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Abstract

Two utility models are classically used to represent interaction among criteria:

the Choquet integral and the Generalized Additive Independence (GAI) model.

We propose a comparison of these models. Looking at their mathematical ex-

pression, it seems that the second one is much more general than the first one.

The GAI model has been mostly studied in the case where attributes are dis-

crete. We propose an extension of the GAI model to continuous attributes, using

the multi-linear interpolation. The values that are interpolated can in fact be

interpreted as a k-ary capacity, or its extension – called p-ary capacity – where p

is a vector and pi is the number of levels attached to criterion i. In order to push

the comparison further, the Choquet integral with respect to a p-ary capacity is

generalized to preferences that are not necessarily monotonically increasing or

decreasing on the attributes. Then the Choquet integral with respect to a p-ary

capacity differs from a GAI model only by the type of interpolation model. The

Choquet integral is the Lovász extension of a p-ary capacity whereas the GAI

model is the multi-linear extension of a p-ary capacity.
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Choquet integral; interpolation.

1. Introduction

Multiattribute utility theory (MAUT) [1] is a commonly used framework for

dealing with decision with multiple criteria, of which the additive utility model

is one of its best-known representatives. In the additive utility model, however,

the contributions of criteria to the overall utility are added independently, so

that it is not possible to represent any interaction effect between the criteria. So

far in the MAUT literature, two main models have been proposed that are able

to deal with interactive criteria, namely the Choquet integral model [2, 3], and

the generalized additive independence (GAI) model [4]. The Choquet integral

model is a particular instance of the decomposable model, where marginal utility

functions defined on each attribute are aggregated by some aggregation function.

It is based on the Choquet integral w.r.t. a capacity (a.k.a. fuzzy measure,

nonadditive measure, etc.). Decomposable models are characterized by weak

separability, which allows to induce from the preference relation of the decision

maker on alternatives a preference relation on the values taken by each attribute.

In particular, weak separability entails that a preference between two values of

an attribute is unconditional of the value taken by the other attributes. By

contrast, the GAI model does not necessarily satisfy this condition, so that the

well-known menu example, where white wine is preferred to red wine if the main

dish is fish, and the converse preference holds in case of meat, can be easily dealt

with.

Inspecting the mathematical expression of the GAI model reveals that it

is much more general than the Choquet integral, and the above property is

an evidence of it. However, we will see that by considering k-ary capacities

(i.e., capacities considering k different levels, like multichoice games) [5] instead

of capacities, the two models are in fact much closer than expected. When

attributes are discrete, they even coincide. It is the main aim of the paper to

study the exact relation between the two models.
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So far, most of the work done on GAI models has been done under the as-

sumption that the attributes are discrete [4, 6, 7, 8, 9]. As this is a limitative

assumption, the second aim of the paper is to consider GAI models with con-

tinuous attributes. Our approach will be to consider a multilinear interpolation

over a discrete set of values for the attributes (called the grid), similarly to

what is done in the UTA method [10]. We show that this type of interpolation

satisfies reasonable properties (continuity, stability regarding additivity, and an

extension property saying that the interpolated model gives back the discrete

model on the grid).

In order to make the Choquet integral model be as close as possible to the

above continuous GAI model, we introduce p-ary capacities (p ∈ Nn defines

reference levels for each attribute) together with an adequate Choquet integral,

based on the Choquet integral w.r.t. k-ary capacities and the Choquet integral

w.r.t bi-capacities. Our general definition can cope with the case where levels

are not necessarily arranged in increasing or decreasing order of preference. As

a result, we get a model corresponding to a parsimonious interpolation (like the

Lóvasz extension). This general Choquet integral is no more a decomposable

model, in the sense that there is no marginal utility functions on attributes.

Instead, the attributes are taken modulo the grid of the reference levels, and

these values are directly used in the interpolation à la Lóvasz. We show that

the interpolation performed satisfies the required properties (continuity, stability

regarding additivity, and extension property).

The paper is organized as follows. Section 2 introduces the necessary back-

ground on GAI models, the Choquet integral, k-ary capacities and bi-capacities.

The continuous GAI model is addressed in Section 3, together with interpolation

properties. Section 4 defines the general Choquet integral w.r.t p-ary capacities

and studies its properties. Lastly, it is shown how in the discrete case both mod-

els coincide and hence differ only by the interpolation method in the continuous

case.

3
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2. Background on the GAI model and the Choquet integral

We are given a set of n attributes indexed by N = {1, . . . , n}. Each attribute

i ∈ N is represented by a set Xi which is supposed to be an interval [bi, bi] of IR.

The alternatives are characterized by a value on each attribute, and are thus

represented by an element in X = X1× · · · ×Xn. We assume that we are given

a preference relation % over X. It is supposed to be represented by an overall

utility function

U : X → IR, (1)

i.e., such that x % y iff U(x) ≥ U(y).

For x, y ∈ X and A ⊆ N , we denote by XA the set
∏
i∈AXi, by xA the re-

striction of x on attributes A, and by (xA, yN\A) ∈ X the compound alternative

taking value xi for attribute i in A, and value yi otherwise. We also denote by

(xA, yB , zN\(A∪B)) the alternative taking value xi for attribute i in A, value yi

for i in B, and value zi otherwise.

Preference relation % is said to satisfy weak separability [11] if: for all i ∈ N ,

all xi, yi ∈ Xi, and all aN\{i}, bN\{i} ∈ XN\{i}

(xi, aN\{i}) % (yi, aN\{i}) ⇐⇒ (xi, bN\{i}) % (yi, bN\{i}). (2)

Under this assumption, one can derive, for every i ∈ N , a preference relation

%i over attribute i from %: for all xi, yi ∈ Xi

xi %i yi ⇔ (xi, aN\{i}) % (yi, aN\{i}) (3)

for some aN\{i} ∈ XN\{i}. We denote by �i and ∼i the asymmetric and sym-

metric parts of %i respectively.

