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Abstract

Contrary to the current regulatory trend concerning extreme risks, the pur-

pose of this paper is to emphasize the necessity of considering the Value-at-Risk

(VaR) with extreme confidence levels like 99.9%, as an alternative way to mea-

sure risks in the “extreme tail”. Although the mathematical definition of the

extreme VaR is trivial, its computation is challenging in practice, because the

uncertainty of the extreme VaR may not be negligible for a finite amount of data.

We begin to build confidence intervals around the unknown VaR. We build them

using two different approaches, the first using Smirnov ’s result (Smirnov, 1949

[24]) and the second Zhu and Zhou ’s result (Zhu and Zhou, 2009 [25]), showing

that this last one is robust when we use finite samples. We compare our ap-

proach with other methodologies which are based on bootstrapping techniques,

Christoffersen et al. (2005) [7], focusing on the estimation of the extreme quan-

tiles of a distribution. Finally, we apply these confidence intervals to perform

a stress testing exercise with historical stock returns during financial crisis, for

identifying potential violations of the VaR during turmoil periods on financial

markets.
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1. Introduction

The Value-at-Risk (VaR) summarizes the worst potential loss over a target

horizon within a given confidence level. The Expected Shortfall (ES) is defined

as the expected loss beyond the VaR. In the new standards of the Basel Com-

mittee on Banking Supervision (BCBS) for minimum capital requirements for5

market risk (BCBS, 2016 [4]), the BCBS proposes to shift from VaR to an ES

measure of risk under stress. In this standards, the objective of using the ES is

to ensure a more prudent capture of “tail risk” (or equivalently extreme risk)

and capital adequacy during periods of significant financial market stress. Un-

fortunately, from its mathematical definition, the interpretation of the ES as a10

measure of risks in the “extreme tail” has to be treated carefully, since the ES

only computes the conditional expectation of losses beyond the VaR. Intuitively,

it is just the expected losses in the tail, equivalently and mathematically the

average of the VaR values beyond a threshold. So when we compute the ES,

some potential extreme losses in the “extreme tail” may be averaged by those15

potential losses beyond the VaR but close to it. Thus using the ES can provide

an inappropriate evaluation of the extreme risks, Koch-Medina et al. (2016) [15].

The question is to find an adequate way to measure the risks in the ”extreme

tail”. An intuitive way is to compute the extreme VaR, which is a VaR with20

a confidence level close to 1 like 99.9%, and to use it as a measure of risks.

Although this definition is quite simple, the computation of an extreme VaR

is quite challenging, because of the uncertainty in the fitting of the extreme

tail of the distribution used to computed this extreme VaR. This uncertainty

comes from the finite amount of data we use in practice. Especially, the lack25

of observed data in the extreme tail leads to large uncertainty for the extreme

2

 
Documents de travail du centre d'Economie de la Sorbonne - 2016.34RR (Version révisée)



VaR. From another point of view, the reported VaR values are point estimates,

which are also sources of errors and uncertainty. Thus to get a robust under-

standing of the risks, we need to associate to each point estimate of the VaR

its confidence interval. For example, a bank may have two portfolios with the30

same point VaR estimate equals to 100 million euros. However, the confidence

interval for the first portfolio ranges between 80 and 120 million euros, and for

the second portfolio it ranges between 50 and 150 million euros. It implies that

the second portfolio is more risky than the first one, because the potential losses

of the second portfolio are more likely to deviate above 100 million euros than35

the first one’s losses. Therefore, the bank should hold higher amount of capital

for the second portfolio than the amount for the first one. Rather than finding

a point VaR estimate without uncertainty (for a discussion in the independent

case, we refer to Francioni et al. (2012) [12]), in this paper, we attempt to build

confidence intervals around the extreme VaR with accurate coverage probabil-40

ity, in order to quantify ex ante its uncertainty.

In the literatures, when researchers build confidence intervals they generally

use asymptotic Gaussian results or bootstrapping which is time consuming. We

can distinguish two kinds of papers: some consider independent and identically45

distributed (i.i.d.) random variables, other dependent variables. Under the i.i.d

assumption on the financial time series, Jorion (1996) [13] points out the ne-

cessity of considering the uncertainty of the historical simulation VaR when the

underlying distribution is Gaussian or Student-t distribution. He builds con-

fidence bands for quantiles based on its asymptotic Gaussian result. Instead50

of using asymptotic result to build the confidence interval, Pritsker (1997) [21]

assumes a distribution on the returns and draws i.i.d returns by Monte-Carlo

simulation, computes the empirical quantiles and builds the confidence inter-

vals. To avoid assuming a specific distribution on the returns, Christoffersen

et al. (2005) [7] use a bootstrapping approach, that is generating i.i.d returns55

by resampling with replacement from historical return data, to compute the

empirical quantiles and builds the confidence intervals. Both Christoffersen et
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al. (2005) [7] and Gao et al.,(2008) [9] find that the bootstrap intervals for a

99% VaR have nearly correct coverage probability. When the financial return

time series are not i.i.d. McNeil et al. (2000) [16] and Chan et al. (2007) [6]60

propose GARCH models (Bollerslev, 1986 [5]) to capture the heteroscedasticity

property of the financial return series. Based on these modellings, they derive

formulas for the conditional distribution of the returns and the conditional VaR.

