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Recent years have seen intense research activity in the modelling and analysis of
complex networks, mainly driven by the availability of new large-scale databases for
social, biological, and technological networks (see for example Newman, 2010 for a
review). Maritime transport networks are one area where these new ideas and
techniques have found fertile ground (Deng et al., 2009; Hu and Zhu, 2009; Kaluza et
al., 2010; Ducruet, 2013). In this study, we analyse a database generated from Lloyd’s
Shipping Index, a weekly publication of cargo ship movements by Lloyd’s List, over
the period 1890 to 2008. For 20 selected years, an entire volume of the Index, each
containing data for one week, was extracted and the data transformed into a network
where the nodes are ports and links are nonstop ship voyages. Because cargo shipping
is the dominant transport mode for world trade (UNCTAD, 2013), it is of great
economic relevance for understanding the importance of the nodes. Here we measure
importance in two ways:

• the number of vessel calls; and
• the degree, defined as the number of ports that the node is connected to by

at least one arriving or departing ship.

The call and degree distributions are arguably the two most important summary
statistics of the network (see Chapter 4 by Barthelemy for a more general discussion).
They may not allow a complete reconstruction of traffic on the links. However,
unweighted and weighted degree distributions are an important feature of a network’s
topology and have often been used as circumstantial evidence for mechanistic models
of the network’s evolution (Barabási and Albert, 1999; Tadić, 2002; Moore et al.,
2006). The call distribution also plays a crucial role for predicting the full origin-
destination matrix (i.e. the traffic between all pairs of ports) because it is an input in
transport forecasting (e.g. in the gravity model or the intervening opportunities
model (Wilson, 1967)).

In the early phase of complex network science, many degree distributions of real-
world networks were characterised as power laws (Barabási and Albert, 1999). In the



parlance of statistics, an integer-valued power law is a probabilistic model that assigns
the probability Pr(k) to the event that an arbitrary node has degree or weight k so that

Pr(k; )  k

 ( )
, k 1, 2,3,... (14.1)

Here  ( ) is the Riemann zeta function and  1 a fixed parameter that has to be

fitted to the data. Because Pr(ak; )  a Pr(k; ) , the distribution of equation 14.1 is

also called scale-free. The interest in power law distributions stems mainly from the
fact that these are particularly heavy-tailed (i.e. the tail of the distribution decays more
slowly than an exponential function). As a consequence, a power-law distribution has
a large range in degrees: while most nodes have only a small degree, some nodes
possess a much larger degree than the average. At first glance, such a heterogeneity in
degrees is indeed found in many empirical networks (Albert and Barabási, 2002).

Most of the time, a power-law degree distribution was inferred from straight-line fits
to the log-log diagram of the degree frequency, but this is now generally viewed as an
unsatisfactory approach (Clauset et al., 2009). Identifying a region where the data
appear more or less linear is largely arbitrary because most distributions are too noisy
and substantially curved on double-logarithmic scales. Straight-line fits based on
standard least-squares algorithms can also lead to a bias in the estimated exponents.
Most importantly, however, there is no a priori reason why Pr(k) has to be a power
law. Many other common probability distributions are also heavy-tailed and may fit
the data better. Recent studies in fact doubt that power laws are as ubiquitous as once
believed (Edwards et al., 2007; Willinger et al., 2009; Stumpf and Porter, 2012).

This study proposes that statistical methods should be applied to the maritime network
to understand which type of call or degree distribution best explains the observed data.
We apply information-based model selection (Burnham and Anderson, 1998) and
statistical tests to compare different candidate distributions. Another goal of the paper
is to assess whether the call and degree distributions of the cargo ship network have
significantly changed over time. One hypothesis from the geographic literature is that
the call and degree distributions may structurally change alongside major
technological transformations of the shipping industry and their consequences on port
operations and maritime network configurations (McCalla, 2004). The studied period
goes across different dominant ship technologies, such as sail, steam, combustion,
specialised vessels (e.g. container, tanker), and mega-carriers. Such technological
evolutions are believed to have been selective, as some ports were dropped from the
network and replaced or superseded by new ones better adapted to changing standards,
sometimes resulting in an increasing concentration of port activity favouring fewer
and larger ports. Containerisation is seen as a revolution in itself with profound
impacts on network configuration and world trade (Cullinane and Khanna, 1999;



Bernhofen et al., 2013). In this study we find indeed evidence that the call
distributions have evolved so that the fraction of small ports has decreased. At the
same time the Gini coefficient, a common measure for inequality of a distribution, has
slightly decreased over the study period.

Before proceeding with the statistical analysis, we emphasize one caveat. The
voyages reported by Lloyd’s certainly form only a subset of the entire global traffic
distribution and may possibly be biased, for example if certain ports, ships, or routes
are systematically underreported. The quality of reporting may also differ between
different years. We currently have insufficient knowledge whether such biases are
present and thus cannot apply any corrections. Lloyd’s Shipping Index, however, is
the most complete and consistent data source available to study the development of
the cargo ship network over the investigated time period. Therefore, we are confident
that the trends reported below are genuinely representative of the network’s evolution.

Probabilistic models

We investigate eight different models that have frequently been used to fit empirical
degree distributions in complex networks (Table 14.1). We restrict our study to
discrete distributions

(a) whose support are all positive integers; and
(b) that depend on maximally two parameters.

Restriction (a) reflects that degree or port calls only have integer values. One might
argue that k  0 should also be included and that the maximum degree should have an
upper bound because the network is finite. However, from Lloyd’s Shipping Index we
cannot directly infer which ports were in principle open to traffic but remained unused.
Consequently, distributions with infinite support but excluding k  0 are more
appropriate in the present context. The number of ports with k  0 can differ slightly
between the call and degree distributions: some ports have a positive number of calls
but degree zero because in the raw data some vessels are reported to call at one, not
two ports (namely origin and destination) in their latest known voyage. For the call
distribution we kept these isolated ports but removed them from the degree
distribution since zero is unlikely to be their true degree. Restriction (b) avoids
overfitting of the data but still includes the “usual suspects” for degree distributions in
socio-economic networks.