Under weak separability, utility U shall fulfil the following monotonicity

conditions, which states that it should be consistent with each relation %i:

∀x, y ∈ X with yi %i xi for every i ∈ N, U(y) ≥ U(x) (4)

There exist many different utility models of the form (1). In the rest of this

section, we focus on two models: (k-ary) capacities and the Choquet integral

(section 2.1), and the GAI model (section 2.2).

4
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2.1. (k-ary) Capacities and the Choquet integral

When % satisfies weak separability and other properties, then function U

takes the decomposition form [1]

U(x) = F (u1(x1), . . . , un(xn)), (5)

where ui : Xi → IR is the utility function (also called value function) on Xi and

F : IRn → IR is an aggregation function. Utility function ui shall be consistent

with %i (i.e. ui(xi) ≥ ui(yi) whenever xi %i yi).

The Choquet integral is one of the most versatile aggregation function as

it is able to capture various decision strategies representing interaction among

criteria [2, 12, 3]. It is based on a capacity (Section 2.1.1) defined from two

reference levels on each criteria. It has been extended by using more reference

levels on the criteria, leading to the concept of k-ary capacity (Section 2.1.2).

With three reference levels, a bi-capacity yields a bipolar approach, where the

aggregation is not the same for positive or negative values (Section 2.1.3).

2.1.1. Capacities, the multi-linear extension and the Choquet integral.

Definition 1. A fuzzy measure [13] or capacity [2] on N is a set function

µ : 2N → IR satisfying (1) the monotonicity conditions: µ(A) ≤ µ(B) for every

A ⊆ B, and (2) the normalization conditions: µ(∅) = 0, µ(N) = 1.

Capacities are related to the concept of pseudo-Boolean function. A pseudo-

Boolean function is any function f : {0, 1}N → IR [14]. Writing 2N ≡ {0, 1}N ,

there is a one-to-one correspondence between set functions and pseudo-Boolean

functions: f(1A) = µ(A) for all A ⊆ N . From this correspondence, the problem

of defining an aggregation function from a capacity is similar to the one of

extending a pseudo-Boolean function on [0, 1]N . We note that the two reference

levels 0 and 1 correspond to two reference elements a0
i and a1

i on each attribute

i ∈ N , through the utility function ui:

ui(a
0
i ) = 0 and ui(a

1
i ) = 1. (6)

5
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Any pseudo-Boolean function can be written in the multi-linear form [15]

f(t) =
∑
A⊆N

mµ(A) ·
∏
i∈A

ti ∀t ∈ {0, 1}N (7)

where mµ is the Möbius transform [16] of µ corresponding to f , defined by

mµ(A) =
∑
B⊆A

(−1)|A\B|µ(B). (8)

Conversely, µ can be derived from mµ by the formula µ(A) =
∑
B⊆Am

µ(B).

We note that expression (7) could have been replaced by

f(t) =
∑
A⊆N

mµ(A) ·
∧
i∈A

ti ∀t ∈ {0, 1}N . (9)

In order to extend f (or equivalently µ) to [0, 1]N , one can simply use rela-

tions (7) and (9). They are denoted by

fΠ(t) =
∑
A⊆N

mµ(A) ·
∏
i∈A

ti (10)

f∧(t) =
∑
A⊆N

mµ(A) ·
∧
i∈A

ti. (11)

The first expression is the multi-linear extension of f or µ, and the second one

is the Lovász extension of f or µ. Yet f∧ corresponds to the Choquet integral

w.r.t. µ [2]. For a permutation τ on N , we define Ωτ = {t ∈ IRN : tτ(1) ≤

tτ(2) ≤ · · · ≤ tτ(n)}. The Choquet integral of t ∈ [0, 1]N can be written in terms

of the capacity µ [2]

Cµ(t) =

n∑
i=1

(
tτ(i) − tτ(i−1)

)
µ ({τ(i), · · · , τ(n)}) , (12)

where tτ(0) := 0 and τ is a permutation on N such that t ∈ Ωτ . The Choquet

integral is clearly a simple weighted sum in each domain Ωτ . In Figure 1, the

shaded area represents Ωτ with n = 2, τ(1) = 2 and τ(2) = 1.

2.1.2. k-ary capacities and Choquet integral.

The concept of a capacity is based on reference levels {0, 1} on each criterion.

It has been generalized to an arbitrary number of reference levels over each

6
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Crit. 1

Crit. 2

0 1
0

1

Figure 1: Set of vectors t = (t1, t2) such that t1 ≥ t2.

criterion. For k ∈ IN∗, we define

Qk(N) = {0, 1, 2, . . . , k}N (13)

when there are k + 1 reference levels, and ≤ on Qk(N) by

q ≤ q′ iff qi ≤ q′i ∀i ∈ N. (14)

We may call Qk(N) the grid of reference levels. In view of form (6) , the

k+1 reference levels {0, 1, 2, . . . , k} on the criteria correspond to k+1 reference

elements denoted by a0
i , a

1
i , . . . , a

k
i on each attribute Xi, and the utility functions

map the grid of reference levels on the attributes onto the grid of reference levels

on the criteria:

∀i ∈ N ∀l ∈ {0, 1, 2, . . . , k} ui(a
l
i) = l. (15)

We can now define k-ary capacities, where a usual capacity is a 1-ary capacity.

Definition 2 ([5, 17]). A k-ary capacity on N is a function v : Qk(N) → IR

satisfying the monotonicity conditions:

∀q, q′ ∈ Qk(N) s.t. q ≤ q′ , v(q) ≤ v(q′), (16)

and the normalization conditions: v(0, . . . , 0) = 0, v(k, . . . , k) = 1.

