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Abstract

Finiteness of sample, as one major sources of uncertainty, has been ignored by

the regulators and risk managers domains such as portfolio management, credit

risk modelling and finance (or insurance) regulatory capital calculations. To

capture this uncertainty, we provide a robust confidence interval (CI) of histor-

ical Value-at-Risk (hV aR) for different length of sample. We compute this CI

from a saddlepoint approximation of the distribution of hV aR using a bisec-

tion search approach. We also suggest a Spectral Stress Value-at-Risk measure

based on the CI, as an alternative risk measure for both financial and insurance

industries. Finally we perform a stress testing application for the SSVaR. 1
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1. Introduction

Nowadays, Value-at-Risk (VaR) is widely used in both financial and insurance

industries. As an internal model to compute the required regulatory capital,

it has become a standard risk measure for large banks (Jorion (2006) [14]). In

statistical terms, the V aR is a quantile, often using the pth percentile of the5

loss distribution (0 < p < 1). Typically the V aR is not known with certainty

and needs to be estimated from sample of relevant observations. Pérignon and

Smith (2010) [20] find that historical V aR (hV aR) is one of the most popular

V aR methods, as 73% of the banks report their V aR estimation methodologies

using hV aR. But Bignozzi and Tsanakas (2015) [3] point out that the observa-10

tions are often very small creating statistical error, which means that the values

of sample estimators can diverge substantially from the true values 2. Jorion

(1996) [13] refers to it as the risk in Value-at-Risk itself.

To integrate the uncertainty contained in the hV aR, we propose a robust confi-15

dence interval (CI) for it using small sample. We consider the saddlepoint (SP)

method to obtain an approximation of the distribution of hV aR. The inversion

of this approximation can be found by performing the bisection search approach,

which allows us to build the CI of hV aR. SP method generally provides accurate

approximation whenever it is applicable (Wang (1995) [25]). Because it provides20

a good approximation both in the center and tail of the probability density func-

tion (pdf), even if sample size is small (Easton and Ronchetti (1986) [6]). More

precisely, Damiels’ pioneering paper (Damiels (1954) [5]) shows that the rela-

tive error of SP approximation is of order O(n−1) 3 uniformly. Consequently,

when the sample is small or when we consider the tail confidence level of hV aR,25

the CI from SP approximation is robust 4. Thus in practice, we can use it to

2Note that this true value is unknown.
3The notation O(n−t) denotes a function that satisfies limn→∞ ntO(n−t) = constant.
4Notice that the relative error of the widely used asymptotic normality approximation is

of order O(n−
1
2 ).

2
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build the Spectral Stress VaR (SSVaR) introduced by Guégan et al. (2016) [11].

Some papers discussed already the confidence interval of the hV aR. For exam-

ple, Pritsker (1997) [21] computes a nonparametric CI to evaluate the accuracy30

of different V aR approaches. Christoffersen and Gonçalves (2005) [4] assess the

precision of the V aR forecast by using a bootstrap prediction intervals. How-

ever, these approaches rely on simulations and then the results can be unstable.

Jorion (1996) [13] provides the asymptotic standard error and confidence bands

for hV aR, assuming the loss distribution is known and the asymptotic distri-35

bution of hV aR is Gaussian. Since the loss distribution is always unknown in

practice, Guégan et al. (2016) provide a parametric CI based on the asymptotic

normality (AN) approximation without assuming the loss distribution is known.

Although CI based on AN is straightforward and widely used, it is often inaccu-

rate, especially for small sample size and tail hV aR. Indeed in these cases, the40

distribution of hV aR can have asymmetric or fat-tailed behaviours. But the AN

approximation always provides a Gaussian approximation, which is always sym-

metrical and thin-tailed (see Guégan et al. (2015) [10] and Jorion (1996) [13]).

In this paper, we propose a robust parametric CI from SP approximation, which

can model the asymmetric and fat-tailed behaviours of hV aR for small samples.45

In practice, in order to verify the AN approximation, some risk managers tend

to perform Monte-Carlo simulation with a sufficient large sample size artificially.