The confidence intervals are obtained either by bootstrapping (Christoffersen et

al., 2005 [7]) or using the asymptotic behaviour of the GARCH residuals (Chan65

et al., 2007 [6]; Gao et al., 2008 [9]). Although these dynamical models may

be closer to the nature of data, they suffer from some problems such as esti-

mation errors, choices of initial values, model misspecification and overfitting.

Furthermore, the use of dynamical models and the conditional VaR for market

risk measurement may lead to the regulatory capitals fluctuate widely over time70

and are therefore difficult to carry out.

It exists also a huge literature on the choice of the risk models for the finan-

cial data, but it mainly considers the point estimates of the VaR. McAleer et

al. (2013) [17] discuss how to chose optimal risk models among different condi-75

tional volatility models like Exponentially Weighted Moving Average (EWMA)

by RiskmetricsTM (1996) [22], GARCH and EGARCH (Nelson, 1991 [18]), in

terms of minimizing daily capital charges before and during the global financial

crisis. Kellner et al. (2016) [14] compare eight different models for the innova-

tions’ distribution assuming that the financial returns follow ARMA-GARCH80

process. They find the ES’s level of model risk is higher than the VaR’s which

is inherent to the definitions of the risk measures and the models they chose.1

The approach in this paper is quite different from the previous cited pa-

pers. In order to associate to each point estimate of the VaR a confidence85

1In this paper we do not enter in the discussion along the question of coherency and suggest

the readers to look at Artzner et al. (1999) [1] and Guégan and Hassani (2016) [10].
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interval, we first consider the asymptotic distribution of this estimate provided

by two results, the theorems of Smirnov (1949) [24] and of Zhu and Zhou (2009)

[25]. These two theorems provide us the asymptotic distributions of the VaR

estimates under different assumptions, which permit to build two kinds of con-

fidence intervals around the unknown VaR. We extend the results by providing90

the exact bounds of these confidence intervals, as soon as the unknown distri-

bution which characterizes the financial data is estimated. We show that one of

these approaches is robust with finite samples. Consequently it is interesting to

use it in practice. In order to determine a robust framework for the extreme VaR

to answer to the actual demands of the regulator, we show that our approach is95

definitively interesting when we want to estimate the VaR for p = 99.9%. We

compare our approach with classical bootstrapping approach. And we exhibit

that the confidence intervals of the extreme VaR built with the plug-in corollary

of Zhu and Zhou’s theorem outperform the confidence intervals obtained from

bootstrapping. This means that we reduce the bias coming from the bootstrap-100

ping approach when we use our approach to build the confidence interval of the

extreme VaR.

The remainder of the paper is structured as follows. Section 2 presents the

plug-in version of the asymptotic Gaussian and saddlepoint results, for approxi-105

mation the distribution of the point estimate of the VaR. We compare these two

results quantitatively and graphically by simulation. Then we build confidence

intervals from these results and compare them with bootstrapping intervals.

Section 3 presents a stress testing implementation applying these confidence

intervals with historical stock returns during financial crisis, for identifying po-110

tential violations of the VaR during periods of financial market stress. Section

4 concludes.
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2. Confidence intervals of the VaR

All along this section we consider the VaR with one day horizon. Let X115

be a random variable (r.v.), which is the daily loss of a given financial asset

or portfolio. And let Fθ be the cumulative distribution function (c.d.f.) of X

with a parameter θ. Let F−1θ (x) be its left continuous inverse, i.e. F−1θ (x) =

min {u : Fθ(u) ≥ x}. For a given confidence level 0 ≤ p ≤ 1, we define (see

Pflug, 2000 [20] for instance) the Value-at-Risk V aRp as the p-quantile :120

V aRp = F−1θ (p), (1)

and for the same confidence level p, the Expected Shortfall ESp is equal to:

ESp =
1

1− p

∫ 1

p

F−1θ (u)du =
1

1− p

∫ 1

p

V aRudu. (2)

Equation (2) implies that ESp is just an average quantity of the potential

losses beyond the V aRp. Therefore, to measure the extreme risks, we consider

the extreme VaR as an alternative measure and discuss its uncertainty in the

following. In practice, we cannot compute the true values of V aRp, since they125

depend on the unknown distribution Fθ. We need to estimate Fθ to derive the

confidence interval of the VaR. This is the goal of section 2.

2.1. Asymptotic distribution of an estimate of the VaR

Let X1, ..., Xn be a sequence of losses corresponding to the previous random130

variable X. We consider the Historical Simulation (HS) estimate of the V aRp,

which is the most commonly used method for VaR computation (Pérignon, 2010

[19]). It provides the VaR estimate using the order statistics of past losses. We

rank X1, ..., Xn and obtain X(1) ≤ · · · ≤ X(n) and define the HS estimate as:

V aRHSp = X(m), (3)
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where m = np if np is an integer and m = [np]+1 otherwise. [x] denotes the135

largest integer less than or equal to x.2 Furthermore, V aRHSp is a consistent

estimator of V aRp (Serfling, 2009 [23]). It means that the V aRHSp converges to

V aRp in probability when n tends to infinity.

In order to build confidence intervals of the VaR, we introduce two plug-in140

corollaries for the theorems of Smirnov (1949) [24] and Zhu et al. (2009) [25].

