
HAL Id: halshs-01303548
https://shs.hal.science/halshs-01303548

Preprint submitted on 18 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conditional Expected Utility Criteria for Decision
Making under Ignorance or Objective Ambiguity

Nicolas Gravel, Thierry Marchant, Arunava Sen

To cite this version:
Nicolas Gravel, Thierry Marchant, Arunava Sen. Conditional Expected Utility Criteria for Decision
Making under Ignorance or Objective Ambiguity. 2016. �halshs-01303548�

https://shs.hal.science/halshs-01303548
https://hal.archives-ouvertes.fr


Working Papers / Documents de travail

WP 2016 - Nr 14

Conditional Expected Utility Criteria for Decision Making 
under Ignorance or Objective Ambiguity

 

Nicolas Gravel
Thierry Marchant

Arunava Sen



Conditional Expected Utility Criteria for

Decision Making under Ignorance or Objective

Ambiguity

Nicolas Gravel∗, Thierry Marchant† and Arunava Sen‡

April 6th, 2016

Keywords: Ignorance, Ambiguity, Conditional Probabilities,

Expected Utility, Ranking Sets, axioms

JEL classification numbers: D80, D81.

Abstract

We provide an axiomatic characterization of a family of criteria for

ranking completely uncertain and/or ambiguous decisions. A completely

uncertain decision is described by the set of all its consequences (assumed

to be finite). An ambiguous decision is described as a finite set of possible

probability distributions over a finite set of prices. Every criterion in the

family compares sets on the basis of their conditional expected utility, for

some probability function taking strictly positive values and some utility

function both having the universe of alternatives as their domain.

1 Introduction

Suppose that a (public) decision maker examines the possibility of adopting an

economically costly regulation that would limit carbon emissions in the next 50

years with the aim of preventing global warming. The decision maker is uncer-

tain about the impact of carbon emission on the average earth temperature and

tries to get evidence from the best scientists and available models about this. For

instance, the decision maker could obtain in Meinshausen, Meinshausen, Hare,
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Raper, Frieler, Knutti, Frame, and Allen (2009) the collection of estimated dis-

tributions of increase in earth temperature (above the pre-industrial level) that

would result from doubling the amount of carbon in the atmosphere depicted in

Figure 1. The decision maker could possibly obtain similar distributions of in-

creases in the earth temperature for alternative scenarios of variations of carbon

emissions, and base the regulation policy on the information provided by those

alternative collections of distributions. This is a an example of a decision taken

Figure 1: Estimated distributions of the increase in the Earth temperature in

the next 50 years (source: Meinshausen, Meinshausen, Hare, Raper, Frieler,

Knutti, Frame, and Allen (2009))

under objective ambiguity. There is ambiguity because the (probabilistic) knowl-

edge required to take the decision is not unique. As shown on Figure 1, there

are several estimates of the distributions of increase of the earth temperature.

Some of them are imprecise and exhibit a large discrepancy in the predicted

rises of temperature. Others are more concentrated around their "central ten-

dency". The decision maker has no additional a priori knowledge that would

enable a further discrimination between these different estimates. The ambi-

guity is, however, objective in the sense that these probability distributions are

given to the decision maker by credible - here scientific - sources that he/she

has all the reasons to believe. Other examples of decisions involving objective

ambiguity include those involved in the well-known Ellsberg (1961) paradox or
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the excellent one, provided by Ahn (2008), of an ill patient having to choose

between two medical treatments associated with ambiguous evidence on their

probability of survival.

From a formal point of view, deciding under objective ambiguity involves

comparing sets of possible probability distributions such as that described in

Figure 1. It differs to that extent from decision making under (subjective) ambi-

guity studied in an important literature (see e.g. Epstein and Zhang (2001), Ghi-

rartado and Marinaccin (2002), Ghirartado, Maccheroni, and Marinacci (2004),

Klibanoff, Marinacci, and Mukerji (2005), Segal (1987) or Segal (1990)) that

describes decisions as Savagian acts. Recall that the later are functions from a

set of (mutually exclusive) states of nature - that can be enriched to lotteries à

la Anscombe and Aumann (1963) - into a set of consequences. Describing deci-

sions as Savagian acts imposes a mathematical structure that may not always

be present in actual decision making processes. For instance, the public decision

maker who is given the probability distributions of figure 1 is unlikely to have

clear ideas - if any at all - on the "states of natures" that have generated these

probabilities, or those that produce the various average temperature levels ob-

served on the Earth surface in the next 50 years. On the other hand, such a

decision maker can very well understand that a given global warming policy be

associated with a collection of different probability distributions concerning a

consequence of interest - for instance the average earth temperature. Additional

justifications for describing decision making under objective ambiguity in terms

of set rankings can be found in Ahn (2008) or Olszewski (2007).

Ranking sets of objects describe also the decision making process in situa-

tions of "ignorance" or "radical uncertainty - as these are sometimes called. In

these situations, an element of a set is interpreted as a "certain" consequence

that the decision associated to that set can have. The literature on ignorance

has given rise also to a significant literature surveyed, for instance, in Barberà,

Bossert, and Pattanaik (2004). Most of the criteria for decision making stud-

ied in this literature are based on the best and the worst consequences of the

decisions or on associated lexicographic extensions.1 There are two obvious lim-

itations of such “extremist” rankings. The first is that it is natural to believe

(in line with various “expected utility” hypotheses) that decision makers are

concerned with "averages" rather than "extremes". For instance, suppose that

 is a decision under ignorance that can result in earning either $1 or $1 000

000 while  is an alternative decision that can lead to any integer amount of

money lying between $0 and $999 999. Since the extreme earnings associated

to  are strictly greater than those of , “extremist” criteria based on the min

or the max will favor the former over the latter. However, a convincing case can

be made for  over  on the grounds that, on "average" a larger gain is likelier

in the former. A second drawback of "extremist" rankings is that they do

not allow for a diversity of attitudes toward ignorance across decision makers.

In situations where decisions have only monetary consequences and all decision

makers prefer more money to less, they will all have identical rankings over

1Notable exceptions are Baigent and Xu (2004) and Nitzan and Pattanaik (1984).
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decisions under positional rules such as maximin, maximax, leximin and so on.

This is unsatisfactory since the fact that decision makers have the same prefer-

ence over certain outcomes should not imply that they have the same attitude

toward ignorance.2

In this paper, we pursue the line of inquiry of Gravel, Marchant, and Sen

(2012) by providing an axiomatic characterization of a family of rankings of

sets of objects that applies to decision making under either objective ambigu-

ity - if the elements in the sets are probability distributions - or ignorance -

if the elements are ultimate consequences. Contrary to the "extremist" criteria

considered in the literature on ignorance, the criteria that we examine can all

be though of as "smooth" averages of values attached by the decision maker to

the probability distributions (in the objective ambiguity setting) or the certain

consequences (in the ignorance setting) associated to a particular decision. In

Gravel, Marchant, and Sen (2012), we characterize the family of rankings of

all finite subsets of a rich universe that can be thought of as resulting from

the following two-step procedure. In the first step, all conceivable probabil-

ity distributions (objective ambiguity) or certain consequences (ignorance) are

evaluated by some (utility) function. In the second step, decisions are compared

on the basis of their expected utility (given the function chosen in the first

step) under the (uniform) assumption that all probability distributions (objec-

tive ambiguity) or consequences (ignorance) of a decision are equally likely. We

call "Uniform Expected Utility" (UEU) any such ranking of sets. For example,

if our public decision maker was using a UEU criterion, he or she would first

assign to every conceivable probability distribution of the Earth temperature a

numerical utility valuation - that may or may not have an expected utility form

- and would compare alternative sets of probability distributions such as that of

Figure 1 on the basis of their expected valuations under the assumption that all

distributions in the set are equally likely. This uniform treatment of the different

possible distributions of the Earth temperature is somewhat restrictive. Why

would a public decision maker consider equally "credible" the different scientific

studies that have given rise to the distributions of figure 1 ?

The criteria characterized in this paper avoid this limitation, while keeping

the "smoothness" associated with the fact of evaluating a decision on the ba-

sis of some average value. Specifically, any criterion characterized herein can

be thought of as resulting from the following two-step procedure. In the first

step, the decision maker assigns to every conceivable distribution of the Earth

temperature (say) two different numerical valuations. One such valuation is

interpreted, just as in the UEU case, as reflecting the "utility" associated to the

distribution. Again, this "utility" can, but does not need to, be an "expected

utility". The other valuation, restricted by our characterization to be strictly

positive, is interpreted as reflecting the a priori "plausibility" attached by the

decision maker to every conceivable distribution of the Earth temperature. For

instance, the decision maker may believe that a sure increase of the Earth tem-

2The median-based rankings characterized in Nitzan and Pattanaik (1984) are also subject

to this difficulty although they avoid the criticism of been based on “extreme” values.
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perature by 3◦ is more likely than the unpredictable distribution of that increase
associated with some of the distributions of figure 1. In the second step, the de-

cision maker compares alternative sets of distributions of the Earth temperature

on the basis of their "expected utility", with expectations taken with respect

to the likelihood function determined in the first step conditional on the fact

that the distribution of Earth temperature is present in the set. We refer to

any such criterion as to a Conditional Expected Utility (CEU) criterion. Any

UEU criterion is a member of this family that assumes, in the first step, that

all distributions of Earth temperature are equally likely. Hence the CEU family

of criteria is a (significant) generalization of the UEU family that enables the

decision maker to weights differently the different estimates of the distributions

of the earth temperature in terms of their plausibility.

The CEU family of rankings of finite sets of objects characterized in this

paper bears formal similarities with the family of criteria characterized in Ahn

(2008) (and before him by Bolker (1966), Bolker (1967) and Jeffrey (1965))

for atomless sets of objects. A set of objects is atomless if, except perhaps

for singleton sets (considered by Ahn (2008) but excluded by Bolker (1966),

Bolker (1967) and Jeffrey (1965)), it always contains a proper subset that is not

a singleton. Atomless sets contain therefore a continuum of elements and can

not be finite like the set underlying figure 1, the urns considered in Ellsberg’s

experience or the choice of a medical treatment discussed in Ahn (2008). The fact

that we consider only finite sets makes our setting very different one from that

of Ahn (2008). As indicated in Gravel, Marchant, and Sen (2012), we believe

that our finite subsets framework is an important one conceptually, at least

from the viewpoint of practical implementability and testability, and descriptive

faithfulness. We are not for instance aware of any public decision maker involved

in regulating carbon emissions that would be given an atomless set of different

probabilities distributions over the earth temperature.

The characterization of the CEU family of rankings of finite sets of objects

obtained in this paper uses three axioms, and assumes that the objects are taken

from a "rich" environment that may (or may not) be endowed with a topological

structure. Two of our axioms are common with those Ahn (2008), and one of

the two, called Averaging, was also used in the characterization of the UEU

family of finite sets. Ahn (2008) obtains his characterization by combining

the two axioms with two continuity conditions, and by exploiting the structure

provided by his atomless set-theoretic structure. We obtain ours by combining

the two axioms with an Archimedean condition, and by exploiting the assumed

"richness" of the universe from which the finite sets are taken. Yet, and contrary

to what we achieved for the characterization of UEU in Gravel, Marchant, and

Sen (2012), we are not for the moment capable of providing a version of our

main characterization result that would ride explicitly on a topological structure

imposed on the universe of objects, and that would replace the richness condition

and the archimedean axiom by an appropriate continuity condition. Moreover

the richness condition that we use is, perhaps, unnecessarily strong. For one

thing, it rules out, when applied to finite sets of objects taken from a topological

space, any UEU criterion that uses a continuous utility function.
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The organization of the remaining of this paper is as follows. The next section

introduces the formal setting and discusses the axioms and the family of crite-

ria characterized. The results are presented in section 3, and discussed, along

with examples showing the independence of the axioms, in Section 4. Section 5

provides some conclusion.