We argue that this may lead ignoring the uncertainty in the hV aR and con-

sequently it is biased. In fact, the finite size is a crucial criteria to assess the50

information in the sample. Thus, we suggest using the length of the observa-

tions (or the length of a stress scenario) to compute the CI of hV aR.

For statistician, the hV aR is an order statistic (or sample quantile, or empirical

quantile). The problem of approximating the distribution of an order statistic is55

an important one in statistical theory and in practice. The AN (see Rao (2002)

[22]), the Edgeworth (see Reiss (1976) [24]) and the SP approximations (see Ma

3
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(1998) [17]) are the three most commonly used methods. Hall and Sheather

(1988) [12] give an Edgeworth expansion approximation for the distribution of

a studentized sample quantile, without assuming the underlying distribution is60

known. It is more accurate than an AN approximation since it contains high-

order terms that are otherwise ignored. Kaplan (2015) [15] proposes a test for

the optimal choice of a smoothing parameter, which is crucial in the Edgeworth

expansion for the studentized sample quantile. While the Edgeworth expansion

usually improves over the Gaussian approximation, their numerical accuracy is65

still often questionable. Even worse, they have some undesirable properties, such

as negative tail probabilities (see Wang (1995) [25] and Easton and Ronchetti

(1986) [6]).

On the other hand, the SP approximation, can generate accurate probabilities70

in the distribution tails (without the problem of negative tail probabilities), even

for small sample size. It can generally be obtained for a statistic that admits

a cumulant generating function. In contrast to the AN approximation, the SP

approximation holds without any assumption on the derivatives of population

cumulative distribution function (cdf) (Ma and Robinson (1998) [17]). It has75

been used with success by many authors, for example: Ma and Robinson (1999)

[18] propose SP approximations for the difference of order statistics and studen-

tized sample quantiles. Easton and Ronchetti (1986) [6] provide the general SP

approximations with applications to L-statistics, which are the general case of

the order statistics. Wang (1995) [25] proposes two simple one-step methods to80

compute the inversion of SP approximation numerically. The bisection search

approach is also suggested. Thus, it is possible to obtain the CI of hV aR from

SP approximation. See Goutis and Casella (1999) [9], Reid (1988) [23] and Field

and Ronchetti (1990) [7] for general reviews of the background and development

of SP methods.85

This paper is organised as follows. Section 2 describes the AN and SP ap-

proximations for the asymptotic distribution of hV aR. Section 3 compares the

4
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performance of these two approximations by simulation. Section 4 computes

the SSVaR using these two approximations and bisection search approach with90

different data sets. In the end we compare the results by a stress testing appli-

cation. Section 5 concludes.

2. Asymptotic distribution of hV aR

Consider a random variable (r.v.) X (for example the return of a portfolio, the95

return of a risk factor or an operational loss), with a cdf Fθ (fθ is the associated

probability density function (pdf) and θ are the parameters). Let X1, ..., Xn be

the information set of X with length n. We assume they are independent and

identically distributed (i.i.d) 5. We sort them and obtain X(1) ≤ ... ≤ X(n).

Given 0 < p < 1, we define the hV aR as X(m), where m = np if np is an integer100

and m = [np] + 1 otherwise 6. Rao (2002) [22] provides an AN approximation

for the distribution of X(m)

Theorem 1 (Asymptotic normality approximation (Rao (2002))). Assume

Fθ is continuous and differentiable and fθ is strictly positive at F−1θ (p), then

√
n(X(m) − F−1θ (p))→(d) N(0, V ), as n −→∞ (1)

where→(d) means convergence in distribution, V = p(1−p)
fθ(F

−1
θ (p))2n

. N(F−1θ (p), V )

represents the Gaussian distribution with mean F−1θ (p) and variance V .

105

Notice that expression (1) depends on the values of Fθ and fθ, which are un-

known in most cases. Therefore density estimation is necessary. One possible

way is to use the Siddiqui-Bloch-Gastwirth estimator, whose construction de-

pends crucially on the choice of a smoothing parameter (see Hall and Sheather

5Or if they are not, we assume that we can transform them to an i.i.d set by filtering
6[x] denotes the largest integer less than or equal to x.

