Armenian karmir, Sogdian karmīr ”red”, Hebrew karmīl and the Armenian scale insect dye in antiquity
Agnes Korn, Georg Warning

To cite this version:

HAL Id: halshs-01333885
https://halshs.archives-ouvertes.fr/halshs-01333885v2
Submitted on 1 Aug 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The papers in this volume derive from the conference on textile terminology held in June 2014 at the University of Copenhagen. Around 50 experts from the fields of Ancient History, Indo-European Studies, Semitic Philology, Assyriology, Classical Archaeology, and Terminology from twelve different countries came together at the Centre for Textile Research, to discuss textile terminology, semantic fields of clothing and technology, loan words, and developments of textile terms in Antiquity. They exchanged ideas, research results, and presented various views and methods.

This volume contains 35 chapters, divided into five sections:

- Textile terminologies across the ancient Near East and the Southern Levant
- Textile terminologies in Europe and Egypt
- Textile terminologies in metaphorical language and poetry
- Textile terminologies: examples from China and Japan
- Technical terms of textiles and textile tools and methodologies of classifications

The 42 contributors include Salvatore Gaspa, Cécile Michel, Marie-Louise Nosch, Elena Soriga, Louise Quillien, Luigi Malatacca, Nahum Ben-Yehuda, Christina Katsikadeli, Orit Shamir, Agnes Korn, Georg Warning, Birgit Anette Olsen, Stella Spanidakis, Peder Flemestad, Peter Herz, Ines Bogensperger, Herbert Graßl, Mary Harlow, Berit Hildebrandt, Magdalena Öhrman, Roland Schuhmann, Kerstin Droß-Krüpe, John Peter Wild, Maria Mossakowska-Gaubert, Julia Galliker, Anne Regourd, Fiona J. L. Handley, Götz König, Miguel Ángel Andrés-Toledo, Stefan Niederreiter, Oswald Panagl, Giovanni Fanfani, Le Wang, Feng Zhao, Mari Omura, Naoko Kizawa, Maciej Szymaszek, Francesco Meo, Felicitas Maeder, Kalliope Sarri, Susanne Lervad, and Tove Engelhardt Mathiassen.

Includes 134 color and black & white illustrations.

ISBN: 978-1-60962-112-4

doi:10.13014/K2S46PVB

Zea Books
Lincoln, Nebraska

http://digitalcommons.unl.edu/zeabook/
Contents

Preface ... 3
Acknowledgements 4
List of Contributors 9

1 Textile Terminologies, State of the Art and New Directions 19
 Salvatore Gaspa, Cécile Michel, & Marie-Louise Nosch

Textile terminologies across the ancient Near East
and the Southern Levant

2 A Diachronic View on Fulling Technology in the Mediterranean and the Ancient
 Near East: Tools, Raw Materials and Natural Resources for the Finishing of Textiles 24
 Elena Soriga

3 Garments, Parts of Garments, and Textile Techniques in the Assyrian Terminology:
 The Neo-Assyrian Textile Lexicon in the 1st-Millennium BC Linguistic Context 47
 Salvatore Gaspa

4 Tools and Crafts, the Terminology of Textile Manufacturing in 1st-Millennium BC
 Babylonia .. 91
 Louise Quillien

5 Ordinary People’s Garments in Neo- and Late-Babylonian Sources 107
 Luigi Malatacca

6 Flax and Linen Terminology in Talmudic Literature 122
 Nahum Ben-Yehuda

7 Jewish Terminologies for Fabrics and Garments in Late Antiquity: A Linguistic
 Survey Based on the Mishnah and the Talmuds .. 153
 Christina Katsikadeli

8 Sha’atnez – The Biblical Prohibition Against Wearing Mixed Wool and Linen
 Together and the Observance and Enforcement of the Command in the Orthodox
 Jewish Communities Today ... 164
 Orit Shamir
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Armenian karmir, Sogdian karmīr ‘red’, Hebrew karmīl and the Armenian Scale</td>
<td>Agnes Korn & Georg Warning</td>
</tr>
<tr>
<td></td>
<td>Insect Dye in Antiquity</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Armenian Textile Terminology</td>
<td>Birgit Anette Olsen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Remarks on the Interpretation of Some Ambiguous Greek Textile Terms</td>
<td>Stella Spantidaki</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sabellic Textile Terminology</td>
<td>Peder Flemestad & Birgit Anette Olsen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Beschaffung und Handel mit Farbstoffen</td>
<td>Peter Herz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Purple and its Various Kinds in Documentary Papyri.</td>
<td>Ines Bogensperger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Zur Textilterminologie auf römischen Bleitäfelchen: Probleme der Lesung und Interpretation</td>
<td>Herbert Graßl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Observations on the Terminology of Textile Tools in the Edictum Diocletiani on Maximum Prices</td>
<td>Peder Flemestad, Mary Harlow, Berit Hildebrandt & Marie-Louise Nosch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Listening for licia: A Reconsideration of Latin licia as Heddle-Leashes</td>
<td>Magdalena Öhrman</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Textile Terminology in Old High German between Inherited and Loan Words</td>
<td>Roland Schuhmann</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Χιτών – δαλματική – μαφόρτης – σόνθεσις: Common and Uncommon Garment Terms in Dowry Arrangements from Roman Egypt</td>
<td>Kerstin Droß-Krüpe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ars polymita, ars plumaria: The Weaving Terminology of taqueté and Tapestry</td>
<td>John Peter Wild & Kerstin Droß-Krüpe</td>
</tr>
</tbody>
</table>
Table of Contents

