly into a 19-year intercalation scheme, the planet’s phenomena could not possibly be expected to reoccur in the same civil months every cycle—mismatched with the sequence of big, small, and intercalary months, the regular sequence of visibility phenomena would slide forward and backward through the months. What is more, in 10 out of 20 entries the difference in month-dates (assuming a lunation of ≈29.5 days) falls short of the corresponding number of days elapsed between phenomena—a shortfall for which no one 8-year stretch of intercalation in effect between 246-177 BC can effectively compensate. Lastly, two of the month-dates are simply impossible, and two (which appear twice) are contradictory.

21 On sui and nian, see note 34.
22 Cullen (2011b) introduces these problems and attempts to explain them by reading these yue as civil months and attempting to find an optimal intercalary scheme for a single 8-year window: Trial and error shows that the best results are produced if an intercalation is inserted after the 9th months of year 3 and year 6 of the 8-year sequence. In that case, leaving on one side the two impossible months already mentioned, it is found that 15 out of the remaining 18 months can be predicted by using the stated intervals between events and assuming that the first event falls at the start of month 1... But as already mentioned, the pattern of intercalations in subsequent 8-year cycles must be different (p. 247-8).

Archeology has now provided us calendars and dates sufficient for Zhang Peiyu (2007) and Li Zhonglin (2010) to reconstruct the civil calendar of the 70-year
Reading the *Wu xing zhan* tables in civil time is problematic, so let us set aside for a moment our sense, in Chinese studies, of the inevitability of the civil calendar. Yabuuti (1982, p. 6) urges us to consider the possibility that these are “solar calendars” and that “the yue here is not that of the lunisolar calendar but refers instead to solar months”—that is to say a year of 365¼ days (*a sui* in astronomical terms) divided into twelve 30½-day solar ‘months’ counted from the nodal qi Enthronement of Spring.

This is certainly true of the year. A 365¼-day year neatly coincides with the value that the text gives for Venus’ synodic period (8 × 365 ¼ = 5 × 584 96/240 = 2922 days), such that “it takes eight years [in total for it to emerge from and enter the east five times each and re-emerge in the morning in the east with Hall13”【凡出入東方各五，復】與營室晨出東方，為八歲 (lines 145-146). Furthermore, inspection reveals that the ‘remainder’ and ‘take’ numbers (which come before each new year) indicate the number of days, plus-or-minus, from the first day of the year as counted in 365¼-day units from year 1, month I, day 1 of each 8-year period.²³

The *Wu xing zhan*’s motion-degree model has Venus alternate between periods of 224, 120, 224, and 16.4 days for a synodic period of 584.4 days. If, as I have marked on Table 3, we take the ‘remainder’ and ‘take’ numbers to be the positive and negative discrepancy in days between said phenomena and the beginning of the next year, respectively, then we find the following:

<table>
<thead>
<tr>
<th>Year</th>
<th>± Day-Numbers</th>
<th>Explanation of ± Day-Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−21</td>
<td>224 + 120 = 344 = 365 − 21</td>
</tr>
<tr>
<td>2</td>
<td>+78</td>
<td>344 + (224 + 16.4 + 224) = 808.4 = (365 + 365.4) + 78</td>
</tr>
<tr>
<td>3</td>
<td>+57</td>
<td>808.4 + (120 + 224) = 1152.4 = (2 × 365 + 365.4) + 57</td>
</tr>
<tr>
<td>4</td>
<td>+52</td>
<td>1152.4 + (16.4 + 224 + 120) = 1512.8 = (2 × 365 + 2 × 365.4) + 52</td>
</tr>
<tr>
<td>5</td>
<td>−73</td>
<td>1512.8 + (224 + 16.4) = 1753.2 = (2 × 365 + 3 × 365.4) − 73</td>
</tr>
<tr>
<td>6</td>
<td>−94</td>
<td>1753.2 + (224 + 120) = 2077.2 = (3 × 365 + 3 × 365.4) − 94</td>
</tr>
<tr>
<td>7</td>
<td>+5</td>
<td>2077.2 + (224 + 16.4 + 224) = 2561.6 = (3 × 365 + 3 × 365.4) + 5</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2561.6 + (120 + 224 + 16.4) = 2922 = (3 × 365 + 5 × 365.4) = 8 × 365.25</td>
</tr>
</tbody>
</table>

Though he maintains that the *Wu xing zhan* tables are necessarily plotted onto the lunisolar civil calendar, Cullen too concludes from these numbers that that “each
A solar year, as Yabuuti (1982) suggests, would seem to imply solar ‘months’. The concept is not without precedent, indeed the 1/12-sui solar ‘month’ is at the heart of Liu Xin’s (li) planetary methods as well as, it seems, the Wu xing zhan Jupiter table (below).24 True, it is atypical for yue ‘moon/month’ to refer to such a solar ‘month’ (Liu Xin, for example, uses the term zhong 中 ‘medial-[qi]’) but neither is it unprecedented, as we will see later in this article. Either way, the debate surrounding the “Xia xiao zheng” 夏小正 10-yue calendar preserved in the Da Dai Liji 大戴禮記 raises the very real possibility that, at around the time of the Wu xing zhan, the term yue could indeed refer to solar periods abstracted from the ≈29.5-day lunation.25 So, does Yabuuti’s solar calendar solve the problem of the Venus table month-dates? Yes and no. It certainly facilitates the neat repetition of the planet’s 8-sui cycle of visibility phenomena (as well as the other tables’ 12- and 30-sui cycles). However, such an arrangement is still inconsistent with 7 of the Venus table’s 20 month-dates per cycle, faring only moderately better than the civil calendar over the same 70-year period.26 In the end, whatever sort of calendar its compiler intended, these problems and the presence of impossible and contradictory month-dates suggest that the dates of Venus table way well have suffered miscalculation or corruption.