5
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(1988) [12]). Instead of using such nonparametric estimator which suffers dif-110

ficulty of smoothing parameter choice, we fit a panel of distributions using

X1, ..., Xn to compute the estimators of θ, denoted θ̂. Then Fθ̂ and fθ̂ are

the estimators of Fθ and fθ. By plugging Fθ̂ and fθ̂ in expression (1), we

provide a corollary of Theorem 1

Corollary 1 (Plug-in AN approximation). Assume Fθ and fθ are contin-

uous functions with respect to (w.r.t) θ, and θ̂ is an asymptotically consistent

estimator of θ 7. Then we have

√
n(X(m) − F−1θ̂

(p))→(d) N(0, V̂ ), as n −→∞ (2)

where V̂ = p(1−p)
[fθ̂(F

−1

θ̂
(p)])2n

. The proof is presented in Appendix A.115

Based on the integral representation of the binomial distribution and Barndorff-

Nielsen formula (see Barndorff-Nielsen (1991)[1] and Ma (1998) [17]), Zhu and

Zhou (2009) [26] derives a SP approximation for X(m)

Theorem 2 (Saddlepoint approximation (Zhu and Zhou (2009))). For120

∀ε > 0 and ∀x in the domain of Fθ, we assume ε < p < 1 − ε. Let r0 = m
n ,

Fθ(x) = t. Then for t 6= p

X(m) →(d) 1− Φ(
√
nω]) as n −→∞ (3)

where the convergence speed is O( 1
n ) uniformly w.r.t x. Φ denotes the cdf of

7Asymptotically consistent estimator means θ̂ →(P ) θ, where→(P ) represents convergence

in probability

6
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standard Gaussian distribution (N(0, 1))

ω] = ω +
1

nω
ln

1

ψ(−ω)

ψ(−ω) =
ω(t− 1)

t− r0
(

r0
1− r0

)
1
2

ω = −
√

2h(t)sign(t− r0)

h(t) = r0ln
r0
t

+ (1− r0)ln
1− r0
t

(4)

where sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise. For t = p125

X(m) →(d)
1

2
+

1√
2πn

1 + r0
3r0

(
r0

1− r0
)

1
2 as n −→∞ (5)

The proof of Theorem 2 is provided by Zhu and Zhou (2009) [26]. We introduce

a corollary of Theorem 2, by plugging Fθ̂ and fθ̂ in expression (3) and (4)

Corollary 2 (Plug-in SP approximation). Assume Fθ and fθ are contin-

uous functions with respect to (w.r.t) θ, and θ̂ is an consistent estimator of θ.

For ∀ε > 0 and ∀x in the domain of Fθ, we assume ε < p < 1− ε. Let r0 = m
n ,130

Fθ̂(x) = t. Then for t 6= p

X(m) →(d) 1− Φ(
√
nω̂]) as n −→∞ (6)

where the convergence speed is O( 1
n ) uniformly w.r.t x.

ω̂] = ω̂ +
1

nω̂
ln

1

ψ(−ω̂)

ψ(−ω̂) =
ω̂(t− 1)

t− r0
(

r0
1− r0

)
1
2

ω̂ = −
√

2h(t)sign(t− r0)

h(t) = r0ln
r0
t

+ (1− r0)ln
1− r0
t

(7)

For t = p

X(m) →(d)
1

2
+

1√
2πn

1 + r0
3r0

(
r0

1− r0
)

1
2 (8)

7
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The proof of Corollary 2 is similar as of Corollary 1. Comparing Theorem 1

and 2, we find that the convergence speed of SP approximation (O( 1
n )) is faster135

than the speed of AN approximation (O( 1√
n

)). It means the SP approximation

can be more accurate, especially when we have a small sample. Consequently

we suggest to use SP approach in practice, in order to provide a robust approx-

imation for the distribution of the hV aR.