[Table 14.1 here]

We include four one-parameter models: besides the power law of equation 14.1 (also
known as zeta distribution), we assess the likelihood of Poisson, geometric, and Yule-
Simon distributions. The Poisson distribution describes the node degrees of large
sparse Erdős-Rényi random graphs, a common null model in network studies. The tail
of a Poisson distribution decays faster than exponentially so that degrees in Erdős-



Rényi graphs are effectively limited to values near the mean degree. The geometric
distribution decays exponentially, whereas the Yule-Simon distribution has a power
law tail and only differs mildly from a strict power law for small k. Because the Yule-
Simon distribution is the exact solution of popular «preferential attachment»
models (Simon, 1955) (i.e. models where nodes are constantly added to the network
and linked preferentially to nodes of high degree), we have included it in our list.

As a mixed case we introduce the exponentially truncated power law as one of our
two-parameter models in Table 14.1. The negative binomial is another two-parameter
example that decays more slowly than an exponential if its parameter r exceeds 1, but
with much less weight in the tail than a power law. All the distributions mentioned so
far are discrete: they are defined for integer numbers k. In the case of the Poisson and
negative binomial distributions, k  0 is conventionally included in the distributions’
support. In order to restore restriction (a) from above, we constrain these distributions
to exclude k  0 , which explains why the equations in Table 14.1 differ from the
ordinary textbook form.

Among continuous distributions, there are two further canonical candidates whose
decay is between an exponential and a power law: the lognormal distribution and the

Weibull distribution (also known as stretched exponential if  1 in the formula

stated in Table 14.1). We include these models in our study because previous studies
have reported lognormal (Stumpf et al., 2005; Bhattacharya et al., 2008; Gómez et al.,
2008; Todor et al., 2012) and Weibull distributions (Lahererre and Sornette, 1998;
Broido and Claffy, 2001; He et al., 2007; Rocha et al., 2010) in real-world networks.
To allow a direct comparison with the other models, we have to discretise the
continuous lognormal and Weibull distribution, which can be accomplished in a
variety of ways. Here we have chosen to integrate the continuous distributions
between subsequent integers k and k1. In terms of the cumulative distribution F, we
can express the integral as the probability F(k1)F(k) . For the lognormal
distribution, we assign this probability to the integer at the upper boundary k1 and
call this the “discrete lognormal” distribution. In the case of the Weibull distribution
preliminary tests showed that the likelihoods are in general slightly larger if
F(k1)F(k) is assigned to k instead of k1. Imposing the constraint (a), yields the
expression for the “discrete Weibull” distribution in Table 14.1.

One subtlety to note is that in this study we do not judge the fit of the distributions by
the tails alone, as is often done elsewhere (Barabási and Albert, 1999; Clauset et al.,
2009). In the study of continuous phase transitions in physics it is justified to restrict
attention to the tails because only these are important for determining “universal”
power-law features. However, in the present context it is far-fetched to assume that
the cargo ship network has anything to do with a physical phase transition. Instead we
will assess the match of the distribution over the full set of positive integers

k 1, 2, 3, with the same motivation as in the study of city size distributions by



Eeckhout (2004). Although it is in principle possible to restrict the analysis to the tails
by introducing a lower cutoff k 1, this would introduce an additional parameter and
ignore the bulk of the data, which consists of ports with only few calls and low degree.
On the contrary, we regard it as valuable information for practitioners to model low-
traffic ports too, not only the small fraction of busy hubs that make up the
distribution’s tail.

Akaike information criterion

Assuming that all calls and degrees are independent, the likelihood function for any of
the models in Table 14.1 has the general form

L(v)  Pr(ki ;v)
i1

n

 , (14.2)

where ki is the number of calls (or the degree) at port i, n is the number of ports in the

sample, and v is the set of the parameters in the second column of the table. The calls
(or degrees) may in reality depend on each other so that L(v) in equation 14.2 is more
properly thought of as a composite likelihood. We can justify the use of a composite
likelihood in our present context because the call (or degree) distribution Pr(k) that we
would like to model is a marginal rather than the complete joint distribution of all
calls (or degrees). Therefore, the full dependence structure is in statistical terms a
“nuisance parameter” which neither matters to us nor is it clear how to specify the full
likelihood. In such cases, composite likelihood methods have proved to be a well-
behaved alternative (Cox and Reid, 2004; Varin et al., 2011). Another, more
pragmatic, point of view is that there is no straightforward method to establish from

our data how the ki may depend on each other so that assuming independence is the

most parsimonious choice.

For a specified model j, we determine the parameter v̂ j that maximizes L and hence

also the log-likelihood ln(L). A comparison between different models can then be
performed by ranking their Akaike information criterion (AIC) (Akaike, 1974),

AIC j  2 ln(L(v̂ j )) 2K j , (14.3)

where K j is the number of parameters in the respective model. The AIC not only tells

us which model is closest to the data in information content, properly taking into

account that higher K j generally allows better fits to the data, but weakens the



explanatory power of the model. We can also make quantitative comparisons between
different models based on the differences. If AICmin is the minimum AIC over all
models, then the difference

 j  AIC jAICmin (14.4)

estimates the relative expected information gain between model j and the estimated
best model. Because the likelihood of model j given the number of calls (or degrees)

k1, k2,… is proportional to exp( j / 2) (Burnham and Anderson, 1998), the relative

likelihood is the so-called Akaike weight

wj 
exp( j / 2)

exp(i / 2)
i


, (14.5)

where the summation in the denominator is over all models included in the
comparison. Model selection by Akaike weights has become an increasingly popular
tool to compare different hypothesized probability distributions (Edwards et al., 2007;
Stumpf et al., 2005; Hamilton et al., 2008; Prieto and Sarabia, 2011). The Akaike
weights for our data sets are summarized in Table 14.2 for the call distributions and in
Table 14.3 for the degree distributions.

