Data Augmentation for Time Series Classification using Convolutional Neural Networks

Arthur Le Guennec 1, 2 Simon Malinowski 3 Romain Tavenard 2, 1
1 OBELIX - Environment observation with complex imagery
UBS - Université de Bretagne Sud, IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
2 LETG - Rennes - Littoral, Environnement, Télédétection, Géomatique
LETG - Littoral, Environnement, Télédétection, Géomatique
3 LinkMedia - Creating and exploiting explicit links between multimedia fragments
IRISA-D6 - MEDIA ET INTERACTIONS, Inria Rennes – Bretagne Atlantique
Abstract : Time series classification has been around for decades in the data-mining and machine learning communities. In this paper, we investigate the use of convolutional neural networks (CNN) for time series classification. Such networks have been widely used in many domains like computer vision and speech recognition, but only a little for time series classification. We design a convolu-tional neural network that consists of two convolutional layers. One drawback with CNN is that they need a lot of training data to be efficient. We propose two ways to circumvent this problem: designing data-augmentation techniques and learning the network in a semi-supervised way using training time series from different datasets. These techniques are experimentally evaluated on a benchmark of time series datasets.
Type de document :
Communication dans un congrès
ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Sep 2016, Riva Del Garda, Italy
Liste complète des métadonnées


https://halshs.archives-ouvertes.fr/halshs-01357973
Contributeur : Romain Tavenard <>
Soumis le : mardi 30 août 2016 - 16:53:44
Dernière modification le : vendredi 17 février 2017 - 16:11:47

Fichier

AALTD16_paper_9.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : halshs-01357973, version 1

Citation

Arthur Le Guennec, Simon Malinowski, Romain Tavenard. Data Augmentation for Time Series Classification using Convolutional Neural Networks. ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Sep 2016, Riva Del Garda, Italy. <halshs-01357973>

Partager

Métriques

Consultations de
la notice

646

Téléchargements du document

1144