A k-ary capacity is said to be non-normalized if we relax the normalization

condition v(k, . . . , k) = 1. In the context of cooperative game theory, this

concept is similar to multichoice games [18].
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Let t ∈ Ω := [0, k)N . We define q ∈ Qk(N) by qi = btic (the floor integer

part of ti) if ti < k, and qi = k − 1 if ti = k. We also define a non-normalized

capacity given q by

µq(S) = v((q + 1)S , q−S)− v(q). (17)

Then the Choquet integral w.r.t. v at point t is defined by

Cv(t) = v(q) + Cµq
(φ) (18)

where

∀i ∈ N φi = ti − qi ∈ [0, 1]. (19)

The Choquet integral w.r.t. a k-ary capacity will be called later k-ary Choquet

integral by abuse of language.

Let Ωq,τ = {t ∈ [q, q+ 1]N , tτ(1)− qτ(1) ≤ · · · ≤ tτ(n)− qτ(n)}. The Choquet

integral w.r.t. v is clearly a simple weighted sum in each domain Ωq,τ . In

Figure 2, the shaded areas are the sets Ωq,τ for all values of q, with τ(2) = 1

and τ(1) = 2.

Crit. 1

Crit. 2

0 1 2 3
0

1

2

3

Figure 2: Example with k = 3. The shaded triangles represent the areas where φ1(x) ≥ φ2(x).

2.1.3. Bi-capacity and Choquet integral.

A bi-capacity is based on 3 reference levels. But contrarily to 2-ary ca-

pacities, the middle reference level has a special meaning as it corresponds to

8
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the neutral level. The latter demarcating attractive and repulsive elements, it

characterizes a bipolar scale [19]. As the neutral level is usually assigned to

0, the three reference levels on the criteria are thus −1, 0 and 1. The asso-

ciated reference elements on the attributes are denoted by Bi (unsatisfactory

element in Xi), Oi (neutral element in Xi) and Gi (satisficing element in Xi

[20]) respectively. Thus we have

ui(Bi) = −1 , ui(Oi) = 0 , ui(Gi) = 1. (20)

Let Q(N) = {(S, T ) ∈ P(N)× P(N) | S ∩ T = ∅}. A bi-capacity is a func-

tion ν : Q(N)→ IR satisfying [21]: (i) S ⊆ S′ ⇒ ν(S, T ) ≤ ν(S′, T ); (ii) T ⊇ T ′

⇒ ν(S, T ) ≤ ν(S, T ′); (iii) ν(∅, ∅) = 0, ν(N, ∅) = 1, ν(∅, N) = −1.

The first two properties depict increasingness. ν(S, T ) is interpreted as the

overall assessment of the ternary act (1S ,−1T , 0−S∪T ) taking value 1 on at-

tributes in S, value −1 on attributes in T and value 0 on the remaining at-

tributes.

The Choquet integral w.r.t. a bi-capacity has been proposed in [21, 22].

But contrarily to the case of a k-ary capacity, it aggregates the values of the

alternatives in a “polar” way around the neutral level 0. Let t ∈ IRN , N+ =

{i ∈ N, ti ≥ 0} and N− = N \ N+. Define the capacity µ, for all S ⊆ N , by

µ(S) := ν (S ∩N+, S ∩N−). Then the Choquet integral w.r.t. ν is defined by:

BCν(t) := Cµ (tN+ ,−tN−) . (21)

Note that this concept is similar to the bipolar Choquet integral [23]. Let

ΩS,τ = {t ∈ IRS
+ × IR

N\S
− : |tτ(1)| ≤ |tτ(2)| ≤ · · · ≤ |tτ(n)|}. The Choquet

integral w.r.t. a bi-capacity is clearly a simple weighted sum in each domain

ΩS,τ . In Figure 3, the shaded areas represent the four sets Ω∅,τ , Ω{1},τ , Ω{2},τ ,

and Ω{1,2},τ , with n = 2, τ(1) = 2 and τ(2) = 1.

2.2. GAI model

The use of the decomposable model (5) with a Choquet integral implies

that the partial utility functions ui return evaluations on the same scale. This

9
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Crit. 1

Crit. 2

−1 0 1
−1

0

1

Figure 3: Illustration of ΩS,τ .

means that if ui(xi) = uj(xj), then value xi on attribute Xi has the same

satisfaction/attractiveness as value xj on attribute Xj . This strong assumption

is called commensurability.

There are alternative utility models which do not need the commensurability

assumption. The best-known model of this class is the additive utility model [1]

U(x) =
∑
i∈N

ui(xi) (22)

where ui : Xi → IR. This model has been generalized to allow some interaction

among criteria – under the name of the Generalized Additive Independence

(GAI) model [4, 24, 6]. The GAI model takes the form of the sum of utilities

over subsets of attributes:

U(x) =
∑
S∈S

uS(xS) (23)

where S is a collection of subsets of N , xS ∈ XS is the restriction of x over

attributes in coalition S, and

uS : XS → IR.

The set S contains all subsets of attributes that interact one another. Hence the

additive model (22) is a particular case of the GAI model where S is composed

of only singletons. One may consider for instance that S is the collection of all

10
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singletons and pairs of criteria, as in the utility model underlying UTAGMS −

INT [25], which have strong connections with the GAI model.

It is important to note that the GAI does not necessarily satisfy the weak

separability condition [26]. A well-known example of such a violation is the

following [27]: the problem is to choose menus in a restaurant on the basis of

two attributes X1 (main course: ‘meat’ or ‘fish’) and X2 (wine: ‘white’ or ‘red’).

Then ‘red wine’ is preferred to ‘white wine’ if the main course is ‘meat’, but

‘white wine’ is preferred to ‘red wine’ if the main course is ‘fish’.

2.3. Comparison for discrete attributes

Our previous review allows us to make a straightforward comparison of these

models in the case where the attributes are discrete, with Xi = {a0
i , . . . , a

pi
i },

i = 1, . . . , n. Let us define a k-ary capacity on N , with k = maxi∈N pi
1. Then

by (18), for any point q ∈ Qk(N), we have Cv(q) = v(q). Hence the Choquet

integral w.r.t. a k-ary capacity v reduces to v, if v is defined on the same number

of levels as the attributes contain elements.