21 Tunics Worn in Egypt in Roman and Byzantine times: The Greek Vocabulary 321
 Maria Mossakowska-Gaubert

22 Terminology Associated with Silk in the Middle Byzantine Period (AD 843-1204) . . 346
 Julia Galliker

23 A Name of a Private Factory (or Workshop) on a Piece of Textile: The Case of
 the Document A.L.18 (Vienna) . 374
 Anne Regourd & Fiona J. L. Handley

Textile terminologies in metaphorical language and poetry

24 Zur Bekleidung der Krieger im Avesta: Rüstung und magischer Schmuck 383
 Götz König

25 Sasanian Exegesis of Avestan Textile Terms . 397
 Miguel Ángel Andrés-Toledo

26 “Der Faden soll nicht reißen, während ich meine Dichtung webe…”:
 Zum metaphorischen Gebrauch von Textilterminologie im Rigveda 404
 Stefan Niederreiter

27 Der Text als Gewebe: Lexikalische Studien im Sinnbezirk von Webstuhl und Kleid . 413
 Oswald Panagl

28 Weaving a Song. Convergences in Greek Poetic Imagery between Textile and
 Musical Terminology. An Overview on Archaic and Classical Literature 421
 Giovanni Fanfani

Textile terminologies: examples from China and Japan

29 Xie, a Technical Term for Resist Dye in China: Analysis Based on the Burial
 Inventory from Tomb 26, Bijiashan, Huahai, Gansu 437
 Le Wang & Feng Zhao

30 The Textile Terminology in Ancient Japan . 451
 Mari Omura & Naoko Kizawa
Technical terms of textiles and textile tools and methodologies of classifications

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>The Textile Term gammadia</td>
<td>Maciej Szymaszek</td>
</tr>
<tr>
<td>32</td>
<td>The oscillum Misunderstanding</td>
<td>Francesco Meo</td>
</tr>
<tr>
<td>33</td>
<td>Irritating Byssus – Etymological Problems, Material facts, and the Impact of Mass Media</td>
<td>Felicitas Maeder</td>
</tr>
<tr>
<td>34</td>
<td>Conceptualizing Greek Textile Terminologies: A Databased System</td>
<td>Kalliope Sarri</td>
</tr>
<tr>
<td>35</td>
<td>textilnet.dk – A Toolkit for Terminology Research and Presentation</td>
<td>Susanne Lervad & Tove Engelhardt Mathiassen</td>
</tr>
</tbody>
</table>
Armenian *karmir*, Sogdian *karmīr* ‘red’, Hebrew *karmīl* and the Armenian Scale Insect Dye in Antiquity

Agnes Korn & Georg Warning

For our friend Uwe Bläsing

This paper looks at three terms denoting the colour ‘red’, viz. Armenian *karmir*, the obviously corresponding Sogdian word *karmīr*, and *karmīl* ‘scarlet’ found in the Hebrew Bible. It will first briefly discuss the etymology of these words (summarising an argument made elsewhere) and argue that the words in question represent a technical term for a red dye from Armenia produced by scale insects. We will then attempt to show that historical data and chemical analysis of extant historical textiles confirm the Armenian red as the relevant dye.¹

Etymologies

Hebrew karmīl

As a starting point, it is worthwhile to consider the status of colour terms in Hebrew (and other premodern cultures) in general. Jacquesson notes:

“En français, il y a très peu de choses dont on ne puisse pas dire ‘c’est rouge’ ou ‘c’est noir’ – mais en hébreu ancien il y a très peu de choses dont on puisse le dire. En hébreu biblique (...), chaque couleur a un domaine d’application restreint, à certains types d’objets. (...) Il semble qu’elles [= les couleurs] soient souvent comme des textures, des sortes de matière – et l’importance des teintures confirme cette impression.”²

Essentially, then, ancient colours are not abstract features, but bound to the objects of which they are a quality, rendering colour terms almost material features.

