
 
 

 

Documents de Travail du 
Centre d’Economie de la Sorbonne 

 

 
 

 
 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Non-parametric news impact curve: 

a variational approach 

 

Matthieu GARCIN, Clément GOULET 

 

2015.86RR 

Version révisée 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647  Paris Cedex 13 
http://centredeconomiesorbonne.univ-paris1.fr/ 

ISSN : 1955-611X 

 



Non-parametric news impact curve: a

variational approach

Matthieu Garcin∗, Clément Goulet†‡

February 2, 2017

Abstract

In this paper, we propose an innovative algorithm for mod-

elling the news impact curve. The news impact curve provides

a non-linear relation between past returns and current volatility

and thus enables to forecast volatility. Our news impact curve is

the solution of a dynamic optimization problem based on varia-

tional calculus. Consequently, it is a non-parametric and smooth
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curve. The technique we propose is directly inspired from noise

removal techniques in signal theory. To our knowledge, this is

the first time that such a method is used for volatility modelling.

Applications on simulated heteroskedastic processes as well as

on financial data show a better accuracy in estimation and fore-

cast for this approach than for standard parametric (symmet-

ric or asymmetric ARCH) or non-parametric (Kernel-ARCH)

econometric techniques.

Keywords— Volatility modelling, news impact curve, calculus of vari-

ations, wavelet theory, ARCH

Highlights

. aim : to model the News impact curve : function linking volatility

to past financial returns

. considering a sequence of financial returns as a signal disrupted

by a multiplicative noise : a new perspective

. Estimation procedure based on wavelet and variational calculus:

a new methodology

. study and comparison of the procedure on simulated and financial

data
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1 Introduction

For the last three decades, various models have been proposed for fore-

casting volatility. Volatility has many applications in finance and its

forecast is indeed useful in risk measurement, portfolio management,

trading strategies or options pricing. One way of forecasting volatil-

ity is to take advantage of its interaction with returns. The news im-

pact curve defines the relation between past returns and current volatil-

ity [15]. This relation has been well described and presents two notable

characteristics. First, it is a function that decreases for negative past

returns and then increases for positive past returns. It thus reaches its

minimum around 0: the weaker the lagged returns in absolute value,

the weaker the uncertainty concerning the next return. Second, it is

an asymmetric function. Indeed, ”bad news” (high negative returns)

create more volatility than ”good news” (high positive returns). Hence,

volatility models have to take account of these two features. For exam-

ple, ARCH models impose a symmetric and hyperbolic relation between

past returns and current conditional volatility [14].

Parameters can be added to the news impact curve to take into account

returns asymmetry. GJR-GARCH [24] and E-GARCH [36] are such

parametric asymmetric models. They are extensions of the GARCH

model, which has been introduced by Bollerslev [5] and which de-

picts the self-dependence of the volatility across time. In other words,

GARCH models consider volatility as a weighted sum of a news impact

curve and of past volatility realizations. All these parametric hyper-

bolic news impact curves have some limits. First, adding parameters

3

Preliminary version – February 2, 2017

Documents de travail du Centre d'Economie de la Sorbonne - 2015.86RR (Version révisée)



for better matching statistical properties of volatility increases the esti-

mation complexity. As a consequence, their estimation requires a large

number of observations to converge. Then, since self-dependence of the

volatility results in its persistence, GARCH-oriented models may be

slow to react to extreme market moves [30].

Semi-parametric and non-parametric approaches overpass the constraint

of a hyperbolic relation between volatility and past returns. Pagan and

Schwert (1990) developed a smooth function, based on a Nadaraya-

Watson estimator, to model conditional variance [38]. Gouriéroux and

Montfort (1992) are the first to build a semi-parametric equation (QTARCH)

to model conditional mean and conditional variance [25]. Their ap-

proach mixes Markovian theory and parametric step functions. Härdle

and Tsybakov (1997) extended their work to a larger class of step func-

tions [26]. Linton and Mammen (2005) built a semi-parametric estimate

of the news impact curve using local linear estimators [31]. This last

model differs from others by the inclusion of the volatility persistence.