A GAI model U : X → IR and a k-ary capacity v : Q(N) → IR can be

made equivalent, thanks to the correspondence U(x) =: v(ϕ(x)), where ϕ is

given by (aj11 , . . . , a
jn
n ) 7→ ϕ(aj11 , . . . , a

jn
n ) = (j1, . . . , jn). The only difference

that may appear is the decomposition property (23) of a GAI model U that v

does not necessarily fulfill. Due to this clear correspondence, we will focus only

on continuous attributes in the rest of this paper.

3. GAI model on continuous attributes

It is interesting to note that, so far, the GAI model has never been defined as

a general model on continuous attributes. In most of references, the attributes

are assumed to take a finite number of values, both in Decision Theory [4, 24]

and in AI [6, 7, 8, 9]. In [25], the attributes are not assumed to be discrete,

1We will extend in Section 4 the notion of k-ary capacity to situations where criteria do

not have the same number of levels.

11
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but the authors are interested only in the values of the attributes taken by the

alternatives appearing in the training set and the recommendation set (as for

the UTA (UTility Additive) approach [10]). Hence they need not make any

interpolation. The aim of this section is to propose an interpolation approach

of a GAI model, similar to what is done in the UTA approach.

3.1. Unknowns of the model

As in the UTA approach, each attribute is discretized and the unknowns of

the model are the values of the utility functions at the discrete elements of Xi.

For attribute i ∈ N , we consider a finite subset Di = {a0
i , a

1
i , . . . , a

pi
i } of Xi

with bi ≤ a0
i < a1

i < · · · < apii ≤ bi (recall that Xi = [bi, bi]). The unknowns of

the GAI model are {uS(zS) : S ∈ S , zS ∈ DS}, where DS =
∏
i∈S Di. The

unknowns are denoted by uDS (zS) in order to distinguish them from the general

utility model uS which interpolates uDS . We also set:

UD := {uDS (zS) : S ∈ S , zS ∈ DS}. (24)

The number of unknowns is
∑
S∈S

∏
i∈S pi.

3.2. Condition on the interpolation

We wish to define an interpolation operator IS , for any non-empty S ⊆ N ,

which maps a function fDS : DS → IRN to its interpolation fS : XS → IRN .

Before defining an expression for IS , we first give some wished properties.

The following property states that IS shall be an extension.

Interpolation. For all x ∈ DS , IS
(
fDS
)

(x) = fDS (x).

We note that this is a generalization of the Properly Weighted property of

the Choquet integral [28].

Continuity is an essential property of the interpolation.

Continuity. Function x 7→ IS
(
fDS
)

(x) is continuous in XS .

We are interested in interpolating a utility model satisfying the GAI form

(23). We must thus perform two operations: interpolation and addition over

12
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the subsets in S. The next axiom says that whatever the order in which these

two operations are done, the result shall be the same.

Stability of interpolation regarding additivity. For all x ∈ X,

∑
S∈S
IS
(
fDS
)

(xS) = IN
(∑
S∈S

fDS

)
(x).

3.3. Interpolation from UD

The aim of this section is to determine for every S ∈ S the utility function

uS on XS , given UD.

Let us start with the simple case where S is a single attribute i. In order

to deduce the value of ui for all elements of Xi from uDi (a0
i ), . . . , u

D
i (apii ), we

assume that ui is piecewise affine, as it is done for the UTA method. Hence we

set

ui(xi) =


uDi (a0

i ) if xi ≤ a0
i

xi−aki
ak+1
i −aki

uDi (ak+1
i ) +

ak+1
i −xi

ak+1
i −aki

uDi (aki ) if aki ≤ xi ≤ a
k+1
i

uDi (apii ) if xi ≥ apii

(25)

When S contains more than one attribute, the idea is to perform a multi-

linear interpolation (see (10)). The following set

I = {i ∈ N : xi ∈ [a0
i , a

pi
i ] and xi 6∈ Di}

contains all attributes for which an interpolation is required. If xi < a0
i , we set

xi = xi = a0
i . If xi > apii , we set xi = xi = apii . Otherwise, we set

xi = max{zi ∈ Di : zi ≤ xi}

xi = min{zi ∈ Di : zi ≥ xi}

Note that xi = xi iff i ∈ N \ I. We wish to generalize (25) and the multi-linear

extension (10). For this reason, uS will be denoted by uΠ
S . Function uΠ

S shall

interpolate uDS (see Property Interpolation):

uΠ
S (zS) = uDS (zS) ∀zS ∈ DS . (26)

13
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We write for every xS ∈ XS

uΠ
S (xS) =

∑
A⊆I∩S

∏
i∈A

xi − xi
xi − xi

×
∏

i∈(I∩S)\A

xi − xi
xi − xi

× uDS (xA, x(I∩S)\A, xS\I)


(27)

where (xA, x(I∩S)\A, xS\I) is an alternative that is equal to xk if k ∈ A, to xk

if k ∈ (I ∩ S) \A, and to xk if k ∈ S \ I. The GAI model becomes

UΠ(x) =
∑
S∈S

uΠ
S (xS). (28)

Note that the choice of the multi-linear interpolation is motivated by the fact

that it is a barycentric interpolation among all extreme points
∏
i∈I∩S{xi, xi}.

Moreover, this is the usual interpolation. Finally it satisfies the weak difference

independence [29], which is a well-known property in MAUT [1]. This property

implies that one can construct interval scales over each attribute independently

of the remaining attributes. The scales over each attribute need not be com-

mensurate as expression (27) uses only sums of products (there is no comparison

of the values of attributes).

The next lemma shows that the two properties are also fulfilled by expression

(26).

Lemma 1. The multi-linear extension satisfies Interpolation, Continuity

and Stability of interpolation regarding additivity.

Proof : Property Interpolation is clearly fulfilled by (26).