[Table 14.2 here]
[Table 14.3 here]

As a quick glance at the tables reveals, the maximum Akaike weights are achieved by
the discrete lognormal and Weibull distributions and, in the case of the calls, in some
years a truncated power law. These two-parameter models always perform better than
even the best one-parameter model, which is in all cases the Yule-Simon distribution.

The added term 2Ki in equation 14.3 for introducing a second parameter is therefore

more than compensated by an increased likelihood for the best-performing models.

[Figure 14.1 here]

The effect of including a second parameter can be seen in Figure 14.1(a) and (b)
where we compare the observed call distributions in 1910 and 2000 with the
maximum-likelihood estimates for the Yule-Simon, truncated power law, lognormal,
and Weibull distributions. Both observed distributions are substantially curved on a
log-log scale and thus difficult to fit by an asymptotic power law such as the Yule-
Simon distribution. All other plotted candidate distributions have the flexibility to



follow the curvature more accurately. Among these, the truncated power law decays
in the limit k→∞ most rapidly and the lognormal distribution most slowly in the tail.1

Comparing the observed call distributions in 1910 and 2000, the most obvious
difference is that the initial decay on the left-hand side appears less curved in
Figure 14.1(a) than in (b). For this reason, the truncated power law that fits well in
1910 is no longer a suitable candidate in 2000. In general, we observed by visual
inspection that in the small to medium port range the complementary cumulative call
distribution tends to be more curved in later years. This trend is detected by the
Akaike weights in Table 14.2 that have shifted over the years from the truncated
power law to the Weibull distribution. In practice, this change in the distribution
implies that there is now a smaller fraction of ports listed with maximally 10 calls in
one week. The inset in Figure 14.1(b) confirms this trend, showing a statistically
significant decrease between the years 1890 and 2008 from 75.4 percent to 69.0
percent of ports having no more than 10 calls.2

[Figure 14.2 here]

The interpretation of the degree distribution is a little trickier. The Akaike weights in
Table 14.3 seem to suggest a clear distinction: before the mid-1960s the most likely
model is in all but one case a lognormal, but afterwards it is always a Weibull
distribution. However, Figure 14.2(a) shows that in 1910 the lognormal and Weibull
distributions are visually more or less equally good fits. Only in 2000 (Figure 14.2b)
does the maximum-likelihood Weibull distribution clearly fit better in the tail than the
lognormal. Unlike for the call distribution, we do not find a significant trend that the
percentage of low-degree ports has decreased (inset in Figure 14.2b). In order to shed
light on the significance of the apparent trend in the Akaike weights for the degree
distribution, in the next section we will compare the performance of the maximum-
likelihood models with another statistical technique.

Vuong’s likelihood ratio tests

For models with an equal number of parameters, Akaike weights compare the models
purely by the differences in their log-likelihood. Proponents of AIC-based model
selection have argued that the Akaike weights are sufficient to judge the significance
of the best model (Burnham and Anderson, 1998). However, others argue that the log-
likelihood alone does not in itself allow an assessment when we should reject the
second-ranked model in favour of the model with the highest Akaike

1 Depending on the parameters, k may have to be larger than the maximum port size for the lognormal

to exceed the Weibull distribution. For example in Figure 14.1(a) we are not yet far enough in the

asymptotic regime on the right-hand side for the Weibull distribution to fall below the lognormal.
2 Because the number of ports, however, has more than doubled between 1890 and 2008 (see second

column of Table 14.2), the absolute number of ports with less than or equal to 10 calls has of course

still increased.



weight (Stephens et al., 2005). Likelihood ratio tests, on the other hand, can inform us
how significant the difference in the log-likelihood is (Clauset et al., 2009).

In this section we investigate the three two-parameter models that achieved maximal
Akaike weight in at least one year for either the call or degree distribution: truncated
power law, discrete lognormal, and Weibull distributions. For these nonnested models
we apply the likelihood ratio test devised by Vuong (1989). The test statistic for
comparing models r and s is the ratio of their likelihoods from equation 14.2 or
equivalently its logarithm

R ln
pr (ki )

ps(ki )i1

n










  (ln pr (ki ) ln ps(ki ))

i1

n

 , (14.6)

where pr (ki ) is the probability Pr(ki ; v̂r ) assigned to observing degree ki in model r

with the maximum-likelihood parameters v̂r . If we assume that all observed ki are

independent (as we discussed after equation 14.2), then all terms ln pr (ki ) ln ps(ki ) in

the sum on the left-hand side of equation 14.6 are also independent. With the

shorthand notation li  ln pr (ki ) ln ps(ki ) , the variance of one term in the sum can be

estimated as

 2  1

n
li

2

i1

n

  1

n
li

i1

n












2

. (14.7)

For sufficiently large n, the random variable R thus becomes normally distributed
with an estimated variance n 2 . We can then apply a conventional Z-test to determine
whether the observed value R is significantly different from zero given the observed
variance. The p-value can be expressed as

p erfc
| R |

2n 2









, (14.8)

where erfc is the complementary error function.

This handwaving derivation, which follows essentially that of Clauset et al. (2009), is
admittedly oversimplified. For both models r and s in Eq. 14.6 we have fitted the

parameters v̂r and v̂s to the same data so that there are nontrivial correlations

between R and  2 . However, Vuong (1989) proved that Eq. 14.8 still remains true.



