Game-based tools to transmit freshwater ecology concepts
Hélène Serra, Juste Raimbault

To cite this version:

HAL Id: halshs-01322860
https://halshs.archives-ouvertes.fr/halshs-01322860
Submitted on 27 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
INTRODUCTION

- There is an increasing awareness of the public on environmental issues.
- Expert knowledge is often required to understand them.
- A need for simple and understandable tools to explain environmental issues.
- Games provide a virtual world with given boundaries (rules) that the player needs to understand and to follow to win.
- Furthermore, games are dynamic and interactive: the player engagement and its knowledge retention increase.
- Games display interesting features to spread scientific thinking.

OBJECTIVE

The games aim to be complementary:
- In term of player interactions and system dynamics.
- In the targeted players (groups vs isolated gamers).

TO DEVELOP A BOARD GAME AND A COMPUTER-BASED GAME TO EXPLAIN THE BASIC CONCEPTS OF AQUATIC ECOSYSTEM

METHODOLOGY

- Context
- Design of the games (players, token, board).

PROTOTYPES

- Size and layout of the board.
- Coding and calibration of the model.

TEST AND EVALUATION

- Gathering player feedbacks.
- Refining and adapting the games.

DIFFUSION

- Identification of funding opportunities.
- Construction of a diffusion network.

DEVELOPMENT OF THE PROTOTYPE

- Context
- The player controls an ecosystem with prey (the roach) and predators (the pumpkinseed).
- The objective of the game is to maintain the stability of the ecosystem.
- Concepts illustrated: population dynamics and ecosystem resilience.

BASES OF THE BOARD GAME

- Species: the roach (Rutilus rutilus) as a prey and the pumpkinseed (Lepomis gibbosus) as a predator, two common European small fish.
- Illustration of a native European shoal fish (the roach) and of an invasive species (the pumpkinseed) with specific life history characteristics.

HOW TO PLAY THE GAME

- The board represents the edge of a lake with plants, crustaceans, and mollusks.
- The player chooses a fish species and starts the game with 2 tokens (male + female).
- The players use dice to move the tokens on the board.
- Each resource provides the fish with a given amount of energy that it accumulates.
- This energy can further be used to reproduce (adult fish), to grow (juvenile) or to attack a prey (predator).
- Each turn, the player takes a card « chance » representing the events impacting the lake.

ECOLOGICAL CHARACTERISTICS OF EACH PLAYER:

PLAYER 1: PREY
- The roach
- RESOURCES:
 - Crustaceans and mollusks
- PREY:
 - Crustaceans and mollusks
- COMPETITION:
 - The eggs stick to the plants

PLAYER 2: PREDATOR
- The pumpkinseed
- EXAMPLE OF « CHANCE » CARD:
 - A solitary pike is swimming around. Watch out! You just lost one fish.
 - Tonight is full moon. You see as well as in day light: play again.
- The forestry guards cut trees near the lake: plants become much more light. Shoals eat more: they bring twice more energy for 2 turns.
- A fisherman puts his boat onto the water. He reported it with antifouling: no mollusc for 2 turns.

Opening of a fishing contest. The introduced fish destroyed the whole bottom of the lake: no more resources in the area for 2 turns.

DISCUSSION

- Demonstration of the proof-of-concept: the prototypes are available for testing.
- Both games are complementary as they integrate different time scales and illustrate diverse basic concepts of aquatic ecology.
- No knowledge in aquatic ecology is needed to play both games: wide possibilities in targeted audiences.
- The methodology is flexible and adaptable.
 - On-going development of the games.
 - Refinements and changes are easy to integrate in new versions of the games.

REFERENCES: