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Abstract

In this paper we introduce a new model called Fractionally Integrated Separable Spatial Autoregressive pro-

cesses with Seasonality and denoted Seasonal FISSAR for two-dimensional spatial data. We focus on the

class of separable spatial models whose correlation structure can be expressed as a product of correlations.

This new modelling allows taking into account the seasonality patterns observed in spatial data. We investi-

gate the properties of this new model providing stationary conditions, some explicit expressions form of the

autocovariance function and the spectral density function. We establish the asymptotic behaviour of the spec-

tral density function near the seasonal frequencies and perform some simulations to illustrate the behaviour

of the model.

Keywords: seasonality; spatial short memory; seasonal long memory; two-dimensional data; separable

process; spatial stationary process; spatial autocovariance.

JEL Classification: C02; C21; C51; C52.

1 Introduction

In recent years many studies have modelled the spatial process. In 1973, Cliff and Ord [9] give an gen-

eral presentation on spatial econometrics models and introduce the STAR (Space-Time AutoRegressive)

and GSTAR (Generalized Space-Time AutoRegressive) models. The literature on spatial models is rela-

tively abundant, we can also cite the Simultaneous AutoRegression model, SAR, (Whittle, 1954 [24] ), the

Conditional AutoRegression model, CAR (Bartlett, 1971 [2]; Besag, 1974 [6]), the moving average model

(Haining, 1978 [12]) or the unilateral models (Basu and Keinsel, 1993 [3]) among others. Spatial models

are currently investigated in many research fields like meteorology (Lim et al., 2002 [17]), oceanography

(Illig, 2006 [13]), agronomy (Whittle, 1986 [25]; Lambert et al., 2003 [16]), geology (Cressie, 1993 [10]),

epidemiology (Marshal, 1991 [19]), image processing (Jain, 1981 [14]), econometrics (Anselin, 1988 [1])

and many others in which the data of interest are collected across space. This large domain of applications is
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due to the richness of the modelling which associates a representation in time and in space.

Spatial time series modellings concern times series collected with geographical position, in order to use the

spatial information in the modelling. Some particularities are included in the modelling: (i) two close data

tend to have similar values; (ii) it can exist repetition of values by periodicity (for example, a temperature

observed on a site can be observed in the same site after a given period). It is important to explain this repe-

tition and to model it we associate with each direction i and j seasonal parameters s1 et s2 respectively.

The studies of spatial data have shown presence of long-range correlation structures (Kim et al., 2002). To

deal with this specific feature Boissy et al. (2005) [8] had extended the long memory concept from times

series to the spatial context and introduced the class of fractional spatial autoregressive model. At the same

time Shitan (2008) [23] studies the model called Fractionally Integrated Separable Spatial Autoregressive

(FISSAR) model to approximate the dynamics of spatial data when the autocorrelation function decays with

a long memory effect.

In another hand some authors have also observed seasonals in some spatial observations: Benth et al.

(2007) [5] proposed a spatial-temporal model for daily average temperature data. This model includes trend,

seasonality and mean reversion. Portmann et al. (2009) [22] studied the spatial and seasonal patterns for

climate change, temperatures and precipitations. Nobre et al. (2011) [20] introduce an spatially varying

Autoregressive Processes for satellite data on sea surface temperature for the North Pacific to illustrate how

the model can be used to separate trends, cycles, and short-term variability for high-frequency environmental

data; a multivariate GSTAR has been developed by Pejman et al. (2009) [21] for the study of the water quality.

Thus, it appears natural to incorporate long memory seasonal patterns into the FISSAR model of Shitan

(2008) [23] as soon as we work with data collected during several periods or cycles, allowing different sea-

sonal patterns on the spatial locations. In that context common seasonal factors will receive different weights

for these different spatial locations (Lopes et al. (2008) [18]).

In this paper, we focus our attention on the class of separable spatial models whose correlation structure

can be expressed as a product of correlations taking into account the seasonality patterns observed in spatial

data. Therefore, we consider the Seasonal Fractionally Integrated Separable Spatial Autoregressive model,

denoted in the following by Seasonal FISSAR extending at the same time the works of Shitan (2008) [23]

and Boissy et al. (2005) [8] . We investigate the properties of this new modelling, providing the stationary

conditions, analytic expressions for the autocovariance function and the spectral density function. We also

establish the asymptotic mean of the spectral density function. This new modelling will be able to take into

account periodic and cyclical behaviours presented in a lot of applications, including the modelling of tem-

peratures, agricultural data, epidemiology when the data are collected during different seasons at different

locations, and also financial data to take into account the specific systemic risk observed on the global market

(Benirschka and Binkley (1994) [4], de Graaff et al. (2001) [11], Jaworskia and Piterab (2014) [15]).

The paper is organized as follows. The next Section introduces the new class of Seasonal Fractionally Inte-

grated Separable Spatial AutoRegressive model. In Section 3 we investigate some properties of the model,
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existence, invertibility, causality and stationary conditions. We compute the autocovariance function and

provide an analytic expression for the spectral density and its asymptotic behaviour near the seasonal fre-

quencies. In section 4 we provide some illustrations of this new modelling.

2 A new model: The Seasonal FISSAR

We introduce the Seasonal Fractionally Integrated Separable Autoregressive model and establish conditions

for its existence and invertibility.

Let {Xij}i,j∈Z+
be a sequence of spatial observations in two dimensional regular lattices, they are governed

by a Seasonal FISSAR model if:

(1− φ10B1 − φ01B2 + φ10φ01B1B2) (1− ψ10B
s1
1 − ψ01B

s2
2 + ψ10ψ01B

s1
1 B

s2
2 )

× (1−B1)
d1 (1−Bs1

1 )D1 (1−B2)
d2 (1−Bs2

2 )D2 Xij = εij (1)

where the integers s1 and s2 are respectively the seasonal periods in the ith and jth directions, φ10, φ01,ψ10,

ψ01 are real numbers and {εij}i,j∈Z+
is a spatial white noise process, mean zero and variance σ2ε . The back-

ward shift operators B1 and B2 are such that B1Xij = Xi−1,j and B2Xij = Xi,j−1. The long memory

parameters are denoted d1 and D1 for the direction i and for the direction j they are denoted d2 and D2.