One noteworthy point about this equation is the appearance of the variance  2 . The
variance of the data is a crucial piece of evidence whether one of the two models in
question is likely to be significantly better. The Akaike weights, by contrast, did not
account for the variance.

[Table 14.4 here]

We list the p-values for all pairwise comparisons between truncated power laws,
lognormal, and Weibull distributions in Table 14.4. We highlight in bold type all p-
values less than 0.1 and, where the likelihood ratio test indicates a deviation from
randomness at this 10 percent significance level, we list in parentheses the more likely
model. As an overall pattern for the call distribution (left half of the table), the tests
are for most years indifferent between the three candidate models. However, for the
degrees (right half of the table) the test strongly rejects for most years the truncated
power law, consistent with its small Akaike weights in Table 14.3. Also in agreement
with our earlier findings, the tests favour the Weibull distribution in some of the more
recent years for both calls and degrees. There are examples where the Akaike weights
suggest a high likelihood for one particular model, yet the likelihood-ratio test does
not lend strong support to it. For example, in 2008 the Weibull distribution has an
Akaike weight 0.957 for the calls, but, after factoring in the variance in the data, the
likelihood ratio test does not reject the possibility that the data could be from a
lognormal distribution (Akaike weight 0.043) or even a truncated power law despite

its much lower Akaike weight (5.93×10−5).

There is thus for most years no simple answer if the call distribution is better
described by a Weibull or lognormal distribution. Over the range of observed calls
(between 1 and approximately ; the precise upper bound, of course, depends on the
year in question) the maximum-likelihood distributions from the lognormal and
Weibull family do in fact not differ very much as can be seen in Figure 14.1(a).
Likewise, for the degree distribution there is no clear support in favour of the
lognormal hypothesis prior to 1960 (except in 1940) despite generally having the
highest Akaike weight. Afterwards, there is increasing evidence in favour of the
Weibull distribution, which might have to do with an increasing number of ports in
the sample that allows us to distinguish more clearly between the models.

One has to bear in mind that neither the Akaike weight nor the likelihood ratio test
can tell us that a model is good in an absolute sense, only that it is more plausible than
its competitors. In other words, if all our candidate models are bad, then “in the
country of the blind, the one-eyed man is king.” We will now apply two classic
goodness-of-fit tests that show that some of our candidate models are indeed a good
match for the observations.



Kolmogorov-Smirnov and Anderson-Darling tests

The key idea behind both the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD)
tests is to compare the difference between the observed and hypothesized cumulative

distribution functions. If the observed degree (or number of calls) are k1, k2,, kn ,

then the observed cumulative distribution Fobs (x) is the number of ports with ki  x

divided by n. The KS statistic is defined by

DKS  max
x1,2,3,

Fobs (x)Fmodel (x) , (14.9)

where Fmodel is the cumulative distribution function of the model to be

tested (Kolmogorov, 1933). In words, DKS is the maximum absolute difference

between observed and hypothesized cumulative distribution function for any possible

value x. While DKS has a very intuitive interpretation, it also has one shortcoming

when applied to heavy-tailed distributions: Fobs (x)Fmodel (x) is typically maximized

where Fmodel  0.5 and therefore DKS does not effectively sample the tail where

Fmodel(x) is close to 1. This phenomenon can be understood as follows. If the model

were correct and the difference between Fobs and Fmodel only the consequence of

random chance, the jackknife estimate of the standard deviation in the difference is

Fmodel (x)[1Fmodel (x)] / (n1) , which has a maximum at Fmodel (x) 1/ 2.

There is one obvious cure to this problem: we divide the difference to be maximized
in equation 14.9 by the expected standard deviation,

DAD  max
x1,2,3,

Fobs (x) Fmodel (x)

Fmodel (x)[1Fmodel (x)]
, (14.10)

where we dropped the term n1 because it is independent of x. DAD is called the

Anderson-Darling statistic (Anderson and Darling, 1952). We have decided to carry

out tests for both DKS and DAD because these two statistics measure different features



of the distribution. A good model should be able to have small values of DKS as well

as DAD .

We test the significance of the same three two-parameter models as in the likelihood
ratio test (truncated power law, lognormal, and Weibull distribution), but also include
for comparison the Yule-Simon distribution which the Akaike weights identified as
the best one-parameter model. We calculate p-values with Monte Carlo simulations
based on the following algorithm.

First, we determine for a given model the maximum-likelihood parameters v̂obs that

fit the Lloyd’s Shipping Index data best. For the model distribution with parameters

v̂obs we calculate the observed test statistics DKS, obs and DAD, obs . Next we generate n

random numbers drawn from the model distribution with parameters v̂obs . We then

pretend that we do not know v̂obs and determine the maximum-likelihood parameters

v̂rnd that fit the random numbers best. In general, v̂rnd will differ slightly from v̂obs .

From the difference between the random numbers (now treated as surrogate

observation) and the model with v̂rnd we calculate DKS, rnd and DAD, rnd . We repeat

drawing n random numbers 105 times and estimate the p-value pKS for the KS test by

the fraction of runs with DKS, rnd  DKS, obs . The same calculations are also carried out for

the AD statistic. The repeated calculation of v̂rnd slows down the simulation, but is

necessary to mimic the steps in the calculation of DKS, obs and DAD, obs . Otherwise we

obtain p-values with a strong downward bias that would lead us to accept the null
hypothesis (i.e. that the real data follows the model distribution) more often than truly
justified (Clauset et al., 2009).