Now that we have an idea of the calendrical idiosyncrasies present in the Venus table, let us return to the superior planets. The latters’ visibility tables are considerably simpler, omitting LES, month-dates, days elapsed, as well as ‘take’ and ‘remainder’ numbers. In the Jupiter table (lines 77-88), each column describes a synodic phenomenon, but the table itself is arranged around the planet’s 12-sui sidereal period. Like the hemerological tianwen models of the omen section, the table thus confuses the relationship between the two, having synodic phenomena repeat every 13th rather than 14th year in a way that is inconsistent with

24 For a detailed explanation of Liu Xin’s planetary methods and his use of the zhong 中 solar month, see Liu Hongtao (2003), pp. 15-22, 37-49.
25 For the case that the “Xia xiao zheng” is a solar calendar divided into 10 solar ‘months’ roughly 36 days in length, see Chen Jiujin (2001), pp. 310-333.
26 Namely, assuming 1/12-sui solar ‘months’ beginning at 1-I-1, LES1 falls 20 days into 2-VII rather than 2-VIII; FES2 falls 15 days into 3-VII rather than 3-VIII; LMR3 falls 23 days into 5-X rather than 5-XI; FES3 falls 21 days into 5-II rather than 5-III; FMR4 falls 18 days into 6-X rather than 6-XI; LMR4 falls 29 days into 6-V rather than 6-VI; and FMR5 falls 24 days into 7-V rather than 7-VI. Between 246-175 BC this accommodates a total of 117 out of 180 month-dates, whereas the civil calendar accommodates 107 over the same period.
the mathematical model that immediately follows it (lines 89-90). In fact, given the periodicities with which the text ascribes it, the planet’s sidereal and synodic periods would coincide only after 156 solar years (that is 12 × 13 sui), which would not permit a compact, repeating table like that for Venus.

That said, the table’s compiler did not simply repeat the above tianwen models. Period tianwen texts like the Huainanzi and Shiji have the calendar deity Taiyin/Taisui determine the time and place of Jupiter’s FMR in the idealized space of a chord-hook diagram; however, both here and in the Jovian year list in lines 2-5 the lodges of FMR correspond not to the Taiyin/Taisui scheme but the ancient-degree richan 日躔 ‘solar steps’—the lodge-position of the sun at 1/12-sui intervals through the solar year—as recorded in era daybooks. Mo Zihan (2011: 126-129) argues that the coincidence of the successive lodge-positions along Jupiter’s 13-‘month’ (1 1/12-sui) synodic period with the successive lodge-positions of the sun at 1/12-sui intervals through the solar year is further evidence that the Wu xing zhan tables are operating on solar time. 27

Other than being organized around a 30-year sidereal period, the Saturn table (lines 91-120) is identical to that for Jupiter, and it too is at odds with the motion-degree model that follows (lines 121-122). Like the case of Jupiter, the compiler takes recourse to the tianwen model, moving Saturn one lodge per year despite the unevenness of the lodges and the skill with which he was able to compute them in the case of Venus. In a concession to the 30-year period of the mathematical model, however, he repeats 2 of the 28 lodges, choosing two of the largest ones. Here we have an interesting paradox: the compiler treats the lodges as all the same until it comes time to plug a gap, at which point he relies on his knowledge of how they are not all the same.

27 Kalinowski (1996) demonstrates that the lodge-positions that third- and second-century BC daybooks attach to each yue of the year are part of a hemerological (and thus non-astronomical) day-count, but notes that “the choice of the twelve new-moon lodges was closely related to observations of the sun’s sidereal positions in the course of the year” (p. 78)—i.e. the solar steps. For an excellent study of the solar steps as seen in excavated and transmitted literature, as well as a demonstration that the daybook yue-lodges correspond to the ‘ancient-degree’ solar steps, see Wu Jiabi 武家璧 (2003), pp. 265-272. For Takeda’s argument that the Wu xing zhan places visibility phenomena at 0° from the sun, see above.
Table 4. Comparison of *Wu xing zhan* Jupiter FMR with ‘ancient-degree’ solar steps

<table>
<thead>
<tr>
<th>Mo.</th>
<th>Solar steps</th>
<th>Wu xing zhan Table</th>
<th>Year-count</th>
<th>Taiyin sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13, 14</td>
</tr>
<tr>
<td>II</td>
<td>15</td>
<td>14</td>
<td>...</td>
<td>15, 16</td>
</tr>
<tr>
<td>III</td>
<td>17</td>
<td>16</td>
<td>17</td>
<td>17, 18, 19</td>
</tr>
<tr>
<td>IV</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>20, 21</td>
</tr>
<tr>
<td>V</td>
<td>22</td>
<td>22</td>
<td>...</td>
<td>22, 23</td>
</tr>
<tr>
<td>VI</td>
<td>24</td>
<td>24</td>
<td>...</td>
<td>24, 25, 26</td>
</tr>
<tr>
<td>VII</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>27, 28</td>
</tr>
<tr>
<td>VIII</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>1, 2</td>
</tr>
<tr>
<td>IX</td>
<td>3</td>
<td>2</td>
<td>...</td>
<td>3, 4, 5</td>
</tr>
<tr>
<td>X</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6, 7</td>
</tr>
<tr>
<td>XI</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8, 9</td>
</tr>
<tr>
<td>XII</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>10, 11, 12</td>
</tr>
</tbody>
</table>

NOTE: Lodges are given in numbers; for reference, see Figure 5. The ‘Solar steps’ column gives the ‘ancient-degree’ solar steps found in third- and second-century BC daybooks (source: Wu Jiabi 武家璧 [2003], p. 277, Table 12). Grey indicates a match between the ‘ancient-degree’ solar step and the ‘monthly’ FMR. Note that the solar step for month II is actually right on the border of lodges 14 and 15, making the *Wu xing zhan* Jupiter table a near match in this instance.

Accuracy

The Jupiter and Saturn tables are theoretically incoherent, but are they empirically inaccurate? Any answer to this question is bound to be unsatisfactory to the savvy historian of science given its subjectivity and the impossibility of retrodicting visibility phenomena—visibility itself being determined in part by atmospheric, physiological, and subjective factors. In addition, whether or not the text’s hypothetical user considered it accurate depends upon if he consulted it as a solar or civil calendar or, indeed, if he consulted it at all. With these caveats in mind, Cullen (2011b) assesses the accuracy of predicted visibility phenomena against apparent phenomena retrodicted via computer program for the tables, concluding that the tables are off a large percentage of the time...
when read as civil calendars. Here I would like to plot the planets’ calculated positions to illustrate a different set of issues.