On the other hand, we have

IN
(∑
S∈S

uDS

)
(x)

=
∑
A⊆I

∏
i∈A

xi − xi
xi − xi

×
∏
i∈I\A

xi − xi
xi − xi

×

(∑
S∈S

uDS (xA∩S , x(S∩I)\A, xS\I)

)
=
∑
S∈S

∑
A⊆I∩S

∏
i∈A

xi − xi
xi − xi

×
∏

i∈(S∩I)\A

xi − xi
xi − xi

TS u
D
S (xA∩S , x(S∩I)\A, xS\I)


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where

TS =
∑

B⊆I\S

∏
i∈B

xi − xi
xi − xi

×
∏

i∈I\(S∪B)

xi − xi
xi − xi

=
∏
i∈I\S

[
xi − xi
xi − xi

+
xi − xi
xi − xi

]
= 1

Hence

IN
(∑
S∈S

uDS

)
(x) =

∑
S∈S
IS
(
uDS
)

(xS)

Hence Interpolation is fulfilled.

To show the continuity, we only have to prove continuity w.r.t. an attribute,

say k ∈ N . Let then x, x′, x′′ ∈ X such that

xi = x′i = x′′i ∀i ∈ N \ {k}

x′k < x′k = xk = x′′k < x′′k and xk ∈ Dk

Let S 3 k and I = {i ∈ N : xi ∈ [a0
i , a

pi
i ] and xi 6∈ Di}. We have

uS(x′S) =
∑

A⊆I∩S

∏
i∈A

xi − xi
xi − xi

×
∏

i∈(I∩S)\A

xi − xi
xi − xi

× x′k − x′k
x′k − x′k

× uDS (xA, x(I∩S)\A, x
′
k, xS\(I∪k))


+

∑
A⊆I∩S

∏
i∈A

xi − xi
xi − xi

×
∏

i∈(I∩S)\A

xi − xi
xi − xi

× x′k − x′k
x′k − x′k

× uDS (xA, x
′
k, x(I∩S)\A, xS\(I∪k))


−−−−→
x′k→xk

∑
A⊆I∩S

∏
i∈A

xi − xi
xi − xi

×
∏

i∈(I∩S)\A

xi − xi
xi − xi

× uDS (xA, x(I∩S)\A, xS\I)

 = uS(xS)

and

uS(x′′S) =
∑

A⊆I∩S

∏
i∈A

xi − xi
xi − xi

×
∏

i∈(I∩S)\A

xi − xi
xi − xi

× x′′k − x′′k
x′′k − x′′k

× uDS (xA, x(I∩S)\A, x
′′
k , xS\(I∪k))


+

∑
A⊆I∩S

∏
i∈A

xi − xi
xi − xi

×
∏

i∈(I∩S)\A

xi − xi
xi − xi

× x′′k − x′′k
x′′k − x′′k

× uDS (xA, x
′′
k , x(I∩S)\A, xS\(I∪k))


−−−−−→
x′′k→xk

∑
A⊆I∩S

∏
i∈A

xi − xi
xi − xi

×
∏

i∈(I∩S)\A

xi − xi
xi − xi

× uDS (xA, x(I∩S)\A, xS\I)

 = uS(xS)

15
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Remark 1. Expression (27) can be put into the linear form

uS(xS) =
∑

zS∈DS

coef S,xS
(zS) uDS (zS) (29)

where coef S,xS
(zS) :=

∏
i∈A

xi−xi

xi−xi
×
∏
i∈(I∩S)\A

xi−xi

xi−xi
if there exists A ⊆ I ∩

S s.t. zS = (xA, x(I∩S)\A, xS\I), and coef S,xS
(zS) := 0 otherwise, are non-

negative coefficients. Hence if we are given a training data set composed of

pairwise comparisons of alternatives, we can learn unknowns UD using Linear

Programming, as for the UTA method or for value function handling interaction

[25].

4. Extension of k-ary Choquet integral

In order to make a connection between k-ary Choquet integrals and the GAI

model (27), we need to generalize the concept of k-ary Choquet integral in order

to integrate the utility functions.

In the GAI model, the counterpart of the reference levels {0, 1, 2, . . . , k} over

each criterion are the elements a0
i , . . . , a

pi
i in Xi that are used to discretize the

attribute space. We set p = (p1, . . . , pn). We need to generalize the k-ary

Choquet integral to use the elements on the attribute space that are chosen by

the DM, rather than reference points {0, 1, 2, . . . , k}. When doing so, there are

two main issues. First of all, the elements in Di are not commensurate across

the criteria. In other words, there is no reason to say that ali should have the

same satisfaction degree than alj , for a level l. Secondly, the elements in Di

are not necessarily ordered from the worst one to the best one according to

the preferences of the DM. In other words, the ordering %i is not necessarily

non-decreasing in Xi. We will handle these two difficulties.

As the attributes do not necessarily have the same number of reference ele-

ments, equation (13) is generalized as follows:

Qp(N) = {0, . . . , p1} × · · · × {0, . . . , pn}. (30)

Relation ≤ on Qp(N) is defined by (see (14))

q ≤ q′ iff aqii -i a
q′i
i ∀i ∈ N. (31)
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We note that Qp(N) equipped with ≤ is a lattice. Generalizing (16), we intro-

duce the concept of a p-ary capacity.

Definition 3. Let p ∈ INN . A p-ary capacity is a function v : Qp(N) → IR

such that

∀q, q′ ∈ Qp(N) s.t. q ≤ q′ , v(q) ≤ v(q′). (32)

Note that we do not impose any normalization condition.

We use the same wording for k-ary (with k ∈ IN) and p-ary (with p ∈ INN )

capacities. We will avoid any confusion by using for k only scalar values and for

p only vector values. The k-ary capacities are particular p-ary capacities, with

p = (k, . . . , k).

As for decomposable decision models, we assume that the overall preference

relation % satisfies weak separability, so that there exists preference relations

%i on the attributes.