[Table 14.5]

The p-values are listed in Table 14.5. The highlighted entries in bold type are those
cases where there is no reason to suspect at the 10 percent significance level that the
model is wrong, either in terms of the KS or the AD statistic. It is striking that the
Yule-Simon distribution fails as a null hypothesis for call and degree distributions in
all years. The truncated power law is accepted only for the call distribution (left half



of the table) and mostly in the early years of our data base. By contrast, the lognormal
distribution is a suitable null hypothesis for the call distribution in all except one year
(1995), and even then the null hypothesis would not be rejected at a 5 percent
significance level. For the degree distribution (right half of the table), a lognormal
null hypothesis is accepted in most, but not all years. Especially in the later years, the
Weibull distribution shows better performance than the lognormal, confirming the
trends we observed in the Akaike weights and the likelihood ratio tests. However, the
KS and AD tests in earlier years only sporadically support a Weibull distribution.

Discussion

The overall picture that emerges from the KS and AD tests is a surprisingly consistent
performance of the lognormal model for the call distribution. The only rejection,
namely by the KS test for the data of 1995, could plausibly be by random chance.
After all, at the chosen 10 percent significance level it is likely that at least one false
positive exists among the 20 years which we have tested. The lognormal hypothesis
also gains support from a recent analysis of world container port throughput (Ding
and Teo, 2010) that reported a good fit between the number of containers handled at
300 top ports and a lognormal distribution. There is also a simple mechanistic model
that could explain how a lognormal distribution might come about: Gibrat’s law of
proportionate growth (Gibrat, 1931). It is, in principle, possible to carry out further
tests whether Lloyd’s Shipping Index supports the key principle behind Gibrat’s law,
namely that the growth rates in calls are independent of the number of calls. Such a
test will make more stringent demands on the data quality than what we currently
have available. Right now such an effort would be hampered, for example, by the
irregular time intervals between the samples. As more data becomes available, an
analysis of port growth rates is clearly an intriguing research direction.

For the time being, we can instead view the call distribution from yet another angle.
As an alternative to plotting the complementary distribution function directly
(Figure 14.1), economists frequently employ Lorenz curves (Lorenz, 1905) to
visualise inequality in distributions. Translated to our application, the Lorenz curve
y(x) shows the percentage of ship calls that were made at the x percent of lowest
ranked ports (ranked by the number of calls). We plot the Lorenz curves for three
representative years in Figure 14.3(a). If all ports had an equal number of calls, the
Lorenz curve would be the dashed diagonal line. One measure of inequality is the area
between this diagonal and the actually observed Lorenz curve: the more unequal the
distribution, the larger this area. Multiplied by two, this measure is known as the Gini
coefficient (Gini, 1912). The coefficient itself, as well as a jackknife estimate of its
standard error, can be conveniently calculated with ordinary least-squares
regression (Giles, 2004). The results for all years in our data base (Figure 14.3b)
reveal that the Gini coefficient for the calls has decreased from 0.80 in 1890 to 0.74 in
2008. Although this is a subtle decline, it is statistically significant: the values are
more than five standard errors apart.



[Figure 14.3 here]

Why is the inequality declining? The maximum number of calls has increased (from
822 in 1890 to 2,422 in 2008), which at first glance suggests increasing inequality.
The resolution to this apparent paradox lies in the inset of Figure 14.1(b): the fraction
of small ports with ≤10 calls has decreased. As the total number of ports has grown
over the years, an overproportional number of new medium-sized ports were added to
the network. Together with a flattening global hierarchy this has reduced the gap
between core and periphery, thereby making the network more polycentric. This trend
more than compensates the growth in maximum port size and has led to an overall
decrease in the Gini coefficient.

There is more than just the Gini coefficient that we can infer from the Lorenz curve.
One complementary measure is the Lorenz asymmetry coefficient (LAC) (Damgaard
and Weiner, 2000). A Lorenz curve is defined to be symmetric if it has the same slope
as the diagonal “line of equality” (i.e. a slope of 1) at the point where the curve and

the antidiagonal line y1 x (i.e. the dotted line in Figure 14.3a) intersect. One can

show that for a continuous cumulative distribution F with mean μ the slope equals 1 at

x  F() . At this point y (x /)dF(x)
0



 , so a criterion for symmetry is

LAC  F() (x /)dF(x)
0



 =1.3 If LAC 1 , the Lorenz curve is skewed such that it

has slope 1 below the dotted antidiagonal. Conversely, if LAC 1, the Lorenz curve is
parallel with the line of equality above the antidiagonal symmetry axis.

The LAC is of interest because curves with the same Gini coefficient can have
different asymmetries. If LAC 1 , the inequality in the distribution is caused by a
large gap between a roughly equal number of small and large ports. By contrast, if
LAC 1 , the inequality is due to a small number of very busy ports, whereas the
majority of ports experiences approximately equally low traffic. The base case is a
lognormal distribution where LAC 1 regardless of the parameters μ and
σ (Damgaard and Weiner, 2000). For the call distribution, we see in Figure 14.3(b)
that LAC 1 is always included in the error bar which represents a jackknife estimate
of the standard deviation. This observation gives additional credence to the lognormal
distribution as a working hypothesis for ship calls.

3 Strictly speaking, this is the definition only for a continuous distribution F. For discrete distributions

the Lorenz curve is a polygon instead of a smooth curve so that there is typically no point where the

slope is exactly 1. However, one can generalize the definition so that it still works for the discrete

distributions obtained from finite samples, see Damgaard and Weiner (2000) for details.