By iterating local linear regressions, one can get a fully nonparametric

estimate too [6, 16]. These approaches are based on the minimization of

a quadratic error. However, the local linear models may lead to a neg-

ative volatility estimate. In this case, to improve the accuracy of the

estimation, the tilted nonparametric approach introduces a weighted

local linear method for the volatility in which the weights result from

the minimization of an empirical likelihood of the observed returns [47].

Other nonparametric approaches for ARCH or GARCH models, con-

sisting in minimizing a squared error, include polynomial splines [44]
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or neural networks [18]. Other approaches have been developed to take

into account the long memory property of volatility and non-parametric

news impact curves [27, 28, 29].

Most of the mentioned methods are based on non-parametric regres-

sions and estimators rely on the minimization of some quadratic error.

The tilted nonparametric estimation takes into account the empirical

distribution of the observed returns but does not relate to the distri-

bution of residuals [47]. In the present paper, instead of estimating

the news impact curve by minimizing a quadratic error, we maximize

a sum of likelihoods over all the observations, thus relating to the dis-

tribution of the residuals. It allows a higher consistence between the

empirical distribution of the innovations and what is assumed by the

model. Moreover, in order to avoid overfitting, we impose a smoothness

constraint on the news impact curve. Therefore, our problem consists

in minimizing a sum over all the observations of a functional of the

news impact curve and of its increments. The approach we propose is

directly inspired from noise removal procedures in signal theory, where

an asset log-return is defined as a signal disrupted by an additive het-

eroskedastic noise. In the finance framework, the signal is the log-return

expectation and the standard deviation of the noise is the volatility. Es-

timating the news impact curve is therefore similar to estimating noise

standard deviations. The variational calculus theory provides a natural

solution to this problem. In signal theory, noise removal based on vari-

ational calculus is known as total-variation denoising. For a complete

review on these techniques, we refer the reader to [41, 7, 42, 2]. The
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literature in economics and finance mentions various applications of the

calculus of variations, for example for optimal income allocation [45],

hedge fund asset allocation [10], foreign exchange rate predictions [20]

or studies of options price sensitivities with stochastic variational cal-

culus (Malliavin calculus) [33]. A goal of the present paper is to show

that signal-theory techniques are suitable in volatility modelling and

can be use with success in financial issues.

The model estimated by our new algorithm is parametric insofar as

it states Gaussian innovations. The specification of a parametric dis-

tribution for the innovations is inherent to the choice of the estima-

tion method, which is based on maximizing a likelihood. However, the

method used, based on variational calculus, is non-parametric. As a

consequence, our estimate of the news impact curve is a non-parametric

function.

The paper is organized as follows. In section 2, we present our model

and a short algorithm for its estimation. In section 3, we apply it on

simulated data and on three financial sets of log-returns. Our model

is compared to four standard parametric and non-parametric mod-

els. To compare out-of-sample forecast properties, we use the Diebold-

Mariano-West procedure [11, 46]. On all the datasets tested, our model

presents globally better results than ARCH, NP-ARCH, GARCH and

GJR-GARCH, in and out of sample.
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2 Model and estimation

We consider the following model, for t ∈ {0, ..., T}:


yt = xt + εt

εt =
√
htzt

√
ht = g(εt−1, ..., εt−l),

(1)

in which y is the observed price return of an asset, x is an unknown

deterministic function corresponding to the return of the fundamental

asset value, l ≥ 1 is an integer indicating the number of lags in the

information and εt is the noisy part of the observed price at time t.

More precisely, for every t, the innovation zt is a unit Gaussian random

variable which is independent of zs, for every s 6= t, and of xu, for every

u. Moreover, g is an unknown deterministic and positive function, such

that g(Et) =
√
ht, where Et is the lagged information of past residuals,

(εt−1, ..., εt−l). We can easily compute the first unconditional moment

and the conditional variance of the model defined by equation (1):

 E [yt] = xt

V [yt|It] = ht,

where It = {y0, ..., yt−1}.

In this model, the conditional standard deviation of returns is a function

of past innovations. This model is a very general form of an ARCH-

type model with time-varying trend. We could set a parametric form
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to g, to recover a standard ARCH model but we prefer to define a non-

parametric framework both for the trend, x, and for the news impact

curve, g.