This applies to the shades of an animal’s coat, which still nowadays are described much like a quality of the animal (as in English *dun*, German *Falbe*...
3. The series of these three colours always refers to textiles of liturgical importance, used in the temple and for priest’s garments (see Brenner 1982, 143-146; Hartley 2010, 185-210; and Clines s.v. for the attestations).

4. Cf. e.g. Mayrhofer 1956, 261.

5. Delitzsch 1898, 757f.

6. We are indebted to Holger Gzella for this information. Cf. Sáenz-Badillos 1993, 115-120; Wagner 1967, 67.
by Delitzsch, might be taken to be present in a word found in the meantime in Sogdian, an Eastern Iranian language from the Middle Iranian period, as Meillet (1912, 247) announced: “Le mot [arménien] karmir « rouge », dont le caractère iranien est encore mis en doute par Hübschmann [1897], Arm. Gramm., p. 167, se retrouve maintenant en sogdien sous la forme krmʾyr”. That this Sogdian word, probably to be read /karmīr/ should be the source of Armenian karmir has then also be advocated by Olsen and others.

However, there is a considerable geographical distance between Armenian and Sogdian, and also a chronological problem, since the word would need to have migrated early enough from Central Asian Sogdiana into Palestine to feature in the Old Testament. The assumption of Sogdian loanwords in Armenian has also been weakened on linguistic grounds by recent research, which has shown that a Western Iranian language is more likely to be the source.10

Obviously, Armenian karmir needs to come from an Iranian dialect that shows the required output of PIE *kṝṁī-, particularly ar as product of PIE *ṛ. Such a dialect needs to be assumed anyway to account for Iranian loanwords in Armenian such as marg ‘bird’ (cf. Sanskrit mṛga-).11 Parthian and Persian, the chief sources of Iranian loanwords in Armenian, are excluded because their result of *ṛ is ir in this context (cf. New Persian kirm ‘worm’). An

8. Gauthiot 1914, 143 etc.
10. Cf. Korn 2013. Note that the absence from Western Iranian was the only reason to assume an origin from an Eastern Iranian language for that specific group of loanwords in Armenian (the words in question do not have any specifically Eastern Iranian features).
Iranian language that shows the required output of *r* (‘kard/‘did’, ‘barz/‘high’, ‘varg/‘wolf’), and indeed /karm/ for ‘worm’, is Zazaki, a contemporary Western Iranian language spoken in Eastern Anatolia, overlapping with regions where Armenian was also spoken.

Persian qirmiz

Persian قرمز qirmiz, nowadays the usual word for ‘red’, is surprisingly absent from earlier New Persian (where ‘red’ is surx). There is no attestation of qirmiz (nor *kirmiz*) in the Shāhnāme, and none, for instance, in Omar Khayyām’s Rubā‘iyāt (where the red wine is described as lāl or argāwān), nor in the classical Persian texts contained in the TITUS database. Also, the Persian encyclopaedic dictionary by Dehxodā, who regularly quotes passages from classical poetry for each entry, has no literary example for qirmiz.

Hasanī 2010, studying the Persian word surx ‘red’, finds the oldest attestations of qirmiz to be verses by Niżāmī (12th century) and by Nāṣir Khusrau (11th century):13

HAMCHININ DARNAXWAHD MAND BRGKSHET ZMAN 1

موی جعفت عبری و روی خویت قرمزی

*hamčinīn dānam naxwāhad mānd bar gašt-i zamān /
 mū-yi ja’d-at ‘anbarī va rū-yi xūb-at qirmizī.*

“And I also know that over the course of time your curled hair will not remain amber-scenting nor your good face red (qirmizī).”

(Nāṣir Xusrau, Dīvān, Qaṣīda 223, line 7)

The other poet, Niżāmī, was from Ganja, a town in the Republic of Azerbaijan, some 70 km from the Armenian border of today. It is known as an old centre of carpet production in wool and silk, illustrated here by the Ganja carpet in Fig. 4 (admittedly not ancient, but in the style termed “Old Ganja”). Indeed, one of Niżāmī’s verses containing qirmiz, describing a banquet prepared for Alexander by the Chinese emperor, appears to use qirmiz in material-like sense:14

NASÅT-I MAI QIRMIZI SÄXTAND 1

بیسابطی هم از قرمزی انداختند

*našāṭ-i mai qirmizi säxtand /
 bisāṭ-ē ham az qirmiz andāxtand*

“They made the wine’s joy red (qirmizi) / [and] also spread out a carpet from red (qirmiz) [material].”