We specify now the different components of this model in order to understand how we can investigate it, and

provide a useful methodology for estimation. First, we provide a part which characterizes the spatial short

memory behaviour, second we introduce a new modelling for spatial long memory behaviour with seasonals,

extending the work of Shitan (2008) [23].

The spatial short memory behaviour of the variables {Xij}i,j∈Z+
is explained through the process {Wij}i,j∈Z+

:

(1− φ10B1) (1− φ01B2) (1− ψ10B
s1
1 ) (1− ψ01B

s2
2 )Xij = Wij . (2)

This representation extends the work of Shitan (2008) [23] introducing seasonals in the short memory be-

haviour with the filter (1− ψ10B
s1
1 ) (1− ψ01B

s2
2 ). The process {Wij}i,j∈Z+

has a spatial seasonal long

memory behaviour given by:

(1−B1)
d1 (1−Bs1

1 )D1 (1−B2)
d2 (1−Bs2

2 )D2 Wij = εij . (3)

Thus, the Seasonal FISSAR model (1) can be rewritten formally by:

Φ (B1, B2) Ψ (Bs1
1 , B

s2
2 )Xij = Wij , (4)

where

Φ (B1, B2) = (1− φ10B1) (1− φ01B2) (5)

and

Ψ (Bs1
1 , B

s2
2 ) = (1− ψ10B

s1
1 ) (1− ψ01B

s2
2 ) . (6)
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This new modelling is characterized by four operators: two characterizing the short memory behaviour,

(1−Bs1
1 )D1 and (1−Bs2

2 )D2 and two characterizing the long memory behaviour,

(1− ψ10B
s1
1 ) and (1− ψ01B

s2
2 ). They take into account the existence of seasonals in two directions.

We specify now the concept of long memory for stationary processes in two directions. Recall that a sta-

tionary process {Xt}t∈Z with spectral density fX(.), for which it exist a real number b ∈ (0, 1), a constant

Cf > 0 and a frequency G ∈ [0, π[ such that fx(ω) ∼ Cf |ω −G|−b, when ω −→ G, then {Xt}t∈Z has a

long memory behaviour (Bisognin and Lopes, 2009 [7]). This definition can be extended in dimension two

in the following way:

Definition 2.1 Let {Xij}i,j∈Z+
be a stationary process with spectral density fX(., .). Suppose there exist

real numbers a, b ∈ (0, 1), a constant Cf > 0 and frequencies λ1, λ2 ∈ [0, π[ such that fx(ω1, ω2) ∼
Cf |ω1 − λ1|−a |ω2 − λ2|−b, when (ω1, ω2) −→ (λ1, λ2), then {Xij}i,j∈Z+

has a long memory behaviour.

We investigate now the following properties: (i) existence, (ii) invertibility, (iii) causality and (iv) station-

arity for the model (1). We first provide the causal moving average representation of the seasonal FISSAR

process (1).

Proposition 2.1 Let be the process {Xij}i,j∈Z+
defined in equation (2). It has the following representation:

Xij =
+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

φk10φ
l
01ψ

m
10ψ

n
01Wi−k−ms1,j−l−ns2 , (7)

where

Wij =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

φk(d1)φl(d2)φm(D1)φn(D2)εi−k−ms1,j−l−ns2 , (8)

with

φk(d1) =
Γ(k + d1)

Γ(k + 1)Γ(d1)
; φl(d2) =

Γ(l + d2)

Γ(t+ 1)Γ(d2)
(9)

and

φm(D1) =
Γ(m+D1)

Γ(m+ 1)Γ(D1)
; φn(D2) =

Γ(n+D2)

Γ(n+ 1)Γ(D2)
. (10)

Γ(.) is the Gamma function defined by Γ(t) =

∫ ∞
0

xt−1 e−x dx and {εij}i,j∈Z+
is a two-dimensional white

noise process. Equations (7)-(8) have an unique solution if the polynomials Φ (z1, z2) and Ψ (z1, z2) are

such that all their roots lie outside the unit polydisk, i.e

i) | φ10 |< 1, | φ01 |< 1, | ψ10 |< 1 and | ψ01 |< 1

ii)
(
1 + φ210 − φ201 − φ210φ201

)
− 4φ10 (1− φ10φ01) > 0

iii)
(
1 + ψ2

10 − ψ2
01 − ψ2

10ψ
2
01

)
− 4ψ10 (1− ψ10ψ01) > 0

Proof : The sketch of the proof is provided in Appendix. It derives from Basu and Reisel (1993) [3],

Proposition 1. �
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3 Some properties of the seasonal FISSAR model

We provide now the spectral density function of the process {Wij} and {Xij} and we establish the

asymptotic mean of this function. We use this result to give the stationary conditions for the processes.

Proposition 3.1 Let {Wij} be the process defined by (3) and fW (λ1, λ2) its spectral density. When |di +

Di| < 0.5 and |di| < 0.5 (i = 1, 2), its spectral density is equal to:

fW (λ1, λ2) =
σ2

4π2

[
2 sin

(
λ1
2

)]−2d1 [
2 sin

(
s1λ1

2

)]−2D1
[
2 sin

(
λ2
2

)]−2d2 [
2 sin

(
s2λ2

2

)]−2D2

(11)

with λ1 and λ2 ∈]0, π].

Proof : The proof of this Proposition is provided in the Appendix. �

Proposition 3.2 Let {Xij}i,j∈Z+
be the Seasonal FISSAR process defined in (4), the spectral density function

fX(λ1, λ2) of this process is equal to

fX(λ1, λ2) =
∣∣∣Φ(e−iλ1 , e−iλ2

)∣∣∣−2 ∣∣∣Ψ(e−isλ1 , e−isλ2
)∣∣∣−2 fW (λ1, λ2) (12)

where fW (λ1, λ2) is the spectral density function of the process {Wij}i,j∈Z+
given in (11) and Φ(., .) and

Ψ(., .) are respectively defined in (5) and (6) with λ1 and λ2 ∈]0, π].

