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Abstract

The financial industry has extensively used quantile-based risk measures relying

on the Value-at-Risk (V aR). They need to be estimated from relevant historical

data set. Consequently, they contain uncertainty. We propose an alternative

quantile-based risk measure (the Spectral Stress V aR) to capture the uncer-

tainty in the historical V aR approach. This one provides flexibility to the risk

manager to implement prudential regulatory framework. It can be a V aR based

stressed risk measure. In the end we propose a stress testing application for it.

Keywords: Historical method, Uncertainty, Value-at-Risk, Stress risk

measure, Tail risk measure, Prudential financial regulation, Stress testing

JEL: G28, G32, C14

1. Introduction

The financial industry has extensively used quantile-based risk measures based

on the Value-at-Risk (V aR). In statistical terms, the V aR is a quantile reserve,
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often using the pth (p ∈ [0, 1]) percentile of the loss distribution. Typically the

V aR is not known with certainty and needs to be estimated from sample estima-5

tors of relevant observations. Bignozzi and Tsanakas (2015) [6] point out that

the observations are often very small creating statistical error, which means that

the values of sample estimators can diverge substantially from the true values.

Jorion (1996) [10] calls it the risk in Value-at-Risk itself. Pérignon and Smith

(2010) [12] find that historical V aR is the most popular V aR method, as 73%10

of the banks report their V aR estimation methodologies using historical V aR.

Our paper proposes an alternative risk measure based on the historical V aR.

A confidence interval (CI) is considered to integrate the uncertainty contained

in the historical V aR. It is a tail risk measure at multiple confidence levels15

(Alexander, Baptista and Yan (2015) [2]). It provides the flexibility to the risk

manager to implement a prudential regulatory framework (Basel Committee on

Banking Supervision (BCBS) [3] and Acharya (2009) [1]). Additionally, it can

be a V aR based stressed risk measure based on a continuous 12-month period

of significant financial stress following the requirement of the Basel Committee20

(BCBS (2011) [5]). We propose a stress testing application for this risk measure.

Numerous papers discussed the confidence interval of the V aR. For example,

Pritsker (1997) [13] computes a nonparametric CI to evaluate the accuracy of

different V aR approaches. Christoffersen and Gonçalves (2005) [7] assess the25

precision of V aR forecast by using bootstrap prediction intervals. Jorion (1996)

[10] provides the asymptotic standard error and confidence bands for sample

quantile, assuming the loss distribution is known. All these approaches mainly

use their CI (provided by asymptotic result or bootstrap) as a complementary

tool to assess the quality of the V aR. In our work we consider another approach30

to build the CI (we do not assume that the loss distribution is known and we do

not use simulation). We use an asymptotic result and a parametric approach.
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We focus on a fat-tail distribution 1 to capture historical stress information,

in order to build a stressed risk measure. Finally we use the lower (or upper)

bound of CI directly as one boundary of our risk measure.35

This paper is organised as follows. Section 2 describes our risk measure. Section

3 proposes a stress testing application for the risk measure. Section 4 concludes.

2. The Spectral Stress V aR measure40

Consider a financial variable X (for example the return of a portfolio, the return

of a risk factor or an operational loss). Assume that it is a r.v. with a cumulative

distribution function (cdf) Fθ (fθ is the associated probability density function

(pdf) and θ are the parameters). Let X1, ..., Xn be the historical information

set of X with length n.45

As in Christoffersen and Gonçalves (2005) [7], we define the historical V aR

(X([np]+1)) as the (1 − p)th empirical quantile of the losses data. We fit a

panel of distributions using X1, ..., Xn to compute the estimators of θ, denoted

θ̂. Then Fθ̂ and fθ̂ are the estimators of Fθ and fθ. Given confidence levels50

0 < p < 1 and 0 < q < 1 2, we build a confidence interval CIp,q around X([np]+1)

(Rao (2002) [14]; Guégan, Hassani and Li (2015) [8]):