First, the time-dependent trend x is estimated by a wavelet denoising

approach. Wavelets are commonly used to filter an additive noise, that

is to separate as accurately as possible xt and εt while observing their

sum, yt [32]. More precisely, wavelets are used to decompose a signal,

here y, in different frequencies. The signal y can be written as the

sum of a gross structure and details, which are often very erratic. An

important part of these details corresponds to a noise that we want

to eliminate. Standard wavelet denoising rules enable to minimize the

quadratic error between the pure and unknown trend x and its esti-

mate. These rules stipulate that a wavelet coefficient1 should be above

a certain threshold if it is relevant: it must be kept as such. On the

contrary, small coefficients are supposed to be mostly due to a noise:

they can be shrunk to zero.

Second, we use a variational approach for estimating the news impact

curve. Such a method is not usual in econometrics. However, its use

naturally arises as we explain in the following lines. For clarity pur-

poses, we only focus on the case of a unique delay in g, just like in

an ARCH(1) model. We now assume that x has first been estimated.2

Then g is such that :

g(εt−1)zt = yt − xt. (2)

1That is the part of y decomposed on a particular frequency at a particular date.
2Our method is iterative: we alternate the estimation of x given g and of g given

x. We initiate the iteration by the estimation of x for a basic constant volatility
term g.
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Given εt−1, we can estimate g(Et) = g(εt−1) by maximizing a likelihood.

The set of the sorted lagged observed innovations Eθ(0) ≤ Eθ(1) ≤ ... ≤

Eθ(T ), where θ is an ordering function, form a discretization of an in-

terval of R. Therefore, we estimate g by maximizing the log-likelihood

corresponding to equation (2) at each time, that is we maximize the

log-likelihood over the whole time interval:

T∑
t=0

L̃(t,G(t)), (3)

where we set G(t) = g(Eθ(t)) = g(εθ(t)−1) for each t and where L̃ is the

log-likelihood. The exact expression of L̃, for a Gaussian noise, is given

by proposition 1, whose proof is given in Appendix A.4.

Proposition 1. The log-likelihood of yθ(t)−xθ(t) given G(t), for a Gaus-

sian noise, is:

L̃(t,G(t)) = C + log(G(t)) +
1

2

(
yθ(t) − xθ(t)
G(t)

)2

,

where C is a constant term.
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In a continuous setting,3 equation (3) would become:

∫ T

0

L̃(t,G(t))dt. (4)

Up to now, maximizing such an integral is similar to maximizing the

integrand and it does not need any unusual technique. However, by

doing so, the estimated value of G(t) will be disconnected from the

estimated value of G(s), for any s 6= t. This can provide an erratic

news impact curve. Moreover, such a method would lead to low in-

sample errors and high out-of-sample errors. Such an occurrence of

overfitting is often associated to non-parametric models. We get past it

by adding a smoothing term in equation (4), which aims at minimizing

the quadratic variation of G. We thus define a new functional form

L
(
t,G(t),

d

dt
G(t)

)
= µL̃(t,G(t)) +

1

2

(
d

dt
G(t)

)2

,

3Our model is written in equation (1) in discrete time, with the time t in a subset
of integers, like in most of the literature about ARCH models. However, some papers
deal with the continuous limit of ARCH models [35] or even of GARCH models [3, 9].
In such a continuous framework, our model would be the limit, when τ → 0, of

ytτ = xtτ + εtτ
εtτ =

√
htτztτ√

htτ = g(ε(t−1)τ , ..., ε(t−l)τ ),

for t still an integer. We thus indifferently write a discrete sum like in equation (3),
which is consistent with the classical ARCH models, or a continuous integral like
in equation (4), which is consistent with the variational framework. In particular,
when we write a derivative dG(t)/dt in this continuous setting, like in equation (5),
it must be interpreted, in the basic discrete framework, as (G(t)−G(t− τ))/τ with
τ = 1.
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so that we now look for an extremum of the equation

∫ T

0

L
(
t,G(t),

d

dt
G(t)

)
dt. (5)

The optimization problem defined in equation (5) cannot be solved as

successive independent optimization problems anymore. We thus need

the help of the variational calculus. In particular, we use the Euler-

Lagrange equation, so as to transform the optimization of an integral

in several interrelated optimizations indexed by t.