Proof : This result derived from the definition of the spectral density function. �

Corollary 3.1 The spectral density of the process {Xij}i,j∈Z+ defined in (2) can be rewritten as

fX(λ1, λ2) =
(
1− 2φ10 cos(λ1) + φ210

)−1 (
1− 2ψ10 cos(s1λ1) + ψ2

10

)−1 (13)(
1− 2φ01 cos(λ2) + φ201

)−1 (
1− 2ψ01 cos(s2λ2) + ψ2

01

)−1
fW (λ1, λ2)

where fW (λ1, λ2) is given in (11).

We analyse now the behaviour of the spectral density for the processes {Wij}i,j∈Z+
and {Xij}i,j∈Z+

near

the seasonal frequencies.

Proposition 3.3 The asymptotic expression of the spectral density of the process {Wij}i,j∈Z+
near the sea-

sonal frequencies is such that

(i) For λ0 = 0,

fW (λ1, λ2) ∼ C1 |λ1 − λ0|−2(d1+D1) |λ2 − λ0|−2(d2+D2) , when (λ1, λ2) −→ (0, 0), (14)

with

C1 =
σ2ε
4π2

s−2D1
1 s−2D2

2 (15)

(ii) For λi = 2πi
s1

, λj = 2πj
s2

, i = 1, . . . , [s1/2] and j = 1, . . . , [s2/2], where [x] means the integer part of

x,

fW (λ1, λ2) ∼ C2 |λ1 − λi|−2D1 |λ2 − λj |−2D2 , when (λ1, λ2) −→ (λi, λj) (16)

with

C2 =
σ2ε
4π2

s−2D1
1 s−2D2

2

[
2 sin

(
λi
2

)]−2d1 [
2 sin

(
λj
2

)]−2d2
(17)
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Proof : The proof of this Proposition is provided in the Appendix. �

Proposition 3.4 The asymptotic expression of the spectral density of the process {Xij}i,j∈Z+
near the sea-

sonal frequencies is such that

(i) For λ0 = 0,

fX(λ1, λ2) ∼ C3 |λ1 − λ0|−2(d1+D1) |λ2 − λ0|−2(d2+D2) , when (λ1, λ2) −→ (0, 0) (18)

with

C3 =
σ2ε
4π2

s−2D1
1 s−2D2

2

∣∣∣Φ(e−iλ0 , e−iλ0
)∣∣∣−2 ∣∣∣Ψ(e−iλ0 , e−iλ0

)∣∣∣−2 (19)

=
σ2ε
4π2

s−2D1
1 s−2D2

2 (1− φ10)−2 (1− ψ10)
−2 (1− φ01)−2 (1− ψ10)

−2 .

(ii) For λi = 2πi
s1

, λj = 2πj
s2

, i = 1, . . . , [s1/2] and j = 1, . . . , [s2/2], where [x] means the integer part of

x,

fX(λ1, λ2) ∼ C4 |λ1 − λi|−2D1 |λ2 − λj |−2D2 , when (λ1, λ2) −→ (λi, λj) (20)

with

C4 =
σ2ε
4π2

s−2D1
1 s−2D2

2

[
2 sin

(
λi
2

)]−2d1 [
2 sin

(
λj
2

)]−2d2
(21)∣∣∣Φ(e−iλi , e−iλj

)∣∣∣−2 ∣∣∣Ψ(e−is1λ0 , e−is2λ0
)∣∣∣−2 ,

the polynomials Φ(., .) and Ψ(., .) are introduced in (5) and (6).

Proof : The proof is given in the Appendix. �

We investigate now the stationary conditions for the model (1) as well as its long memory behaviour. We

give also two expressions for the autocovariance function of the Seasonal FISSAR process.

Proposition 3.5 The two-dimensional process {Wij}i,j∈Z+
defined in (3)

(i) is stationary when di +Di < 0.5, Di < 0.5, i = 1, 2.

(ii) has a long memory behaviour when 0 < di +Di < 0.5, 0 < Di < 0.5, i = 1, 2.

Proof : The proof is given in the Appendix. �

Proposition 3.6 Let {Xij}i,j∈Z+
be a Seasonal FISSAR process defined in (1). The process {Xij}i,j∈Z+

(i) is stationary when di +Di < 0.5, Di < 0.5, i = 1, 2 and Φ (z1, z2) Ψ (zs1, z
s
2) 6= 0

for |z1| < 1 and |z2| < 1.

(ii) has long memory property when 0 < di +Di < 0.5, 0 < Di < 0.5, i = 1, 2

and Φ (z1, z2) Ψ (zs11 , z
s2
2 ) 6= 0, for |z1| ≤ 1 and |z2| ≤ 1.
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Proof : The proof is given in the Appendix. �

To investigate the autocovariance function of the process defined in (2), we show that its autocovariance func-

tion can be written as a product of the autocovariance function for two processes {Zij}i,j∈Z+ and {Yij}i,j∈Z+

defined in the following way.

Let respectively
{
ε∗ij

}
,
{
ε′ij

}
be two orthogonal two-dimensional white noise processes with mean zero and

respectively variance σ2ε∗ and σ2ε′ , we define the processes {Zij}i,j∈Z+ and {Yij}i,j∈Z+ :

(1−Bs1
1 )D1 (1−Bs2

2 )D2 Zij = ε∗ij (22)

(1−B1)
d1 (1−B2)

d2 Yij = ε′ij (23)

Shitan (2008) prove that the autocovariance function of the process {Yij}i,j∈Z+ is such that:

γY (h1, h2) = σ2ε′
(−1)h1+h2 Γ(1− 2d1)Γ(1− 2d2)

Γ(h1 − d1 + 1)Γ(1− h1 − d1)Γ(h2 − d2 + 1)Γ(1− h2 − d2)
(24)

We can derive the expression of the process {Zij}i,j∈Z+ from (24) and obtain

γZ(s1h1 + ξ1, s2h2 + ξ2) = σ2ε∗
(−1)h1+h2 Γ(1− 2D1)Γ(1− 2D2)

Γ(h1 −D1 + 1)Γ(1− h1 −D1)Γ(h2 −D2 + 1)Γ(1− h2 −D2)

if (ξ1, ξ2) = (0, 0) (25)