4.1. Case where a0
i -i · · · -i a

pi
i

We first consider the classical (and simpler) case where the larger the value

of the attributes, the better, so that a0
i -i · · · -i a

pi
i .

In order to use a Choquet integral, we need to “normalize” the attributes.

Here we do not enforce strong condition such as commensurability. We just

need to define a function (utility function) ui : Xi → IR such that

ui(a
l
i) = l ∀l ∈ {0, . . . , pi}. (33)

We consider here the simplest utility function fulfilling this condition. It per-

forms linear interpolation between two successive points ali and al+1
i in Di, as

for (28). Hence we “normalize” the attribute in the following way (see Figure

4):

ui(xi) =


0 if xi ≤ a0

i

xi−ali
al+1
i −ali

(l + 1) +
al+1
i −xi

al+1
i −ali

l = l +
xi−ali
al+1
i −ali

if ali ≤ xi < al+1
i

pi if xi ≥ apii

(34)

17

 
Documents de travail du Centre d'Economie de la Sorbonne - 2016.04



-
Xi

6

ui

a0
i

s0
a1
i

s1

a2
i

s2

a3
i

s3

Figure 4: Piecewise affine utility function ui with pi = 3.

Let x ∈ X. We define q(x) ∈ Qp(N) by

qi(x) =


0 if xi < a1

i

l if ali ≤ xi < al+1
i (l ∈ {1, . . . , pi − 2})

pi − 1 if xi ≥ api−1
i

(35)

for all i ∈ N .

According to this expression, we have ui(xi) ∈ [qi(x), qi(x) + 1]. An illustra-

tion of q(x) can be found in Figure 5 and 6.

X1

X2

a0
1 a1

1 a2
1 a3

1

a0
2

a1
2

a2
2

a3
2

(a
q1(x)
1 , a

q2(x)
2 )

x

Figure 5: Point x belongs to the square [a11, a
2
1]× [a02, a

1
2]. Hence q1(x) = 1 and q2(x) = 0.

Generalizing (19), we define

∀i ∈ N φi(x) = ui(xi)− qi(x) ∈ [0, 1]. (36)

Figure 6 illustrates the concepts of utilities and φi.
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Crit. 1

Crit. 2

0 1 2 3
0

1

2

3

(u1(x1), u2(x2))φ1(x)

φ2(x)
q(x)

Figure 6: Point x in the space of utilities.

Remark 2. There is a clear connection between the previous definitions and

some notions used in signal compression [30, 31]. In this theory, nearest neigh-

bour quantizer of a point is the element of the lattice that is the closest to this

point. This is close to q(x), which can be defined as the largest element of lattice

Qp(N) that is smaller than vector (u1(x1), . . . , un(xn)). The Voronoi cell of the

lattice associated with q ∈ Qp(N) is the set of points for which q(x) = q. In

our case, the set of point x for which q(x) = q is the hypercube ×i∈N [aqii , a
qi+1
i ].

Lastly, the modulo-Qp(N) operation w.r.t. the lattice is defined as the differ-

ence between the point and the associated nearest neighbour quantizer. We note

that φi(x) is the modulo-Qp(N) operation w.r.t. the lattice of ui(xi) (and could

be denoted by ui(xi) mod Qp(N)). The following table compares the concepts

used in this paper and in signal compression.

Our definitions Counterpart in signal compression

Qp(N) lattice

q(x) nearest neighbour quantizer

×i∈N [a0
i , a

1
i ] basic Voronoi cell of the lattice

×i∈N [aqii , a
qi+1
i ] Voronoi cell associated to q

φi(x) modulo-Qp(N) operation w.r.t. the lattice

Then the Choquet integral w.r.t. v for alternative x is given by (similar to
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(18) and (17))

U∧v (x) = Cµq(x)
(φ(x)) + v(q(x)) (37)

where the capacity µq(x) is given by, for every S ⊆ N

µq(x)(S) = v((q(x) + 1)S , qN\S(x))− v(q(x)), (38)

where ((q(x)+1)S , qN\S(x)) takes value qi(x)+1 if ∈ S and value qi(x) otherwise.

Note that notation U∧v comes from the fact that it corresponds to the Lovász

extension of v.

Clearly, Interpolation is fulfilled (see Figure 7):

U∧v (x) = v(q(x)) ∀x ∈ D.

Moreover if a p-ary capacity v on N takes the form v(A) =
∑
S∈S vS(A ∩ S),

where vS is a pS-ary capacity on S, then for every x ∈ X

U∧v (x) =
∑
S∈S

U∧vS (xS).

X1

X2

a0
1 a1

1 a2
1 a3

1

a0
2

a1
2

a2
2

a3
2

v(0, 0) v(1, 0) v(2, 0) v(3, 0)

v(0, 1) v(1, 1) v(2, 1) v(3, 1)

v(0, 2) v(1, 2) v(2, 2) v(3, 2)

v(0, 3) v(1, 3) v(2, 3) v(3, 3)

Figure 7: Illustration of the fact that the evaluation through U∧v at a point x ∈ X̂ is equal to

v(q(x)). In other words, U∧v (tl1, t
h
2 ) = v(l, h).
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4.2. Case of more general monotonicity conditions

We now consider more general monotonicity condition, e.g. when the pre-

ferred element in Xi is not the largest value.

The problem with the previous expression (37) is that it does not discrim-

inate the cases where %i is locally increasing or decreasing. For instance, in

the definition of the Choquet integral w.r.t. a bi-capacity, we take the absolute

value of the integrand t, see Section 2.1.3. This amounts to reversing the sign

of the utilities. We propose to use a similar approach for attributes that are

locally decreasing around x. Consider q = q(x), see (35). More precisely, for

q ∈ Qp(N), we first identify the attributes that are increasing, decreasing or

constant in [aqii , a
qi+1
i ]:

A+(q) = {i ∈ N , aqi+1
i �i aqii }

A−(q) = {i ∈ N , aqi+1
i ≺i aqii }

A=(q) = {i ∈ N , aqi+1
i ∼i aqii }

For simplicity, we assume that A=(q) = ∅.