On Graphs 1 & 2 I have charted Jupiter and Saturn’s right ascension over time as calculated from system origin (assuming Yabuuti’s solar calendar) according to the parameters of the Wu xing zhan visibility tables and motion-degree models, and I compare these to results retrodicted from Alcyone Ephemeris v3.2. Graph 1 illustrates what we might expect: the Wu xing zhan table/model’s linear trajectory fails to capture the complexity of the planet’s actual motions, and it begins and continues grossly out of sync. What is surprising is that the periods of invisibility (the line breaks) are aligned more or less throughout. This is a curious result of how the planet’s synodic period resets every 12 years, as the extra solar month (or 12 missing solar months) effectively compensates

27 My methodology is as follows. (1) For system origin, I chose 246 BC Feb 3 00:00 (JD 163 1604.5), corresponding to Qin Shihuang 1-I-1 00:00 on the civil calendar. This date is somewhat tentative, since we cannot know whether the calendar (civil or otherwise) placed the Enthronement of Spring on new moon or sometime nearer to true Enthronement of Spring (Feb 8, or winter solstice [247 BC Dec 25] + 3 × 365¼ ÷ 24 days)—given the errors involved, however, the effect of shifting system origin as far back as Feb 8 is negligible. (2) For the ‘Alcyone’ line, I used Alcyone Ephemeris to calculate the RA of each planet at three-day intervals from system origin; then, using Planetary, Lunar, and Stellar Visibility v3.1, I calculated the rough periods of invisibility, which I removed from the ‘Alcyone’ line (leaving only punctuated periods of visibility). (3) For the Jupiter graph ‘Wu xing zhan’ line, I multiplied the motion-degree model’s constant angular velocity (1/12 stu per day) by the number of days elapsed since system origin to determine stu travelled from Hall.13 50°, modulo 365.25° for full circuits of heaven; from this, I derived the planet’s RA by converting from stu to degrees, then adding the degrees travelled from Hall.13 50° to the precession-corrected RA of the Hall.13 guide star (+50°), for which I selected η Pegasi according to Cullen (2011b), p. 227, Table 1, modulo 360°; lastly, I used the table’s 1 sui : 1/12 sui sequence of visibility and invisibility to remove periods of invisibility. (4) The Saturn graph ‘WXZ model’ line is calculated in the same way, with the exception that it uses the motion-degree model’s sequence of 345 days of invisibility followed by 32 days of invisibility. (5) The Saturn graph ‘WXZ table’ line is calculated by assuming the planet travels one lodge per sui at a constant rate averaged from the width of each lodge as given in the ‘ancient-degree’ system. (6) The ‘Error’ line represents the absolute value of the difference of the ‘Wu xing zhan’ and ‘Alcyone’ lines.
Graph 1. Wu xing zhan Jupiter table vs. Alcyone Ephemeris v3.2 computed RA
Graph 2. *Wu xing zhan* Saturn table vs. *Alcyone Ephemeris* v3.2 computed RA
for the short 395.69-day synodic period.29 Graph 2 illustrates much the same for Saturn, the exception being that Saturn, which began 24.9° closer to the idealized system origin, does essentially fall into sync over 70 years. What is surprising here is that the linear motion-degree model (avg. error 9.55°) is so crude that the table’s hybrid one-lodge-per-year model (avg. error 7.35°) actually outperforms it. At this level of sophistication, the (tianwen-like) hemerological models seem to outperform the (li-like) mathematical models across the board, which leaves us to wonder whether the tianwen/li distinction might have been more fluid in practice than transmitted literature has led us to believe.

In conclusion, the Wu xing zhan planetary visibility tables appear to be arranged around a solar time frame distinct from the lunisolar civil calendar. In the Venus table, the allotment of lodges in which visibility phenomena occur demonstrate the compiler’s understanding of contemporary astronomical knowledge like lodge-widths and his ability to do simple calendro-astronomical calculations; on the other hand, the month-dates are a mess and appear to either contradict this or suggest textual corruption. Furthermore, the Jupiter and Saturn tables are an amalgam of contradictory knowledge from the omenological and computational sections of the text. What makes this curious is the fact that we never see tianwen and li models adjoined, let alone conjoined, in the received tradition. What makes it even more curious is the fact that the tables’ contravention of generic boundaries and theoretical incoherence appear to produce negligible if not positive effects for accuracy. In the end, the Wu xing zhan tables look nothing like what later li manuals instruct the user to compute, leaving us to wonder just how inchoate or atypical of later planetary tables they may be.

Later Planetary Tables

History, unfortunately, has left us little by way of comparison. Two examples of computed planetary tables survive from the early imperial period, both from completely different times and completely different
contexts. Yet, as different as they are, these tables exhibit a number of interesting commonalities with the *Wu xing zhan* that merit our attention.

Recorded in the *Jin shu* 晉書, the first appears in a calendro-astronomical debate of circa AD 226. The topic of debate is the accuracy of Han Yi’s 韓翊 recently submitted Yellow Inception system (*Huangchu li* 黃初歷) *vis-a-vis* Liu Hong’s famous Supernal Emblem system (*Qianxiang li* 乾象曆) of several decades earlier. Inserted somewhat arbitrarily into the text of the debate is a list, each line of which reads:

【星】以【年月日干支日】【晨/夕】【見/伏】; 黃初【月日干支日】【見/伏】,【先/後】【幾】日; 乾象【月日干支日】【見/伏】,【先/後】【幾】日。

The form and function of this data are obviously distinct from the *Wu xing zhan* tables, though it may have been compiled from something similar. To begin with, this is more a list than a table (though I have reproduced it in table form in Table 5 for the sake of convenience). Furthermore, it compares dates in the civil calendar as we might expect.

Here, two points deserve special mention. First, Mars is absent, and for good reason. The behavior of ‘the Sparkling Deluder’ (Yinghuo 熒惑) is highly variable and difficult to model, which is probably why the *Wu xing zhan* does not even try. Echoing the *Wu xing zhan*—“its advancing and retreating are without constancy and cannot be taken as [a standard]”—Li Yexing 李業興 complains as late as AD 539 that “the [planet] Mars sometimes fails to accord with its [predicted] du since the essence of its appearance/disappearance is inherently inconstant” 熒惑一星，伏見體自無常，或不應度 (*Wei shu* 魏書, 107B.2698). In the third century AD, *li* planetary astronomy was ill-equipped to handle this variability, and so it makes sense that the Yellow Inception and Supernal Emblem systems would not be held accountable to this. Of course, the matter-of-fact models of *li* manuals tell us nothing of actors’ confidence in said models. In the same vein, though *li* system manuals detail procedures for calculating the position and behavior of a planet at any given time, here, like in the *Wu xing zhan*, we see that the emphasis is still on first and last visibilities. That *visibility* is used as a criterion for judging a system’s accuracy is noteworthy, since this is something equally beyond the third-century astronomer’s ability to predict with any great
accuracy, what with the atmospheric and subjective factors involved and his lack of anything more sophisticated than a fixed ‘angle of invisibility’ along the equator or ecliptic to determine visibility.30