They provide two asymptotic approximations for the distribution of V aRHSp .

We call the first approximation, the Asymptotic Normality (AN) approximation

and the second one, the saddlepoint (SP) approximation. We derive confidence

intervals of the VaR from them. Theoretically, the convergence speed of the SP145

approximation is O( 1
n ), which is faster than the speed of convergence of the AN

approximation (O( 1√
n

)). Consequently, we may construct a robust confidence

interval of the VaR from the SP approximation, even if we only use a small sam-

ple. In practice it is a trade-off to use long historical data which may containing

more information, or to use short historical data which may be more related150

to the current market (Halbleib et al., 2012 [11]). Note that, in order to build

these confidence intervals we need to estimate Fθ
3.

Corollary 1 (Plug-in AN approximation). Given a r.v. X whose c.d.f Fθ

and density fθ are continuous functions with respect to (w.r.t) θ, and θ̂ is a

consistent estimator of θ, then

√
n
V aRHSp − V aRp√

V̂
→(d) N(0, 1), as n −→∞, (4)

where V̂ = p(1−p)
[fθ̂(F

−1

θ̂
(p)])2

.

2X(m) is also called the mth order statistic, which is a fundamental tool in nonparametric

statistics.
3The estimates of the parameters θ are obtained by maximum likelihood approach. We do

not restrict the choice of Fθ here: it is chosen through a panel of distributions and the best

fit is decided using for instance Akaike criterion.
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The proof is postponed in Appendix A and derived from Smirnov (1949)155

theorem.

Corollary 2 (Plug-in and linear transformed SP approximation). Assume

Fθ and fθ are continuous functions with respect to (w.r.t) θ, and θ̂ is an con-

sistent estimator of θ. For ∀ε > 0 and ∀x in the domain of Fθ, we assume

ε < p < 1− ε. Let r0 = m
n , Fθ̂(x+ F−1

θ̂
(p)) = t, then for t 6= p

V aRHSp − V aRp →(d) Ψ(
√
nω̂]) as n −→∞, (5)

where

Ψ(
√
nω̂]) = 1− Φ(

√
nω̂]) ω̂] = ω̂ +

1

nω̂
ln

1

ψ(−ω̂)

ψ(−ω̂) =
ω̂(t− 1)

t− r0
(

r0
1− r0

)
1
2 ω̂ = −

√
2h(t)sign(t− r0)

h(t) = r0ln
r0
t

+ (1− r0)ln
1− r0
t

.

(6)

For t = p

P (V aRHSp ≤ x) ≈ 1

2
+

1√
2πn

1 + r0
3r0

(
r0

1− r0
)

1
2 . (7)

The proof is postponed in Appendix B and derived from Zhou and Zhu

(2000) theorem.

The two results given in these two corollaries are asymptotic results. In160

order to verify how they perform on finite samples, we propose the following

experiment to check whether they provide reliable approximations for the distri-

bution of the V aRHSp when the data are finite. We consider samples of sizes n =

11, 121, 241, 501, 1001, 10001, 30001 and different p = 0.05, 0.01, 0.005, 0.95, 0.99, 0.995

. We use a panel of distributions for Fθ: (i) a N(0, 1) distribution; (ii) a NIG0165

(Normal-inverse Gaussian, Barndorff-Nielsen (1978) [2]) distribution with tail

parameter 0.3250, skewness parameter equal to 5.9248e−04, location parameter

equal to −1.6125e − 04 and the scale parameter equal to 0.0972); (iii) a GEV

(Generalized extreme value, Embretch et al. (1997) [8]) distribution with shape

parameter 0.8876698, scale parameter equal to 2049.7625278 and the location170
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parameter equal to 245.7930751.4

We simulate n∗1000 independent daily return or loss data
{
Xj
i : i = 1, ..., n

}
j=1,...,1000

using the three previous distributions (N(0, 1), NIG0 and GEV ). For a given p,

we obtain one realization of the V aRHSp from
{
Xj
i : i = 1, ..., n

}
j

and in fine we175

have 1000 realizations. Then we build the empirical cdf (ecdf) of V aRHSp real-

izations. It is a proxy for the true distribution of the V aRHSp . For comparison,

we compute the Kolmogorov–Smirnov (K-S) statistic and the Anderson–Darling

(A-D) statistic between the ecdf of the V aRHSp and the AN (or SP) approxima-

tions. The results of K-S statistic are in Table (1) 5.180

From Table (1), we observe that the values of the K-S statistic vary between

0.0139 and 0.0449 for the SP approximations, and for the AN approximations,

the values vary between 0.0204 and 0.3959. It appears that the SP approxima-

tions are closer to the true distributions of V aRHSp than the AN approximations,185

and that this result is mainly observed when n ≤ 1000. Another interesting re-

sult is that the difference of these two approximations is important for the very

high values pf p, which correspond to the extreme VaR. For example, the value

of the K-S statistic is 0.0266 for the SP approximation but 0.0744 for the AN

approximation, where n = 241, p = 0.005 and Fθ is NIG0 distribution. In-190

deed, when the sample size is small and we consider the extreme VaR, even for

a thin-tailed distribution, the SP approximation is more reliable than the AN

approximation. For instance, the value of the K-S statistic is 0.0213 for the SP

approximation but 0.1711 for the AN approximation, where n = 121, p = 0.005

and Fθ is N(0, 1) distribution. Therefore, the confidence intervals from the SP195

approximations may be trusted and the uncertainty of the extreme VaR need

to be quantified carefully.