2 The Model

2.1 Notation

The sets of integers, non-negative integers, real numbers and non-negative real

numbers are denoted respectively by N, N+, R and R+. If  is a vector in R

for some strictly positive integer  and  is a real number, we denote by  the

scalar product of  and . Our notation for vectors inequalities is =, ≥ and .

By a binary relation % on a set Ω, we mean a subset of Ω × Ω. Following the
convention in economics, we write  %  instead of ( ) ∈ . Given a binary

relation %, we define its symmetric factor ∼ by  ∼  ⇐⇒  %  and  %  and

its asymmetric factor Â by  Â  ⇐⇒  %  and not ( % ). A binary relation

% on Ω is reflexive if the statement  %  holds for every  in Ω, is transitive

if  %  always follows  %  and  %  for any    ∈ Ω and is complete if
 %  or  %  holds for every distinct  and  in Ω. An equivalence class  of

a binary relation % on Ω is a subset of Ω such that  ∼ 0 for all  0 ∈  and

it is not the case that  ∼ 0 if  ∈  and 0 ∈ Ω\. A reflexive, transitive and
complete binary relation is called an ordering. An ordering is trivial if it has

only one equivalence class.

2.2 Basic concepts

Let be an arbitrary universe of objects that we will refer to as "consequences".

But keeping in mind the objective ambiguity context discussed in the preceding

section, we could as well interpret  as the set of all conceivable probability

distributions over a more fundamental set of "prizes" (perhaps different rises of

the average Earth temperature). While we do not make any specific assumptions

on , it will be clear subsequently that the axioms that we impose makes it

natural to regard this set as infinite and rich.

We denote by P() the set of all non-empty finite subsets of (with generic

elements , , , etc.). Any such a subset is interpreted as a description of

all consequences of an uncertain decision or, for short, as a decision. In an

objective ambiguity setting, these consequences would be themselves probability

distributions. A certain (non-ambiguous) decision with consequence  ∈  is

identified by the singleton {}.
Let % (with asymmetric and symmetric factors Â and ∼ respectively) be an

ordering on P(). We interpret the statement  %  as meaning “decision

with consequences in  is weakly preferred to decision with consequences in ”.

A similar interpretation is given to the statements  Â  (“strictly preferred
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to”) and  ∼  (“indifference”).

We want to identify the properties (axioms) of the ordering % that are

necessary and sufficient for the existence of a function  :  → R and a function
 :  → R++ that are such that that, for every  and  in P():

 %  ⇐⇒

P
∈

()()P
∈

()
≥

P
∈

()()P
∈

()
 (1)

We refer to an ordering numerically represented as per (1) for some functions 

and  as to a Conditional Expected Utility (CEU) criterion. Indeed, the func-

tion  is naturally interpreted as assigning to every consequence - or lottery in

the objective ambiguity framework - a number that reflects its a priori "plau-

sibility", while the  function is interpreted as a utility function that evaluates

the "desirability" of every consequence from the decision maker’s view point.

Hence an ordering represented by (1) can be seen as comparing decisions on

the basis of the expected utility of their consequences conditional upon the fact

that they will materialize. We notice that the requirement that ()  0 for

every  ∈  guarantees indeed that the "event" on which the conditioning is

performed is well-defined.

We notice also that the family of UEU criteria characterized in Gravel,

Marchant, and Sen (2012) is, a priori, a subclass of CEU family, in which

the function  is any constant function. Yet, as we shall see later, the charac-

terization that we provide of this family is not complete as it does not cover

all criteria that belong to the family represented by (1). The reason for this is

that we characterize this family by assuming that both the universe  and the

ordering % satisfies the following "richness" condition (somewhat stronger than
the condition of the same name used in Gravel, Marchant, and Sen (2012)).

Condition 1 Richness. For every sets , , ,  and 0 in P() such that
0 ∼  ≺  ≺  ∼ , there are sets  and 0 satisfying  ∩ ( ∪  ∪) =
∅ = 0 ∩ ( ∪  ∪0) such that  ∼ , 0 ∼  and  ∪ ∼  ∼ 0 ∪ .

This condition requires the domain to be sufficiently rich, and the ordering

% to be sufficiently "smooth", for opening up the possibility of "matching"

- in terms of indifference - any given decision by appropriate combinations of

other decisions that are strictly better, and strictly worse than that decision. We

emphasize that this condition restricts both the universe from which the objects

are taken and the ordering %. For instance, a "discontinuous" ordering like, say,
the Leximin one that would compare sets on the basis of lexicographic extension

of their "worst" - as per the ordering % restricted to singletons - elements would
violate this condition. It is somewhat difficult to appraise the strength of this

condition. On the one hand, it may seem to be a weak condition because its

asserted existence of specific sets  and 0 is contingent upon the sets , ,
,  and 0 having the properties indicated in the antecedent of the condition.
On the other hand, as shown in the next section, the richness condition has
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some strength since, if  is a topological space, it excludes from the class

of rankings represented by (1) those for which the function  is constant and

continuous. Moreover, this richness condition is not necessary for an ordering

to be represented by (1).

Before turning to the three axioms that are necessary (and sufficient) for

an ordering on P() satisfying the richness condition to be a CEU criterion,

we find useful to compare our framework to that of Ahn (2008), in which  is

explicitly taken to be the − 1 dimensional simplex −1 : { ∈ R+ :  ∈ [0 1]

for all  = 1   and

X
=1

 = 1}, interpreted as the set of all conceivable

lotteries on some finite set of  prices. Instead of considering finite subsets of

−1, Ahn (2008) applies his analysis to subsets of −1 that are equal to
the closure of their interior (using the topology of the Euclidean distance) and

to singletons. This means that all non-singleton sets considered in Ahn (2008)

contains continuously many elements. Ahn (2008) characterizes all orderings %
of the subsets of −1 that are equal to the closure of their interior - along with
singletons - that can be written as:

 %  ⇐⇒
R

()

()
≥
R

()

()
 (2)

for some continuous function  : −1 −→ R and some probability measure 
on the Borel subsets of −1. Orderings that can be represented as per (2) have
also been characterized by Bolker (1966), Bolker (1967) and Jeffrey (1965) (see

e.g. Broome (1990) for a nice discussion of the Bolker-Jeffrey theory). One can

view the representation (1) as a finite version of the representation (2) in which

the measure  is defined, for any finite set , by:

() =
X
∈

() (3)

Yet we (over ?) emphasize that our restriction to finite sets makes the analysis

very different from that of Ahn (2008) and Bolker (1966), Bolker (1967) and

Jeffrey (1965).

The first axiom used in our characterization of the family of orderings of

P() represented by (1) is the following "Archimedean" one.

Axiom 1 Archimedean. For all sets , , ,  and  in P() such that

 ∼  ∼  ∼  6∼ ,  ∪  Â  ∪  and  ∩ ( ∪) = ∅, if there are two
infinite sequences of sets 0 1         and 0 1        , satisfying

 ∩ ( ∪ ∪) = ∅,  ∩ ( ∪∪) = ∅,  ∼ ,  ∼ , ∪ ∼ ∪
and  ∪ ∼  ∪ for all  6=  ∈ N, then there must be some  ∈ N for which
 ∪S

=0 %  ∪S
=0 holds .

As usual, Archimedean axioms are difficult to write but they say a simple

thing: no decision is infinitely more valuable than any other. As stated here,
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the axiom applies to decisions  and  between which the decision maker is in-

different. Suppose that the uncertainty surrounding these decisions is increased

in the sense that the set of their possible consequences is "enlarged" to conse-

quences in some set  that are not equivalent to  and . Perhaps  is a set

of consequences that the decision maker considers better than  or . Perhaps

it is worse. Suppose also that the decision that leads to consequences in  ∪ 
is strictly better than a decision with consequences in  ∪  Consider then

replacing, in this enlargement to , the initial sets of consequences  and 

by any set in some sequences  and  (respectively, for  = 0 ) that are,

again respectively, disjoint from  and from . These sets are also, in every

sequence, disjoint from each other. Suppose that this replacement is a matter of

indifference for the decision maker. Intuitively then, the sets 0 1        

can all be considered to be "clones" of  relative to  in the sense that the deci-

sion maker is totally indifferent between a decision with consequences in any of

these sets or in  and a decision with consequences in  or in . Similarly, sets

0 1        are clones of  relative to . The Archimedean axiom says

that replacing, in this enlargement to , decision  by an equivalent decision 

and replacing, in the very same enlargement to  decision  by an equivalent

decision  can not reverse the ranking of  ∪  vis-à-vis  ∪  to such an

extent that the reversal - if any - can not be outweighed by adding to ∪ and

to  ∪  a suitably long sequence of clones of  and  respectively. That is,

decisions  and  can not be "infinitely more important" than decisions  and

 relative to  when they are themselves indifferent to  and  respectively.

While this axiom may seem technical and, when understood, "natural", it is

required in the characterization, as shown in example 1 of section 4. Ahn (2008)

does not use an Archimedean axiom. He uses, instead, two continuity axioms

that can not be defined in the abstract universe considered here that may not

have a topological structure.

The two next axioms however are used by Ahn. The first of them is the

Averaging axiom (using the terminology of Broome (1990)) that was also used in

the characterization of the UEU family of criteria provided in Gravel, Marchant,

and Sen (2012). The formal statement of this axiom is as follows.

Axiom 2 Averaging. Suppose  and  ∈ P() are disjoint. Then  %  iff

 ∪ %  iff  %  ∪.

This axiom was called "disjoint set betweenness" by Ahn (2008). It says

that enlarging the possible outcomes of a decision  to those of a (disjoint)

decision  is worth doing (resp. not worth doing) if and only if the set  of

added consequence is better (resp. worse) than the set  to which it is added. It

captures an intuitive property satisfied by calculations of "average" in various

settings (e.g. adding a student to a class will increase the average of the class

if and only if the grade of the added student is larger than the average of the

class). The "only if" part of the axiom is strong since it asserts that the only

reason for ranking a set  above (resp. below) a set  is when the addition of

 to  is considered a good (resp. bad) thing. A weaker version of Averaging
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(that only requires the "if" part in its statement) is used in Olszewski (2007).

A very similar axiom is also used in Gul and Pesendorfer (2001) for ranking

menus of alternatives in a way that reflects "temptation" and "self-control".

The last axiom is called Balancedness by Ahn (2008). It is stated as follows.

Axiom 3 Balancedness. Suppose  and  are two sets in P() such that
 ∼ . Then, if there is a set  ∈ P() satisfying ( ∪ ) ∩  = ∅ and

 ∼  Â  for which  ∪  %  ∪  holds,  ∪ %  ∪ must hold for all

sets  ∈ P() for which ( ∪) ∩ = ∅ and  ∼  Â .