Table 5: *Jin shu* Yellow Inception debate planetary system test results

<table>
<thead>
<tr>
<th>no.</th>
<th>Phenomena</th>
<th>Observed</th>
<th>Supernal Emblem Prediction</th>
<th>Supernal Emblem error</th>
<th>Yellow Inception Prediction</th>
<th>Yellow Inception error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FMR</td>
<td>222</td>
<td>Jun 20</td>
<td>Jun 13</td>
<td>−9d</td>
<td>Jun 11</td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FMR</td>
<td>221</td>
<td>Dec 27</td>
<td>Dec 22</td>
<td>−5d</td>
<td>Dec 19</td>
</tr>
<tr>
<td>3</td>
<td>LES</td>
<td>222</td>
<td>Dec 02</td>
<td>Dec 02</td>
<td>+0d</td>
<td>Nov 28</td>
</tr>
<tr>
<td>4</td>
<td>FMR</td>
<td>223</td>
<td>Jan 11</td>
<td>Jan 04</td>
<td>−7d</td>
<td>Jan 01</td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LMR</td>
<td>222</td>
<td>Aug 09</td>
<td>Jul 21</td>
<td>−19d</td>
<td>Jul 18</td>
</tr>
<tr>
<td>Venus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FES</td>
<td>222</td>
<td>Nov 02</td>
<td>Oct 11</td>
<td>−23d</td>
<td>Oct 08</td>
</tr>
<tr>
<td>7</td>
<td>LMR</td>
<td>222</td>
<td>Jan 13</td>
<td>Jan 15</td>
<td>+2d</td>
<td>Jan 14</td>
</tr>
<tr>
<td>8</td>
<td>FES</td>
<td>222</td>
<td>Jun 14</td>
<td>Jun 14</td>
<td>+0d</td>
<td>Jun 13</td>
</tr>
<tr>
<td>9</td>
<td>LES</td>
<td>222</td>
<td>Jul 09</td>
<td>Jul 16</td>
<td>+7d</td>
<td>Jul 15</td>
</tr>
<tr>
<td>10</td>
<td>FMR</td>
<td>222</td>
<td>Aug 19</td>
<td>Aug 03</td>
<td>−16d</td>
<td>Aug 02</td>
</tr>
<tr>
<td>11</td>
<td>LMR</td>
<td>222</td>
<td>Aug 31</td>
<td>Sep 04</td>
<td>+4d</td>
<td>Sep 03</td>
</tr>
<tr>
<td>12</td>
<td>LMR</td>
<td>223</td>
<td>Jan 03</td>
<td>Dec 29</td>
<td>−5d</td>
<td>Dec 28</td>
</tr>
<tr>
<td>13</td>
<td>LMR</td>
<td>223</td>
<td>Jan 03</td>
<td>Jan 31</td>
<td>−16d</td>
<td>Jan 31</td>
</tr>
</tbody>
</table>

NOTE: Column 1 gives the number of each phenomenon; note that the text states that there are 15. Column 2 gives the type of phenomena: FMR for ‘morning appearance’ 晨見 (first morning rising), LES for ‘hiding’ 伏 (last evening setting), and for the inferior planets, LMR for ‘morning hiding’ 晨伏 (last morning rising), and FES for ‘evening appearance’ 夕見 (first evening setting). Column 3 gives the reported date of observation, converted to the Julian calendar. Columns 4 and 6 give the reported predictions of the Supernal Emblem and Yellow Inception systems. Columns 5 and 7 give the reported error from the observational results in Column 3.

The second set of computed planetary tables comes from the *Qiyao rangzai jue* 七曜攘災決 (T no. 1308). Preserved in the Japanese Taishō 大正 Buddhist canon, the text claims to have been “written and collated by the

Brahmin monk of west India, Konita 奇摩婆羅門僧金俱吒撰集之 (T no. 1308, 426:b22) in the ninth century AD, shortly after which it was taken to Japan. Rather than the state-centered judicial astrology typical of tianwen literature, the Qiyao rangzai jue deals with horoscopy. It describes the nature and functions of the Seven Luminaries (sun, moon, and planets), Rāhu, and Ketu (here, the moon’s ascending node and apogee, respectively), as well as how to counteract their untoward effects on personal fortune through apotropaic rituals. In the middle of the text we find motion-degree models and tables for the five planets. As we have them now, the latter are arranged around resonance periods that have been assigned to Japanese reign periods from the eleventh to twelfth centuries, though it stands to reason that the details of the tables themselves may have existed prior to that time. Each column of the tables represents a year, and each row a yue ‘month’, but it is difficult to understand where each row breaks in the Taishō edition because of the way that the text has been arranged for printing. Table 6 is thus provided according to Yano Michio’s 矢野道雄 study of another Japanese manuscript edition of AD 1122.

Unlike the Wu xing zhan, these tables detail the planet’s position and/or behavior in each month and the specific date of each characteristic phenomena—first and last appearances, first and second station, and prograde and retrograde motion—which makes sense in the context of horoscopy where the question is the planet’s position at any given time. Like the Wu xing zhan, however, the tables are arranged around the planet’s resonance period, allowing the calendar years to repeat around it, each column of the Jupiter table being assigned to two sexagenary years in the Japanese calendar 83 years apart. The main difference in this arrangement then is that the Qiyao rangzai jue uses longer resonance periods befitting a proportional relationship between the planet’s sidereal and synodic periods, i.e. 83 years = 765 = 7P for Jupiter. Also like the Wu xing zhan, the tables are compiled according to models that are significantly simpler than contemporary li (or li-like) ones. What is more, as in the Wu xing zhan, for these tables to repeat exactly over a given number of years the civil calendar will not do. Instead, the Qiyao rangzai jue explicitly employs a solar calendar, the details of which it describes later in the text:

Table 6. Qiyao rangzai jue Jupiter table (excerpt)