4These distributions represent financial data with different features.
5The results of A-D statistic are similar to those obtained with the K-S statistic, so we do

not provide them in the paper.
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N(0, 1) NIG0 GEV

AN SP AN SP AN SP

p = 0.05 p = 0.95

n = 11 0.2183 0.0361 0.1933 0.0260 n = 241 0.0847 0.0265

n = 121 0.0767 0.0192 0.0876 0.0358 n = 501 0.0503 0.0265

n = 241 0.0509 0.0274 0.0621 0.0197 n = 1001 0.0756 0.0449

n = 1001 0.0435 0.0248 0.0276 0.0228 n = 10001 0.0371 0.0363

n = 10001 0.0322 0.0259 0.0208 0.0207 n = 30001 0.0368 0.0327

p = 0.01 p = 0.99

n = 11 0.0757 0.0211 0.1963 0.0191 n = 241 0.1155 0.0205

n = 121 0.0847 0.0318 0.1072 0.0222 n = 501 0.1409 0.0370

n = 241 0.0948 0.0330 0.0564 0.0265 n = 1001 0.0988 0.0266

n = 1001 0.0456 0.0191 0.0546 0.0213 n = 10001 0.0459 0.0238

n = 10001 0.0204 0.0195 0.0227 0.0187 n = 30001 0.0327 0.0238

p = 0.005 p = 0.995

n = 11 0.3930 0.0245 0.3959 0.0138 n = 241 0.1584 0.0278

n = 121 0.1711 0.0213 0.1418 0.0278 n = 501 0.1213 0.0253

n = 241 0.0653 0.0225 0.0744 0.0266 n = 1001 0.1461 0.0311

n = 1001 0.1071 0.0296 0.0976 0.0308 n = 10001 0.0515 0.0149

n = 10001 0.0367 0.0139 0.0359 0.0163 n = 30001 0.0392 0.0227

Table 1: We simulate n ∗ 1000 independent daily return or loss data from N(0, 1), NIG0 and

GEV distributions. For a given p, we obtain n realizations of V aRHSp . Then we compute the

Kolmogorov–Smirnov statistic between the AN (or SP) approximation and the empirical cdf

(ecdf) of V aRHSp realizations.

We illustrate the results provided in Table (1) graphically, exhibiting some

figures for n = 241, which represents the number of one year daily stock return200

data. For Figure (1), we do the simulations for p = 0.995 and Fθ a N(0, 1)

distribution. For Figure (2) we perform the simulations with p = 0.005 and Fθ

a NIG0 for the left graph, and for the right graph, using p = 0.995 and Fθ a

GEV distribution. In both figures, the solid curve is the ecdf of the V aRHSp

realizations, the dash curve is the SP approximation and the dash-dot curve205

is the AN approximation. We find that the SP approximations are closer to

10

 
Documents de travail du centre d'Economie de la Sorbonne - 2016.34RR (Version révisée)



the ecdf of the V aRHSp realizations than the AN approximations. In particu-

lar, the V aRHSp realisations simulated from a GEV distribution is asymmetric

(skewness = 14.6562) and leptokurtic (kurtosis = 247.1869). Apparently,

the AN approximation cannot capture these behaviours, since it is symmetric210

(skewness = 0) and thin-tailed (kurtosis = 3). Consequently, it is reasonable

to use SP approximation instead of AN approximation as soon as the data sets

exhibit these kinds of behaviour.

Figure 1: We do the same simulations for Table (1), where p = 0.995 and Fθ is a N(0, 1)

distribution. The solid curve is the ecdf of the V aRHSp realizations, the dash curve is the SP

approximation and the dash-dot curve is the AN approximation.
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Figure 2: We do the same simulations for Table (1), where p = 0.005 and Fθ is a NIG0 for

the left graph; for the right graph, p = 0.995 and Fθ is a GEV distribution. For both graphs,

the solid curve is the ecdf of the V aRHSp realizations, the dash curve is the SP approximation

and the dash-dot curve is the AN approximation.

2.2. Confidence intervals around the VaR215

Using the results of Corollary 1 and Corollary 2 we can derive two confidence

intervals from them around the VaR. For that we consider another confidence

level 0 < q < 1 and the confidence interval around the VaR obtained from

Corollary 1 is: [
V aRHSp + z 1−q

2
σ̂, V aRHSp + z 1+q

2
σ̂
]
, (8)

where z q
2

is a quantile of N(0,1) and σ̂ is a standard deviation equal to V̂
n . We

call this confidence interval CI-AN. It is symmetric, because N(0,1) is symmetric.

We provide now the confidence interval around the VaR obtained from Corol-

lary 2: [
V aRHSp + Z 1−q

2
, V aRHSp + Z 1+q

2

]
. (9)

where Zq = Ψ−1q (
√
nω̂]) and Ψ and ω̂] are provided in Corollary 2. The bound

Zq is generally obtained numerically. This CI may be symmetric or not, we call220

it CI-SP .