(Niżāmī Ganǰawī, Šarafnāma, episode Mihmān-kardan-e xāqān-i Čīn Iskandar-rā)15

Ancient and also later Arabic dictionaries define qirmiz as referring to the Armenian scale insect dye. One of these, the Aqrab al-mawārid (ca. 1900), is also the reference given by Dehxodā:16

ŠABGNU ARMANIYUN AHMARU YUGHÂLU

اننحانه مین ‘آسرا ری دیدن یکنی فی
 اب正しいین واقعی اننحو تعشاغ بیه
 فلک یکنی نئل لونه

*ṣabgun armaniyyun ahmaru yugâlu
 annahau min ‘aṣārati dīdīn yakūnu fī
 aǰāmīhin wa yawqūlu annahu tušbaḵu bihi
 a[t]-<constant form] fa-lā yakādu yundalu lawnuhu*
Fig. 4: Carpet style *Kedim Ganja* (‘Ancient Ganja’) from Ganja (Azerbaijan) dated 1895, with dedication in Armenian. Photo: Marco Frangi. 17

17. For further details see Azadi *et al.* 2001, 410.
“A red Armenian dye of which it is said that it is from the juice of a worm living in their swamps, and of which it is said that clothes are dyed with it, and its dye is hardly surpassed.”

Thus, the word must have been borrowed from Persian into Arabic, perhaps already with the meaning of the Armenian red; in Arabic, the initial k- was changed into qāf to yield qirmiz; later on it was borrowed back into Persian. This also implies that Persian cannot be the source of Hebrew karmîl (in spite of opinions to the contrary voiced by some authors), and the ultimate source of the word must rather be an Iranian language such as Zazaki.

Also, historical sources report that scarlet dye needed to be imported into Iran, and it is known that textile workshops found it difficult to afford the high prices for the Armenien red dye. It is also known that the Sasanian kings were wearing red coats, and that king Hormisd I sent such a red coat to the Roman emperor Aurelian (270-275), maybe of similar style as the Sasanian caftan in Fig. 5.

Textual evidence

Indeed, classical sources and Armenian historical texts (as well as testimonies from later times) combine to show that the red dye produced in Armenia was famous for its quality already in antiquity. The clearest description is in the Geography (short version, chapter V, xv) attributed to Anania Širakacʿi (610-685):

“La province d’Ararad a des montagnes, des plaines avec toute sorte de productions (...) : on y trouve aussi un ver qui naît de la racine d’une plante et qui fournit la couleur rouge”.

Even earlier is the pharmaceutical work Materia medica by Dioskurides (1st century AD), who says about the scale insect dye (IV: 48):

“The best is from Galatia and Armenia, then that from Asia and that from Cilicia, and last of all that from Spain.”

Textiles and cochineals

Scale insects used for dyeing

The next step for the present argument is to demonstrate that the evidence of etymological reasoning and of textual resources has a counterpart in reality, i.e. that an Armenian dye was used widely enough to render the assumption plausible that it is referred to by Hebrew karmîl: the Armenian scale insect is by far not the only species from which cochineal dyes have been produced. The best known type is the Mexican...
Fig. 5: Cashmere caftan (6th/7th c.) found in Antinoë (Egypt). Red dye: *Porphyrophora hamelii*. Photo: © Lyon, MTMAD – Pierre Verrier
scale insect, *Dactylopius coccus* (Fig. 6), which was widely used before synthetic colours were invented, but it cannot play a role here because it came from Latin America too late to be of relevance.

The Indian scale insect, *Kerria lacca* (Fig. 7), forms encrustations on branches; one breaks the twigs with the encrustation into pieces (and puts them into water to use the dye). This substance is called *läkšā*- in the Sanskrit literature and described much like a mineral, probably because the crusts are not seen as being composed of individual insects. The word *kṛ́mi*- ‘worm’, on the other hand, is not used for the scale insect. Assumptions that Armenian *qirmiz*, or Persian *qirmiz*, might be of Indian origin, are thus rather unlikely.27

Then there is the Mediterranean scale insect *Kermes vermilio* (Fig. 8), which predominantly lives on Mediterranean oak trees. In the passage quoted above, Dioskurides refers to this species, obviously assuming that the regions he mentions all use the same cochineal. However, *kermes* was not seen as an insect in antiquity, but rather perceived as a kind of fruit or berry of the tree (indeed the females are immobile).

The European scale insects, *Porphyrophora*, comprise several species. The ones potentially relevant here are the Armenian one, *Porphyrophora hamelii* (Fig. 2), and the European one, *Porphyrophora polonica* (Fig. 9).