<table>
<thead>
<tr>
<th>长</th>
<th>甲</th>
<th>乙</th>
<th>丙</th>
<th>丁</th>
<th>戊</th>
<th>己</th>
<th>庚</th>
<th>辛</th>
<th>壬</th>
<th>癸</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>yr/mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24th appear Ls 12°</td>
<td>L9 L10</td>
<td>L4</td>
<td>L2</td>
<td>3rd stop Ls 1°</td>
<td>Retreat</td>
<td>Retreat L26</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L12</td>
<td>L10</td>
<td>L4</td>
<td>4th stop Ls 6°</td>
<td>Retreat L2</td>
<td>Retreat L28</td>
<td>22nd rtrt-stop Ls 8°</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>L11</td>
<td>6th stop Ls 12°</td>
<td>Retreat L2</td>
<td>22nd rtrt-stop Ls 1°</td>
<td>Stop L25</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>14th L11 4°</td>
<td>Retreat</td>
<td>Retreat L2</td>
<td>21st L2 5°</td>
<td>Stop</td>
<td>Stop L26</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27th stop Ls 14°</td>
<td>L11</td>
<td>Retreat</td>
<td>22nd stop Ls 5°</td>
<td>Garrison L2</td>
<td>Stop</td>
<td>L26</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28th stop Ls 11°</td>
<td>L10</td>
<td>24th Garrison L2</td>
<td>Garrison L2</td>
<td>Stop</td>
<td>L27</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td>Retrib</td>
<td>28th</td>
<td>Garrison Ls</td>
<td>Ls</td>
<td>Ls</td>
<td>L2</td>
<td>Stop</td>
<td>9th hide L27 8°</td>
<td>VII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>Stop</td>
<td>L3</td>
<td>L6</td>
<td>3rd</td>
<td>Sprt</td>
<td>L28</td>
<td>11thappear L27 12°</td>
<td>VIII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th retreat Ls 3°</td>
<td>L10</td>
<td>L1</td>
<td>L4</td>
<td>9th hide Ls 8°</td>
<td>L1</td>
<td>10th</td>
<td>L27 IX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>L11</td>
<td>L4</td>
<td>10th hide Ls 14°</td>
<td>11th</td>
<td>Ls 12°</td>
<td>L4</td>
<td>L28</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>L12</td>
<td>13th hide Ls 20°</td>
<td>13th</td>
<td>Ls 3°</td>
<td>L4</td>
<td>L2</td>
<td>L28</td>
<td>XI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>16th hide Ls 4°</td>
<td>17th</td>
<td>Ls 5°</td>
<td>Ls</td>
<td>L2</td>
<td>4th stop L28 12°</td>
<td>XII</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Every twelve months, one month is determined by the ascending and descending
motion of the planets. This is consistent throughout antiquity and into today.
Yabuuti (1982) argues that the basis of the Wu xing zhan tables: a solar year of 365⅓ days divided into 12 solar months and beginning on the nodal qi Enthronement of Spring.

Of course, it behooves us to question what connection a Buddhist horoscope text necessarily has to indigenous traditions. In this case, the connection is unmistakable. Certain of the planets’ resonance periods do coincide with Indian-language precedents, but the features of the text’s planetary astronomy are wholly consistent with Chinese practices: the sky is divided into 365⅓ du; the text uses 28 lodges of uneven size, whose widths set it in accordance with Chinese ‘polar-ecliptical’ coordinates; the motion-degree models are consistent in style and approach with the Chinese variety; and so too is the calendar, beginning halfway between winter solstice and spring equinox and being based on the 24 qi rather than the position of the Sun in the Western zodiac.32 From this it seems

32 In contrast, the Indian-language tradition of calendro-astronomy divides the sky into 360° and 27 or 28 evenly-sized nakshatras, and it begins the solar year in March/April, which it divides by the zodiac rather than qi (though this does produce similar fortnightly periods). On this tradition, see Pingree (1978). For the identification of the lodge-widths reflected in the Qiyaoranzaitie solarstep table with Chinese ‘polar-ecliptical’ coordinates, see Yano (1986), pp. 29-30; Niu & Jiang (1997), pp. 243-244. While the Qiyaoranzaitie’s motion-degree models are typical of the Chinese tradition of li, similar models appear in other civilizations as well. For example, Alexander Jones has brought to my attention a Venus model in the second-century AD Greek papyrus 4135 from Oxyrhynchos that looks remarkably similar to the Wu xing zhan’s and that has clear parallels in Babylonian and Indian traditions (Jones, 1999 vol. 1, pp. 81-84; vol. 2, pp. 10-13). Lastly, Clemency Montelle has also drawn my attention to parallels between the
reasonable to attribute those features coinciding with the *Wu xing zhan* tables to Chinese tradition as well, be they the source of the *Qiyao rangzai jue* astronomy or indigenous conventions to which foreign knowledge was adapted.

The Chinese Solar Calendar?

Through many vicissitudes, the lunisolar civil calendar continued to enjoy official status until the Republic of China adopted the Gregorian calendar on January 1, 1912. The *Qiyao rangzai jue*, however, was not the last mention of our Enthronement of Spring solar calendar in pre-modern times. The idea appears again in Shen Guā’s 沈括 (AD 1031-1095) *Mengxi bitan* 夢溪筆談 of AD 1088. Shen complains that the use of the lunar month makes the civil calendar needlessly complex and injurious to agricultural timing. He proposes the following solution:

今為術莫若用十二氣為一年，更不用十二月，直以立春之日為孟春之一日，驚蟄為仲春之一日，大盡三十一日，小盡三十日。歲歲齊盡，永無閏餘。十二月常一大一小相間，縱有兩小相併，一歲不過一次。如此則四時之氣常正，歲政不相陵奪，日月五星亦自然準之，不須改舊法。唯月之盈虧，事雖有係之者，如海、胎育之類，不預歲時，寒暑之節，寓之曆間可也。...

If today we were going to come up with a new method, none would compare to using the 12 *qi* as a civil year rather than 12 lunar months, and directly taking the day of the Enthronement of Spring as the first day of the first ‘month’ (*yue*) of spring and Excited Insects as the first day of the second ‘month’ of spring. Big [months] would run 31 days and little [months] 30 days, each and every year being the same length, eternally free of the intercalary remainder. 12 ‘months’ would always alternate between big and small, and even if there were two small ones together, this would happen at most once per year. In this way, the *qi* of the four seasons would always be correct, the agricultural and civil year would not conflict, the sun, moon, and planets would also naturally accord with it without

Qiyao rangzai jue’s resonance periods for Jupiter (83 years = 76S = 7P), Mars (79 years = 37S = 42P), and Saturn (59 years = 57S = 2P) with texts of the Indian *Brāhmapakṣa* tradition in Pingree (1970), p. 104.
having to change old methods. Though it is connected with things like tides and gestation, the waxing and waning of the moon alone has no relationship to the year and the rhythm of cold and hot, and thus noting it in the calendar would be fine. ... I expect this discourse of mine on li (the calendar) should meet special condemnation, but at some other time my idea will definitely see use (Mengxi bitan jiaozheng 夢溪筆談校證, entry 545).