12
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In order to see how our methodology outperforms the bootstrapping confi-

dence intervals of the VaR in the literatures, we propose an experiment which

permits to compare the two previous confidence intervals and a confidence in-225

terval built by bootstrapping following the methodology developed by Christof-

fersen et al. (2005) [7]. We call this bootstrapping confidence interval CI-BT.

The experiment is in the following:

1. Let q = 0.9 and p = 0.05, 0.01, 0.005, 0.001, and n = 250, 500, 1000 sam-

ples of independent daily return data {R1, ..., Rn} respectively from: (i) a230

N(0, 1) distribution, (ii) a Student-t distribution with mean zero and vari-

ance 202/252 with degrees of freedom 8 or 500 denoted as t(8) and t(500)

6, (iii) a GEV distribution denoted as GEV 1, with the shape parameter

equal to −0.4144, the scale parameter equal to 0.0361 and the location

parameter equal to −0.0083. The true values of the VaR is derived from235

the distributions, for instance, when p = 0.05 and we consider a N(0, 1),

the true VaR value is equal to −1.6449.

2. For each data {R1, ..., Rn}, we fit the distribution Fθ on {R1, ..., Rn} and

use the fit to build the CI-AN and CI-SP.

3. To build the CI-BT for each {R1, ..., Rn} we proceed in the following240

way. We generate pseudo returns
{
R∗1,j , ..., R

∗
n,j

}
j=1,...,999

using resam-

pling with replacement. We compute the V aRHSp for each j and get{
V aRHS∗,jp

}999
j=1

. Then the 100q% CI-BT of the VaR is equal to:

[
Q 1−q

2

({
V aRHS∗,jp

}999
j=1

)
, Q 1+q

2

({
V aRHS∗,jp

}999
j=1

)]
, (10)

where Qq(·) is the q − quantile of the ecdf of
{
V aRHS∗,jp

}999
j=1

.

4. Step 1-3 are repeated one thousand times and count how many times245

the true values of the VaR are inside the confidence intervals, for each

6The parameters we use here for Student-t distribution are the same as those in Christof-

fersen et al. (2005) [7]. The mean zero and variance 202/252 imply a volatility of 20% per

year.
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distribution, n and p. We divide each number of times by 1000 and call

it the nominal coverage rate (NCR). If the confidence interval is reliable,

the NCR should be close to the chosen q = 0.9.

The results of NCR are provided in Table (2). Consistent with the results250

found in Christoffersen et al. (2005) [7], the CI-BT have NCR close to the

promised q = 0.9 when p equals 0.05 and 0.01. The CI-AN and CI-SP also have

NCR close to q = 0.9 in these cases. However, when we consider the extreme

VaR like p = 0.005 or p = 0.999, the CI-BT have considerable low NCR. For

example, when n = 250 and p = 0.001, the NCR of the CI-BT ranges from255

0.207 to 0.241 which are far less than 0.9. But the NCR of the CI-AN and

CI-SP ranges from 0.804 to 0.984.

Now we focus on the confidence intervals obtained from the AN approxima-

tion and SP approximation for the extreme VaR. Comparing the NCR of the260

CI-AN and CI-SP, we observe from Table (2) that we obtain better results when

we use the CI-SP, as soon as p = 0.01 and 0.005 and p = 0.001: indeed the NCR

is close to q = 0.9 in a greater number of cases than those observed when we use

the CI-AN. When p = 0.05, the results are similar whatever the interval we use:

the number of times where the true VaR value is outside the confidence intervals265

is nearly the same for each interval. Thus, the CI-SP is more informative than

the CI-AN when we quantify the violations of the extreme VaR.
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n = 250 n = 500 n = 1000

N(0, 1) t(8) t(500) GEV 1 N(0, 1) t(8) t(500) GEV 1 N(0, 1) t(8) t(500) GEV 1

p = 0.05

CI −BT 0.887 0.894 0.917 0.889 0.893 0.888 0.880 0.894 0.902 0.893 0.899 0.913

CI −AN 0.907 0.897 0.921 0.895 0.901 0.896 0.910 0.908 0.893 0.896 0.898 0.902

CI − SP 0.906 0.898 0.921 0.891 0.892 0.893 0.905 0.903 0.891 0.893 0.893 0.900

p = 0.01

CI −BT 0.909 0.903 0.892 0.906 0.877 0.879 0.881 0.868 0.896 0.899 0.878 0.893

CI −AN 0.906 0.898 0.915 0.896 0.907 0.901 0.927 0.898 0.909 0.914 0.923 0.908

CI − SP 0.900 0.890 0.912 0.887 0.884 0.883 0.905 0.889 0.898 0.906 0.909 0.899

p = 0.005

CI −BT 0.713 0.712 0.692 0.685 0.902 0.898 0.897 0.893 0.888 0.888 0.872 0.874

CI −AN 0.932 0.899 0.959 0.926 0.919 0.891 0.926 0.893 0.914 0.910 0.918 0.914

CI − SP 0.901 0.868 0.938 0.891 0.910 0.887 0.911 0.886 0.891 0.899 0.899 0.891

p = 0.001

CI −BT 0.207 0.209 0.233 0.241 0.393 0.391 0.386 0.394 0.631 0.610 0.649 0.635

CI −AN 0.959 0.913 0.984 0.959 0.943 0.904 0.963 0.935 0.941 0.905 0.959 0.946

CI − SP 0.881 0.804 0.918 0.874 0.897 0.849 0.928 0.893 0.854 0.813 0.869 0.848

Table 2: Let q = 0.9. We simulate n = 250, 500, 1000 independent daily return data