γZ(s1h1 + ξ1, s2h2 + ξ2) = γZ(s1h1 + ξ1, s2h2 + ξ2) = 0 if (ξ1, ξ2) ∈ A1 ×A2 (26)

where A1 = {1, . . . , s1 − 1} and A2 = {1, . . . , s2 − 1}.
We can now give the autocovariance function of {Xij}i,j∈Z+ introduced in (2):

Proposition 3.7 Let `1, `2 ∈ Z+ , (ξ1, ξ2) ∈ A1×A2 whereA1 = {1, . . . , s1−1} andA2 = {1, . . . , s2−1}.
The autocovariance function of the process {Xij}i,j∈Z+ is given by:

γX(h1, h2) =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

+∞∑
p=0

+∞∑
q=0

+∞∑
r=0

+∞∑
t=0

φk+p10 φl+q01 ψ
m+r
10 ψn+t01

× γW (h1 + k + s1(m− r)− p, h2 + l + s2(n− t)− q) (27)

where

γW (h1, h2) = σ2ε

+∞∑
ν1=0

+∞∑
ν2=0

γZ(s1ν1, s2ν2)γY (h1 − s1ν1, h2 − s2ν2), if (h1, h2) = (s1`1, s2`2)(28)

γW (h1, h2) = 0, if (h1, h2) = (s1`1 + ξ1, s2`2 + ξ2) (29)

with γZ(., .) and γY (., .) given respectively in (25)-(26) and (24).

Proof : The proof is given in the Appendix. �

Corollary 3.2 The variance of the Seasonal FISSAR process has the following expression

γX(0, 0) =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

+∞∑
p=0

+∞∑
q=0

+∞∑
r=0

+∞∑
t=0

φk+p10 φl+q01 ψ
m+r
10 ψn+t01

× γW (k + s1(m− r)− p, l + s2(n− t)− q) (30)

where γW (., .) is given by (28)-(29) where h1 = h2 = 0.

7
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For practical purpose, we propose a general formula of the autocovariance function of the stationary process

{Xij}i,j∈Z+ which does not depend on the two-dimensional seasonal fractionally integrated white noise

({Wij}i,j∈Z+). For that, we introduce two new processes {Uij}i,j∈Z+ and {Vij}i,j∈Z+ .

Let respectively {ε̃ij},
{˜̃εij} be two 2-dimensional white noise processes with mean zero and respectively

variances σ2ε̃ij and σ2˜̃εij . We introduce respectively the processes {Uij}i,j∈Z+ and {Vij}i,j∈Z+ :

Ψ (Bs1
1 , B

s2
2 ) (1−Bs1

1 )D1 (1−Bs2
2 )D2 Uij = ε̃ij (31)

Φ (B1, B2) (1−B1)
d1 (1−B2)

d2 Vij = ˜̃εij (32)

where Ψ (Bs
1, B

s
2) and Φ (B1, B2) are respectively defined in (5) and (6).

Note that the process {Uij}i,j∈Z+ generalizes the process {Zij}i,j∈Z+ introduced in (22) through the operator

Ψ (Bs
1, B

s
2) and the process {Vij}i,j∈Z+ generalizes the process {Yij}i,j∈Z+ introduced in (23) through the

operator Φ (B1, B2).

Proposition 3.8 The autocovariance function of the stationary process {Uij}i,j∈Z+ in spatial lags (h1, h2)

is equal to:

γU (h1, h2) = σ2ε̃

+∞∑
ν1=0

+∞∑
ν2=0

γ
Ũ

(s1ν1, s2ν2)γZ(h1 − s1ν1, h2 − s2ν2), if (h1, h2) = (s1`1, s2`2) (33)

γU (h1, h2) = 0, if (h1, h2) = (s1`1 + ξ1, s2`2 + ξ2) (34)

where Ũ is equal to:

Ψ (Bs1
1 , B

s2
2 ) Ũij = ε̃∗ij ,

γ
Ũ

(s1ν1, s2ν2) = σ2
ε̃∗

+∞∑
m=0

+∞∑
n=0

ϕ1
ν1+mϕ

1
mϕ

2
ν2+nϕ

2
n,

and γZ(., .) is introduced in (25)-(26). The coefficients ϕ1
k and ϕ2

l are linked by the relationship

Ψ−1 (zs1, z
s
2) =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l z
s1k
1 zs2l2

.

Proof : The proof is given in the Appendix. �

Proposition 3.9 The autocovariance function of the stationary processes {Vij}i,j∈Z+ in spatial lags (h1, h2)

is equal to:

γV (h1, h2) = σ2˜̃ε
+∞∑
k=0

+∞∑
l=0

γ
Ṽ

(k, l)γY (h1 − k, h2 − l) (35)

where Ṽ is given by:

Φ (B1, B2) Ṽij = ε̃′ij ,

γ
Ṽ

(k, l) = σ2
ε̃′

+∞∑
m=0

+∞∑
n=0

ϕ1
k+mϕ

1
mϕ

2
l+nϕ

2
n,

8
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γY (., .) being defined by (24) and the coefficients ϕ1
k and ϕ2

l are linked by the relationship

Φ−1 (z1, z2) =
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l z
k
1z

l
2

Proof : The proof of this Proposition is given in the Appendix. �

Now we provide the autocovariance function of the Seasonal FISSAR process defined in (4).

Proposition 3.10 Let `1, `2 ∈ Z+ , ξ ∈ A where A = {1, . . . , s− 1}.
The Seasonal FISSAR stationary process {Xij}i,j∈Z+ has autocovariance function at spatial lags (h1, h2)

given by

γX(h1, h2) = σ2ε

+∞∑
ν1=0

+∞∑
ν2=0

γU (s1ν1, s2ν2)γV (h1 − s1ν1, h2 − s2ν2), if (h1, h2) = (s1`1, s2`2) (36)

γX(h1, h2) = 0, if (h1, h2) = (s1`1 + ξ, s2`2 + ξ) (37)

where the autocovariance functions γU (., .) and γV (., .) are defined respectively in (33)-(34) and (35).