Whatever originality he claims for his idea, it is identical in every detail to the calendar underlying the Wu xing zhan and Qiyao rangzai jue tables. In fact, Shen Gua himself seems to hint at an old astronomical precedent for this—“the sun, moon, and planets would also naturally accord with it without having to change old methods”—but can we imply from this the idea of a practical tradition of table-making (on which transmitted li literature is silent, no less) connecting sources centuries and centuries apart?

Let us say that the exact same solar calendar was independently introduced some three different times over the early imperial period—this would, at the very least, indicate to us that it was a perennially good idea. The Wu xing zhan and Qiyao rangzai jue make the functional advantage of such a calendar abundantly clear: it allows for compact repeating planetary tables such that, in the Qiyao rangzai jue’s words, “back to antiquity and up to today the lodge-degrees where [the planets] linger each year, like matching tallies, do not differ by a fraction of a hair’s breadth” (T no. 1308, 448: c3-4).

But were the necessary ideas for such a calendar in place by the third or second century BC? The concept of the solar year, with its obvious importance for seasons and agriculture, is evident in intercalation practices going back to the earliest written records in China. In the pre-Qin classics we already see a lexical distinction between nian (the lunisolar civil year) and sui (the solar/agricultural year) that trickles down into the language of the astral sciences. In the ‘Yao dian’ 堯典 chapter of the Book of Documents, for example, the ancient sage king Yao 堯 commands the Xi-He 羲和 brothers, “a period of 366 days, use intercalary months to fix the four seasons and complete the sui” 稘三百有六旬有六日，以閏月定四時成歲 (Shangshu zhushu 尚書注疏, 2.21b) and the Rites of Zhou describes the duty of the Grand Clerk as being to “set

33 Of course, here a useful parallel might be drawn with the popular transmission of hemerological knowledge over the same period, see for example Kalinowski (1996) and Harper (2010).
straight the *sui* and the *nian* (via intercalation) to order affairs” 正歲年以序事 (*Zhouli zhushu* 周禮注疏, 26.401b).\(^{34}\)

From there, it is not difficult to imagine that someone at the time of the *Wu xing zhan* was able to divide the *sui* by twelve, but was this common practice? The first complete inventory of the 24 *qi* occurs only in the *Huainanzi* (3.98-102), almost thirty years after the sealing of Mawangdui tomb 3. Of course, numerous *qi* names appear in works as early as the *Zuo zhuan* 左傳, *Guanzi* 管子 and *Lü shi chunqiu* 呂氏春秋 (259 BC), and complete inventories occur also in the “Zhou yue” 周月 and “Shi xun” 試訓 chapters of the *Yi Zhou shu* 逸周書 (which, like the *Zuo zhuan* and *Guanzi*, scholars tend to date vaguely to the fourth or third centuries BC). Historians of astronomy, however, generally reject the *Yi Zhou shu* chapters, because text critics have labeled them Han fabrications, and, coming around full circle, text critics like Huang Peirong 黃沛榮 label them fabrications because they contain complete inventories of the 24 *qi*.\(^{35}\) Whatever our faith in the preeminence of the *Huainanzi*, the presence of the ‘ancient-degree’ solar steps in daybooks excavated from the third and second centuries BC now provides us with unequivocal precedence for the division of the solar year by twelve.\(^{36}\)

What makes a connection between the *Wu xing zhan* and *Qiyao rangzai jue* tables conceivable (although by no means conclusive) is the fact that a solar calendar is, by definition, intrinsic to the lunisolar calendar and, thus, the practice of *li*. Wolfram Eberhard’s description, now more than a half century old, is still quite apt:

> It can easily be shown that the Chinese were capable of developing a pure solar calendar. If an astronomer intends to make any astronomical calculation, for example, to calculate the date of the next new moon or

\(^{34}\) On the distinction between *sui* and *nian* in the language of mathematical astronomy, see Qu Anjing 曲安京 (2008), pp. 66–67. Note that in non-astronomical contexts this distinction is not an absolute one, e.g. the *Jiuzhang suanshu* 九章算術 gives the length of a *sui* as 354 days (*Huijiao Jiuzhang suanshu* 匯校九章算術, 3.115), and the *Erya* 儒雅 identifies these terms as synonyms: “a *zai* (year) is a *sui*; the Xia called it *sui*, the Shang called it *si*, the Zhou called it *nian*, and Tang Yu called it *zai*” 載，嵗也，夏曰嵗，商曰祀，周曰年，唐虞曰載 (*Erya zhushu* 億雅注疏, 5.18b).

\(^{35}\) Huang Peirong 黃沛榮 (1976), pp. 265-278, 282-283; cf. Huang Huaxin 黃懷信 (1992), pp. 111-115. Whatever the authenticity of the “Zhou yue” and “Shi xun” chapters, it is worth noting that other *Yi Zhou shu* materials previously considered suspect have appeared in the fourth-century BC Tsinghua University manuscripts, dispelling any lingering doubts about those particular chapters.

\(^{36}\) On the solar steps, see note 27.
the next eclipse of the moon or sun, he has to start from
the movement of the sun. An examination of the
formula which the Han astronomers used for their
calculations shows that they developed a pure solar
calendar system for their calculations and then
converted it into the “civil” calendar of a luni-solar
character. If the function of Chinese astronomy had
been to provide a tool for the farmer, this
“astronomical” calendar would have been the ideal
tool, because the seasons were fixed in this calendar.
The fact that the Chinese retained the luni-solar
calendar until the twentieth century indicates that their
interests were different. We must assume that they
followed an old tradition which had fixed the popular
festivals and observances of a religious cult by the
phases of the moon (1957, p. 63).