{R1, ..., Rn} respectively from a N(0, 1) distribution, or a Student-t distribution with mean

zero and variance 202/252 for degree of freedom equal to 8 or 500 denoted as t(8) and t(500),

or a GEV distribution denoted as GEV 1, with the shape parameter equal to −0.4144, scale

parameter equal to 0.0361 and location parameter equal to −0.0083. We derive the true values

of the VaR. For each data {R1, ..., Rn}, we build the CI-AN, CI-SP and CI-BT by definitions

and check if the true values of the VaR are inside the confidence intervals. We repeat this

procedure one thousand times and count how many times the true values of the VaR are inside

the confidence intervals and obtain the nominal coverage rates. The results are provided in

the table.
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3. A stress testing application

For identifying ex ante the potential violations of the VaR during periods270

of financial market stress, in this section, we apply the CI-AN and CI-SP to

perform a stress testing with historical stock returns during financial crisis.

The data we consider are: the daily returns of S&P 500 from 03/01/2008 to

31/12/2008 (252 data, denoted as SP1); the daily returns of S&P 500 from

03/01/1987 to 31/12/1987 (252 data, denoted as SP2); the daily returns of HSI275

from 03/01/1997 to 31/12/1997 (244 data, denoted as HSI1); the daily returns

of HSI from 03/01/1987 to 31/12/1987 (245 data, denoted as HSI2); All the

data are obtained from Bloomberg. These data correspond to three financial

crisis: Black Monday (1987), the Asian financial crisis (1997) and the global

financial crisis (2007-08). In Table (3), we provide the first four empirical mo-280

ments and the number of observations of the data.

Empirical moments

points mean variance skewness kurtosis

SP1 (03/01/2008-31/12/2008) 252 -0.0015 0.0007 0.1841 6.8849

SP2 (03/01/1987-31/12/1987) 252 0.0003 0.0004 -4.0440 45.5834

HSI1 (03/01/1997-31/12/1997) 244 -0.0005 0.0006 0.7616 18.7190

HSI2 (03/01/1987-31/12/1987) 245 0.0000 0.0008 -6.7209 78.8165

Table 3: In this table, we provide the first four empirical moments of the data and the number

of observations.
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p=0.05 p=0.01 p=0.005 p=0.001

NIG fit (SP1)

VaR -0.0415 -0.0706 -0.084 -0.1171

ES -0.0597 -0.0904 -0.1047 -0.1378

NIG fit (HSI1)

VaR -0.0349 -0.0724 -0.0921 -0.1440

ES -0.0589 -0.1027 -0.1246 -0.1778

Table 4: For p = .05, 0.01, 0.005, 0.001, we compute the VaR and the ES for SP1 and HSI1

using the NIG fit.

To perform the stress testing exercise, first we fit a NIG distribution on the

data sets SP1 and HSI1 using moments method (it is the best fit since they

are asymmetric and leptokurtic). The estimates are provided in Appendix C.285

Second we follow the demands of the regulator (BCBS, 2016 [4]) suggesting to

use the ES for p = 0.01 to measure the risks in the extreme tail. In Table (4),

for p = .05, 0.01, 0.005, 0.001, we compute the VaR and the ES for SP1 and HSI1

using the NIG fit. For SP1, we obtain ESp = −0.0904 for p = 0.01 , but if we

now consider the extreme VaR (with the approach privileged in this paper) to290

quantify the risk in the extreme tail, this means using the VaR for p = 0.001

we get V aRp = −0.1171. For HSI1, we get ESp = −0.127 for p = 0.01 whereas

we get V aRp = −0.1440 for p = 0.001. The results illustrate the fact that

the extreme VaR provides very interesting information for measuring the risk

in the extreme tail. Thus it is more the choice of the value of the confidence295

level which is important to control, measure and understand the risks in the

tails than the shift from one measure to another one, as proposed inside Basel

guidelines. Moreover, this discussion lies on point estimates whatever the risk

measure we chose (VaR or ES). Following our previous discussion in section 2

on the variability of the point estimates, we come back to the use of confidence300

intervals of the VaR for stress testing purposes.
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Following the methodology presented in section 2, we build the CI-AN and

CI-SP for these two sets of data with q = 0.01, and n equals to 252 and 244 re-

spectively, p = 0.001, 0.0055, 0.0099, 0.0144, 0.0188, 0.0233, 0.0277, 0.0322, 0.0366, 0.0411, 0.0455, 0.05.305

We consider p close to 0 because for the returns the losses appear in the left tail.

Then, we compute the empirical quantiles of SP2 and HSI2 using the same p.

Although in Basel II (BCBS, 2005 [3]), the value of p is suggested as 99%, we

show in the following examples that it is interesting to consider different values

of p. We focus on p = 99.9% to get information on the extreme VaR, in order310

to analyse the extreme losses.