While the lognormal model is hence a generally promising candidate for the call
distribution, it is not equally good for the degree distribution because LAC 1 in the
later years (Figure 14.3b). These numbers confirm the results from Tables 14.3–5
showing that the lognormal distribution is in those years not the best model for the
degrees. There is, however, no immediate contradiction between this finding and a
lognormal call distribution. The relationship between the call and degree distributions
is complicated: regardless of whether one or multiple voyages are made between the
same two ports, it always only adds 1 to the ports’ degrees. In other words, the call
distribution is a measure of the weighted multigraph of voyages, whereas the degree
distribution is derived from the unweighted network that forms a so-called simple
graph. The collapse of multiple voyages into one unweighted link can conceivably
change the distribution so that it appears to come from a completely different
probabilistic law. In future analysis, we will explore with suitable null models (e.g.
random graphs with a fixed weighted degree sequence; see Molloy and Reed, 1995)
how the degree distribution changes when a heavy-tailed (in particular lognormal)
multigraph is mapped to a simple graph and if this may explain our observations for
the cargo ship data.

Conclusion

We have statistically analysed call and degree distributions of the cargo ship network
extracted from snapshots of Lloyd’s Shipping Index in 20 different years between
1890 and 2008. We have applied information-based model selection and statistical
hypothesis tests to quantify the empirical distribution in a mathematically principled
manner. For the call distribution a lognormal null model passes the Anderson-Darling
goodness-of-fit test in all years and the Kolmogorov-Smirnov test in 19 out of 20
years at a 10 percent significance level. In some early years the Akaike weight is
higher for truncated power laws than a lognormal distribution; in later years a Weibull
distribution is preferred. However, Vuong’s likelihood ratio test does not reject the
lognormal null hypothesis at a 5 percent significance level for any tested year, neither
compared with the maximum-likelihood truncated power law nor Weibull distribution.
When the empirical call distribution is replaced by the degree distribution, the
lognormal model is plausible in early years, but in later years Weibull distributions fit
the data better.

As in all model selection problems, one should bear in mind that reality is, of course,
more complex than any of the candidate models. In our case, it might be possible to
reduce the AIC further by allowing more than two parameters, but we feel that two
parameters are a good compromise between simplicity of the model and goodness-of-
fit. With additional data it might become possible to analyse the dynamics of port
calls in more detail, especially to test if Gibrat’s law applies in our case, which could
explain a lognormal call distribution. It may also become feasible to test the
assumption of independence between ports and apply full likelihood methods to the
dynamics of the network (Wiuf et al., 2006).
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Table 14.1: The investigated probabilistic models



Year Ports POIS GEOM ZETA YULE NEGB TPOW DLGN DWEI

1890 904 0 0 2.61×10-16 1.60×10-10 4.61×10-30 3.64×10-1 6.10×10-1 2.58×10-2

1910 1200 0 0 2.90×10-25 4.56×10-17 4.76×10-31 9.37×10-1 6.13×10-2 2.12×10-3

1915 992 0 0 1.51×10-23 1.23×10-16 3.55×10-23 7.70×10-1 2.26×10-1 3.94×10-3

1920 994 0 0 9.36×10-20 2.07×10-13 2.42×10-30 8.83×10-1 1.10×10-1 6.22×10-3

1925 1205 0 0 2.51×10-29 4.17×10-20 6.09×10-30 6.97×10-2 8.27×10-1 1.03×10-1

1930 1254 0 0 4.78×10-33 3.16×10-23 5.61×10-29 9.64×10-3 9.64×10-1 2.66×10-2

1935 1282 0 0 4.29×10-33 3.15×10-22 5.01×10-29 1.03×10-2 5.24×10-1 4.66×10-1

1940 1309 0 0 1.42×10-23 2.62×10-15 1.50×10-41 9.79×10-1 1.96×10-2 1.20×10-3

1946 1281 0 0 6.05×10-26 7.30×10-17 9.37×10-37 8.47×10-1 8.47×10-2 6.80×10-2

1951 1321 0 0 1.91×10-34 1.06×10-23 1.42×10-25 3.21×10-1 5.67×10-1 1.13×10-1

1960 1541 0 0 1.49×10-47 1.51×10-34 2.66×10-23 8.99×10-2 8.78×10-1 3.22×10-2

1965 1554 0 0 2.58×10-59 1.07×10-44 1.42×10-17 3.52×10-3 6.40×10-1 3.56×10-1

1970 1512 0 0 5.70×10-57 2.29×10-43 4.73×10-14 5.83×10-1 3.44×10-1 7.25×10-2

1975 1610 0 0 6.08×10-60 1.08×10-44 2.98×10-22 1.15×10-4 4.91×10-1 5.09×10-1

1980 1637 0 0 1.40×10-76 1.40×10-59 3.60×10-15 2.23×10-6 2.17×10-1 7.83×10-1

1985 1925 0 0 3.21×10-107 1.22×10-84 2.54×10-19 8.01×10-14 9.46×10-2 9.05×10-1

1990 1903 0 0 1.14×10-107 2.37×10-85 1.12×10-18 6.86×10-14 4.29×10-2 9.57×10-1

1995 1953 0 0 2.93×10-107 6.45×10-85 1.71×10-15 8.34×10-11 2.09×10-2 9.79×10-1

2000 2050 0 0 1.41×10-113 1.36×10-89 2.15×10-15 4.87×10-11 1.13×10-2 9.89×10-1

2008 2157 0 0 1.82×10-96 3.97×10-74 8.03×10-15 5.93×10-5 4.31×10-2 9.57×10-1

Table 14.2: Akaike weights for the distribution of vessel calls
Values below 10-200 are rounded to zero. The largest Akaike weight in each year is

highlighted in bold type.