This axiom is a separability condition that plays a key role in guaranteeing

that the measure of finite sets provided (as per expression (3)) by the function 

in the representation (1) is well-defined. The difficulty indeed in the characteri-

zation of the family of CEU criteria is to disentangle the role played by the two

functions of expression (1) that represent two different notions. The function 

serves as identifying the "utility" of a decision. The function  serves as identi-

fying the likelihood of the outcomes of the decision. When do we have evidence

that a (finite) collection of outcomes of a decision is "more likely" than another

? One such evidence - put forth by the balancedness axiom - is provided when

two decisions  and  are equivalent for the decision maker in utility terms, but

are not anymore equivalent if the outcomes that they may yield are enlarged

to outcomes of another decision  that is considered worse to both  and .

Suppose specifically that a decision leading to either  or  is better than a

decision leading to either  or . Such a preference for ∪  over  ∪  can

only come from the fact that the good outcomes in ∪  (that are in ) are

"more likely" than the good outcomes (in ) in ∪. The balancedness axiom
guarantees that the definition of what it means for  to be more likely than

 does not depend upon which particular set  worse than both  and  is

chosen.

3 Main results

Let us define the sets () and () of minimal (resp. maximal) decisions

in  by () = { ∈ P() :  -  ∀ ∈ P()} and () = { ∈ P() :
 %  ∀ ∈ P()}. Each of these set can of course be empty. We define the
set P∗() by P∗() = P() \ (()∪()). Hence, the set P∗() contains
all finite subsets of  that are not maximal or minimal with respect to the

ordering %. One may of course have P∗() = P() if there are no maximal
nor minimal sets for the ordering %. Yet, we know of at least one context where
the set P∗() will be different from P(). This will be the case if, as in Ahn
(2008), the universe  is the  − 1 dimensional simplex interpreted as the set
of all lotteries on a finite set of prices. In such a setting, it would seem natural

that there be a "best" prize (say the certainty that no increase in the Earth

temperature will take place in the next 50 years) and a "worst prize" (say the

certainty that the earth temperature will increase by 10◦ C in the next 50 years).
If this is the case, the singleton that gives unambiguously the lottery that assigns
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a probability 1 to the best (resp. to the worst) prize would be maximal (resp.

minimal) in P().
We first prove the result on the set P∗(). Once having obtained the nu-

merical representation as per (1) on P∗(), we show that the representation

can be extended to the whole set P(). The proof is based on several auxiliary
results that we now present. We relegate all proofs in the Appendix.

The first result is the simple, but important, fact that if the ordering % is

not trivial and satisfies Averaging, then if decisions  and  are respectively

maximal and minimal in the set P(), then  and  must be disjoint. We

formally state this result as follows.

Lemma 1 Let % be a non-trivial ordering of P() satisfying Averaging. Then
if sets  and  ∈ P() are such that  %  %  for all sets  ∈ P(), then
 ∩ = ∅.

The second result establishes a somewhat strong implication of the Richness

condition when it is combined with the Averaging axiom, and applied to a non-

trivial ordering. Indeed, the richness condition implies that, for any two decisions

faced by the decision maker, is possible to replace one them by another that is

indifferent to it and that leads to different consequences than those of the two

initial decisions. The formal statement of this lemma is as follows.

Lemma 2 Let % be a non-trivial ordering of P() satisfying Richness and
Averaging. Then, for every   ∈ P(), there exists  ∈ P() such that
 ∼  and  ∩ ( ∪ ) = ∅.

An important implication of this lemma, and of the richness condition on

which it rides, is that any ordering of P() satisfying Averaging and Richness
if the universe  is finite must be trivial. Averaging and Richness, if they are to

apply to a non-trivial ordering, force to be infinite. More precisely, it forces the

set P∗() to be itself infinite in the sense that, for any decision  ∈ P∗(), one
can find decisions  and  in P∗() that are, respectively, strictly better and
strictly worse than . Hence, the set P∗() of non-maximal and non-minimal
decisions is not only infinite. It is also "unbounded" with respect to the ordering

%. The formal statement of this fact is as follows.

Lemma 3 If % is a non-trivial ordering on P() satisfying Richness and Av-
eraging, then, for every set  ∈ P∗(), there are decisions  and  ∈ P∗()
such that  ≺  ≺ .

Endowed with these two first lemma, we define, for any decision  ∈ P∗(),
the set P() = { ∈ P() :  ∼ } of all decisions that are equivalent to
. This set is not empty since it contains  itself by reflexivity. We then define

the binary relation % on P() by: %  iff there exists a decision  disjoint

from  and  such that ∪ % ∪ and  ≺ . Notice that, since we work

on the set P∗(), we do not define % on a maximal (or minimal) equivalence

class. This binary relation % is naturally interpreted as meaning "is at least as

11



probable as". Hence decision  is at least as probable as decision  if  and

 provides the decision maker with the same "utility" - equal to that of the

benchmark decision  - and if merging  to a strictly worse decision  is better

than merging  with that same worse decision. Thanks to the Balancedness

axiom, this binary relation is well-defined in the sense that it des not depend

upon the particular set  used to define it. The following lemma, also proved in

the Appendix, establishes more precisely that the binary relation % is in fact

an ordering of the set P().

Lemma 4 Assume that % is a non-trivial ordering on P() satisfying Bal-
ancedness and Averaging. Then, for any decision  ∈ P∗(), the relation %

is an ordering of P().

In the next lemma, we establish the formal definition of the asymmetric

factor Â and the symmetric factor ∼ of the ordering %.

Lemma 5 Assume that % is an ordering on P() satisfying Richness, Bal-
ancedness and Averaging. Then, for any decision  ∈ P∗() any decisions 
and  in P() and any decision  ∈ P() such that  Â  and ∩(∪) =
∅,

1.  Â  if and only if  ∪  Â  ∪.
2.  ∼  if and only if  ∪  ∼  ∪.

The next lemma is quite important. It establishes the possibility of repre-

senting the "plausibility" ordering % of sets that are indifferent to each other

- as per the ordering % - by a set-additive strictly positive numerical function

which behaves indeed like a probability measure. The proof this lemma rides

on an important theorem on additive numerical representation established in

Krantz, Luce, Suppes, and Tversky (1971).

Lemma 6 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then, for every de-

cision  ∈ P∗(), there exists a mapping  : P()→ R++ such that, for all
 ∈ P(),  %  iff () ≥ () and, for all disjoint  ∈ P(),

( ∪ ) = () + (). Furthermore,  is unique up to a linear trans-

formation.

Given any decision , the ordering % and its additive numerical represen-

tation  enables the comparison of any two decisions that are indifferent to

 as per the ordering %. We now need to establish how the binary relation %

compares - in terms of plausibility - decisions that are not indifferent to each

other in terms of the ordering %. A preliminary step for doing so consists in

showing the possibility of constructing, starting from , an additively separa-

ble function which, for any decision , indicates whether any other decision is

weakly preferred to , or weakly worse than . We do that in the following

12



lemma, that is very similar in its statement and proof as Lemma 10 in Ahn

(2008).

Lemma 7 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. If  ∈ P∗(),
there exists a mapping  : P() → R such that (i)  ∩  = ∅ implies

( ∪) = () + () and (ii) () ≥ 0 iff  %  and () ≤ 0 iff
 - .

The function  constructed in the proof of Lemma 7 is a somewhat complex

- but yet additively separable - extension of the function  of Lemma 6. An

important thing to notice about the numerical function  is that, while defined

only with respect to a decision  ∈ P∗(), it is in fact a function that maps
every decision  ∈ P() into the set of real number. Hence, the domain of 
includes sets that belong to () or ().

The additively separable function  of Lemma 7 enables one to identify

whether some decision is better or worse than the benchmark decision . In

order to obtain a numerical representation of the whole preference% over all sets,
it is important to connect together the information conveyed by the functions

 for all benchmark decisions . A first step in establishing this connection

is the following lemma, which says that the functions , defined with respect

to some reference decision , can actually be used to numerically represent

the plausibility ordering %defined on the set P() of all decisions that are

equivalent - as per the ordering % - to a decision  that is not itself equivalent

to . Put differently, the function  numerically represents the plausibility

ordering %defined on P() no matter what is the reference set . The

formal statement of this result is as follows.

Lemma 8 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then, for any two

sets  ∈ P∗() the function  numerically represents the plausibility or-

dering %on P() in the sense that, for any two decisions  and  ∈ P()

 %  ⇐⇒ () ≥ ( ).

We now establish, with the help of this result, that the set of all functions

 obtained for all reference decisions  ∈ P∗()) is a "two-dimensional space"
in the sense that any such function can be obtained as a linear combination of

any two other linearly independent functions. A somewhat analogous result was

proved as Lemma A12 in Ahn (2008).

Lemma 9 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then the family

{ :  ∈ P∗()} is spanned by any two of its members  and  provided

that  and  are linearly independent). That is, for any two functions 

and  for which there are is no real number  such that
()

()
=  for all

decisions  ∈ P(), one can write any function  as  = + for

some real numbers  and .
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The next lemma establishes a somewhat stronger result concerning the set

of functions { :  ∈ P∗()} defined in Lemma 7. Namely, that this set is a
positive cone.

Lemma 10 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Let ,  and  be

three sets in P∗(). Then, there does not exist a strictly positive real number 
and a  ∈ [0 1] such that −() = () + (1− )() holds for all set

 ∈ P().

Using these results on the (vector-like) structure of the set of functions { :
 ∈ P∗()} defined in Lemma 7, we now use these functions to construct

a disjoint-set additive function  that will play a key role in the numerical

representation of the form (1) that we are aiming at. Roughly speaking, the

function  will define the "denominator" of the numerical expression (1).

Lemma 11 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then there exists a

disjoint-additive mapping  : P()→ R such that ()  0 for all  ∈ P∗()
and such that .

The next lemma establishes that the set function  : P∗()→ R defined,
for any reference set , by:

() =
()

()
(4)

provides a numerical representation of the ordering % on the set P∗().

Lemma 12 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Choose any  ∈
P∗(). Then, for all sets  and  ∈ P∗(), ()() ≥ ()() iff

 % .

In the next lemma, we show that each of the two disjoint set-additive func-

tions  - for any set  ∈ P∗() - and  serves as an index of the equivalence

class associated to the intersection of the symmetric factors of the two order-

ings % and %. That is, any two sets of consequences that are considered both

equally desirable - from the view point of % - and equally "plausible" - as per

%- will be assigned the same value by either the function  or the function .

Lemma 13 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then, for any  ∈
P∗(), and any two decisions  and  ∈ P∗(),  ∼  and  ∼  implies

() = () and () = ().

We now establish the existence, in the universe , of consequences that

have "arbitrarily small" level of plausibility. More precisely, we show that the

14



function  that defines the denominator of the numerical expression (1) can take

values arbitrarily close to zero if the set of consequences to which it applies is

suitably chosen. Notice that this implies that the UEU criteria characterized

in Gravel, Marchant, and Sen (2012) are not members of the family of CEU

criteria that are represented as per (1) for some functions  and  (with 

strictly positive). Indeed, if a UEU criterion was a CEU criterion, the function

 of expression (1) would be a constant (say () =  for some strictly positive

number  for all consequences ). In this case, there would be no consequences in

 with "arbitrarily small" level of plausibility. The contribution of the richness

condition to this fact that 0 is the greatest lower bound of the the function  is

very important.

Lemma 14 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then, for any set

 ∈ P∗() and any strictly positive real number , one can find a decision 

such that  ∼  and ()  .