The Chinese astronomer was no slave to the civil calendar. Not only did
astronomers vie to reform it throughout the ages, the very procedures of
li literature required that, to do any astronomical calculation whatsoever,
one must compute a calendar as one goes along. Simple and repetitive,
solar time is eminently suited to this purpose—it is for much the same
reason that Greek astronomers came to adopt the 365-day Egyptian
calendar for use in calculation. More to the point, solar time determines
solar position, which, in the Chinese motion-degree model, determines
planetary position. It is for this reason that the Triple Concordance
system manual instructs the user to perform parallel calculations in solar
and lunar time, the sole purpose of the latter (which invariably comes
second) being to put a civil date on an astronomical event. What is odd
about the Wu xing zhan and Qiyao rangzai jue tables, therefore, is not that
have solar time as their bases but that, unlike the Jin shu list, they omit
the final steps of calculation.

37 See Neugebauer (1942).
38 Note that the Quarter-remainder and subsequent systems simplify the
parallel solar and lunar ‘methods’ of the Triple Concordance system by moving
from the initial solar calculations—the number of synodic periods elapsed from
high origin to the year previous that in question and the number of day/du past
winter solstice the previous conjunction fell—to the calculation of months and
binome days, bypassing medial qi and solar stations. For a comparison of these
methods, see Liu Hongtao (2003), pp. 37-49, 97-100.
The *Wu xing zhan* as Manuscript

If the *Wu xing zhan* planetary tables are indeed solar calendars, it would seem that they would only be of use to someone able to recognize them as such and convert their dates to the civil calendar. However, the fact that both the *Qiyao rangzai jue* and Shen Gua feel the need to provide detailed instructions for such conversion suggests that this may not have been common or self-evident knowledge. We cannot assume *ipso facto* that the *Wu xing zhan*’s owner understood its contents. If anything, the tables are so inaccurate, due to the limitations of the system origin and planetary models, that it would make little practical difference whether one consulted them as solar or civil calendars. Whether or not the compiler of the tables knew what he was doing remains a mystery, but what we know for certain is that the copyist did not: the manuscript is beautifully copied but rife with numerical corruption, corruption that is obvious and goes uncorrected.39

So, what use could the manuscript and its tables have been to anyone? Cullen suggests that the latter might function within the context of the omenological half of the text to set parameters of normal behavior through which to interpret observed phenomena:

We need to recall what David Brown has written in the context of ancient Mesopotamian astronomy: one of the advantages of schematic depictions of celestial motions is that they automatically generate portents through their divergence from what is actually observed. A celestial diviner who had constructed something like the Venus table in the *Wu xing zhan* may well have felt a double satisfaction: on the one hand he had uncovered the ideal reality of what Venus ought to do, but on the other hand he also had the ability to interpret for his clients what it meant when Venus did not act as it should have done. Regard (and reward) for his professional competence was thus assured on two fronts (2011b, pp. 248–249).

I agree that this may well have been the case at some point in the text’s history, but I suspect that the Mawangdui manuscript as we have it was not for use—that is, at least, not its computational sections. I say this for several reasons. At the time, it was customary to avoid the personal names of the rulers of the current dynasty, alive and dead, and to replace

39 For a discussion of numerical corruption in the *Wu xing zhan*, see Mo Zihan (2011).
these words with equivalents. The *Wu xing zhan* avoids the name of Han Gaozu 高祖 (Bang 邦) but not that of Qin Shihuang (Zheng 政) or Han Wendi 文帝 (Heng 恒), before and after him. Assuming the rigorous application of such taboos, this suggests that the manuscript as we have it was copied between 206 and 180 BC, just about the time that the tables come to an end.\(^4\) There is more than enough space left in the tables to fill them out to the manuscript’s date of interment in 168 BC—so much, in fact, that one could fill the Saturn table out to AD 84—but it seems that its owner was not interested in doing so. This brings us to an important point: *this is not a forward-looking table, nor could one hope to plot a forward-looking table in regnal years.* The *Qiyaorangzai jue* avoids this problem by using the sexagenary year-count, which, unlike the rule of men, continues uninterrupted into the infinite future. The *Wu xing zhan’s* tables, in other words, were historical tables for who knows what purpose.

Donald Harper has argued at length that the abundant medical literature found also in Mawangdui tomb 3 reflects a culture of connoisseurship among the elite of the time, who not only sought to patronize and keep experts on retainer but to consume texts.\(^5\) I suspect that we can also attribute the *Wu xing zhan’s* presence in this tomb to these factors—as just one more example of how, in the burgeoning manuscript culture of the time, expert knowledge began to circulate beyond expert circles and find its way into unlikely hands. At the same time that it facilitated this flow of information, however, manuscript culture also opened it to innovation and corruption at the popular level. It is in this context, I believe, that we can reconcile the way that the manuscript combines and hybridizes contradictory planetary models with what we know of the received tradition’s efforts to segregate them.

Conclusion

The goal of this article has been to explore the question of diversity within the scientific culture of a single time and place. Looking at calculated planetary tables allows us to reflect upon discrepancies between manuals and practice in early imperial mathematical astronomy.

First, it is striking that both sets of planetary ephemerides extant from the period are organized around the same solar calendar. While this is at

\(^4\) Of course, it is important not to take these practices for granted. Chen Yuan 陳垣 (1997, pp. 64–66) notes numerous examples where the personal names of emperors were not avoided in the Han.

odds with the lunisolar civil calendar that received system manuals instruct the user to produce, we know astronomers to have implicitly used such a calendar in their calculations because of the centrality of solar time to planetary models and computational procedure. The *Wu xing zhan* and *Qiyao rangzai jue* tables are simply evidence that they may have done so explicitly as well, if for the added benefit of textual compactness.

Second, the *Wu xing zhan* tables and *jin shu* list only planets’ first and last visibilities, the latter taking these as the sole criterion for judging system accuracy. With the exception of Buddhist horoscopy texts, this hints at a distinct emphasis in astronomical practice that is impossible to glean from manuals, which devote equal attention to all a planet’s characteristic phenomena and the computation of daily positions. This emphasis seems somewhat curious given the inability of period models to account for the complexities of visibility. On the other hand, both texts’ de-emphasis of Mars betrays an appropriate lack of confidence concerning actors’ ability to model this planet that too is impossible to glean from manuals.