Year Ports POIS GEOM ZETA YULE NEGB TPOW DLGN DWEI

1890 895 0 3.05×10-132 4.96×10-37 1.22×10-25 8.99×10-8 3.62×10-4 6.21×10-1 3.79×10-1

1910 1186 0 3.66×10-186 1.97×10-69 5.02×10-53 1.20×10-9 1.54×10-8 9.82×10-1 1.80×10-2

1915 970 0 9.77×10-140 4.07×10-62 8.23×10-49 1.48×10-4 1.87×10-4 6.04×10-1 3.96×10-1

1920 955 0 8.66×10-147 4.53×10-60 1.01×10-46 5.13×10-7 1.18×10-6 9.65×10-1 3.49×10-2

1925 1170 0 1.79×10-188 3.85×10-67 3.23×10-52 5.22×10-5 3.74×10-4 1.05×10-1 8.94×10-1

1930 1231 0 1.65×10-179 6.11×10-89 1.59×10-71 9.58×10-9 8.04×10-9 7.94×10-1 2.06×10-1

1935 1259 0 3.08×10-181 1.07×10-90 2.22×10-72 5.79×10-11 5.18×10-11 9.92×10-1 8.34×10-3

1940 1273 0 3.41×10-196 1.25×10-85 6.69×10-67 2.44×10-13 5.43×10-13 >9.99×10-1 4.92×10-4

1946 1220 0 3.38×10-197 5.90×10-57 1.13×10-41 1.13×10-6 1.51×10-3 5.11×10-1 4.87×10-1

1951 1294 0 3.85×10-180 3.94×10-88 2.04×10-69 1.19×10-9 1.29×10-9 9.94×10-1 6.48×10-3

1960 1506 0 0 8.78×10-105 1.09×10-83 3.47×10-9 3.26×10-9 9.57×10-1 4.29×10-2

1965 1534 0 0 6.26×10-119 3.03×10-97 2.53×10-7 1.12×10-7 1.18×10-1 8.82×10-1

1970 1487 0 0 2.72×10-109 2.20×10-89 2.71×10-4 1.74×10-4 6.07×10-3 9.93×10-1

1975 1579 0 0 1.92×10-103 3.00×10-82 1.57×10-6 2.00×10-6 2.75×10-1 7.25×10-1

1980 1591 0 9.20×10-198 3.34×10-124 2.44×10-102 4.49×10-5 2.19×10-5 1.25×10-4 >9.99×10-1

1985 1872 0 0 2.18×10-150 1.57×10-123 1.64×10-8 5.10×10-9 6.41×10-4 9.99×10-1

1990 1875 0 0 4.46×10-162 1.44×10-136 1.96×10-5 7.40×10-6 1.15×10-8 >9.99×10-1

1995 1897 0 4.51×10-191 5.31×10-176 3.15×10-149 3.07×10-4 8.99×10-5 6.78×10-10 >9.99×10-1

2000 1969 0 0 2.60×10-148 6.90×10-121 1.84×10-3 9.28×10-4 1.17×10-7 9.97×10-1

2008 2007 0 8.85×10-183 2.55×10-127 1.78×10-99 2.01×10-1 1.61×10-1 9.33×10-8 6.38×10-1

Table 14.3: Akaike weights for the degree distribution
Values below 10-200 are rounded to zero. The largest Akaike weight in each year is

highlighted in bold type.



calls degrees

Year TPOW-DLGN TPOW-DWEI DLGN-DWEI TPOW-DLGN TPOW-DWEI DLGN-DWEI

1890 0.83 0.49 0.20 0.09 (DLGN) 0.04 (DWEI) 0.67

1910 0.35 0.18 0.18 0.01 (DLGN) 0.01 (DWEI) 0.11

1915 0.66 0.22 0.09 (DLGN) 0.16 0.05 (DWEI) 0.84

1920 0.47 0.26 0.28 0.03 (DLGN) 0.01 (DWEI) 0.16

1925 0.52 0.94 0.34 0.35 0.09 (DWEI) 0.19

1930 0.25 0.85 0.10 0.02 (DLGN) 0.00 (DWEI) 0.64

1935 0.37 0.48 0.94 0.00 (DLGN) 0.00 (DWEI) 0.13

1940 0.19 0.15 0.35 0.00 (DLGN) 0.00 (DWEI) 0.02 (DLGN)

1946 0.59 0.66 0.93 0.30 0.18 0.97

1951 0.88 0.84 0.37 0.01 (DLGN) 0.00 (DWEI) 0.10

1960 0.64 0.86 0.10 0.02 (DLGN) 0.00 (DWEI) 0.33

1965 0.40 0.49 0.68 0.11 0.00 (DWEI) 0.55

1970 0.92 0.73 0.39 0.64 0.10 0.07 (DWEI)

1975 0.19 0.22 0.98 0.14 0.02 (DWEI) 0.72

1980 0.13 0.08 (DWEI) 0.30 0.84 0.06 (DWEI) 0.01 (DWEI)

1985 0.01 (DLGN) 0.00 (DWEI) 0.22 0.26 0.00 (DWEI) 0.08 (DWEI)

1990 0.03 (DLGN) 0.01 (DWEI) 0.18 0.56 0.10 0.00 (DWEI)

1995 0.12 0.03 (DWEI) 0.09 (DWEI) 0.29 0.17 0.00 (DWEI)

2000 0.16 0.05 (DWEI) 0.06 (DWEI) 0.39 0.32 0.00 (DWEI)

2008 0.70 0.54 0.23 0.19 0.86 0.00 (DWEI)

Table 14.4: The p-values for Vuong's likelihood ratio test of the maximum-
likelihood distributions

We show all pairwise comparisons between truncated power law, discrete lognormal
and discrete Weibull distributions. We highlight p-values smaller than 0.1 in bold type
and add in parentheses the more likely distribution. Values below 5×10-3 are rounded

to zero.