The results obtained so far have been dealing with decisions that are not

maximal or minimal - for the ordering% - in the set P(). We must now progress
in showing that the functions  and  (for any given  ∈ P∗()) defined for
those non-minimal or maximal decisions can also be extended to minimal or

maximal decisions (if any). The first step in this direction is accomplished in

the next lemma, that extends the function  of Lemma 11 - that was taking

strictly positive value on all sets in P∗() - to a closely related function +
which takes strictly positive value on every set in P() (including therefore
maximal and/or minimal sets in P(), if any).
Lemma 15 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. There exist then

a disjoint-additive mapping + : P() → R such that +()  0 for all

 ∈ P(). Moreover the function + belongs to the family { :  ∈ P∗()}
spanned by any two of its linearly independent members  and .

Endowed with this function, we need now to prove an analogue of Lemma 12,

but using + rather than . We do this in the following lemma.

Lemma 16 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Choose any  ∈
P∗(). Then, for all sets  and  ∈ P(), ()+() ≥ ()+() iff

 % . Choose any  ∈ P∗() and define  =  . Then, for all  ∈ P∗(),
()+() ≥ ()+() iff  % .

We have now gather all the auxiliary results that are required to prove our

main theorem, that is as follows.

Theorem 1 Assume that % is an ordering of P() that satisfies Richness.
Then % satisfies Balancedness, Averaging and the Archimedean axiom if and

only if there are two functions  :  → R and  :  → R++ such that (1) holds.
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4 Interpretation of the results

4.1 Independence of the axioms

In the next three examples, we show that the axioms used in the characterization

of the CEU family of orderings are independent when applied to an ordering

satisfying richness. The first example exhibits an ordering of P() that does
not belong to the CEU family but that satisfies averaging, balancedness and

richness (but not the Archimedean axiom).

Example 1 Let  = R2++ ×R2. For every  ∈ P(), define

1() =

P
∈ 13P
∈ 1

and

2() =

P
∈ 23P
∈ 2



Define % on P() by.

 ∼  ⇐⇒ 1() = 1() and 2() = 2();

 Â  ⇐⇒
⎧⎨⎩ 1()  1()

or

1() = 1() and 2()  2()

We first show that this ranking violates the Archimedean axiom. Let  =

{(1 2 0−1)},  = {(1 1 0−1)},  = {(1 2 0 )},  = {(1 1 0 )},  =

{(1 1 0 0)} and  = {(2 1 0 0)}. We clearly have  ∼  ∼  ∼  ∼  ∼ 

for all  ∈ N. Let  = {(0 0−1 0)}. We have  Â  ,  ∪  Â  ∪  ,

 ∪  ∼  ∪  and  ∪  ∼  ∪  for all  ∈ N. Yet,contrary to what the
Archimedean axiom requires,  ∪  S

=0 ≺  ∪  S
=0 for all  ∈ N.

We next show that % satisfies Averaging. Suppose first that  Â . Using the

definition of %, this is either equivalent to:

1()  1()

⇐⇒
1()  1( ∪)  1()

⇐⇒
 Â  ∪ Â 

or to:
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1() = 1() and 2()  2()

⇐⇒
1() = 1( ∪) = 1() and 2()  2( ∪)  2()

⇐⇒
 Â  ∪ Â 

A similar reasoning holds when  ∼ . To show that % satisfies Richness,

consider  ∈ P() such that  Â  Â . We will show that there exists

a set  = { } such that  ∩ ( ∪ ) = ∅,  ∼  and  ∪  ∼ . So, we

must have
13 + 13

1 + 1
= 1() (5)

23 + 23

2 + 2
= 2() (6)

13 + 13 +
P

∈ 13

1 + 1 +
P

∈ 1
= 1() (7)

23 + 23 +
P

∈ 23

2 + 2 +
P

∈ 2
= 2() (8)

Set 3 = max(1() 2())+1 and 3 = min(1() 2())−1. There clearly
exist 1 1 ∈ R++ such that (5) holds. Notice that 1 1 are not unique; they
can be scaled by any positive constant and we can choose this constant so that

(7) holds. Similarly, there clearly exist 2 2 ∈ R++ such that (6) holds. They
are unique up to a multiplication by a positive constant, that we can choose

independently of the scaling constant for 1 1. So, we can choose it so that (8)

holds. In order to guarantee that  ∩ ( ∪) = ∅, we can freely manipulate 4
and 4. Hence Richness holds. Finally, to show that % satisfies Balancedness,

consider finite and non-empty subsets  of  such that  ∼  Â 

and ( ∪) ∩ ( ∪) = ∅. We have  ∪ %  ∪  if and only if either:

1( ∪ )  1( ∪ ) iff 1( ∪)  1( ∪) iff  ∪ %  ∪ or

[1( ∪ ) = 1( ∪ ) and 2( ∪ ) ≥ 2( ∪ )] iff [1( ∪ ) =

1( ∪) and 2( ∪) ≥ 2( ∪)] iff  ∪ %  ∪.

The next example, provides a non-CEU ordering that satisfies balancedness,

richness and the Archimedean axiom but violates averaging.

Example 2 Let  = R++ ×R2, () = 1, () = 2,

() =

P
∈ ()()¡P
∈ ()

¢2
and  %  iff () ≥ ().

The ranking % clearly satisfies Richness and the Archimedean axiom. It violates
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Averaging because  = {(34 2 0)} ∼  = {(34 2 1)} Â  ∪.
Let us prove that % satisfies Balancedness.  ∼  implies:

X
∈

()()

ÃX
∈

()

!2
=

ÃX
∈

()

!2X
∈

()() (9)

while  ∪  %  ∪ implies:ÃX
∈

()() +
X
∈

()()

! ⎛⎝ÃX
∈

()

!2
+

ÃX
∈

()

!2⎞⎠

≥
ÃX
∈

()() +
X
∈

()()

! ⎛⎝ÃX
∈

()

!2
+

ÃX
∈

()

!2⎞⎠
or, after distributing:

X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2


≥
X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2
Substituting (9) into this equation yields:

X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2

≥
X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2
or:

X
∈

()()

⎛⎝ÃX
∈

()

!2
−
ÃX
∈

()

!2⎞⎠ ≥ ÃX
∈

()()−
X
∈

()()

!ÃX
∈

()

!2


Since
¡P

∈ ()
¢2

 0, one obtains:P
∈ ()()¡P
∈ ()

¢2 ≥ P∈ ()()−P∈ ()()¡P
∈ ()

¢2 − ¡P∈ ()
¢2 =

P
∈ ()()¡P
∈ ()

¢2 (10)

if
¡P

∈ ()
¢2 − ¡P∈ ()

¢2
 0 orP

∈ ()()¡P
∈ ()

¢2 ≤ P∈ ()()−P∈ ()()¡P
∈ ()

¢2 − ¡P∈ ()
¢2 =

P
∈ ()()¡P
∈ ()

¢2 (11)
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if
¡P

∈ ()
¢2−¡P∈ ()

¢2
 0. Inequality (10) is not possible because  Â

. We therefore conclude that Inequality (11) holds and that
¡P

∈ ()
¢2 −¡P

∈ ()
¢2 ≤ 0.

We also know that  ≺ . This implies:P
∈ ()()¡P
∈ ()

¢2 ≤ P∈ ()()−P∈ ()()¡P
∈ ()

¢2 − ¡P∈ ()
¢2 =

P
∈ ()()¡P
∈ ()

¢2 
Hence:X
∈

()()[(
X
∈

())2−(
X
∈

())2] ≥ [
X
∈

()()−
X
∈

()()](
X
∈

())2

and X
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2

≥
X
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2

If we add (9) to this inequality, we obtainX
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2

≥
X
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2

Let us now add
P

∈ ()()
¡P

∈ ()
¢2
on both sides and factorize. We

obtain

[
X
∈

()() +
X
∈

()()] [(
X
∈

())2 + (
X
∈

())]2

≥ [
X
∈

()() +
X
∈

()() ][(
X
∈

())2 + (
X
∈

())2]

which implies  ∪  %  ∪ . This concludes the proof that % satisfies Bal-

ancedness.

Finally, the next example shows a non-CEU ordering that satisfies richness,

the Archimedean axiom and averaging but that violates Balancedness.

Example 3 Consider % defined on P(R2+) by:

 %  ⇐⇒

X
(12)∈

1(2 +
22X

(12)∈
2

)

X
(12)∈

(2 +
22X

(12)∈
2

)
≥

X
(12)∈

1(2 +
22X

(12)∈
2

)

X
(12)∈

(2 +
22X

(12)∈
2

)
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and let, for any finite  ⊂ R2+,  () be defined by:

 () =

X
(12)∈

1(2 +
22X

(12)∈
2

)

X
(12)∈

(2 +
22X

(12)∈
2

)

It is easy to see that this ordering satisfies the Archimedean axiom. Let us

show that it satisfies Richness. For this sake, consider four sets  ∈
P(R2+)with  ≺  ≺  ∼ . Define  = {( )}, with  =  (). We

have lim→0  ( ∪ ) =  () and lim→∞  ( ∪ ) =  (). Since  is

(Hausdorff) continuous and  ()   ()   (), there exists  ∈ R+ such
that  ( ∪ ) =  (). If ( ) ∈  ∪  ∪ , then we have found the set

 as in the statement of Richness. If ( ) ∈  ∪  ∪ , then consider  =

{( ) ()}, with  =  =  (). We have lim→0  ( ∪ ) =  () and

lim→∞  ( ∪ ) =  (). Since  is Hausdorff continuous and  () 

 ()   (), there exist necessarily infinitely many pairs ( ) ∈ R2+ such

that  ( ∪) =  (). Since  ∪ ∪ is finite, at least one of these pairs is

such that ∩ (∪∪) = ∅. Hence Richness holds. Let us now show that this
ordering satisfies averaging. Let  and  be two disjoint sets such that  % .