Figure 3: We fit a NIG distribution using moments method on the data SP1 and

compute the CI-AN and CI-SP use the fits, where q = 0.01, n = 252 and p =

0.001, 0.0055, 0.0099, 0.0144, 0.0188, 0.0233, 0.0277, 0.0322, 0.0366, 0.0411, 0.0455, 0.05. At last,

we compute the empirical quantiles of SP2 for the same p. In the figure, the squares are the

bounds of the CI-AN; the stars are the bounds of the CI-SP; the crosses are the empirical

quantiles of the data.
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Figure 4: We fit a NIG distribution using moments method on the data HSI1 and

compute the CI-AN and CI-SP use the fits, where q = 0.01, n = 252 and p =

0.001, 0.0055, 0.0099, 0.0144, 0.0188, 0.0233, 0.0277, 0.0322, 0.0366, 0.0411, 0.0455, 0.05. At last,

we compute the empirical quantiles of HSI2 for the same p. In the figure, the squares are the

bounds of the CI-AN; the stars are the bounds of the CI-SP; the crosses are the empirical

quantiles of the data.

In Figure (3) and Figure (4) we represent the bounds of the confidence in-

tervals: the squares are the bounds of the CI-AN; the stars are the bounds of

the CI-SP; the crosses are the empirical quantiles of the data. In Figure (3),315

for p = 0.001, the empirical quantile equals −0.2047, which is outside the lower

bound of the CI-SP −0.1774. But it is inside the lower bound of the CI-AN

−0.2261. In Figure (4), for p = 0.0055, the empirical quantile equals −0.1464,

which is outside the lower bound of the CI-SP −0.1337, but it is inside the

lower bound of the CI-AN −0.1550. For p = 0.001, the empirical quantile320

equals −0.3333, which is outside of the both lower bounds. Nevertheless the

deviation is larger comparing with the lower bound of CI-SP −0.2351, than

the lower bound of CI-AN −0.3237: that means the confidence interval from

the saddlepoint approximation may be more sensitive to the uncertainty of the

extreme VaR. Notice that the wider confidence interval is not the better. For325

example, the interval [−∞,∞] containing all the possibility of the VaR, but it
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does not provide any information. In both figures, when p ≥ 0.0099, the empiri-

cal quantiles are inside the lower bounds of CI-AN and CI-SP. Thus, we may not

find the potential violations of the VaR when we just consider p = 0.01. Finally

the extreme VaR have higher possibility to violate the confidence intervals than330

the regular VaR.

Notice that in Figure (3), we observe when 0.0366 ≤ p ≤ 0.05, the empirical

quantiles are outside the upper bounds of CI-AN and CI-SP. In this case, the pa-

rameters estimates of the distribution are likely to be inappropriate. Therefore,335

instead of using moments method, we fit a NIG distribution on the data set SP1

using maximum likelihood approach. The estimates are provided in Appendix

C. Then we perform the stress testing exercise again using these estimates and

the results are provided in Figure (5). We observe in this figure that all the

empirical quantiles are inside the bounds of CI-AN and CI-SP. Moreover, for340

p = 0.001, the empirical quantile equals −0.2047. The lower bound of the CI-AN

equals −0.3444 and the lower bound of the CI-SP equals −0.2565. That means

CI-AN is over conservative and may lead to unnecessary high regulatory capital.
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Figure 5: We fit a NIG distribution using maximum likelihood approach on the data

SP1 and compute the CI-AN and CI-SP use the fits, where q = 0.01, n = 252 and

p = 0.001, 0.0055, 0.0099, 0.0144, 0.0188, 0.0233, 0.0277, 0.0322, 0.0366, 0.0411, 0.0455, 0.05. At

last, we compute the empirical quantiles of SP2 for the same p. In the figure, the squares are

the bounds of the CI-AN; the stars are the bounds of the CI-SP; the crosses are the empirical

quantiles of the data.

For robustness, we also fit a NIG distribution on the data set SP1 using345

maximum likelihood approach. The estimates are provided in Appendix C. We

perform the stress testing exercise again using these estimates and the results

are provided in Figure (6). Not like the result of Figure (4), there is only one

outlier: when p = 0.001, the lower bound of CI-SP is and the empirical quantile

is. It confirms our opinion that the CI-SP is more sensitive to the variation of350

the extreme VaR than the CI-AN.
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Figure 6: We fit a NIG distribution using maximum likelihood approach on the data

HSI1 and compute the CI-AN and CI-SP use the fits, where q = 0.01, n = 252 and

p = 0.001, 0.0055, 0.0099, 0.0144, 0.0188, 0.0233, 0.0277, 0.0322, 0.0366, 0.0411, 0.0455, 0.05. At

last, we compute the empirical quantiles of SP2 for the same p. In the figure, the squares are

the bounds of the CI-AN; the stars are the bounds of the CI-SP; the crosses are the empirical

quantiles of the data.