27. For more discussion of the Indic scale insect, see Korn 2016, 5f.
9. Armenian karmir, Sogdian karmīr, Hebrew karmīl and the Scale Insect Dye

In a series of articles and books from the 1930s, Rodolphe Pfister published and examined a number of textile specimens from regions in contact with the Iranian cultural sphere, which in a number of instances show Iranian motifs or Iranian style. The red colorants of these pieces include, besides madder (Rubia tinctorum), a scale insect dye other than Kermes. One such piece is the tapestry fragment (Fig. 10), about which Pfister says: “Quant au style, nous trouvons de nombreux souvenirs sassanides”, and applies this also to details of the weaving technique. The textiles Pfister analysed were found in Egypt (dating from the 3rd-7th centuries AD) and in Dura-Europos (Fig. 13) and Palmyra in Syria (2nd-3rd centuries AD) on the border between the Roman and the Iranian empires.

Pfister identified the red of this tapestry as well as a number of other textiles as being dyed with a scale insect dye, which he referred to as Porphyrophora. He noted that this dye was similar to the Mexican scale insect (p. 83). Pfister’s chemical analysis of the dye revealed that it was derived from Porphyrophora polonica, a scale insect that feeds on grass roots. The dye was subsequently identified as Porphyrophora through chemical analysis.

Chemical analysis

In a series of articles and books from the 1930s, Rodolphe Pfister published and examined a number of textile specimens from regions in contact with the Iranian cultural sphere, which in a number of instances show Iranian motifs or Iranian style. The red colorants of these pieces include, besides madder (Rubia tinctorum), a scale insect dye other than Kermes. One such piece is the tapestry fragment (Fig. 10), about which Pfister says: “Quant au style, nous trouvons de nombreux souvenirs sassanides”, and applies this also to details of the weaving technique. The textiles Pfister analysed were found in Egypt (dating from the 3rd-7th centuries AD) and in Dura-Europos (Fig. 13) and Palmyra in Syria (2nd-3rd centuries AD) on the border between the Roman and the Iranian empires.

Pfister identified the red of this tapestry as well as a number of other textiles as being dyed with a scale insect dye, which he referred to as Porphyrophora. He noted that this dye was similar to the Mexican scale insect (p. 83). Pfister’s chemical analysis of the dye revealed that it was derived from Porphyrophora polonica, a scale insect that feeds on grass roots. The dye was subsequently identified as Porphyrophora through chemical analysis.

Chemical analysis

In a series of articles and books from the 1930s, Rodolphe Pfister published and examined a number of textile specimens from regions in contact with the Iranian cultural sphere, which in a number of instances show Iranian motifs or Iranian style. The red colorants of these pieces include, besides madder (Rubia tinctorum), a scale insect dye other than Kermes. One such piece is the tapestry fragment (Fig. 10), about which Pfister says: “Quant au style, nous trouvons de nombreux souvenirs sassanides”, and applies this also to details of the weaving technique. The textiles Pfister analysed were found in Egypt (dating from the 3rd-7th centuries AD) and in Dura-Europos (Fig. 13) and Palmyra in Syria (2nd-3rd centuries AD) on the border between the Roman and the Iranian empires.

Pfister identified the red of this tapestry as well as a number of other textiles as being dyed with a scale insect dye, which he referred to as Porphyrophora. He noted that this dye was similar to the Mexican scale insect (p. 83). Pfister’s chemical analysis of the dye revealed that it was derived from Porphyrophora polonica, a scale insect that feeds on grass roots. The dye was subsequently identified as Porphyrophora through chemical analysis.

Chemical analysis

In a series of articles and books from the 1930s, Rodolphe Pfister published and examined a number of textile specimens from regions in contact with the Iranian cultural sphere, which in a number of instances show Iranian motifs or Iranian style. The red colorants of these pieces include, besides madder (Rubia tinctorum), a scale insect dye other than Kermes. One such piece is the tapestry fragment (Fig. 10), about which Pfister says: “Quant au style, nous trouvons de nombreux souvenirs sassanides”, and applies this also to details of the weaving technique. The textiles Pfister analysed were found in Egypt (dating from the 3rd-7th centuries AD) and in Dura-Europos (Fig. 13) and Palmyra in Syria (2nd-3rd centuries AD) on the border between the Roman and the Iranian empires.

Pfister identified the red of this tapestry as well as a number of other textiles as being dyed with a scale insect dye, which he referred to as Porphyrophora. He noted that this dye was similar to the Mexican scale insect (p. 83). Pfister’s chemical analysis of the dye revealed that it was derived from Porphyrophora polonica, a scale insect that feeds on grass roots. The dye was subsequently identified as Porphyrophora through chemical analysis.
a Porphyrophora scale insect. He suggests that it is Porphyrophora polonica, and proceeds to develop an argument how this species might have ended up in Iranian lands, and in fact in Syria and Egypt. This logic sounds somewhat far-fetched, and suggests a closer look at the method32 by which Pfister arrives at his conclusion.