One has therefore:

 () ≥  ()

⇐⇒ X
(12)∈

(2 +
22X

(12)∈
2

) ()

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)

≥

X
(12)∈

(2 +
22X

(12)∈
2

) ()

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)

=

X
(12)∈

1(2 +
22X

(12)∈
2

)

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)
(12)
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and (trivially):

 () ≥  ()

⇐⇒

X
(12)∈

(2 +
22X

(12)∈
2

) ()

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)

≥

X
(12)∈

(2 +
22X

(12)∈
2

) ()

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)

=

X
(12)∈

1(2 +
22X

(12)∈
2

)

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)
(13)

Summing inequalities (12) and (13) yields:

 () ≥

X
(12)∈

1(2 +
22X

(12)∈
2

) +
X

(12)∈
1(2 +

22X
(12)∈

2

)

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)

=  ( ∪)

as required by the first part of Averaging. The other part of the axiom can be

obtained by an analogous reasoning. Let us now show that the ordering % violates
balancedness. Indeed, consider the sets  = {(505 16)}  = {(10 10) (1000 10)}
 = {(504 1) } and  = {(1 10)} one has:

 () =

X
(12)∈

1(2+
22X

(12)∈
2

)

X
(12)∈

(2+
2
2X

(12)∈
2

)

= 505 =
10×(10+ 100

10+10
)+1000×(10+ 100

10+10
)

(10+ 100
10+10

)+(10+ 100
10+10

)
=

 ()   () =
504×(1+ 1

1
)

1+ 1
1

= 504   () =
1×(10+ 100

10
)

10+ 100
10

= 1

One has also:
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 ( ∪ ) = 505×(16+ 256
17
)+504×(1+ 1

17
)

(16+ 256
17
)+(1+ 1

17
)

= 45 952
91

' 50497

 ( ∪ ) =
10× (10 + 100

10+10+1
) + 1000× (10 + 100

10+10+1
) + 504× (1 + 1

10+10+1
)

(10 + 100
10+10+1

) + (10 + 100
10+10+1

) + (1 + 1
10+10+1

)

=
10× (10 + 100

21
) + 1000× (10 + 100

21
) + 504× (1 + 1

21
)

21 + 201
21

' 504 97

However, contrary to what balancedness requires:

 ( ∪) =
505× (16 + 256

26
) + 1× (1 + 1

26
)

(16 + 256
26
) + (1 + 1

26
)

' 48553

  ( ∪)

=
10× (10 + 100

10+10+10
) + 1000× (10 + 100

10+10+10
) + 1× (1 + 1

10+10+10
)

(10 + 100
10+10+10

) + (10 + 100
10+10+10

) + (1 + 1
10+10+10

)

' 48620

4.2 Some unpleasant implications of our richness condi-

tion

The richness condition used in our characterization is strong. Among other

things, it seems to restrict unduly the functions  and  that appear in the

representation of a CEU criterion. For the moment, we can not analytically

identify what these additional restrictions - beyond that of being functions from

 to the real (and for the  function, to have strictly positive range). We can

not either provide a topological interpretation of our characterization result in

a similar spirit than the one obtained in Gravel, Marchant, and Sen (2012). An

example of the implication of our richness condition is provided in the following

proposition, where we show that if  = R (for instance the consequences of

a decision under ignorance are amounts of money), then it is impossible with

our richness condition to have both the functions  and the function  to be

monotonic if the function  is continuous.

Proposition 1 Suppose that  = R. Then if % is a CEU ranking satisfying

richness, then, if the function  in expression (1) is continuous, it can not be

monotonic if  is monotonic.

In the next proposition, we establish that if  is a topological space (for

instance a separable one of the kind considered in Gravel, Marchant, and Sen

(2012)), then no Uniform Expected Utility criterion in which  is a continuous

utility function satisfies the richness condition. This shows that the character-

ization of the CEU family of criteria that we provide in this paper does not
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contain all members of that family because it excludes, at least in topological

environments, the UEU subclass of that family that is obtained by considering

only constant functions  and continuous functions 

Proposition 2 Let  be a topological space, and let % is a non-trivial UEU

ranking with  continuous. Then % violates the Richness condition.

5 Conclusion

This paper characterizes the family of CEU rankings of decisions under igno-

rance or objective ambiguity with finitely many consequences, under the as-

sumption that the rankings are defined in a "rich" environment. With the

exception perhaps of the Archimedean axiom, the two main axioms used in

the characterization, averaging and balancedness, that also appear in the char-

acterization of a similar family obtained by Ahn (2008), are easy to interpret

and to test in an experimental context. As we argued above, the fact that we

limit our attention to decision with finitely many consequences (or probability

distributions) makes our framework much more applicable that the atomless

environment considered by Ahn (2008) and the literature that derives from the

Bolker-Jeffrey tradition (e.g. Bolker (1966), Bolker (1967), Jeffrey (1965) and

Broome (1990)). We emphasize also that the discrete framework makes the

proof and the characterization very different from the one obtained in this later

tradition. Moreover, we have shown that the three axioms that we use are

independent.

Yet, the analysis conducted in this paper suffers from two limitations, of

varying importance. First, as suggested in the preceding section, it rides on

a richness assumption that is, probably, unduly strong. We use the qualifier

"probably" because we do not have, at the moment, an alternative. We are

therefore incapable to assess the strength of the assumption. But, as shown in

Proposition 2, the richness condition is sufficiently strong for excluding from

the family of CEU rankings all UEU ones of the kind characterized in Gravel,

Marchant, and Sen (2012) when the later are defined on a topological space

and are continuous on that space. Another limitation of the analysis is that

it is conducted in an algebraic framework rather than a topological one (us-

ing Wakker (1988)’s terminology). Contrary to what was achieved in Gravel,

Marchant, and Sen (2012), we did not succeed indeed in providing a topolog-

ical version of our theorem in which richness and the Archimedean condition

could be replaced by an appropriate - and necessary - continuity condition. We

do not view this second limitation as being as important as the first however.

Indeed, as very convincingly argued - at least in our view - by Wakker (1988),

the algebraic framework is more general than the topological one. Yet, it is fair

to say that topological environments, and the continuity properties that they

enable to define, are more familiar to decision theorists and economists than

richness and Archimedean conditions. For this reason, it would be nice to have

a topological version of our main theorem.
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The analysis of this paper needs also to be completed in several directions.

One of them is an analysis of comparative attitudes toward radical uncertainty

or toward ambiguity in the class of CEU rankings. Another one is a proper

understanding of the uniqueness properties of the functions  and  used in

the characterization. As shown in Proposition 1, the two functions may not

be totally independent from each others in specific environment. It would be

nice to have a complete identification of the uniqueness properties of these func-

tions. Finally, we believe that CEU models of decision making under radical

uncertainty and/or ambiguity should be put to work, notably in public policies,

to generate consistent rankings of radically uncertain decisions. While environ-

mental policy discussed in Introduction is an obvious fields for such applications,

there are many others. We plan to develop such applications in our future work.

6 Appendix: Proofs

6.1 Lemma 1

Let the sets  and  ∈ P() be such that  %  %  for all sets  ∈ P()
and assume by contradiction that there exists some consequence  ∈  ∩. Since %
is not trivial, one must have  Â . Since % is an ordering, either {} %  Â 

or  Â {}. In the first case, it follows from Averaging that  Â \{}, which
contradicts the definition of the sets  and  ∈ P() to be such that  %  % 

for all sets  ∈ P(). In the second case, it follows from Averaging again that

\{} Â  which is also a contradiction of the definition of the sets  and  ∈ P()
to be such that  %  %  for all sets  ∈ P().

6.2 Lemma 2.

Since % is non-trivial, there is a set  such that  ≺  or  ≺ . We treat the

case  ≺  (the other case is handled symmetrically). We first prove that there are

at least two equivalence classes better than the one containing , so that it will be

possible to apply Richness. We consider two cases :

(1)  ∩ = ∅. Then Averaging yields  ≺  ∩ ≺  (and we are done).

(2)  ∩ 6= ∅. We then consider three subcases :
(a)  ∩ ∼ . Then, by Averaging,  \ ∼  and  \ ≺  ∪ ≺ .

(b) ∩ ≺ . If this is the case, one can not have  ⊂ . Indeed, if one had  ⊂ ,

this would imply that ∩ =  ≺ , which contradicts the initial assumption that

 ≺ . Hence the set \ 6= ∅. Averaging then implies that  ≺  \.
(c) ∩ Â . If ∩ 6∼ , then we are done. Otherwise, by Averaging, \ ∼ 

and  ≺  ∪ ( \) ≺  \.
We now apply richness to the three equivalence classes. A first application of Rich-

ness yields a set 1 such that 1 ∼  and 1 ∩  = ∅. If 1 ∩  = ∅, then the
proof is done. If 1 ∩  6= ∅, then use Richness again to find a set 2 such that
2 ∼ ∪1 and 2∩(∪1) = ∅. By Averaging, ∪1 ∼  and, by transitivity,

2 ∼ . We are now sure that 2 does not contain any of the elements of 1 ∩. If
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2 ∩ = ∅, then the proof is done. If 2 ∩ 6= ∅, then use Richness again to find
a set 3 such that 3 ∼ ∪1 ∪2 and 3 ∩ (∪1 ∪2) = ∅. By Averaging,
∪1∪2 ∼  and, by transitivity, 3 ∼ . Notice that (1∪2)∩ ) 1∩
. We are now sure that 3 does not contain any of the elements of (1 ∪2)∩. If
3∩ = ∅, then the proof is done. If 3∩ 6= ∅, we iterate this construction and we
find sets like 4 5    At each iteration, (1∪  ∪)∩ ) (1∪  ∪−1)∩
. Since  is finite, we are sure to reach some  satisfying the same conditions as 

in the statement of the lemma.

6.3 Lemma 3

If % is not trivial, then there are decisions  and  ∈ P() such that  ≺ . By

Lemma 2, there is a set  ∈ P() such that  ∼  and  ∩ ( ∪ ) = ∅. By
Averaging and Transitivity,  ≺  ∪  ≺ . Hence, the ordering % has at least

three equivalence classes and, hence, P∗() is not empty. Let  be a decision in

P∗() (we have just proved that it exists). We will prove that there is  ∈ P∗()
such that  ≺  (the proof that there is  ∈ P∗() such that  ≺  is similar).

If () is empty, then the proof is immediate. So, we consider that () is not

empty. Let  be a decision in (). By Lemma 2, there is a set  ∈  () such

that  ∼  and ∩(∪) = ∅. By Averaging and Transitivity,  ≺ ∪ ≺ .

6.4 Lemma 4

Let , , and  be three sets in P() such that  %  and  % . By defini-

tion of %, this implies the existence of sets  and 0 ∈ P∗() respectively disjoint
from ∪ and ∪ such that  Â 0, ∪ % ∪ and ∪0 % ∪0.
Thanks to Lemma 2, we can find a set 00 ∈ P∗() disjoint from  ∪  ∪ , with
 ∼ 00. By Balancedness, ∪00 % ∪00 and ∪00 % ∪00. By transitivity,
 ∪00 %  ∪00 and, hence,  % . This proves the transitivity of %. As for

completeness, let  and  be two sets in () such that  6% . By definition of

%, either:

(i) there is no set  disjoint from  ∪ such that  Â  or :

(ii) there are such sets but for none of them it is true that  ∪ %  ∪ .
Case (i) can be ruled out by Lemma 3. If case (ii) holds, then, since % is complete,

we must have  ∪ ≺  ∪ for all sets  disjoint from  ∪ such that  Â .

It follows that  %  and the relation % is therefore complete.

6.5 Lemma 5

For the "only if" part of the first part of the lemma, we know that, since % is complete,

 Â  implies  6% . Hence, either there is no  disjoint from ∪ with  ≺ 

or  ∪ ≺ ∪ for all sets  ≺ . The first of these two possibilities is ruled out

by Lemma 3. The second one implies, as a particular case, that ∪ Â  ∪. For
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the "if" part of the first part of the lemma, suppose  ∪  Â  ∪ . This implies
 %  (by definition of %). Suppose by contradiction that  Â  does not hold.

Since % is complete,  %  must hold so that, by definition of %, there exists a set

 such that  ∪ % ∪, and  ≺ . But this contradicts balancedness. Hence

 Â  must hold.

For the "only if part of the second part of the lemma, one knows that  ∼ 
implies the existence of sets  and 0 (both strictly dominated by  as per %) such
that (∪0)∩(∪) = ∅, ∪ % ∪ and ∪0 % ∪0. By balancedness,
∪ %  ∪ and  ∪ % ∪ and, so, ∪ ∼  ∪. The proof of the "if"
part of the second part of the lemma is obvious.