4. Conclusion

In this paper, we first propose the extreme VaR as an alternative way to the

Expected Shortfall to measure the extreme risks. Second we associate to this ex-355

treme VaR confidence intervals, to identify the variability of the point estimates

of the VaR. We use two asymptotic results to construct the confidence intervals

for the extreme VaR. By performing simulation experiments, we compare our

approach to others, exhibiting the fact that our confidence intervals outperform

the others in terms of nominal coverage ratio. In particular, in these experi-360

ments, we show that the uncertainty of the extreme VaR is not negligible, but

the confidence interval built using bootstrapping approach cannot quantify this

uncertainty correctly. It may be because when we work with a finite amount of

data, we do not have enough observations of extreme losses for resampling tech-

niques to build reliable confidence intervals for the extreme VaR. Instead of this365

non-parametric tool, our confidence intervals based on the parametric, asymp-
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totic results are robust for the extreme VaR and less time consuming than the

bootstrapping approach. Moreover, the CI-SP provides more accurate nominal

coverage ratio than the CI-AN for the extreme VaR. Finally, we apply these

confidence intervals to perform a stress testing exercise using historical stock370

returns during financial crisis, for identifying potential violations of the VaR

during turmoil periods on financial markets. In this application the viability of

our approach is demonstrated, and the quality of the information provided is il-

lustrated. We find that the extreme VaR contains more uncertainty and is more

volatile than the VaR with confidence levels like 95%. Thus it is necessary to375

perform the stress testing exercise with robust confidence intervals for the point

estimates of the extreme VaR. Between the two confidence intervals, the CI-SP

is more sensitive and informative than the CI-AN. Furthermore, We find that

the distributions and the methods we use to get the estimates of the distribu-

tion parameters have influence on the results of the exercise. We suggest to use380

the distribution and the fit which can capture the properties of data objectively.
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Appendix A. Proof of Corollary 1455

At first, we introduce the Slutsky’s theorem and the theorem of Smirnov

(1949) [24]:

Theorem 1 (Slutsky’s theorem). Let {Xn}, {Yn} be sequences of r.v., If

{Xn} converges in distribution (→(d)) to a r.v. X and {Yn} converges in

probability to a constant c (→(p)), then

XnYn →(d) cX. (A.1)

Theorem 2 (Asymptotic normality approximation (Smirnov, 1949)).

Given a r.v. X with a continuous and differentiable cdf Fθ and a density fθ

strictly positive at F−1θ (p), then

√
n
X(m) − F−1θ (p)

√
V

→(d) N(0, 1), as n −→∞ (A.2)

where →(d) means convergence in distribution, V = p(1−p)
fθ(F

−1
θ (p))2

. N(0, 1) rep-

resents the standard Gaussian distribution.
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To prove Corollary 1, we begin with460

X(m) − F−1θ (p)√
V̂

=

√
V

V̂

X(m) − F−1θ (p)
√
V

=
fθ̂(F

−1
θ̂

(p))

fθ(F
−1
θ (p)

X(m) − F−1θ (p))
√
V

.

(A.3)

Since convergence in probability is preserved under continuous transforma-

tions, from θ̂ →(P ) θ we have

fθ̂(F
−1
θ̂

)(p)− fθ(F−1θ (p))→(P ) 0. (A.4)

From Smirnov’s theorem, we know that
X(m)−F−1

θ (p))√
V

→(d) N(0, 1), then from

Slutsky’s theorem we have finally

X(m) − F−1θ (p)√
V̂

→(d) N(0, 1). (A.5)

Appendix B. Proof of Corollary 2465

At first, we introduce Zhu and Zhou’s theorem [25]:

Theorem 3 (Saddlepoint approximation (Zhu and Zhou, 2009)).

Given a r.v. X with cdf Fθ, for ∀ε > 0 and ∀x in the domain of Fθ, we

assume ε < p < 1− ε. Then, if r0 = m
n , Fθ(x) = t and t 6= p, we have:

X(m) →(d) Ψ(
√
nω]) as n −→∞ (B.1)
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where the convergence speed is O( 1
n ) uniformly w.r.t x. Φ denotes the cdf of470

standard Gaussian distribution (N(0, 1))

Ψ(
√
nω]) = 1− Φ(

√
nω]) ω] = ω +

1

nω
ln

1

ψ(−ω)

ψ(−ω) =
ω(t− 1)

t− r0
(

r0
1− r0

)
1
2 ω = −

√
2h(t)sign(t− r0)

h(t) = r0ln
r0
t

+ (1− r0)ln
1− r0
t

(B.2)

where sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise. For t = p

P (X(m) ≤ x) ≈ 1

2
+

1√
2πn

1 + r0
3r0

(
r0

1− r0
)

1
2 as n −→∞. (B.3)

In order to this theorem to build a CI of F−1θ (p), we do a linear transformation

in the following way: for ∀x fixed,

X(m) − F−1θ (p)→(d) Ψ(
√
nω]) as n −→∞ (B.4)

where we substitute t in Theorem 2 by Fθ(x+ F−1θ (p)). Then we plug in Fθ̂475

and fθ̂ and we have the Corollary 2. The following proof is similar as the

proof of Corollary 1 using Slutsky’s theorem.

Appendix C. Estimates of the NIG distribution for SP1 and HSI1

We fit the data SP1 and HSI1 with NIG distribution using moments method

and maximum likelihood approach. The estimates are provided in Table (C.5).480
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Parameters estimates (NIG)

tail skewness location scale

Moments method

SP1 23.7081 -7.3294 0.0015 0.0029

HSI1 17.7947 -9.0184 0.0029 0.0034

Maximum likelihood approach

SP1 21.3110 -1.6069 -0.0005 0.0150

HSI1 19.6534 -2.4435 0.0010 0.0119

Table C.5: We provide the fitted parameters (NIG) for data sets SP1 and HSI1
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