Proof : The sketch of the proof is provided in the Appendix. �

Corollary 3.3 The variance for this second representation of the Seasonal FISSAR process is given by,

γX(0, 0) = σ2ε

+∞∑
ν1=0

+∞∑
ν2=0

γU (s1ν1, s2ν2)γV (s1ν1, s2ν2) (38)

where the autocovariance functions γU (., .) and γV (., .) are defined respectively in (33)-(34) and (35) with

h1 = h2 = 0.

4 Illustrations

A realisation of the two-dimensional seasonal fractionally integrated white noise processes {Wij}i,j∈Z+

with d1 = 0.1, d2 = 0.1, D1 = 0.15, D2 = 0.2, s1 = s2 = 4 is shown in Figure 1. In this study, we

generated 100 × 100 grid and we use only the values in south east corner in the matrix (they correspond to

the interior values of grid size 30× 30).

i

j

w
n

Figure 1: Simulation of the 2D seasonal fractionally integrated white noise, d1 = 0.1, d2 = 0.1, D1 =

0.15, D2 = 0.2, s1 = s2 = 4 and size 30× 30.
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The spatial white noise process {Wij}i,j∈Z+
can be considered as a special case of the Seasonal FISSAR

model. However, it is rare to see applications in a phenomenon that is only modelled by white noise.

We simulated the Seasonal FISSAR process in two stages. First we generate the two dimensional white

noise {εij}i,j∈Z+
and second using (3) we obtained {Wij}i,j∈Z+

. Then using the relationship (2), we get

{Xij}i,j∈Z+
. We use also the 30× 30 values in south east corner by simulating 100× 100 values in a regular

grid with d1 = 0.1, d2 = 0.1, D1 = 0.1, D2 = 0.2, φ10 = 0.1, φ01 = 0.15, ψ10 = 0.1, φ0.2 and s1 = s2 = 4.

i

j

X

Figure 2: Simulation of the Seasonal FISSAR model: d1 = 0.1, d2 = 0.1, D1 = 0.1, D2 = 0.2, φ10 =

0.1, φ01 = 0.15, ψ10 = 0.1, φ0.2, s1 = s2 = 4 and size N ×N = 30× 30.

In practice, the Seasonal FISSAR model has many possible applications of real data sets from different

fields when the observations are collected during different seasons at different locations: temperature data,

agricultural data, systemic risk etc. In practice then, many observations are reporting by longitude and altitude

and this new modelling is defined in two dimensional regular lattices. In this case we re-coded the position of

the stations by assigning an integer value from number for both longitude and altitude, reflecting the relative

position on the lattice into which the study region has been mapped.

5 Conclusion

The spatial modelling has a lot of applications in different fields. To take into account at the same time exis-

tence of short memory behaviour and long memory behaviour in time and space permits a greater flexibility

for the use of these modellings. It is the objective of this paper which introduces and investigates the statistical

properties of a new class of model called Fractionally Integrated Separable Spatial Autoregressive processes

with Seasonality. The stationary conditions, an explicit expression form of the autocovariance function and

spectral density function have also been given. On another hand, a practical formula of the autocovariance

function as a product of covariance for the Seasonal FISSAR process is given. Extension of the results to

the spatio-temporal data or d-dimensional (d > 2) fields is immediate but not provided in this paper. For the

spatio-temporal representation, time can be represented by the direction i and the spatial components by the

direction j taken in Zd, d ≥ 2. We provide some representations of these models. It remains to provide a

way to identify and estimate these models from data sets: this will be the purpose of a companion paper.
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Appendix: Proofs of the Propositions

In this section we establish the main results and give the necessary technical proofs for some propositions.

Proof of the Proposition 2.1.

According to equation (2), we have

Xij = (1− φ10B1)
−1 (1− ψ10B

s1
1 )−1 (1− φ01B2)

−1 (1− ψ01B
s2
2 )−1Wij

Thus,

Xij =

(
+∞∑
k=0

φk10B
k
1

)(
+∞∑
m=0

ψm10B
ms1
1

)(
+∞∑
l=0

φl01B
l
2

)(
+∞∑
n=0

ψn01B
ns2
2

)
Wij

=

(
+∞∑
k=0

+∞∑
m=0

+∞∑
l=0

+∞∑
n=0

φk10B
k
1ψ

m
10B

ms1
1 φl01B

l
2ψ

n
01B

ns2
2

)
Wij .

If Φ (z1, z2) and Ψ (z1, z2) have their roots outside the unit polydisk then we have the convergent represen-

tation (7), see Proposition 1 in Basu and Reisel (1993). �

Proof of the Proposition 3.1.

We consider (3) and denote fε(λ1, λ2) the spectral density of the process {εij}. Let

Ψ(z1, z2) = (1− z1)−d1 (1− zs11 )−D1 (1− z2)−d2 (1− zs22 )−D2 ,

Then

fW (λ1, λ2) = Ψ
(

eiλ1 , eiλ2
)

Ψ
(

e−iλ1 , e−iλ2
)
fε(λ1, λ2)

=
(

1− eiλ1
)−d1 (

1− eis1λ1
)−D1

(
1− eiλ2

)−d2 (
1− eis2λ2

)−D2

×
(

1− e−iλ1
)−d1 (

1− e−is1λ1
)−D1

(
1− e−iλ2

)−d2 (
1− e−is2λ2

)−D2

fε(λ1, λ2)

=
[(

1− eiλ1
)(

1− e−iλ1
)]−d1 [(

1− eis1λ1
)(

1− e−is1λ1
)]−D1

×
[(

1− eiλ2
)(

1− e−iλ2
)]−d2 [(

1− eis2λ2
)(

1− e−is2λ2
)]−D2

fε(λ1, λ2)

Thus

fW (λ1, λ2) =
∣∣∣1− e−iλ1

∣∣∣−2d1 ∣∣∣1− e−is1λ1
∣∣∣−2D1

∣∣∣1− e−iλ2
∣∣∣−2d2 ∣∣∣1− e−is2λ2

∣∣∣−2D2

fε(λ1, λ2)

as soon as (
1− eiλ1

)(
1− e−iλ1

)
=
∣∣∣1− e−iλ1

∣∣∣2 =

[
2 sin

(
λ1
2

)]2
,

we obtain (11) since fε(λ1, λ2) =
σ2

4π2
. �
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Proof of the Proposition 3.3.