6.6 Lemma 6

Define the binary operation ◦ on P() as follows. If ∩ = ∅, then  ◦  =

 ∪ . Otherwise set  ◦  = 0 ∪ 0 for some 0 0 ∈ P() such that

0 ∩ 0 = ∅, 0 ∪  ∼  ∪  and 0 ∪  ∼  ∪  for some  ≺  such

that ( ∪ 0) ∩  = ∅ and ( ∪ 0) ∩ = ∅. The existence of such sets 0 0

does not pose any difficulty, thanks to Richness. Indeed, by Lemma 3 and Averaging,

there exists a set  ∈ P() such that  ≺  ∼ . By Averaging,  ≺  ∪ ≺ 

and, using Richness, there exists a set 0 such that 0 ∪  ∼  ∪ , 0 ∼  and

0 ∩ ( ∪) = ∅. Using an analogous reasoning, one can establish the existence of
a set 0 such that 0 ∪  ∼  ∪ , 0 ∼  and 0 ∩ ( ∪ ∪0) = ∅.

Hence ◦ is defined for every pair  ∈ P(), and the choice of the sets

0 and 0 can be made by any rule whatsoever if there are several such sets for a
given pair  and . Finally we note that ◦ is closed in the set P() thanks to

Averaging.

For any  ∈ P(), we now show that the structure formed by the set P(),

the binary relation % and the binary operation ◦ is what Krantz, Luce, Suppes,

and Tversky (1971) (p. 73, definition 1) call a closed extensive measurement structure.

That is to say, we establish that :

1. % is a weak order: see Lemma 4;

2. ◦ is weakly associative so that  ◦ ( ◦ ) ∼ ( ◦ ) ◦  for every

,  and  ∈ P(). The proof of this is obvious if  are mutually

disjoint. Consider now the case where ∩∩ 6= ∅. Let 0 0  0 ∈ P()
be mutually disjoint sets such that 0 ∪ ∼  ∪ , 0 ∪  ∼  ∪  ,

0∪ ∼  ∪ for some  ≺  with (∪0)∩ = (∪0)∩ =

( ∪  0) ∩ = ∅. They exist thanks to Richness (the argument is similar to
that employed in the definition of the binary operation ◦). We have  ◦ =
0 ∪ 0 and  ◦ ( ◦ ) = 0 ∪0 ∪ 0. We also have  ◦  = 0 ∪0

and ( ◦ ) ◦  = 0 ∪0 ∪ 0, so that  ◦ ( ◦ ) = ( ◦ ) ◦ .

The reasoning is similar when some but not all pairwise intersections between

 are not empty.
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3. monotonicity holds (that is:  %  iff  ◦  %  ◦  iff  ◦  %

 ◦ ). Since ◦ is obviously commutative, we just need to prove  %  iff

◦ % ◦. Choose0 and 0 in P() such that 0∩ = ∅ = 0∩,
0 ∪  ∼  ∪  and 0 ∪  ∼  ∪  for some  ≺  and disjoint from

. Thanks to Richness, this is always possible. Notice that  ∪  ≺  by

averaging. We have  %  iff ∪ % ∪ (by definition) iff0∪ % 0∪
(by construction) iff 0 ∪ ∪ % 0 ∪ ∪ (by Balancedness and because

 ∪ ≺  thanks to Averaging) iff  ◦  %  ◦ ;

4. The Archimedean axiom: if  Â , then, for any  ∈ P(), there exists

a positive integer  such that  ◦  %  ◦ , where  is defined

inductively as: 1 = , (+ 1) =  ◦ . It is immediate to see that

this condition is implied by the Archimedean axiom.

By Theorem 1 of Krantz, Luce, Suppes, and Tversky (1971) (p.74), for any  ∈
P∗(), there exists a mapping  : P()→ R such that, for all  ∈ P(),

 %  iff () ≥ () and ( ◦ ) = () + (). Furthermore, 

is unique up to a linear transformation.

We now show that ()  0 for all  ∈ P(). For any  ∈ P(), we can

find a set  ∈ P() such that∩ = ∅ (using Lemma 2). By definition of P∗(),
there is 0 ≺ . By Lemma 2, there is  ∼ 0 ≺  such that  ∩ ( ∪) = ∅.
By Averaging,  ≺ ∪ ≺  ∼ . By Averaging again, ∪ ≺ ∪∪ ≺ .

By definition of %,  ≺  ∪ . This implies ()  ( ∪ ) and, since 
and  are disjoint, ()  () + () or, equivalently, ()  0.

6.7 Lemma 7

For a fixed  ∈ P∗(), let L = { ∈  : {} ≺ } and U = { ∈  : {} Â }.
These sets are not empty (this is an almost immediate consequence of Lemma 3).

Define  as an arbitrary set such that  ≺ .

We first define  on P(L). Fix some  ∈ L. By Richness, there is  ∈ P(U)
such that  ∼ and  ∪  ∼ . Set () = − (). By construction, ()
does not depend on the choice of  . Indeed, suppose there are several such  , say 

and  0. Notice that  ∼ ∼  0,  ∪ ∼  and  0∪ ∼ . So,  ∪ ∼  0∪.
Hence  ∼  0 and  () =  ( 0).

Select 1 2 ∈ L, with 1 ∩ 2 = ∅. By Averaging, 1 ∪ 2 ∈ L. Using
Richness as above, we find two disjoint sets 1 2 ∈ P(U) such that 1 ∼ 2 ∼ ,

1∪1 ∼  and 2∪2 ∼ . By Averaging, 1∪2∪1∪2 ∼ , 1∪2 ∼

and 2 ∪ 2 ∼ . So,

(1 ∪ 2) = − (1 ∪ 2)
= − (1)−  (2)

= (1) + (2)

This proves that  is disjoint-additive over L.
We now define  on P(U). Take any  ∈ P(U). By Richness used in a similar

(but this time "downward") way as above, there is  ∈ P(L) such that  ∪  ∼ .
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Set () = −(). The mapping  on P(U). does not depend on the choice
of . Indeed, suppose there are several such , say 1 and 2 inP(L). We must
prove that (1) = (2). Suppose first 1 ∩ 2 = ∅. Let 1 2 ∈ P(U)
be such that 1 ∩  = ∅ = 2 ∩  , 1 ∼  ∼ 2, 1 ∪ 1 ∼  ∼ 2 ∪ 2.

By Richness, such sets exist. We also have  ∪ 1 ∼  ∼  ∪ 2. By Averaging,
1∪1∪∪2 ∼  ∼ 2∪2∪∪1. Hence, 1 ∼ 2,  (1) =  (2) and

(1) = (2). Suppose now 1 ∩2 6= ∅. By Richness used in the same way as
above, there is 3 ∈ P(L) such that 3∩(1∪2) = ∅ and ∪3 ∼ . Define 3 by

3 ∼ and 3 ∪3 ∼ . By richness, 3 can be chosen disjoint from both 1 and

2. Since 1∪1 ∼ ∪3 ∼  ∼ 3∪3 ∼ ∪1 and  , 1 and 3 are disjoint as
are 1 and 2, it follows from Averaging that 1∪1∪∪3 ∼  ∼ 3∪3∪∪1.
Hence, 1 ∼ 3 and, therefore,  (1) =  (3). A similar reasoning can be

performed for 2 and 3. We therefore have 
 (1) =  (2) =  (3) and, as

a result, (1) = (3) = (2).

The mapping  on P(U) is additive. Indeed, consider two sets 1 2 ∈ P(U),
with 1 ∩ 2 = ∅. Let us find two sets 1 2 ∈ P(L) such that 1 ∪ 1 ∼  ∼
2 ∪2. Since the choice of 1 and 2 is not important, we can choose them disjoint

(using Richness). By Averaging, 1 ∪ 2 ∪ 1 ∪ 2 ∼ . So, (1 ∪ 2) =

−(1 ∪ 2) = −(1)− (2) = (1) + (2).

We define then  on the whole set  (). Take any  ∈  (). If {} ∼ 

for all  ∈ , set () = 0. Otherwise, we can express  as  =  ∪  ∪  with

 =  ∩L,  =  ∩ U and  =  \ (L∪ U). By Averaging,  %  iff ∪ % .

Set () = () + (). Disjoint-additivity is inherited from  on P(U) and
 on P(L).

We must finally check whether  satisfies (ii). Suppose  Â . Then ( ∩L)∪
( ∩ U) Â . Using richness and averaging, one can find a superset 0 of  ∩ L
belonging to P(L) such that 0 ∪ ( ∩ U) ∼ . As shown above, −(0( ∩ U).
Since  ∩ L ⊂ 0 ⊆ L, and , for every  ∈ P(L), () = − ()  0 for some

set  ∈ P(U) we have that 0  ( ∩ L)  (0) by disjoint-additivity. Now,
by construction, () = ( ∩ L) + ( ∩ U) = ( ∩ L)− (0)  0.

Suppose now  ≺ . Then ( ∩ L) ∪ ( ∩ U) ≺ . Using Averaging and

Richness again, there is a superset  0 of  ∩ U belonging to P(U) such that  0 ∪
( ∩ L) ∼ . By definition of the mapping  , one has that ( 0( ∩ L)  0.

Moreover, since  ∩ U ⊂  0 ⊆ U and ()  0 for every  ∈ P(U), one has
( 0)   (∩U)  0 by disjoint-additivity. We have, by construction, () =
( ∩ L) + ( ∩ U) = ( ∩ U)− ( 0)  0.

Suppose finally  ∼ . Then ( ∩ L) ∪ ( ∩ U) ∼  so that ( ∩ L) =
−( ∩ U). We have, by construction, () = ( ∩ L) + ( ∩ U) =
( ∩ U)− ( ∩ U) = 0.

6.8 Lemma 8

Take any  ∈ P∗(). The result is immediate if  ∼ . We provide the

proof for the case where  Â  (the argument for the case where  Â  being

symmetric. We must establish that, for any two sets  and  ∈ P() one has

 %  ⇐⇒ () ≥ ( ). By definition of the ordering % this amounts to
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showing that establish that

() ≥ ( ) ⇐⇒  ∪  %  ∪  (14)

holds for every  and  such that  ∼  ∼  and every  ≺ . Consider indeed

such sets  and  with  ∼  ∼  . By Lemma 7, () = 0 = ( ). By

construction, ()  0. By richness and the fact that  and  ∈ P∗(), one can
find a set 1 such that 1 ∩ ( ∪  ) = ∅ and  ∪ 1 ∼ . By Averaging 1 ≺ .

By Lemma 7, ()+(1) = (∪1) = 0. Suppose ( ) ≥ (). Then,

( ∪ 1) = ( ) + (1) ≥ 0. By Lemma 7,  ∪ 1 %  ∼  ∪ 1. By
Balancedness, ∪ % ∪ for any  :  ≺ ∩(∪ ) = ∅. A similar argument
shows that ( )  ()⇒  ∪ Â ∪ for any  :  ≺  ∩ (∪ ) = ∅.

Conversely, suppose  ∪  %  ∪  for some  :  ≺  ∩ ( ∪  ) = ∅. By
Richness, there is 2 such that 2∩(∪ ) = ∅, ∪2 ∼ . By Averaging, 2 ≺ .

By Balancedness,  ∪2 %  ∪2 ∼ . By Lemma 7, () + (2) ≥ 0. Since
( ) + (2) = 0, we obtain () ≥ ( ). The same argument holds if we

suppose  ∪  Â  ∪  , and this establishes (14) and, therefore, the proof of the

lemma..