calls degrees

Year YULE TPOW DLGN DWEI YULE TPOW DLGN DWEI

pKS pAD pKS pAD pKS pAD pKS pAD pKS pAD pKS pAD pKS pAD pKS pAD

1890 0.00 0.06 0.22 0.37 0.98 0.78 0.04 0.38 0.00 0.02 0.00 0.11 0.93 0.63 0.34 0.47

1910 0.00 0.04 0.22 0.27 0.72 0.46 0.01 0.18 0.00 0.00 0.00 0.03 0.07 0.17 0.00 0.10

1915 0.00 0.04 0.24 0.21 0.81 0.69 0.01 0.20 0.00 0.00 0.00 0.06 0.50 0.43 0.03 0.31

1920 0.00 0.05 0.51 0.58 0.95 0.80 0.04 0.37 0.00 0.00 0.00 0.03 0.18 0.37 0.01 0.11

1925 0.00 0.03 0.04 0.06 0.96 0.82 0.07 0.40 0.00 0.00 0.00 0.07 0.78 0.44 0.29 0.55

1930 0.00 0.03 0.02 0.03 0.84 0.70 0.01 0.26 0.00 0.00 0.00 0.02 0.69 0.55 0.02 0.28

1935 0.00 0.03 0.00 0.04 0.91 0.77 0.42 0.49 0.00 0.00 0.00 0.03 0.35 0.51 0.00 0.10

1940 0.00 0.04 0.12 0.40 0.61 0.64 0.03 0.17 0.00 0.00 0.00 0.02 0.11 0.20 0.00 0.06

1946 0.00 0.03 0.02 0.02 0.31 0.22 0.03 0.10 0.00 0.00 0.00 0.06 0.30 0.30 0.01 0.24

1951 0.00 0.03 0.03 0.06 0.78 0.68 0.08 0.33 0.00 0.00 0.00 0.03 0.11 0.45 0.00 0.08

1960 0.00 0.01 0.11 0.04 0.55 0.65 0.01 0.25 0.00 0.00 0.00 0.02 0.03 0.22 0.00 0.09

1965 0.00 0.00 0.02 0.02 0.88 0.49 0.08 0.48 0.00 0.00 0.00 0.03 0.49 0.29 0.06 0.42

1970 0.00 0.00 0.07 0.03 0.84 0.54 0.00 0.23 0.00 0.00 0.00 0.07 0.23 0.25 0.09 0.53

1975 0.00 0.00 0.00 0.02 0.87 0.63 0.37 0.47 0.00 0.00 0.00 0.04 0.22 0.34 0.02 0.31

1980 0.00 0.00 0.00 0.01 0.60 0.52 0.20 0.75 0.00 0.00 0.00 0.04 0.23 0.14 0.21 0.75

1985 0.00 0.00 0.00 0.00 0.79 0.88 0.94 0.54 0.00 0.00 0.00 0.01 0.41 0.18 0.85 0.64

1990 0.00 0.00 0.00 0.00 0.26 0.46 0.26 0.24 0.00 0.00 0.00 0.00 0.02 0.09 0.34 0.58

1995 0.00 0.00 0.00 0.00 0.06 0.25 0.02 0.40 0.00 0.00 0.01 0.01 0.01 0.06 0.10 0.42

2000 0.00 0.00 0.00 0.00 0.60 0.25 0.56 0.16 0.00 0.00 0.00 0.00 0.09 0.07 0.16 0.34

2008 0.00 0.00 0.04 0.00 0.31 0.11 0.04 0.10 0.00 0.00 0.05 0.00 0.03 0.06 0.00 0.18

Table 14.5: The p-values for the Kolmogorov-Smirnov test and the Anderson-
Darling test

Values below 5×10-3 are rounded to zero. We highlight those distributions in bold
type where the null hypothesis (i.e. that the data is generated by the model) is not

rejected at a 10% significance level.



Figure 14.1: Observed complementary cumulative call distribution function in (a)
1910, (b) 2000 together with the maximum-likelihood Yule-Simon, truncated

power law, discrete lognormal and discrete Weibull distributions
The one-parameter Yule-Simon distribution fits the data far worse than any of the

two-parameter alternatives. In 1910 the truncated power law has the highest
likelihood among all models. In 2000 the Weibull distribution fits best (Table 14.2).

Inset in (b): The fraction of ports with no more than ten ports has dropped from
around 75% to approximately 68% during the 1960s. This subtle, but statistically

significant decrease is responsible for more curvature in later years on the left-hand
side of the observed data. Error bars are jackknife estimates.

Figure 14.2: Observed complementary cumulative degree distribution function
in (a) 1910, (b) 2000 together with the maximum-likelihood Yule-Simon,

truncated power law, discrete lognormal and discrete Weibull distributions
The highest Akaike weight is achieved by the (a) lognormal, (b) Weibull distribution.

Inset in (b): The fraction of ports with degree ≤10 does not show a clear trend.



Figure 14.3: (a) Lorenz curves for the call distributions in three exemplary years
(black: 1890, dark grey: 1960, light grey: 2008)

The Gini coefficient measures inequality as twice the area between the Lorenz curve
and the line of equality (dashed diagonal). The Lorenz asymmetry coefficient (LAC)

measures whether curves have a slope of 1 at the intersection with the dotted
antidiagonal line (LAC<1 if the slope equals 1 below the antidiagonal, LAC>1 if the

slope equals 1 above it). For the three curves in the figure the Gini coefficient has
decreased over time, but they all have a slope close to 1 at the symmetry axis. (b) Gini

coefficients and LACs for all twenty years for which we have data. Error bars
represent jackknife estimates of the standard deviation. The Gini coefficient for the

call and degree distribution both show a slightly decreasing tendency that is
statistically significant, similarly the LAC for the degrees. The LAC for the call

distribution, however, shows no significant deviation from 1 in any of the investigated
years