140

3. Compare the AN and SP approximations by simulations

In this section, we compare the performance of Theorem 1 and Theorem 2

by simulation, using N(0, 1) distribution, NIG0 (Normal-inverse Gaussian, see

Godin (2012) [8]) distribution 8 and GEV (Generalized extreme value, see Lon-

gin (2000) [16]) distribution 9. These distributions belong respectively to ellipti-145

cal distribution family, Generalised hyperbolic distribution family and extreme

value distribution family.

3.1. Graphical comparison

First we compare the AN and SP approximation graphically. Preliminarily we

recall the definition of empirical cdf (ecdf). For X1, ..., Xn, its ecdf is defined as150

Fn(x) =
1

n

n∑
i=1

1{Xi≤x} (9)

where 1{Xi≤x} = 1 if Xi ≤ x and 0 otherwise.

Let n = 241 10, we generate 241 ∗ 1000 random numbers from one of the previ-

ous distributions. Then given 0 < p < 1, we take the realizations of the hV aR

8The tail parameter parameter equals to 0.3250, skewness parameter equals to 5.9248e−04,

location parameter equals to −1.6125e− 04 and scale parameter equals to 0.0972.
9The shape parameter equals to 0.8876698, scale parameter equals to 2049.7625278 and

location parameter equals to 245.7930751.
10241 is around the number of one year trading days.

8
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for every 241 points to have 1000 realisations. We plot the ecdf of hV aR as a155

benchmark.

Given p = 0.975 with N(0, 1), on Figure 1 we plot: the solid line, which is the

ecdf of hV aR and benchmark. The dot-dash line is the AN approximation from

Theorem 1. The dash line is the SP approximation from Theorem 2. We observe160

that the SP approximation is nearly on the ecdf. But the AN approximation is

away from the ecdf.

Figure 1: Given p = 0.975 and n = 241, with N(0, 1), in Figure 1 the solid line is the the ecdf

of hV aR. The dot-dash line is the AN approximation from Theorem 1. The dash line is the

SP approximation from Theorem 2.

Also with NIG0 and p = 0.01 (left tail), we plot the ecdf of hV aR, the AN

and SP approximation in the left graph of Figure 2. In the right graph with165

GEV and p = 0.995 (right tail), we plot the ecdf of hV aR, the AN and SP

approximation. In Figure 2, the solid line is the ecdf. The dot-dash line is the

AN approximation. The dash line is the SP approximation.

We observe that in both graphs of Figure 2, the dash line is always closer to170

the solid line than the dot-dash line. That means for fat-tailed Fθ, the SP

approximation is still more accurate than the AN. Specially, the hV aR realisa-

9
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Figure 2: With NIG0 and p = 0.01, we plot the ecdf of hV aR, the AN and SP approximation

in the left graph of Figure 2. In the right graph with GEV and p = 0.995, we plot the ecdf of

hV aR, the AN and SP approximation. In figure 2, The solid line is the ecdf. The dot-dash

line is the AN approximation. The dash line is the SP approximation.

tions simulated from GEV is asymmetric (skewness = 9.8760) and leptokurtic

(kurtosis = 176.0057). Apparently, the AN approximation can not model these

behaviours accurately, since it is symmetric and its tail is thin. Consequently,175

it is reasonable to use SP approximation in this case.

From Figures 1 and 2, we observe that no matter we consider the left or right

tail hV aR, no matter the Fθ is symmetric or asymmetric, fat-tailed or thin-

tailed, the SP approximation is always more accurate. Besides, it is always180

more precise than the AN approximation, which is symmetric and thin-tailed.