6.9 Lemma 9

Consider any two sets  and  such that  Â  and choose some sets   ∈ ()

and  ≺  in such a way that  ∩ ( ∪  ) = ∅. By Richness, this choice is
possible. Suppose without loss of generality that  ∪  -  ∪ . By iterative

application of Richness, there exist sets 1 2  such that, for every  6=  ∈  ,

∩(S∈N ) = ∅ = ∩ = ∩,  ∼  and () = (). Similarly, there

exist 1 2  such that, for every  6=  ∈  , ∩(S∈N ) = ∅ = ∩ = ∩,
 ∼  and ( ) = ().

For every positive integer , there is a largest integer () such that
S()
=1  ∪

 -
S
=1  ∪  because (

S
=1 ) = () (remember that 

 is addi-

tive) and is therefore unbounded when  increases. Notice that () ≥  because

() ≤ ( ). We thus have
S()
=1  ∪  -

S
=1  ∪  ≺

S()+1
=1  ∪ ,

for every positive integer . Since the sets
S()
=1 ,

S
=1  and

S()+1
=1  are all

equivalent to  (by Averaging) and thanks to Lemma 8, we have (
S()
=1 ) ≤

(
S
=1 )  (

S()+1
=1 ). The mapping  being additive, we may write

()() ≤ ( )  (() + 1)() and

()


() ≤ ( ) 

() + 1


() ∀ ∈ N0

so that ( ) = lim→∞
()


(). Following the same reasoning with any

 ∈ ∗() with  ≺  instead of  yields ( ) = lim→∞
()


(). So,

( )() = ( )(). Since this holds for any   ∼ , this proves that

() = () for some positive constant  and for all  such that () = 0.

Define () = (
() () ()) for all  ∈  ()}. Then { ∈ 3 :

1 = 0}∩( ()) is contained in the ray {(0  ) :  ≥ 0}. Since  ∈ ∗(),
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there is  such that  Â  or  ≺ , whence the set { ∈ ( ()) : 1 6= 0} is
not empty. We can therefore select vectors 0 1 ∈ ( ()) such that 

0
1 = 0

and 11 6= 0. Let 0 and 1 be such that (0) = 0 and (
1) = 1.

We show that these two vectors, together, span ( ()). Let  ∈ ( ()),

with () = . We proceed by cases, assuming 11  0 (the case 11  0 being

symmetric).

1. Suppose 1 = 0. Since { ∈ 3 : 1 = 0} ∩ ( ()) is contained in the
ray {(0  ) :  ≥ 0}, we have  = 0.

2. Suppose 1  0. By Richness, there is  :  ∪ 1 ∼ 0. Hence, ( ) =

−(1). By Richness, there is  :  ∪  ∼ 0  ∼ . Hence, () =

(1). Since  ∼  Â , we know that () = () and

() = () for some  ∈ . For the same reason, () = ()

and () = () for some  ∈ . So, ()() = ()()

and ()() = ()(). In other words, () and ()

are in the same ray and () = () for some  ∈ .

Since  ∪ 1 ∼ 0, we know that ( ∪ 1) is in the same ray as 0.

So, ( ∪ 1) = ( ) + 1 = 0 for some   0. Similarly,

since  ∪  ∼ 0, we know that ( ∪ ) is in the same ray as 0. So,
( ∪ ) = ( ) + () = 0 − 1 + () = 00 for
some 0  0. Whence () = 00 − 0 + 1. We can therefore write

() = (00 − 0 + 1). This proves that  is spanned by 0 and 1.

3. Suppose 1  0. By Richness, there is  : ∪ ∼ 0 and, hence, (∪)
is in the same ray as 0. So, ( ∪ ) = ( ) +  = 0 for some

  0. So,  = 0 − ( ). In other words,  is spanned by 0 and

( ). We have seen in case 2 that ( ) is spanned by 
0 and 1. So,

actually,  is spanned by 0 and 1.

So, there are two real numbers   such that, for any  ∈ P(),

() = (
0) + (

1) (15)

In particular, () = (0) + (1) = (1) because (0) = 0.

So,  = ()(1). From (15), we also derive () = (0) + (1)

which yields  = (()−(1))(0). From (15), we finally derive () =

(0) + (1). Substituting  and  in this equation yields:

() =
()− (()(1))(1)

(0)
(0) + ()(1)(1)

showing that  is a linear combination of  and  .

Hence, for every  ∈ ∗(), such that none of them are indifferent, there

are two real numbers   such that  =  +  . Consider now   and

 such that  6∼ . Using richness, we select  and 0 not indifferent to any of
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,  or  and such that  6∼ 0. We can express each of     as a linear

combination of  and 
0
. For instance,

 = 
 + 

0
 (16)

 = 
 + 

0
(17)

 = 
 + 

0
 (18)

From (17) and (18), we derive

 =
 − 
 − 

and

0 =
 − 

 − 


We substitute  and 
0
in (16) and we obtain that  is a linear combination of

 and  . This suffices to show the entire space { :  ∈ ∗()} can be spanned
by any two of its members    with  6∼ , since the selection of  in the

proof was arbitrary.

6.10 Lemma 10

We consider two cases.

(1) () = () for for some  ∈ R++ and all  ∈ P(). Then () =
−() for any . But this is not possible because, by Lemma 7, we know that,

for any  ≺ , we have ()  0 and ()  0. The cases  =  and

 =  are treated in the same way.

(2)  Â  Â  (the 5 other orderings are treated in the same way).

By Lemma 9,  and  span { :  ∈ P∗()}. For every  ∈ P∗(), let
() and () be the solution of  = () + () . Since  ≺ , we

must have ()  0 or ()  0 as assuming otherwise would imply, for any set 

such that  ≺  ≺ , that it is impossible to have ()  0. We must also have

()  0 because () must be positive. Hence, we must have ()  0  ().

Assume by contradiction that − =  + (1 − ) for some  ∈ R++ and

 ∈]0 1[. This implies that

 =


 − 1
 +



 − 1


with ( − 1)  0, a contradiction of the fact that 0  ().

6.11 Lemma 11

Consider two sets  and  ∈ P∗() such that  ≺ . Since  and  are

linearly independent, they span by Lemma 9, the set { :  ∈ P∗()}. For every
 ∈ P∗(), let () and () be the solution of  = () + () . If
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 ≺ , then we must have ()  0 or ()  0. Indeed, assuming otherwise

would imply, for any set  such that  ≺  ≺ , that it is impossible to have

()  0. Simultaneously, we must also have ()  0 because () must be

positive. So, we must have ()  0  (). Define the function  : P() −→ R
by () = −()() for any set . We have ()  0 for all  ∈ P∗() such
that  ≺ .

We now show that, for all 0 ∈ P∗() such that 0 ≺  ≺ , one has

(0)  () so that the function  numerically represent the ranking of deci-

sions that are worse than . Suppose to the contrary that (0) ≥ (). Since

() = ()() + ()() = 0, we have:

−()
()

= () =
()

()
≤ −(

0)
(0)

= (0)

Hence ()(0()(0) and 
0
() = ()(0()(0) ≤ 0, which

implies  ≺ 0. A contradiction. Notice that the converse is also true. Hence, for all
0 ∈ P∗() satisfying 0 ≺ , 0 - ⇐⇒ (0) ≤ ().

Similarly, it is easy to prove that, for all sets  and 0 ∈ P∗() such that 
0 Â , it is the case that ()  0 and 0 - ⇐⇒ (0) ≤ ().

Define now the set  = {() :  ∈ P∗()  ≺ }. This set has a greatest
lower bound ∗ ≥ 0 (because ()  0 for all set  ∈ P() such that  ≺ ). We

can actually show that ∗  0. Indeed, assume by contradiction that ∗ = 0. Since
 ∈ P∗(), there exists a set  ∈ P∗() such that  Â . Because ∗ = 0, there
is also a set  ∈ P∗() with ( ) sufficiently close to zero and such that   and
 are as the functions   and  of Lemma 10, which is not possible. Hence

we must conclude that ∗  0.
Furthermore ∗ ∈  because the set { ∈ P∗() :  ≺ } has no minimal

element. Let  be any of the element in the ray {(− + ∗) :   0}. To be
specific, define  by:  = − + ∗ . By construction,  belongs to the elements
spanned by ( ), as per Lemma 9.

We now prove that ()  0 for all  ∈ P∗(). Suppose to the contrary that
() ≤ 0 for some  ∈ P∗(). By definition of P∗(), there are decisions  and

 such that  ≺  ≺ . We know that () = −() + ∗() ≤ 0. Hence,
it follows that ∗() ≤ () and ∗ ≥ ()() because ()  0.

Since () = ()() + ()() = 0, we have ∗ ≥ −()(), which
is impossible because ∗ ∈ . Hence ()  0 for all  ∈ P∗().

Finally, we notice that the function  is additive for disjoint sets because it is the

linear combination of two functions that are themselves additives on disjoint sets.

6.12 Lemma 12

Pick any set  ∈ P∗() and, for every set  ∈ P∗(), let () and () be the
solution of  = () + (). These () and () exist because  and 

are linearly independent and, by 9, can span the whole set { :  ∈ P∗()}.
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By construction, () = 0 = ()()+()() or, equivalently,
()

()
=

−()
()

. Hence, in order to show that  is a numerical representation of % on

P∗(), it suffices to show that − represents % on P∗(). Notice first that −
is well-defined because −()() = ()() and ()  0 for all  ∈
P∗(). Pick any two decisions  and  ∈ P∗() such that  % . By construc-

tion, () ≥ 0. Hence, we must have ()() + ()() ≥ 0 and () ≥
−()()(). We also have ()() + ()() = 0 or, equivalently,

() = −()()(). Hence, −()()() ≥ −()()() or,
after simplification, −()() ≥ −()(). We have therefore proved that
 %  implies −()() ≥ −()(). Proving the converse is easily done
by just reverting the argument.

6.13 Lemma 13

Consider any set  ∈ P∗(). For any sets  and  ∈ P∗(),  ∼  implies, by

Lemma 5, that  ∪  ∼  ∪  for some  ≺  such that  ∩ ( ∪ ) = ∅.
Since, thanks to Lemma 16,  numerically represents the ordering % on P∗(),
one has:

( ∪)
( ∪) =

( ∪)
( ∪) 

or, using the disjoint-additivity of  and :

() + ()

() + ()
=

() + ()

() + ()
 (19)

Moreover, since the statement  ∼  is constructed from the statement that  ∼
 ∼  for some set , it follows from the fact that  numerically represents the

ordering % that:

()

()
=

()

()


or, equivalently:

() =
()()

()
 (20)

Substituting equality (20) into equality (19) yields:

()()() + ()

() + ()
=

() + ()

() + ()

or, after some simplifications and rearranging:

(()()− ()()][()− ()] = 0

If () − () 6= 0, then ()() = ()() and  ∼ , which is

incompatible with the definition of . We therefore conclude that ()− () = 0

and, hence, () = () and () = ().
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6.14 Lemma 14

Take any reference set  ∈ P∗() and consider any set  ∈ P∗(). By richness,
there are sets  and  ∈ P∗() such that  Â  Â . By Lemma 2, there is a set

0 such that 0 ∼  and 0∩ = ∅. By Averaging,  Â 0∪ Â . By Richness,

there are sets 1 2    such that, for  ∈ {1 2   },  ∼ ,  ∩ (
S−1
=1) =

∅ and  ∪  ∼ 0 ∪ . By Lemma 13, () = () and () = () for

 ∈ {1 2   }. Some of the sets 1 2    may intersect with , but the number

of such intersecting sets is necessarily finite (as these sets are pairwise disjoint). So,

if we drop them, we can still end up with an infinite collection of sets 1 2   

that are all disjoint from . We therefore assume hereafter that  ∩  = ∅ for

 ∈ {1 2   }. By Averaging,  Â 
S
=1 Â , for any  ∈ {1 2   }. By

Richness, for any  ∈ {1 2   }, there is a set  such that ∩ (∪) = ∅,  ∼ 

and  ∪ ∼ 
S
=1 . By Lemma 12, 

()() = ()() and, for all

 ∈ {1 2   }, one has ()() = ()() and

( ∪)
( ∪) =

(
S
=1)

(
S
=1)



Using the disjoint-additivity of  and , one can write, for any :

() + ()

() + ()
=

() +
P

=1 
()

() +
P

=1 ()
=

() + ()

() + ()


which can be equivalently written as:

(() + ()) (() + ()) = (() + ()) (() + ())

If one substitutes ()()() for () in this expression and performs sim-

ilar manipulation as in the proof of Lemma 13) one obtains:

[()()− ()()][(()− ())] = 0

One can not have [()() − ()()] = 0 because assuming this would

amount to assume that ()() = ()() and, since the function 

numerically represents the ordering %, that  ∼ , which is not the case. We

therefore conclude that () − () = 0 and, hence, () = (). For any

  0, we can therefore guarantee that ()   by choosing a suitably large .