X([np]+1) ∈
[
F−1

θ̂
(p)− z 1+q

2

√
V̂ , F−1

θ̂
(p) + z 1+q

2

√
V̂
]

(1)

where

V̂ =
p(1− p)

[fθ̂(F−1

θ̂
(p))]2n

. (2)

1A fat-tailed distribution has the property that it exhibits large kurtosis or has power law

decay in the tail of the distribution.
2p is the confidence level of historical V aR and q is the confidence level of its confidence

interval.
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and z 1+q
2

is the 1+q
2 th quantile of standard Gaussian distribution. According to

the expression (1), CIp,q depends on n, f̂ , p and q.55

In practice for a sequence p1 < p2 < ... < pk, given {qi}i=1,...,k, we compute

the sequences {F−1

θ̂
(pi)} and CIpi,qi for i = 1, ..., k. We define an area delin-

eated by F−1

θ̂
(pi) and the lower (or upper) bound of CIpi,qi for i = 1, ..., k. We

call this area the Spectral Stress V aR measure (SSVaR). Figure 1 provides a60

graph of the SSVaR. The lower (green) and upper (red) curves correspond to

the boundaries of CIpi,qi for {pi} and {qi}, i = 1, ..., k. The black curve in the

middle is associated to the sequence of {{F−1

θ̂
(pi)} for i = 1, ..., k. The black

shadow area is the SSVaR.

65

Figure 1: The lower (green) and upper (red) curves correspond to the boundaries of CIpi,qi

for {pi} and {qi}, i = 1, ..., k. The black curve in the middle is associated to the sequence

of {{F−1

θ̂
(pi)} for i = 1, ..., k. The black shadow area is the SSVaR. When the values of qi

change, SSVaR can shift to the grey area.

It is important to point out that when the risk manager has to work within

the prudential regulatory framework, he can choose higher qi leading to shift

the SSVaR to the grey area. Also, he can shift the SSVaR to the grey area by

choosing a fat-tail f̂ . In fact a fat-tail f̂ can take more stress information from

4

 
Documents de travail du Centre d'Economie de la Sorbonne - 2016.06



a period of significant financial turmoil than a thin tail fit. Consequently the70

SSVaR is a stressed risk measure in essence.

3. A stress testing application of the SSVaR

During recent crisis, some investors have suffered considerable losses due to ex-

treme events. Consequently there has been a growing literature on stress testing.75

Specially, banks that use the V aR approach must have in place a rigorous stress

testing program (BCBS (2005) [4]). In response, we propose a SSVaR measure

applicable to the stress testing. The result of the stress testing is also a criteria

to choose a reasonable f̂ to build the SSVaR, which we can use first as an alert

indicator.80

To explain our purpose we consider a fictive financial institution. This one holds

a Chinese market portfolio (that is, the same stock components and weights as

the Shanghai Stock Exchange Composite Index (SHCOMP)). We compute the

SSVaR using the daily return of SHCOMP from 29/06/2007 to 20/06/2008 (it85

contains 246 points and we call it Ω1). The historical V aR of Ω1 are computed.

For the stress testing, we compute the empirical quantiles on the daily return of

SHCOMP from 01/12/2014 to 09/11/2015 (it contains 241 points and we call

it Ω2). Table 1 provides the empirical statistics of the data sets. It shows these

two data sets are left skewed and leptokurtic (Kurtosis > 3). The distributions90

which characterise these two data sets need to have these properties. In the

following we build SSVaR using Ω1, with Gaussian distribution as a benchmark

and Normal-inverse Gaussian distribution (NIG, Godin (2012) [9]).

To take into account the left tail market risk, we use 0.01 ≤ pi ≤ 0.1 and fixed95

q = 0.95. We build the SSVaR for Ω1 using Gaussian distribution 3 and NIG 4.