Consequently, we suggest the risk manager and regulator to use the SP approx-

imation to model the uncertainty in hV aR, especially when the sample size is

small (for example one year daily data), the sample has asymmetric and lep-

tokurtic properties and the tail hV aR needs to be computed.185

10
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3.2. Quantitative comparison

For robustness purpose, we also compare AN and SP approximations quanti-

tatively. Preliminarily we recall the definitions of both Kolmogorov–Smirnov

(K-S) statistic and Anderson–Darling (A-D) statistic. For an ecdf Fn(x) and a190

cdf F : the Kolmogorov–Smirnov statistic is

DKSn = supx | Fn(x)− F (x) | (10)

The Anderson–Darling statistic is

DADn = n

∫ ∞
−∞

(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x) (11)

In this paper, we use the two-sample A-D statistic provided by Pettitt (1976)

[19].

195

First we use the same simulation process as in section 3.1, for different n and

p 11. Then, we compute the K-S statistic and A-D statistic between the AN

(or SP) approximation and the ecdf of hV aR. The results of K-S statistic are

provided in Table 2 and the results of A-D statistic are provided in Table 3.

200

In Table 2 and 3, the results provided by SP are always smaller than those pro-

vided by AN, for all the three distributions and whatever n and p. Consequently,

the SP approximation always performs better than the AN approximation. More

precisely, when p is closer to 0 or 1, the difference of accuracy between these

two approximations is more obvious. That means the SP provides more precise205

approximation for the tail hV aR than the AN. Also, when n is small, the SP

can provide robust approximation but AN cannot. Nevertheless, we observe

when n is large, the AN approximation is acceptable too.

11Here, n = 11, 121, 241, 501, 1001, 10001, 30001 and p = 0.05, 0.01, 0.005, 0.95, 0.99, 0.995.

11
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After checking the performance of AN and SP approximations graphically and210

quantitatively, we conclude that the SP approximation always provide robust

approximation, while AN can only do that when n is large. Thus, we suggest

risk managers and regulators in financial institutions to use the SP approxi-

mation when they measure V aR uncertainty, especially when sample sizes are

small.215

4. Application: SSVaR with saddlepoint approximation and stress

testing

In assessing the SP approximation of hV aR in practice, we consider a fictive

financial institution. This one holds four market portfolios (that is, the same220

stock components and weights as a benchmark index of a stock market): the

Standard Poor’s 500 (S&P 500) in the U.S., the CAC 40 in France, the Hang

Seng Index (HSI) and the Shanghai Composite Index (SHCOMP) in China.

The S&P 500 represents a developed stock market in the U.S.; the CAC 40 rep-

resents a developed market in Europe; the HSI represents a developed market225

in Asia and the SHCOMP represents an emerging stock market. We consider

the daily returns computed using daily closing prices of the portfolio. More

precisely, eight data sets are considered for different period 12.

12The data sets are: the daily return of S&P 500 over the period from 01/10/1985 to

12/08/1991 with 1483 observations (denoted SP1); the daily return of S&P 500 over the

period from 02/01/1987 to 31/12/1987 with 253 observations (denoted SP2); the daily return

of CAC 40 over the period from 02/01/2008 to 26/02/2016 with 2089 observations (denoted

CAC1); the daily return of CAC 40 over the period from 02/01/2008 to 31/12/2008 with 256

observations (denoted CAC2); the daily return of HSI over the period from 01/10/1985 to

12/08/1991 with 1452 observations (denoted HSI1); the daily return of HSI over the period

from 02/01/1987 to 31/12/1987 with 246 observations (denoted HSI2); the daily return of

SHCOMP over the period from 06/04/2005 to 25/04/2011 with 1471 observations (denoted

SH1); the daily return of SHCOMP over the period from 26/02/2015 to 26/02/2016 with 246

observations (denoted SH2). All the data sets have been obtained from Bloomberg.

12
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In Table 1, we provide the first four empirical moments and the number of ob-230

servations of these eight data sets. Among them, SP1, CAC1, HSI1 and SH1

are asymmetric and leptokurtic, so we fit a NIG distribution on them 13. Given

the confidence level q = 0.01, 0.001 of the CI of hV aR, for n = 241, we compute

the lower bound of CI using AN and SP approximation with 0.001 ≤ p ≤ 0.05

as the lower bound of the SSVaR. The CI are computed from Corollary 1 and235

2 using the fit. For the CI from AN, we have the closed form. For the CI from

SP, we use bisection approach to compute numerically. The upper bound of the

SSVaR is the quantile of the fit (For details of SSVaR, see Guégan et al. (2016)

[11]). To compare the SSVaR from AN (AN-SSVaR) and the SSVaR from SP

(SP-SSVaR), we compute the ecdf of SP2, CAC2, HSI2 and SH2 as a stress240

testing application (BCBS (2005) [2]).