(i) We consider the spectral density function of the process {Wij}i,j∈Z+
defined in (11) and we use the

following approximations:

lim
λ−→0

sin(sλ)

sλ
= 1 and sin(sλ) ' sλ,

then

fW (λ1, λ2) =
σ2ε
4π2
|λ1|−2d1 s−2D1

1 |λ1|−2D1 |λ2|−2d2 s−2D2
2 |λ2|−2D2

=
σ2ε
4π2
|λ1|−2(d1+D1) |λ2|−2(d2+D2) s−2D1

1 s−2D2
2

when (λ1, λ2) −→ (0, 0). As soon as λ0 = 0 we obtain (14).

(ii) Let λi = 2πi
s1

and λj = 2πj
s2

for all i = 1, . . . , [s1/2] and j = 1, . . . , [s2/2], where [x] means the integer

part of x, then

fW (λ1 + λi, λ2 + λj) =
σ2

4π2

[
2 sin

(
λ1
2

+
λi
2

)]−2d1 [
2 sin

(
s1λ1

2
+
s1λi

2

)]−2D1

[
2 sin

(
λ2
2

+
λj
2

)]−2d2 [
2 sin

(
s2λ2

2
+
s2λj

2

)]−2D2

If λ −→ 0 then [
2 sin

(
sλ

2
+
sλj
2

)]−2D
' s−2D|λ|−2D

Therefore,

fW (λ1 + λi, λ2 + λj) '
σ2ε
4π2

s−2D1
1 |λ1|−2D1s−2D2

2 |λ2|−2D2

[
2 sin

(
λi
2

)]−2d1 [
2 sin

(
λj
2

)]−2d2
(39)

Replacing λ1 by λ1 − λi and λ2 by λ2 − λj in (39), we obtain (16). �

Proof of the Proposition 3.4.

(i) For this proof we need to use the corollary (3.1).

Suppose that the process {Xij}i,j∈Z+
defined in (1) is causal and invertible. Using the expressions (13),and

cos(sλ) ' 1, λ −→ 0, then

fW (λ1, λ2) =
σ2ε
4π2
|λ1|−2d1 s−2D1

1 |λ1|−2D1 |λ2|−2d2 s−2D2
2 |λ2|−2D2

(1− φ10)−2 (1− ψ10)
−2 (1− φ01)−2 (1− ψ10)

−2

=
σ2ε
4π2
|λ1|−2(d1+D1) |λ2|−2(d2+D2) s−2D1

1 s−2D2
2

(1− φ10)−2 (1− ψ10)
−2 (1− φ01)−2 (1− ψ10)

−2

when (λ1, λ2) −→ (0, 0). For λ0 = 0 we obtain (18).

(ii) Let λi = 2πi
s1

and λj = 2πj
s2

for all i = 1, . . . , [s1/2] and j = 1, . . . , [s2/2], where [x] means the integer

part of x.
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fX(λ1 + λi, λ2 + λj) =
∣∣∣Φ(e−i(λ1+λi), e−i(λ2+λj)

)∣∣∣−2 ∣∣∣Ψ(e−is1(λ1+λi), e−is2(λ2+λj)
)∣∣∣−2

fW (λ1 + λj , λ2 + λj)

=
σ2

4π2

[
2 sin

(
λ1
2

+
λi
2

)]−2d1 [
2 sin

(
s1λ1

2
+
s1λj

2

)]−2D1

[
2 sin

(
λ2
2

+
λj
2

)]−2d2 [
2 sin

(
s2λ2

2
+
s2λj

2

)]−2D2

∣∣∣Φ(e−iλi , e−iλj
)∣∣∣−2 ∣∣∣Ψ(e−is1λ0 , e−is2λ0

)∣∣∣−2
If λ −→ 0 then [

2 sin

(
sλ

2
+
sλj
2

)]−2D
' s−2D|λ|−2D

Therefore,

fX(λ1 + λi, λ2 + λj) '
σ2ε
4π2

s−2D1
1 |λ1|−2D1s−2D2

2 |λ2|−2D2

[
2 sin

(
λi
2

)]−2d1 [
2 sin

(
λj
2

)]−2d2
∣∣∣Φ(e−iλi , e−iλj

)∣∣∣−2 ∣∣∣Ψ(e−is1λ0 , e−is2λ0
)∣∣∣−2 (40)

Replacing λ1 by λ1 − λi and λ2 by λ2 − λj in (40), we obtain (20). �

Proof of the Proposition 3.5.

(i) Let fW (., .) the spectral density function of the process {Wij}i,j∈Z+
given in (11). Then fW (λ1, λ2) =

fW (−λ1,−λ2) and fW (λ1, λ2) ≥ 0. Therefore the processus is stationary if∫ π

−π

∫ π

−π
fW (λ1, λ2)dλ1dλ2 = 4

∫ π

0

∫ π

0
fW (λ1, λ2)dλ1dλ2 <∞ (41)

From (14) and (16) we have

C1

∫ π

0
|λ1|−2(d1+D1) dλ1

∫ π

0
|λ2|−2(d2+D2) dλ2 <∞

and

C2

∫ π

0
|λ1 − λj |−2D1 dλ1

∫ π

0
|λ2 − λj |−2D2 dλ2 <∞

when di +Di < 0.5 and Di < 0.5, i = 1, 2. Thus (41) is verified, and the process {Wij}i,j∈Z+
is stationary.

(ii) From the asymptotic expression of the spectral density function of the process {Wij}i,j∈Z+
and using

Proposition 3.1 we derive that the process {Wij}i,j∈Z+
has long memory property if 0 < di +Di < 0.5 and

0 < Di < 0.5, i = 1, 2. �

Proof of the Proposition 3.6.