3The mean equals to −0.0017 and variance equals to 0.0007.
4The tail parameter parameter equals to 90.63, skewness parameter equals to −25.73,
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Table 1: Empirical statistics of SHCOMP daily returns from 29/06/2007 to 20/06/2008 (Ω1)

and from 01/12/2014 to 09/11/2015 (Ω2)

Mean Variance Skewness Kurtosis

Ω1 (n = 246) -0.0017 0.0007 -0.3796 3.7876

Ω2 (n = 241) 0.0010 0.0007 -1.0509 5.0698

In Figure 2, on the left graph the dashed (blue and green) lines are the upper and

lower bounds of the SSVaR corresponding to the Gaussian distribution. On the

right graph the dashed (blue and green) lines are the upper and lower bounds

of the SSVaR corresponding to the NIG distribution. In these two graphs, the100

solid (red) lines are the historical V aR and the solid-dot (brown) lines are the

empirical quantiles for Ω2.

In Figure 2, the left graph suggests that the SSVaR based on a Gaussian dis-

tribution underestimates the risk computed using Ω1 and Ω2, because the left105

part of the historical V aR and the empirical quantiles are outside the SSVaR.

The right graph shows that the SSVaR built using a NIG distribution permits

to control the risk more efficiently since they are almost inside the SSVaR.

Additionally, ignoring the uncertainty in the historical V aR (that is, use the

empirical quantiles directly as the risk measure) leads to underestimate the risk110

computed using Ω2, because the left part of the empirical quantiles is lower than

the historical V aR.

In practice, the SSVaR is a improvement risk measure of historical V aR. The

risk manager can use it directly to allocate capital reserve to the risk of mea-115

surement uncertainty. Additionally, it can be a stressed and tail risk measure

providing flexibility to the risk manager to work within the prudential regula-

tory framework.

location parameter equals to 0.0155 and scale parameter equals to 0.058.
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Figure 2: We use 0.01 ≤ pi ≤ 0.1 and fixed q = 0.95 and build the SSVaR for Ω1 using

Gaussian distribution (mean −0.0017 and variance 0.0007) and NIG (with tail parameter

parameter equalling to 90.63, skewness parameter equalling to −25.73, location parameter

equalling to 0.0155 and scale parameter equalling to 0.058). In Figure 2, on the left graph the

dashed (blue and green) lines are the upper and lower bounds of the SSVaR corresponding to

the Gaussian distribution. On the right graph the dashed (blue and green) lines are the upper

and lower bounds of the SSVaR corresponding to the NIG distribution. In these two graphs,

the solid (red) lines are the historical V aR and the solid-dot (brown) lines are the empirical

quantiles for Ω2.

4. Conclusion120

In this article, we propose an alternative quantile-based risk measure SSVaR,

to integrate the uncertainty from the historical V aR. Additionally, it is a tail

risk measure. Also, it provides the flexibility to the risk manager to implement

prudential regulatory framework. It can be a V aR based stressed risk measure.

Additionally, We propose a stress testing application for the SSVaR, by illus-125

trating the magnitude of the exceptions based on the empirical quantile of two
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data sets from SHCOMP. The results suggest that ignoring the uncertainty in

the historical V aR leads to underestimate risks. Also, we observe that when the

data sets are skewed and leptokurtic, risk manager needs to fit a skewed and

leptokurtic distribution to build SSVaR. It leads to control the risk efficiently.130

As the purpose of a forthcoming paper, some improvements of this approach

could be done. Indeed, the expression (1) relies on the assumption of indepen-

dence for X1, ..., Xn (Rao (2002) [14]). Nevertheless, we can extend the results

in case of α−mixing (Leadbetter et al. (1983) [11]) data sets. Also, the SSVaR135

can be used directly for the operational risks which are mainly independent.

For other risks we can calibrate dynamics on X1, ..., Xn, like Xt = f(Xt−1) + εt

where εt is a white noise. Then we build the SSVaR using the residuals {εt}, and

the time series modelling can be used to introduce dynamics inside the SSVaR.

140
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