Empirical moments

points mean variance skewness kurtosis

SP1 (01/10/1985-12/08/1991) 1483 0.0006 0.0001 -3.6096 65.8124

SP2 (02/01/1987-31/12/1987) 253 0.0003 0.0004 -4.0440 45.5834

CAC1 (02/01/2008-26/02/2016) 2089 0.0000 0.0003 0.2442 8.5171

CAC2 (02/01/2008-31/12/2008) 256 -0.0018 0.0007 0.5586 7.2127

HSI1 (01/10/1985-12/08/1991) 1452 0.0008 0.0003 -6.6479 119.2823

HSI2 (02/01/1987-31/12/1987) 246 0.0000 0.0008 -6.7209 78.8165

SH1 (06/04/2005-25/04/2011) 1471 0.0008 0.0004 -0.2487 5.6722

SH2 (26/02/2015-26/02/2016) 246 -0.0003 0.0007 -0.8473 4.2512

Table 1: In Table 1, we provide the first four empirical moments of these eight data sets and

the number of observations.

In Figure 3, we plot our results with two panels. In panel (A), with 0.001 ≤

p ≤ 0.05 and q = 0.01, we use SP1 fitting a NIG to build the SSVaR. We plot

13We use the moment method to get the estimates of NIG parameters. The estimates are

provided in Appendix B

13

 
Documents de travail du Centre d'Economie de la Sorbonne - 2016.34



the ecdf of SP2 for the stress testing. In panel (B), with 0.015 ≤ p ≤ 0.05 and245

q = 0.001, we use CAC1 fitting a NIG to build the SSVaR. We plot the ecdf of

CAC2 for the stress testing. The solid line is the upper bound of the SSVaR.

The dash line is the lower bound of the AN-SSVaR. The dash-dot line is the

lower bound of the SP-SSVaR. And the dash line with points is the ecdf.

250

In panel (A) of Figure 3, the ecdf is inside the AN-SSVaR and SP-SSVaR.

Thus, the SSVaR controls the risk. Furthermore, the SP-SSVaR is inside the

AN-SSVaR. It means the AN-SSVaR is more conservative. But it seems to

overestimate the risk in this case. In panel (B) of Figure 3, the ecdf is totally

outside the AN-SSVaR but it is almost inside 14 the SP-SSVaR. So in this case,255

the SP-SSVaR controls the risk but AN-SSVaR seems to underestimates the risk.

In order to check the performance of SSVaR from SP approximation comprehen-

sively, we also consider other two portfolios from Asia stock markets. In Figure

4, panel (C) is the same plot as panel (A) of Figure 3, but we change the data260

set SP 1 to HSI 1 and SP2 to HSI2. Panel (D) is the same plot as panel (B) of

Figure 3, but we change the data set CAC 1 to SHCOMP 1 and CAC2 to SH2.

We find the result of panel (C) in Figure 4 is similar as of panel (A) in Fig-

ure 3 and the result of panel (D) in Figure 4 is similar as of panel (B) in Figure 3.

265

We conclude the SP-SSVaR is an improvement risk measure of hV aR in prac-

tice. It permits integrating the uncertainty robustly from different sample sizes.

Thus, risk managers can use it to evaluate a capital buffer to cover the risk

embedded in the data set and the risk of measurement uncertainty.

270

14There are some outliers in the left part.
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5. Conclusion

In this paper, we suggest using the SSVaR considering a saddlepoint approxima-

tion as an efficient risk measure, especially measuring the risks from a small finite

sample. Indeed, theoretically the SP method can approximate the distribution

of hV aR more accurately than the AN method. Consequently it provides more275

robust CI to build the SSVaR. To understand the performance of SP approxima-

tion comprehensively, we compared SP and AN approximation graphically and

quantitatively. The simulation results are consistent with the theoretical result.