6.15 Lemma 15

If the function  of Lemma 11 is such that ()  0 for all set  ∈ P(), we define
+ =  and the proof is done.

Otherwise, we first prove that () ≥ 0 for all  ∈ (). Assume by contra-

diction that ()  0 for some  ∈ () and choose (using richness) sets  and

 ∈ P∗() satisfying  ∩  = ∅, ( )  0 and ( ) sufficiently small (thanks
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to Lemma 14). Consider the set  =  ∪  and its numerical representation by the

function :

( ) + ()

( ) + ()


The numerator of this expression is negative because  ∈ () and ()  0 if

( )  0 by definition of the function  provided in Lemma 7. For a sufficiently

small ( ) one can also make the denominator of the expression negative. Hence

()()  0 and, since the function  numerically represents the ordering

% on P∗(), one concludes that  Â  . Yet this contradicts the Averaging axiom

according to which  Â  =  ∪  (because  ∈ ()).

Using an analogous argument, we can prove that () ≥ 0 for all set  ∈().

We now claim that it is impossible to have () = 0 = ( ) for some  ∈ ()

and some  ∈(). Assume indeed that () = 0 = ( ) for some  ∈ () and

 ∈(). Remember from Lemma 1 that ∩ = ∅. By Averaging ∪ ∈ P∗()
and, as a result, one has (∪ )  0 by Lemma 9. Yet, using the disjoint-additivity
of , we find that ( ∪  ) = 0 although  ∪  ∈ P∗(). This contradiction

shows the impossibility of having () = 0 = ( ) for some  ∈ () and some

 ∈().

Suppose now that () = 0 for some  ∈ (). This implies ( )  0 for

all  ∈ P∗() ∪ (). We know from Lemma 11 that  = − + ∗ for

some sets  and  ∈ P∗(). If we choose a number +  ∗ and we define
+ = − + +

 , we are sure that ()  0. If, in addition, we choose the

number + to be as close as necessary to ∗, we can guarantee that ( )  0 for

all  ∈ P∗(). The mapping + is clearly disjoint-additive and can be spanned by

two (linearly independent) element of the family { :  ∈ P∗()}. We still have
to prove that +( )  0 for all  ∈ (). If  6=  and ( )  0, then the

proof is obvious because we have chosen + to be very close to ∗. If  6=  and

( ) = 0, one must remember that ( ) = −( ) + ∗( ), where ( )  0
and ( )  0. Hence if we choose +  ∗, then +( ) = −( ) + +

( )

is necessarily larger that ( ) and, hence, positive.

The case where () = 0 for some  ∈() can be handled in a similar fashion

6.16 Lemma 16

For every set  ∈ P∗(), let () and () be the solution of the equation  =

()+()+. As in the proof of Lemma 12, the existence of these real numbers

() and () is secured by the fact that  and + are linearly independent and,

thanks to Lemma 9, can span the whole set { :  ∈ P∗()}. By construction,
() = 0 = ()() + ()+() or, equivalently,

()

+()
=
−()
()

. As in

the proof of Lemma 12 again, the proof that + is a numerical representation of

% on P∗() amounts to showing that − represents % on P∗(). Notice first
that − is well-defined because −()() = ()+() and +()  0

for all  ∈ P∗(). Consider any two sets  and  ∈ P∗() with  % . From

Lemma 7, () ≥ 0. Hence one has ()()+()+() ≥ 0 and () ≥
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−()+()(). One also has ()() + ()+() = 0 or, equivalently,

() = −()+()(). Hence −()+()() ≥ −()+()()
or, after simplification, −()() ≥ −()(). We have therefore proved that
 %  implies −()() ≥ −()(). The converse implication is obtained
by reversing the argument.

6.17 Theorem 1

If the ordering % is trivial, then the numerical representation provided by (1) trivially

holds with  constant. We therefore assume in the rest of the proof that % is not

trivial.

Take any reference set  in P+(). Just as in equation (4) preceding Lemma 12,
define the function + : P()→ R by + () =

()

+()
for every  ∈ P(). Since

 and + are both set disjoint-additive, one can write:

+ () =

P
∈ ({})P
∈ +({})

=

P
∈ + ({})+({})P

∈ +({})


Define the two functions  :  → R and  :  → R++ by () = ({}) and
() = +({}). One has:

+ () =

P
∈ ()()P

∈ ()


We already know from Lemma 16) that  %  ⇐⇒ + () ≥ + () for all decisions

 and  ∈ P∗(). We only need to prove that the equivalence must hold also for
decisions  and  ∈ P() that can be maximal or minimal in that set. We consider
several cases.

1.  ∈ () and  ∈ P∗(). By Lemma 2, there is 0 ∈ P() such that
0 ∩ = ∅ and 0 ∼ . By Lemma 16, ()+() = (0)+(

0).
By Averaging,  Â  ∪ 0 Â 0 and, hence,  ∪ 0 ∈ P∗(). We therefore
have:

( ∪0)
+( ∪0)

=
() + (0)
+() + +(

0)


(0)
+(

0)
=

()

+()


Since + is always strictly positive, this yields

()

+()


()

+()


a statement that is in line with the fact that  Â .

2.  ∈ () and  ∈ P∗(). Similar to the previous case.
3.  ∈ (). Choose a decision ∈ P∗() in such a way that ∩(∪) =
∅. By Averaging,  ∪  Â  and, by transitivity,  ∪  Â . Using the
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result of the proof of case 2, ( ∪)+( ∪)  ()+() and

() + ()

() + ()


()

()
 (21)

By Lemma 14, we can choose  in a given equivalence class of %, with +()
as close to zero as required. Since all sets in a given equivalence class have the

same ratio , we can actually choose  in such a way that both +()

and () are arbitrarily close to zero. Assume now by contradiction that

+ ()  + () ⇐⇒ ()+()  ()+().Then ,if we choose

the set  as described above, we clearly have

()

+()


() + ()

+() + +()


which contradicts (21).

4.  ∈(). Similar to the previous case.

5.  ∈() and  ∈ (). We know from Lemma 1 that  ∩ = ∅. Then
 Â ∪ Â  by averaging and, hence, ∪ ∈ P∗(). From  Â ∪
and case 1, we derive + ()  + ( ∪). From  ∪ Â  and case 2, we

derive + (∪)  + () and the required conclusion ()  () follows

from transitivity.

6.18 Proposition 1

Suppose that ,  and  are three finite and non-empty subsets of R such that

 Â  Â  or  ≺  ≺ . Richness implies the existence of a set  disjoint from

 and  such that  ∼  and ∪ ∼ . For any set  ∈ P(), define () by

() =

P
∈ ()()P

∈ ()


Then:

() =

P
∈ ()()P

∈ ()
= () (22)

and:

( ∪) =
P

∈ ()() +
P

∈ ()()P
∈ () +

P
∈ ()

= ()

This last equation can be rewritten asX
∈

()() +
X
∈

()() = ()

ÃX
∈

() +
X
∈

()

!
 (23)

From (22), we obtain
P

∈ ()() = ()
P

∈ (). By definition of  ,

we also have
P

∈ ()() = ()
P

∈ (). If we replace in (23), we find:

()
X
∈

() + ()
X
∈

() = ()

ÃX
∈

() +
X
∈

()

!
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or:

(()− ())

ÃX
∈

()

!
= (()− ())

ÃX
∈

()

!
which amounts to:

()− ()

()− ()
=

P
∈ ()P
∈ ()

 (24)

Since this holds for any sets ,  and , it holds in particular for  = {}. Thanks
to the continuity of , we can choose  so that () = () is between () and

() and is as close as we want to () or (). We can therefore make the ratio

in the left-hand side of (24) as close to 0 or ∞ as we wish. Hence, for given  and

, Richness implies the existence of a set  with
P

∈ () arbitrary close to 0 or

to ∞.
Suppose  is non-decreasing. If we want to make

P
∈ () arbitrary close to 0,

then max∈ () must be arbitrary close to 0. This implies that lim→inf () =

0 and, hence, max∈  must be arbitrary close to inf.

• If  is non-decreasing, then ()  () (if we have chosen  Â ). This

contradicts (22) and proves that  continuous and non-decreasing is not com-

patible with  non-decreasing.

• If  is non-increasing, then ()  () (if we have chosen  ≺ ). This

contradicts (22) and proves that  continuous and non-increasing is not com-

patible with  non-decreasing.

Suppose  is non-increasing. If we want to make
P

∈ () arbitrary close to∞,
then min∈ () must be arbitrary large. This implies that lim→sup () = ∞
and, therefore, min∈  must be arbitrary close to sup.

• If  is non-decreasing, then ()  () (if we have chosen  ≺ ). This

contradicts (22) and proves that  continuous and non-decreasing is not com-

patible with  non-increasing.

• If  is non-increasing, then ()  () (if we have chosen  Â ). This

contradicts (22) and proves that  continuous and non-increasing is not com-

patible with  non-increasing.

6.19 Proposition 2

Assume that % is a continuous UEU ordering so that the  function of expression (1)

is a constant function. Hence, for any two sets  and 0 ∈ P(), one has:

 % 0 ⇐⇒
X
∈

()

#
≥
X
0∈0

()

#0

For some continuous function . For any set , let () =
X
∈

()

#
. Since % is

not trivial there are consequences  and  ∈  such that ()  (). Let  be a set
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such that  ∼ {}. The set  can be a singleton ( = {} with () = ()) or a

set with several elements. If  is a singleton, then (∪) = (()+())2.

If  is not a singleton, then ( ∪ )  (() + ())2. Hence, for all sets

 ∼ , ( ∪ ) ≥ (() + ())2. The continuity of  implies that, for

any real number  between () and (), there exists some  = {} ∈ P()
such that () = . If  is chosen to be strictly smaller than (() + ())2, then

( ∪ )  () and  ∪  Â , for any  with  ∼ . Hence, Richness does not

hold.
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