Third, both the *Wu xing zhan* and *Qiyao rangzai jue* tables are calculated according to numbers and models that are radically simpler than those of contemporaneous *li* mathematical astronomy. Here again we see the plurality of traditions within the Chinese astral sciences: there is the state of the art and there is working knowledge, there is planetary astronomy and there is planetary hemerology. While the received tradition firmly segregates this knowledge into the categories *tianwen* and *li*, the *Wu xing zhan* hints that in practice the boundaries between them may have been somewhat porous. Lastly, these distinctions may also reflect a divide between expert and amateur, or elite and popular, traditions of the astral sciences within a manuscript culture, as technical knowledge began to circulate independently of experts and through the hands of dilettantes like Li Xi.

References

Primary Sources

Erya zhushu 爲雅注疏 (*Erya* Dictionary with Commentary and Subcommentary), compiled by Xing Bing 邢昺 et al., 999; reprint from *Wenyuange Siku quanshu* 文淵閣四庫全書, 1782;
AUTHOR: PLANETARY VISIBILITY TABLES

43

Han shu 漢書 (History of the [Former] Han [Dynasty]), Ban Gu 班固, 111; edition Beijing: Zhonghua shuju, 1962.

Huijiao Jiuzhang suanshu (zengfu ban) 匯校九章算術（增補版） (The Collated Jiuzhang suanshu [Expanded Edition]), anonymous, compiled probably in the Han (206 BC – 220 AD); critical reprint with annotations by Guo Shuchun 郭書春; edition Shenyang: Liaoning jiaoyu chubanshe, 2004 (2 vols.).

Kaiyuan zhanjing 開元占經 (The Divination Classic of the Kaiyuan Reign), Gautama Siddhārtha, 729; reprint from Wenyuange Siku quanshu 文淵閣四庫全書, 1782; edition Taibei: Taiwan shangwu yinshuguan, 1983-1986.

Mengxi bitan jiaozhe 夢溪筆談校證 (Dream Stream Brush Talks Collated and Verified), Shen Gua 沈括 (1031-1095); critical reprint with annotations, Shanghai: Shanghai guji chubanshe, 1987.

Qiyao rangzai jue 七曜攘災決 (Formulae for Averting Disaster by the Seven Luminaries), Koṅta 金俱吒, ninth century; reprinted in Takakusu Junjirō 高楠順次郎 and Watanabe Kaigoku 渡邊海旭 (eds.), Taishō shinshū daizō-kyō 大正新脩大藏經, Tōkyō: Taishō issaikyō kankō-kai, 1924-1934, T. no. 1308.

Shangshu zhushu 尚書注疏 (Book of Documents with Commentary and Subcommentary), compiled by Kong Yingda 孔穎達, 653; reprint from Wenyuange Siku quanshu 文淵閣四庫全書, 1782; edition Taibei: Taiwan shangwu yinshuguan, 1983-1986.

Zhouli zhushu 周 禮 注 疏 (Rites of Zhou with Commentary and Subcommentary), compiled by Jia Gongyan 賈公彦, 999; reprint from Wenyuange Siku quanshu 文淵閣四庫全書, 1782; edition Taipei: Taiwan shangwu yinshuguan, 1983-1986.

Secondary Sources

Chen Jiujin 陳久金 (2001), Boshu ji gudian tianwen shiliao zhu xi yu yanjiu 帛書及古典天文史料注析與研究 (Commentarial Analysis and Researches on Sources for the History of Astronomy in Silk Manuscripts and the Classics), Taipei: Wan juan lou.

Chen Xiaozhong 陳曉中, and Zhang Shuli 張淑莉 (2008), Zhongguo gudai tianwen jigou yu tianwen jiaoyu 中國古代天文機構與天文教育 (Astronomical Organizations and Astronomical Education in Ancient China), Beijing: Zhongguo kexue jishu chubanshe.
AUTHOR: PLANETARY VISIBILITY TABLES

Chen Yuan 陳垣 (1997), Shi hui juli 史諱舉例 (Examples of Taboo Words in History), Shanghai: Shanghai shudian chubanshe.

Deng Wenkuan 鄧文寬 (2002), Dunhuang Tulufan tianwen lifa yanjiu 敦煌吐魯番天文曆法研究 (Researches on the Astral Sciences at Dunhuang and Turpan), Lanzhou: Gansu jiaoyu chubanshe.

Huang Huaixin 黃懷信 (1992), Yi Zhou shu yuanliu kaobian 『逸周書』源流考辨 (An Investigation on the Origin and Development of the Yi Zhou shu), Xi’an: Xibei daxue chubanshe.

Li Zhonglin 李忠林 (2010), “Zhoujiatai Qin jian lipu xinian yu Qin shiqi lifa” 周家臺秦簡曆譜係年與秦時期曆法 (The Date of the Zhoujiatai Calendar and the Calendrics of the Qin Period), Lishi yanjiu 歷史研究 2010.6: 36–53.
AUTHOR: PLANETARY VISIBILITY TABLES

47

______ (2004), Mawangdui tianwen shu kaoshi 馬王堆天文書考釋 (Study and Exegesis of the Mawangdui Astronomical Books), Guangzhou: Zhongshan daxue chubanshe.

Nōda Chūryō 能田忠亮, and Yabuuti Kiyosi 藪内清 (1947), Kanshō ritsurekishi no kenkyū 漢書律暦志の研究 (Researches on the Han shu "Lù lì zhì"), Tōkyō: Zenkoku shobō.

Qu Anjing 曲安京 (2008), Zhongguo shuli tianwenxue 中國數理天文學 (Chinese Mathematical Astronomy), Beijing: Kexue chubanshe.

Sivin, Nathan (2009), Granting the Seasons: the Chinese Astronomical Reform of 1280, with a Study of its Many Dimensions and a Translation of its Records, New York: Springer.

Tao Lei 陶磊 (2003), Huainanzi Tianwen yanjiu – cong shushu de jiaodu『淮南子·天文』研究——從數術的角度 (Researches on Huainanzi “Tianwen”: from the Perspective of Numbers and Techniques), Jinan: Qi Lu shushe.

Wang Shengli 王勝利 (1989), “Xingsui jinian guanjian” 星歲紀年管見 (Humble Opinions on the Stellar and Jovian Year-Count), in
AUTHOR: PLANETARY VISIBILITY TABLES

Zhang Peiyu 張培瑜 (2007), “Genju xinchu liri jiandu shilun Qin he Han chu de lifa” 根据新出曆日簡牘試論秦和漢初的曆法 (An Attempt to Discuss the Calendrics of the Qin and Early Han According to
