Classification of MODIS Time Series with Dense Bag-of-Temporal-SIFT-Words: Application to Cropland Mapping in the Brazilian Amazon

Adeline Bailly 1, 2 Damien Arvor 1 Laetitia Chapel 2 Romain Tavenard 1
1 LETG - Rennes - Littoral, Environnement, Télédétection, Géomatique
LETG - Littoral, Environnement, Télédétection, Géomatique
2 OBELIX - Environment observation with complex imagery
UBS - Université de Bretagne Sud, IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : Mapping croplands is a challenging problem in a context of climate change and evolving agricultural calendars. Classification based on MODIS vegetation index time series is performed in order to map crop types in the Brazilian state of Mato Grosso. We used the recently developed Dense Bag-of-Temporal-SIFT-Words algorithm, which is able to capture temporal locality of the data. It allows the accurate detection of around 70% of the agricultural areas. It leads to better classification rates than a baseline algorithm, discriminating more accurately classes with similar profiles.
Type de document :
Communication dans un congrès
IEEE International Geoscience and Remote Sensing Symposium, Jul 2016, Beijing, China. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 〈10.1109/IGARSS.2016.7729594〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://halshs.archives-ouvertes.fr/halshs-01343211
Contributeur : Romain Tavenard <>
Soumis le : jeudi 7 juillet 2016 - 17:55:42
Dernière modification le : lundi 25 septembre 2017 - 10:06:19

Fichier

classification-modis-time.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Adeline Bailly, Damien Arvor, Laetitia Chapel, Romain Tavenard. Classification of MODIS Time Series with Dense Bag-of-Temporal-SIFT-Words: Application to Cropland Mapping in the Brazilian Amazon. IEEE International Geoscience and Remote Sensing Symposium, Jul 2016, Beijing, China. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 〈10.1109/IGARSS.2016.7729594〉. 〈halshs-01343211〉

Partager

Métriques

Consultations de
la notice

269

Téléchargements du document

96