To determine the dyestuffs used, Pfister produced test samples of white wool dyed with various substances; his scale insect dyes were “Lac dye” (Kerria lacca), “Kermes” (Kermes vermilio) and “Cochineal” (Dactylopius coccus). He then compared the chemical reactions of these against each other, and to threads taken from historical textiles. His method was to extract the colorants with various acids etc. and then to treat the solutions with further substances. At each stage, he looked at the colour obtained.33 Pfister found that the three scale insect dyes react differently in his experiments (particularly when the extraction is done by chlorhydric acid),34 and there was evidence for all of them in one or the other historical textile sample. Now, the question was which dye was present in the samples where Pfister obtained reactions similar to that of the Mexican scale insect (rather than to the other scale insect dyes or to madder or other red dyes derived from plants). Not knowing at first which scale insect could be involved here, Pfister preliminarily called it “Persian cochineal”,35 until he got hold of the Polish scale insect and announced that the reactions obtained are like those of the Mexican scale insect:

“Nous avons finalement trouvé le colorant du Vieux-Monde qui donne des réactions identiques avec celles de la cochenille [mexicaine], c’est Margarodes polonicus [= Porphyrophora polonica], coccidé vivant à la naissance des racines de certaines plantes des steppes”36

Indeed, Pfister’s observation is right insofar as the similarity of the Mexican and the Porphyrophora reds is concerned, but we argue that his method of merely looking at colours obtained in his experiments (rather than carrying out a chromatography) is insufficient to determine which Porphyrophora species is present in the textiles in question:

“des travaux plus récents sur le rouge d’insectes (...) ont montré que la similitude de composition et la variabilité des proportions des composants, tant majoritaires que mineurs, sont telles chez les Dactylopius et Porphyrophora spp.,

Pfister 1935 (no photos): two monochrome items from Antinoë (Musée Guimet, p. 39), one monochrome item from Dura-Europos (Louvre, p. 43); several pieces from Palmyra of which the weft is dyed with scale insect (p. 44, in some cases combined with purple);
Pfister 1936: E1 Pl. XXXI (= Fig. 10), E2 Pl. XXXII (Musée de Cluny), description of both p. 81f. (apparently found in Egypt, as Pfister p. 83 writes that their details suggest “non-Egyptian origin”); p. 9 n. 1 mentions the items from the Louvre published in 1932a and one additional item (unpublished?);
Pfister 1934b / 1937 / 1940 (textiles from Palmyra): 1934b: T1, T18, T19, S15 (doubtful), L1, L7, L21; 1937: L 60, L 61 (with black-and-white photo), L31, L52, L53, L62; another part of L62 is 1940, 26 recognised as cochineal with lac-dye, which is also the red dye of four items in 1940 (L 121 with black-and-white photo; L 124 with colour photo; L 123); 1937, 12 also mentions a woolen medallion in a Gothenburg museum and 1940, 69 three items dyed with “Polish cochineal” from Xinjiang (cf. n. 42) in the Victoria and Albert Museum London (Ch. 00230, Stein 1921/II, 982 with photos in vol. IV; Ch 0028, Ch 00248); Pfister / Bellinger 1945 (textiles from Dura-Europos): nos. 7, 33-2 (no photos), 132 (black and white photo), 133 (Fig. 13).
It is not quite clear whether any of the pieces published in Pfister 1928 (textiles from Antinoë, with black-and-white photos) contain the scale insect dye in question (and if any are identical to some he republished later). Pfister 1934a, 83, adds that those textiles from Egypt that show the Porphyrophora dye all seem of Persian origin.

32 Description see Pfister 1935, 25-31, 33-35, 46f.

33 For details, cf. Pfister 1935, 24f, who writes that some tricky cases were checked with black light (a certain type of UV light, wavelength 375 nm) which produces fluorescence in some substances, but does not specify which ones.

34 Pfister 1935, 33f. Previously Pfister 1928, 229, had thought (following other authors) that the Mediterranean insect would react similarly to the Mexican scale insect and thus assumed that Kermes is present in the specimens that he then found to contain two different cochineal dyes (cf. Pfister 1935, 46).

35 Thus in Pfister 1934b.

36 Pfister 1935, 35.
Also, Pfister obviously did not think of the Armenian scale insect, nor did he have some at hand to compare his results to.