Finally, we built the SSVaR from AN and SP approximations and perform a

stress testing application with data sets from different stock markets. We find280

that compared to the SSVaR from AN approximations, the SSVaR computed

from SP approximations can always capture the risk more efficiently, neither

underestimates nor overestimates the risks. Therefore, in practice, we suggest

risk managers and regulators to use the SSVaR considering a SP approximation

to integrate the risk measurement uncertainty, particularly when sample sizes285

are small.
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N(0, 1) NIG0 GEV

AN SP AN SP AN SP

p = 0.05 p = 0.95

n = 11 0.2183 0.0361 0.1933 0.0260 n = 241 0.0847 0.0265

n = 121 0.0767 0.0192 0.0876 0.0358 n = 501 0.0503 0.0265

n = 241 0.0509 0.0274 0.0621 0.0197 n = 1001 0.0756 0.0449

n = 1001 0.0435 0.0248 0.0276 0.0228 n = 10001 0.0371 0.0363

n = 10001 0.0322 0.0259 0.0208 0.0207 n = 30001 0.0368 0.0327

p = 0.01 p = 0.99

n = 11 0.0757 0.0211 0.1963 0.0191 n = 241 0.1155 0.0205

n = 121 0.0847 0.0318 0.1072 0.0222 n = 501 0.1409 0.0370

n = 241 0.0948 0.0330 0.0564 0.0265 n = 1001 0.0988 0.0266

n = 1001 0.0456 0.0191 0.0546 0.0213 n = 10001 0.0459 0.0238

n = 10001 0.0204 0.0195 0.0227 0.0187 n = 30001 0.0327 0.0238

p = 0.005 p = 0.995

n = 11 0.3930 0.0245 0.3959 0.0138 n = 241 0.1584 0.0278

n = 121 0.1711 0.0213 0.1418 0.0278 n = 501 0.1213 0.0253

n = 241 0.0653 0.0225 0.0744 0.0266 n = 1001 0.1461 0.0311

n = 1001 0.1071 0.0296 0.0976 0.0308 n = 10001 0.0515 0.0149

n = 10001 0.0367 0.0139 0.0359 0.0163 n = 30001 0.0392 0.0227

Table 2: For N(0, 1), NIG0 and GEV , for n = 11, 121, 241, 501, 1001, 10001, 30001 and

p = 0.05, 0.01, 0.005, 0.95, 0.99, 0.995, we compute the K-S statistic between the AN (or SP)

approximation and the ecdf of hV aR. The results are provided in Table 2.
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N(0, 1) NIG0 GEV

AN SP AN SP AN SP

p = 0.05 p = 0.95

n = 11 46.5478 0.3701 45.4794 0.5787 n = 241 4.1887 0.3820

n = 121 8.1637 0.4610 5.6806 0.3378 n = 501 2.9653 0.2765

n = 241 2.6894 0.2122 1.8976 1.0557 n = 1001 1.7426 0.3486

n = 1001 1.7430 0.3728 0.6408 0.7989 n = 10001 0.6837 0.6725

n = 10001 0.4598 0.2603 0.2827 0.1647 n = 30001 0.7047 0.5905

p = 0.01 p = 0.99

n = 11 5.9214 0.1463 35.3727 0.3105 n = 241 16.2251 0.5430

n = 121 9.5424 0.8465 9.8631 0.2396 n = 501 17.6468 0.6223

n = 241 7.2525 0.3538 5.1074 0.2027 n = 1001 5.1793 0.6358

n = 1001 2.2158 0.4727 1.0760 0.4856 n = 10001 1.1022 0.0926

n = 10001 0.1742 0.1876 0.5491 0.2616 n = 30001 0.9970 0.4869

p = 0.005 p = 0.995

n = 11 181.0830 0.2873 180.4938 0.1900 n = 241 43.3808 0.4520

n = 121 27.1190 0.3710 27.9483 0.1365 n = 501 20.2579 2.0985

n = 241 4.6398 0.1650 10.7707 0.5890 n = 1001 17.7949 1.2266

n = 1001 10.0369 0.2362 9.6725 0.4381 n = 10001 5.4230 1.6109

n = 10001 1.1836 0.2042 1.8859 0.3874 n = 30001 2.1239 0.9011

Table 3: For N(0, 1), NIG0 and GEV , for n = 11, 121, 241, 501, 1001, 10001, 30001 and