(i) The process {Xij}i,j∈Z+ can be rewritten as

Xij = Φ (B1, B2)
−1 Ψ (Bs1

1 , B
s2
2 )−1 (1−B1)

−d1 (1−Bs1
1 )−D1 (1−B2)

−d2 (1−Bs2
2 )−D2 εij

Let

π(z1, z2) = Φ (z1, z2)
−1 Ψ (zs11 , z

s2
2 )−1 (1− z1)−d1 (1− zs11 )−D1 (1− z2)−d2 (1− zs22 )−D2 εij

14
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Then

Xij = π(B1, B2)εij

If di + Di < 0.5 and Di < 0.5, i = 1, 2 the item (i) of Proposition 3.5 assures that the power series

expansion of (1 − z1)−d1(1 − zs11 )−D1(1 − z2)−d2(1 − zs22 )−D2 converges for |z1| ≤ 1 and |z2| ≤ 1. In

another hand, the polynomial (Φ(z1, z2)Ψ(zs1, z
s
2))−1 converges for |z1| ≤ 1 and |z2| ≤ 1 when the roots of

Φ(z1, z2)Ψ(zs11 , z
s2
2 ) = 0 are outside the unit disk. Therefore, the power series π(z1, z2) converges for all

|z1| ≤ 1 and |z2| ≤ 1 and the process {Xij}i,j∈Z+ is stationary.

(ii) Let {Xij}i,j∈Z+ be a Seasonal FISSAR process in (4) whose all roots of Φ(z1, z2)Ψ(zs11 , z
s2
2 ) = 0 are

outside the unit polydisk. From the asymptotic expression of the spectral density function of {Xij}i,j∈Z+

and the Proposition 3.2 the Seasonal FISSAR process has long memory property when 0 < di + Di < 0.5

and 0 < Di < 0.5, i = 1, 2 if all the roots of Φ(z1, z2)Ψ(zs1, z
s
2) = 0 are outside the unit polydisk. �

Proof of the Proposition 3.7.

First, we prove the expression of the autocovariance function for the process {Wij}i,j∈Z+ as a product of the

autocovariance function of {Zij}i,j∈Z+ and {Yij}i,j∈Z+ .

Let {Zij}i,j∈Z+ the process defined in (22). Then

Zij =

+∞∑
k=0

+∞∑
l=0

ϕk(D1)B
s1k
1 ϕl(D2)B

s2l
2

(
ε∗ij
)

=

+∞∑
k=0

+∞∑
l=0

ϕk(D1)ϕl(D2)ε
∗
i−s1k,j−s2l (42)

where the quantity ϕk(D1) and ϕl(D2) are

φk(D1) =
Γ(k +D1)

Γ(k + 1)Γ(D1)
; φl(D2) =

Γ(l +D2)

Γ(l + 1)Γ(D2)
. (43)

For an easier representation we note in the following ϕk(D1) = ϕ1
k and ϕl(D2) = ϕ2

l .

Therefore

γZ(h1, h2) = Cov (Zi+h1,j+h2 , Zij)

γZ(h1, h2) =
+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nγε∗(h1 − s1k + s1m,h2 − s2l + s2n) (44)

When h1 − s1k + s1m = 0 and h2 − s2 + s2n = 0, we have k = h1
s1

+m and l = h2
s2

+ n, thus (44) can be

rewritten as

γZ(h1, h2) = σ2ε∗

+∞∑
m=0

+∞∑
n=0

ϕ1
h1
s1

+m
ϕ2

h2
s2

+n
ϕ1
mϕ

2
n. (45)

Taking (h1, h2) = (s1`1, s2`2) for `1, `2 ∈ Z+, then

γZ(s1`1, s2`2) = σ2ε∗

+∞∑
m=0

+∞∑
n=0

ϕ1
`1+mϕ

2
`2+nϕ

1
mϕ

2
n,

if (h1, h2) = (s1`1 + ξ1, s2`2 + ξ2) for `1, `2 ∈ Z+, (ξ1, ξ2) ∈ A1 × A2, where A1 = {1, . . . , s1 − 1},
A2 = {1, . . . , s2 − 1} then γZ(h1, h2) = 0.
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Thus the autocovariance function of the stationary process {Zij}i,j∈Z+ is given by

γZ(h1, h2) =


σ2ε∗

+∞∑
m=0

+∞∑
n=0

ϕ1
`1+mϕ

1
mϕ

2
`2+nϕ

2
n if (h1, h2) = (s1`1, s2`2)

0 if (h1, h2) = (s1`1 + ξ1, s1`2 + ξ2).

(46)

Now the process {Wij}i,j∈Z+ can be rewritten by

Wij =
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l Yi−s1k,j−s2l

Then its autocovarianec function is given by

γW (h1, h2) = Cov (Wi+h1,j+h2 ,Wij)

= Cov

(
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l Yi+h1−s1k,j+h2−s2l,

+∞∑
m=0

+∞∑
n=0

ϕ1
mϕ

2
nYi−ms1,j−ns2

)

=

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nCov (Yi+h1−s1k,j+h2−s2l, Yi−ms1,j−ns2)

= σ2ε′

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nγY (h1 − s1k + s1m,h2 − s2l + s2n).

Thus

γW (h1, h2) = σ2ε′

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nγY (h1 − s1(k −m), h2 − s2(l − n)) . (47)

Taking ν1 = k −m and ν2 = l − n in (47), we get

γW (h1, h2) = σ2ε′

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
ν1+mϕ

2
ν2+nϕ

1
mϕ

2
nγY (h1 − s1ν1), h2 − s2ν2) . (48)

Using (46) and denoting σ2ε = σ2ε′/σ
2
ε∗ the variance of the two-dimensional white noise process {εij}i,j∈Z+

we obtain (28) and (29).

We give now the proof of the of the expression of the autocovariance function for the Seasonal FISSAR

model defined in (2). Since E(Wij) = 0 we have E(Xij) = 0 and

γX(h1, h2) = E (Xi+h1,j+h2Xij) .

Thus

γX(h1, h2) = E

+∞∑
p=0

+∞∑
q=0

+∞∑
r=0

+∞∑
t=0

φp10φ
q
01ψ

r
10ψ

t
01Wi+h1−p−rs1,j+h2−q−ts2

×
+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

φk10φ
l
01ψ

m
10ψ

n
01Wi−k−ms1,j−l−ns2

]
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and

γX(h1, h2) =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

+∞∑
p=0

+∞∑
q=0

+∞∑
r=0

+∞∑
t=0

φk+p10 φl+q01 ψ
m+r
10 ψn+t01

× E (Wi+h1−p−rs1,j+h2−q−ts2Wi−k−ms1,j−l−ns2) .