Modern methods qualified as necessary by Cardon to determine the exact scale insect species include chromatography by HPLC (high performance liquid chromatography). The liquid to be analysed is pressed through a tube (with a solvent such as acetonitrile or a mixture of methanol/water) that contains an adsorbing material (such as synthetic resin or calcium carbonate), with which the components of the solution will interact in different ways, producing differing speeds for the components on their way through the tube. The components thus pass a certain fixed point of the tube at different moments, where one sends light of an appropriate wave length through the tube (often UV light) to measure the percentage of light that is absorbed by the solution; one can also determine the start, maximum and end of their passage at the fixed point. Solvent, adsorbing material and wave length of light need to be chosen depending on the substances one wishes to analyse. The chromatogram then shows the light absorption rate in relation to the time within which the solution passes the tube (cf. Fig. 11). The characteristic time points of the various components can be identified with the behaviour of the pure substances which one submits to the same analysis. The chromatogram also allows calculating the quantity of the various components in the solution (by integrating the area below the curve).

Studies employing the method just outlined include the one by Wouters & Verhecken 1989. In order to submit dyed textiles to chromatography, one extracts and dissolves the colorant and separates it from the mordant, for instance by a liquid containing an acid, to yield a solution which is then analysed. Wouters & Verhecken first produced test samples of dyed wool with various scale insects to determine their dyeing substances. These turn out to be acids such as carminic acid, kermesic acid, etc. It emerges that the various species of scale insects contain substances which are closely related chemically, but in very different quantities. Wouters & Verhecken then...
proceeded to compare the results to test those of historical textiles.\(^{39}\)

Fig. 12 presents the concluding table by Wouters & Verhecken 1989 summarising their analysis (adapted for the present purposes, and with the results for the Armenian scale insect *Porphyrophora hamelii* highlighted). It shows the relative quantities of selected dyeing acids in test samples and in historical textiles from various regions and centuries. Clearly the main difference is that between *Dactylopius* and *Porphyrophora* on the one hand and *Kermes* and *Kerria lacca* on the other. But within the first group, the chemical composition of *Dactylopius* is by far closer to *Porphyrophora hamelii* than to *Porphyrophora polonica*.

As mentioned above, Pfister found the results for his supposed *Porphyrophora polonica* “identical” to those of *Dactylopius coccus*. Since the composition of the dyeing substances of *Porphyrophora hamelii* is much closer to *Dactylopius coccus* than that of *Porphyrophora polonica* (cf. the numbers in bold in Fig. 12), this suggests two possibilities: Either Pfister’s method would yield the same results for *Porphyrophora hamelii* and *Porphyrophora polonica*, which would mean that the method is not fine-grained enough to permit a decision between the two species, or else Pfister’s observation is mistaken (the results are actually not “identical”), and *Porphyrophora hamelii* would have behaved even more similarly to *Dactylopius* had Pfister had the opportunity to carry out experiments with this species. We thus argue that Pfister’s approach is not sufficient to permit a decision in favour of *Porphyrophora polonica*. It seems at least as likely (and historically much more so) that the textiles in question are dyed with the Armenian red.

Historical textiles which were submitted to modern chemical analysis that has shown their red dye to be the Armenian scale insect *Porphyrophora hamelii* include the Sasanian caftan mentioned above (Fig. 5). As this caftan was found in Antinoë in Egypt, it

<table>
<thead>
<tr>
<th>dyeing acids</th>
<th>laccic acid B</th>
<th>“dc II”(^{40})</th>
<th>carminic acid</th>
<th>laccic acid A</th>
<th>flavokermesic acid (+)</th>
<th>kermesic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dactylopius coccus (Fig. 6)</td>
<td>0</td>
<td>1.4-3.8</td>
<td>94-98</td>
<td>0</td>
<td>0.4-2.2</td>
<td></td>
</tr>
<tr>
<td>Porphyrophora hamelii (Fig. 2)</td>
<td>0</td>
<td>0.1-1.2</td>
<td>95-99</td>
<td>0</td>
<td>1.0-4.2</td>
<td></td>
</tr>
<tr>
<td>Porphyrophora polonica (Fig. 9)</td>
<td>0</td>
<td>+</td>
<td>62-88</td>
<td>0</td>
<td>12-38</td>
<td></td>
</tr>
<tr>
<td>Kermes vermilio (Fig. 8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0-25; 75-100</td>
<td></td>
</tr>
<tr>
<td>Kerria lacca (Fig. 7)</td>
<td>0-20</td>
<td>0</td>
<td>71-96</td>
<td>3.6-9.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 12: Composition of dyeing acids in various scale insects (adapted from Wouters & Verhecken 1989, 198.\(^{41}\))

39. The procedure of producing test samples of wool dyed with various substances and comparing their behaviour to threads taken from historical textiles, and to extract the dye by an acid and analyse the solution is not unlike Pfister’s approach, but the methods of analysis are quite different. Analysing solutions obtained from dyed wool (rather than analysing the dyes themselves) intends to produce conditions close to those of the historical textiles. It needs to be kept in mind that the mordants have an important effect on how the dyes will attach to the fibres (thence quite differing colours depending on the mordant employed).