We proceed as for the definition of the Choquet integral w.r.t. bi-capacities.

For the elements in ×i∈N [qi, qi+ 1], we need to define two reference points O(q)

and G(q) in ×i∈N{qi, qi + 1} such that Gi(q) �i Oi(q) for all i ∈ N . We obtain

Oi(q) = qi and Gi(q) = qi + 1 if i ∈ A+(q) and Oi(q) = qi + 1 and Gi(q) = qi if

i ∈ A−(q).

Figure 8 illustrates these concepts, in the square [a1
1, a

2
1] × [a0

2, a
1
2], with

q = (1, 0). If the preference is increasing between a1
1 and a2

1 (on attribute X1),

and is decreasing between a0
2 and a1

2 (on attribute X2), then O(q) = (a1
1, a

1
2)

and G(q) = (a2
1, a

0
2).

Then the Choquet integral w.r.t. v for alternative x is defined by

U∧v (x) = CµB
q(x)

(φB(x)) + v(O(q(x))) (39)

where B stands for bipolar and the capacity µBq(x) is given by

µBq (S) = v(GS(q),ON\S(q))− v(O(q)) (40)
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X1

X2

a1
1

↗ a2
1

a0
2

↘

a1
2

O(q)

G(q)

Figure 8: Example of the values of O(q) and G(q) with q = (1, 0). The arrows indicate

the monotonicity on each attribute: ↗ (resp. ↘) when increasing (resp. decreasing) in the

interval according to %i.

and

∀i ∈ N φBi (x) =


xi−a

qi(x)

i

a
qi(x)+1

i −aqi(x)

i

if i ∈ A+(x)

a
qi(x)+1

i −xi

a
qi(x)+1

i −aqi(x)

i

if i ∈ A−(x)
(41)

One can readily see that expression (39) collapses to (37) when %i is strictly

increasing. This is why we keep the same notation U∧v in Sections 4.1 and 4.2.

However, there is a major difference between these two relations.

In (37), we explicitly use a utility function ui defined on Xi from which the

local utility φi(x) is defined. Utility function ui is consistent with %i in the

sense that ui(xi) ≥ ui(yi) iff xi %i yi. On the other hand, there is no reference

to a utility function ui in the definition of φB . Function φB is defined only

locally in each interval [a
qi(x)
i , a

qi(x)+1
i ], whereas we have seen that ui is defined

on the whole set Xi.

4.3. Some properties of the Choquet integral w.r.t. p-ary capacities

We show some properties for the Choquet integral in this section.

Lemma 2. U∧v satisfies Interpolation and Continuity.

The Interpolation property was illustrated in Figure 7.

Proof : Let us first show that U∧v satisfies Continuity. It is already known

that the Choquet integral w.r.t. a usual capacity is continuous. This implies U∧v

22

 
Documents de travail du Centre d'Economie de la Sorbonne - 2016.04



X1

X2

a0
1
↗ a1

1
↗ a2

1
↘ a3

1

a0
2

↗

a1
2

↘
a2

2

↘
a3

2

Figure 9: Example with p1 = p2 = 3. The arrows indicate the monotonicity on each attribute:

↗ (resp. ↘) when increasing (resp. decreasing) in the interval. Hence a01 ≺1 a11 ≺1 a21 �1 a31

and a02 ≺2 a12 �2 a22 �2 a32. Accordingly a21 and a12 are the most preferred values on the two

attributes respectively. The shaded parts represent the areas where φB1 (x) ≥ φB2 (x).

is continuous in the hypercube
∏
i∈N [aqii , a

qi+1
i ] for every q ∈ Qp(N). We just

need to show that U∧v is continuous across the boundaries of these hypercubes.

Let x ∈ X such that J := {i ∈ N : xi ∈ Di \ {apii }} 6= ∅. We wish to show

that U∧v is continuous around x. Set q = q(x). Hence xi = aqii for every i ∈ J .

Consider S ⊆ J . We define q̂ ∈ Qp(N) by

For i ∈ S q̂i + 1 = qi

For i ∈ N \ S q̂i = qi

Then ui(xi) = q̂i if i ∈ J \S and ui(xi) = q̂i + 1 if i ∈ S. Moreover φBi depends

on q̂. We have

φBi (x) =

 1 if i ∈ (S ∩A+) ∪ ((J \ S) ∩A−)

0 if i ∈ (S ∩A−) ∪ (J \ S) ∩A+)
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We can compute U∧v (x) from index vector q̂:

U∧v (x) = CµB
q̂

(φBN\J(x), 1(S∩A+)∪((J\S)∩A−), 0(S∩A−)∪(J\S)∩A+)) + v(O)

=
l∑

j=1

(
φBτ(j)(x)− φBτ(j−1)(x)

)
µBq̂
(
{τ(j), . . . , τ(l)} ∪ (S ∩A+) ∪ ((J \ S) ∩A−)

)
+
(

1− φBτ(l)(x)
)
µBq̂
(
(S ∩A+) ∪ ((J \ S) ∩A−)

)
+ v(O)

where l = |N \ J | and N \ J = {τ(1), . . . , τ(l)}, φBτ(0)(x) := 0 and φBτ(1)(x) ≤

· · · ≤ φBτ(l)(x). The terms appearing in the previous relation are of the form

µBq (K ∪ (S ∩ A+) ∪ ((J \ S) ∩ A−)) with K ⊆ N \ J . We have with L =

K ∪ (S ∩A+) ∪ ((J \ S) ∩A−)

µBq̂ (L) = v(GL(q̂),ON\L(q̂))− v(O(q̂))

= v
(
q̂(L∩A+)∪((N\L)∩A−) + 1, q̂(L∩A−)∪((N\L)∩A−)

)
− v(O(q̂))

= v
(
q̂S∪(K∩A+)∪((N\(K∪J))∩A−) + 1, q̂(J\S)∪(K∩A−)∪((N\(K∪J))∩A+)

)
− v(O(q))

= v
(
qJ , q(K∩A+)∪((N\(K∪J))∩A−) + 1, q(K∩A−)∪((N\(K∪J))∩A+)

)
− v(O(q))

Hence µBq̂ (L) does not depend on S. Therefore U∧v (x) is also independent of S.