Now,

E (Wi+h1−p−rs,j+h2−q−tsWi−k−ms,j−l−ns) = γW (h1 + k +ms1 − p− rs1, h2 + l + ns2 − q − ts2)

= γW (h1 + k + s1(m− r)− p, h2 + l + s2(n− t)− q) ,

then we obtain (27). �

Proof of the Proposition 3.8.

Let Ũ a causal and stationary process,

Ũij =
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l ε̃
∗
i−s1k,j−s2l

where the coefficients ϕ1
k and ϕ2

l are such that,

Ψ−1 (zs11 , z
s1
2 ) =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l z
s1k
1 zs2l2 .

Therefore

γ
Ũ

(h1, h2) = Cov
(
Ũi+h1,j+h2 , Ũij

)
γ
Ũ

(h1, h2) =
+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nγε̃∗(h1 − s1k + s1m,h2 − s2l + s2n). (49)

When h1 − s1k + s2m = 0 and h2 − s2l + s2n = 0 in (49) we have k = h1
s1

+m and l = h2
s2

+ n then (49)

can be rewritten as

γ
Ũ

(h1, h2) = σ2
ε̃∗

+∞∑
m=0

+∞∑
n=0

ϕ1
h1
s1

+m
ϕ2

h2
s2

+n
ϕ1
mϕ

2
n. (50)

Taking (h1, h2) = (s1`1, s2`2) in (50) for `1, `2 ∈ Z+ then

γ
Ũ

(s1`1, s2`2) = σ2
ε̃∗

+∞∑
m=0

+∞∑
n=0

ϕ1
`1+mϕ

2
`2+nϕ

1
mϕ

2
n.

If (h1, h2) = (s1`1 + ξ1, s2`2 + ξ2) for `1, `2 ∈ Z+, (ξ1, ξ2) ∈ A1 × A2, where A1 = {1, . . . , s1 − 1},
A2 = {1, . . . , s2−1} then γZ(h1, h2) = 0. Therefore the autocovariance function of the process {Ũij}i,j∈Z+

is equal to

γ
Ũ

(h1, h2) =


σ2
ε̃∗

+∞∑
m=0

+∞∑
n=0

ϕ1
`1+mϕ

1
mϕ

2
`2+nϕ

2
n if (h1, h2) = (s1`1, s2`2)

0 if (h1, h2) = (s1`1 + ξ1, s2`2 + ξ2).

(51)
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Now the process {Uij}i,j∈Z+ can be rewritten by

Uij =
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
lZi−s1k,j−s2l,

where the process {Zij}i,j∈Z+ is given by (22). Then its autocovariance function is equal to

γU (h1, h2) = Cov
(
Ũi+h1,j+h2 , Ũij

)
= Cov

(
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l Yi+h1−s1k,j+h2−s2l,

+∞∑
m=0

+∞∑
n=0

ϕ1
mϕ

2
nZi−ms1,j−ns2

)

=

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nCov (Zi+h1−s1k,j+h2−s2l, Zi−ms1,j−ns2)

= σ2ε∗

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nγZ(h1 − s1k + s1m,h2 − s2l + s2n)

= σ2ε∗

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nγZ (h1 − s1(k −m), h2 − s2(l − n))

Taking ν1 = k −m and ν2 = l − n, we get

γU (h1, h2) = σ2ε∗

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
ν1+mϕ

2
ν2+nϕ

1
mϕ

2
nγZ (h1 − s1ν1), h2 − s2ν2) . (52)

Using (51) and denoting σ2ε̃ = σ2ε∗/σ
2
ε̃∗

the variance of the two-dimensional white noise process {ε∗ij}i,j∈Z+

we obtain the results (33) and (34). �

Proof of the Proposition 3.9.

Let Ṽ a causal and stationary process,

Ṽij =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l ε̃
′
i−k,j−l

where the coefficients ϕ1
k and ϕ2

l are given in

Φ−1 (z1, z2) =
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l z
k
1z

l
2,

then

γ
Ṽ

(h1, h2) = Cov
(
Ṽi+h1,j+h2 , Ṽij

)
γ
Ṽ

(h1, h2) =
+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nγε̃′(h1 − k +m,h2 − l − n). (53)

When h1 − k +m = 0 and h2 − l + n = 0, we have k = h1 +m and l = h2 + n.

Now (53) can be rewritten as

γ
Ṽ

(h1, h2) = σ2
ε̃′

+∞∑
m=0

+∞∑
n=0

ϕ1
h1+mϕ

1
mϕ

2
h2+nϕ

2
n, (54)
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and the process {V }ij∈Z+ is equal to

Vij =
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l Yi−k,j−l

where {Yij}i,j∈Z+ is given by (23). Then its autocovariance function is given by

γV (h1, h2) = Cov
(
Ṽi+h1,j+h2 , Ṽij

)
= Cov

(
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l Yi+h1−k,j+h2−l,

+∞∑
m=0

+∞∑
n=0

ϕ1
mϕ

2
nYi−m,j−n

)

=
+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nCov (Yi+h1−k,j+h2−l, Yi−m,j−n)

and

γV (h1, h2) = σ2ε∗

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
l ϕ

1
mϕ

2
nγY (h1 − k +m,h2 − l + n). (55)

Applying (54) into (55) , with σ2˜̃ε = σ2ε′/σ
2
ε̃′

the variance of the two-dimensional white noise process

{˜̃εij}i,j∈Z+ , we obtain (35). �

Proof of the Proposition 3.10.

We obtain the autocovariance function of the Seasonal FISSAR stationary process by repeating the same

method as in the proof of the Propostion (3.8) where the processes {Uij}i,j∈Z+ and {Vij}i,j∈Z+ are respec-

tively defined by (31) and (32) and taking the variance of the two-dimensional white noise process {εij}i,j∈Z+

equal to σ2ε = σ2ε̃/σ
2˜̃ε . �
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