40. “*Dactylopius* coccus” is a yellow dyeing substance which is present in several scale insect dyes (Wouters & Verhecken 1989, 191). In the meantime, it has been recognised as a glucoside of flavokermesic acid (Cardon 2014, 696). The chemical structures of flavokermesic and kermesic acid are very similar (cf. Fig. 4 in Cardon 2014, 695).

41. “All figures represent relative abundances, calculated from integration at 275 nm” (Wouters & Verhecken, *ibid.*).
seems highly likely that other textiles from the same excavation (such as Fig. 10) contain the same *Porphyrophora* species, and a similar logic would extend to *Porphyrophora* dyes of Iranian style from other parts, such as the pieces from Dura-Europos (among these Fig. 13) and Palmyra.

One might then suggest that further historical textiles from the Iranian sphere which have been shown to be dyed with a *Porphyrophora* species might likewise contain *Porphyrophora hamelii*. This applies to the cashmere fragment from Xinjiang (Fig. 3), and at this point we are reminded of the Sogdian word *karmīr* and of the fact that the Sogdians were traders along the Silk Road, and very much present in what is now Xinjiang, and red pieces of cloth are among the commodities mentioned in Sogdian texts.

Other historical textiles submitted to HPLC yielding *Porphyrophora hamelii* as red dye include a pair of a bishop’s knitted silk gloves from France (15th/16th centuries) and a hat offered by King Henry VIII to the town of Waterford, Ireland (16th century), demonstrating how appreciated the Armenian red proved throughout centuries and cultural spheres.

If, then, the Armenian red was so widely spread that it found its way into Iranian textile remains preserved in Syria and Egypt, it seems quite probable that *karmīl* in the Ancient Testament, which since Delitzsch 1898 has been assumed to be of Iranian origin, refers to exactly this red dye.

Conclusion

As mentioned above, *karmīl* in 2 Chronicles replaces Hebrew * tôlā at šānī* used in the other books of the Old Testament. The Chronicle books retell events described in older sources, with characteristic adaptations. 2 Chronicles 2-5, within which the only three attestations of *karmīl* are found, re-describes the construction of the Temple found in 1 Kings 6-7, but adds a curtain (while no textiles are mentioned in 1 Kings). The term ‘veil’ as well as the actual formulation clearly is a reference to “the design and construction of the tabernacle” made by Moses in the desert (Exodus 25-27). Particularly parallel to the passage quoted in the beginning is Ex. 26:31:

"And thou shalt make a veil of blue, and purple, and scarlet, and fine twined linen of cunning work: with cherubims shall it be made."

One might wonder whether perhaps the motivation for the substitution of *karmīl* for * tôlā at šānī* in the quasi-quote in 2 Chronicles lies in a substitution of

42. In fact, Pfister 1934a, 88, 92, mentions textiles found by Sir Aurel Stein in Xinjiang which seem to be of “Syro-Iranian character” and Pfister 1940, 69, describes some of Stein’s pieces from the Thousand Buddha Caves as dyed with “Polish cochineal” (cf. n. 31).
44. Williamson 1982, 209.
scale insect dyes in this period. The commonly used tōlaʾ at šānī is likely to refer to Kermes, which was in use in Antiquity and up into modern times all around the Mediterranean. In 2 Chronicles, reflecting Aramaic influence, and Iranian via Aramaic, it seems possible in view of the discussion above that the reference of karmīl is to the Armenian dye.

If so, this would imply that the term for the colour, or rather for the dye, came with the colorant it referred to, just as so many commodities of trade have brought their names with them. This would confirm the statement quoted at the beginning that Hebrew colour terms, and in fact probably any ancient colour terms, are a feature of the object they come with, underlining once again the importance of studying etymology together with the realities that the speakers employ the words for.

Bibliography

Niẓāmī Ganǰawī (1881) The Sikandar nāma, e barā or Book of Alexander the Great (...). Translated for the first time out of the Persian (...) by Captain H. Wilberforce Clarke. London.

45. According to Cardon (2014, 595), the Kermes species referred to by tōlaʾ at šānī is Kermes echinatus, which is not identical, but very similar, to Kermes vermilio.

46. Cf. Singer (1954, 246): “The best variety [of cochineal red] is said in the Old Testament to have come from the mountains—that is, the Armenian region.”
9. Armenian karmir, Sogdian karmīr, Hebrew karmīl and the Scale Insect Dye