Hence U∧v is continuous around x.

Taking the previous expressions with x ∈ D, we obtain that U∧v (aq11 , . . . , a
qn
n ) =

v(q) for every q ∈ Qp(N). Hence U∧v satisfies Interpolation

In this respect, this expression looks like the Lovász extension of the p-ary

capacity, whereas the GAI model appears as the multilinear extension of the

p-ary capacity.

The next result shows monotonicity of U∧v .

Lemma 3. For any i ∈ N , U∧v is monotone relatively to %i.

Proof : It is sufficient to show that U∧v is monotone w.r.t. each attribute Xi

in each interval [xqii , x
qi+1
i ].

Assume first that i ∈ A+(q). Then Oi(q) = qi and Gi(q) = qi + 1. Hence by

(40), µBq is monotonic w.r.t. i (i.e. µBq (S∪{i}) ≥ µBq (S)). Thus U∧v is monotone

w.r.t. each attribute Xi, see (39).
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Consider now i ∈ A−(q). Then Oi(q) = qi + 1 and Gi(q) = qi. Hence µBq

is anti-monotonic w.r.t. i (i.e. µBq (S ∪ {i}) ≤ µBq (S)). As φBi is anti-monotone

w.r.t. xi in [xqii , x
qi+1
i ] (see (41)), we conclude that U∧v is monotone w.r.t. each

attribute Xi.

The next lemma shows that Property Stability of interpolation regard-

ing additivity is fulfilled.

Lemma 4. If a p-ary capacity v on N takes the form v(A) =
∑
S∈S vS(A∩S),

where vS is a pS-ary capacity on S, then for every x ∈ X

U∧v (x) =
∑
S∈S

U∧vS (xS).

Proof : Clear as the Choquet integral is linear in the capacity.

Finally U∧v satisfies some compensation property.

Lemma 5. For every q ∈ Qp(N) and every λ ∈ (0, 1), we have

U∧v

(
O(q) + (G(q)−O(q))λ

)
= U∧v (O(q)) + λ

(
U∧v (G(q))− U∧v (O(q))

)
.

Proof : Let q ∈ Qp(N) and x = O(q) + (G(q) − O(q))λ. By definition of O

and G, we have φB1 (x) = · · · = φBn (x) = λ. Hence

U∧v (x) = CµB
q(x)

(λ, . . . , λ) + v(O(q)) = (v(G(q))− v(O(q))) λ+ v(O(q))

We conclude as v(O(q)) = U∧v (O(q)) and v(G(q)) = U∧v (G(q)) (see Lemma 2).

4.4. Link between the GAI model and p-ary capacities

We are now in a position to compare UΠ (see (28)) and U∧v (see (39)).
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A GAI model is characterized by a decomposition relation (23). UΠ is defined

from the knowledge of uDS (qS) for all S ∈ S and all qS ∈ DS . Note that the

function UD : D → IR defined by

UD(q) =
∑
S∈S

uDS (qS)

corresponds to a p-ary capacity v, as already observed in Section 2.3: For every

q ∈ Qp(N)

UD(aq11 , . . . , a
qn
n ) = v(q).

According to (26) and Lemma 2 (Property Interpolation), UΠ defined from

UD and U∧v defined from v are identical on D: for all x ∈ D

UΠ(x) = UD(x) = v(q(x)) = U∧v (x).

Hence UΠ and U∧v return the same value on D. The only difference between UΠ

and U∧v is that UΠ is the multi-linear extension of the values {UD(x) , x ∈ D}

(see (27)), whereas U∧v is the Lovász extension of the values {UD(x) , x ∈ D}

(see (37)).

5. Conclusion

We have proposed a comparison between the Choquet integral and the GAI

model. To make this comparison possible, the Choquet integral is taken w.r.t.

a p-ary capacity, where p is a vector depicting the number of reference elements

that are picked-up from each attribute. When the attributes are discrete, there

is a clear correspondence between the Choquet integral and the GAI model as

they both collapse to a p-ary capacity.

As a result, we have focused on the situation where attributes are continuous

in this paper. These two models are based on interpolation from values assigned

to pre-defined points. The Choquet integral and the GAI model coincide on the

grid formed of the reference elements or levels. This restriction corresponds to a

p-ary capacity. These two models differ then only by the interpolation method

that is used.
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To obtain this comparison, we extended the GAI model by introducing in-

terpolation and also extended the Choquet integral w.r.t. a p-ary capacity to

allow more complex monotonicity conditions.

Concerning the GAI model, we introduced a multilinear extension over a dis-

crete set of values for the attributes. This interpolation satisfies three properties:

continuity, stability regarding additivity, and an extension property saying that

the interpolated model gives back the discrete model on the grid.

The usual model based on a k-ary capacity (where k is a scalar) is decompos-

able, demarcating the marginal utility functions and the aggregation function –

namely a Choquet integral. We propose an expression of the p-ary Choquet in-

tegral which is not decomposable. Instead of having marginal utility functions,

the values of attributes modulo the grid of the reference levels are directly used

in the interpolation à la Lóvasz. This modulo operation amounts to identifying

the cell in the grid where this point belongs to. The restriction of the p-ary

capacity to this cell returns a usual capacity. The marginal utility functions are

then replaced by the distance of x to the cell. Depending on the local mono-

tonicity of the restricted capacity, the interpolation is performed in the same

spirit as for a bi-capacity.
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