p = 0.05, 0.01, 0.005, 0.95, 0.99, 0.995, we compute the A-D statistic between the AN (or SP)

approximation and the ecdf of hV aR. The results are provided in Table 3.
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Figure 3: We plot our results with two panels. In panel (A) we use SP1 with NIG fit to build

the SSVaR (from AN and SP). We plot the ecdf of SP2 for the stress testing. In panel (B)

we use CAC1 with NIG fit to build the SSVaR (from AN and SP). We plot the ecdf of CAC2

for the stress testing. The solid line is the upper bound of the SSVaR. The dash line is the

lower bound of the SSVaR from AN approximation. The dash-dot line is the lower bound of

the SSVaR from SP approximation. And the dash line with points is the ecdf.
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Figure 4: We plot our results with two panels. In panel (C) we use HSI1 with NIG fit to build

the SSVaR (from AN and SP). We plot the ecdf of HSI2 for the stress testing. In panel (D)

we use SH1 with NIG fit to build the SSVaR (from AN and SP). We plot the ecdf of SH2 for

the stress testing. The solid line is the upper bound of the SSVaR. The dash line is the lower

bound of the SSVaR from AN approximation. The dash-dot line is the lower bound of the

SSVaR from SP approximation. And the dash line with points is the ecdf.
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Appendix A. Proof of Theorem 2

At first, we introduce the Slutsky’s theorem350

Theorem 3 (Slutsky’s theorem). Let {Xn}, {Yn} be sequences of r.v., If

{Xn} converges in distribution (→(d)) to a r.v. X and {Yn} converges in prob-

ability to a constant c (→(p)), then

XnYn →(d) cX (A.1)

Proof 1. To prove Theorem 2, we begin with

X(m) − F−1θ̂
(p)√

V̂
=
X(m) − F−1θ (p)√

V̂
+
F−1θ (p)− F−1

θ̂
(p)√

V̂

=

√
V

V̂

X(m) − F−1θ (p)
√
V

+
F−1θ (p)− F−1

θ̂
(p)√

V̂

=
fθ̂(F−1

θ̂
(p))

fθ(F−1θ (p)

X(m) − F−1θ (p))
√
V

+
F−1θ (p)− F−1

θ̂
(p)√

V̂

(A.2)

Since convergence in probability is preserved under continuous transformations,

from θ̂ →(P ) θ we have

F−1θ (p)− F−1
θ̂

(p)→(P ) 0 (A.3)

fθ̂(F−1
θ̂

)(p)− fθ(F−1θ (p))→(P ) 0 (A.4)

From Theorem 1 we know that
X(m)−F−1

θ (p))√
V

→(d) N(0, 1), then

X(m) − F−1θ̂
(p)√

V̂
→(d) N(0, 1) (A.5)

Appendix B. Fit the data sets in Table 1 with NIG distribution

We fit the data sets SP1, CAC1, HSI1 and SH1 with NIG distribution. The

estimates are provided in Table B.4.355
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Fitted parameters (NIG)

tail skewness location scale

SP1 23.7081 -7.3294 0.0015 0.0029

CAC1 46.4099 2.8063 -0.0007 0.0119

HSI1 17.7947 -9.0184 0.0029 0.0034

SH1 56.0441 -4.9995 0.0027 0.0208

Table B.4: In Table B.4, we provide the fitted parameters (NIG) for data sets SP1, CAC1,

HSI1 and SH1.
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