Proposition 2. Let G be two times differentiable and L be one time dif-

ferentiable and defined by equation (5). Ĝ allows to reach an extremum

of L if and only if Ĝ is solution of the Euler-Lagrange equation:

∀t ∈ (0, T ), 0 =
∂

∂G
L
(
t,G(t),

d

dt
G(t)

)
− d

dt

∂

∂ d
dt
G
L
(
t,G(t),

d

dt
G(t)

)
.

This proposition is a standard result of the variational theory. A proof

can be found in [23]. This equation leads to a concise optimization

problem, which finally enables to get an estimate of G and g.

Our approach can be seen as the denoising of a signal yt in order to

recover the time-dependent trend of the returns, xt, which is contam-

inated by an heteroskedastic noise with volatility g. We thus have to

estimate successively the trend xt and the news impact curve, g. From

a practical point of view, we iterate the estimation of x and the esti-

mation of g, since the estimate of g is used in x and vice versa. The

algorithm can be summarized as in the following pseudo-code:4

4These lines of pseudo-code only present the main architecture of the
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1 WaveletCoefficients = GetWaveletCoefficients(Y);

2 G = Median(WaveletCoefficients)/0.6745 ;

3 for (i = 1; i <= NumberIteration1; i++){

4 FilteredWaveletCoefficients =

GetFilteredCoefficients(WaveletCoefficients,NoiseAmplitude=G);

5 X = GetWaveletReconstruction(FilteredWaveletCoefficients);

6 Theta = GetOrderingIndexes(Y-X);

7 for (n = 1; n <= NumberIteration2; n++){

8 for (t = 1; t <= T ; t++){

9 G(t) = G(t)+delta*(G(t+1)-2*G(t)+G(t-1)

-mu*(G(t)ˆ2-(Y(Theta(t))-X(Theta(t)))ˆ2)/G(t)ˆ3);}}}

The algorithm for estimating g is more detailed in Appendix A, as well

as some possible refinements exposed in Appendix A.3. We call our new

model the wavelet-variational ARCH, later WV-ARCH in this paper.

From the partial differential equation in Proposition 2, the algorithm

we proposed provide a numerical solution to our problem using stan-

dard finite-difference method. Moreover, thanks to the simple form of

the Euler-Lagrange equation, the WV-ARCH could easily be extended

algorithm. They refer to functions with explicit name, which also ex-
ist in many programming language but under another name. Specifically,
GetWaveletCoefficients creates a vector of wavelet coefficients, Median calcu-
lates a median, GetF ilteredCoefficients applies a threshold filter to wavelet co-
efficients, GetWaveletReconstruction computes an inverse wavelet transform and
GetOrderingIndexes provides the permutation allowing to sort in ascending order
the coordinates of a vector. The loops iterate until NumberIteration1 and Num-
berIteration2. A convergence criterion can be added so as to break the loop as soon
as the likelihood of the model reaches a steady state.
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to other probability distributions of the noise than the Gaussian law,

such as Student-t or Poisson laws. In addition, results concerning mul-

tidimensional variational calculus would allow generalizing easily the

WV-ARCH either to a WV-GARCH or to a multivariate WV-ARCH.

These two points are ways to improve our model and should motivate

the use of the WV-ARCH for volatility modelling.

3 Applications

3.1 Simulated data

In this section, we compare estimation and out-of-sample performances

of the WV-ARCH model with ARCH, NP-ARCH, GARCH and GJR-

GARCH models, as defined in 1, for a simulated process {st, t ∈ N}. We

get the simulated process from Linton and Mammen (2005), which com-

pared the estimation accuracy of non-parametric news impact curves

with a simulated process [31]. Following this, we impose an asymmetric

volatility process:

 st =
√
htzt

ht = ω + αs2
t−1 + βht−1 + θ1st−1<0s

2
t−1,

(6)

with {zt} a set of independent random unit Gaussian variables and

with the same values for the parameters than in the mentioned paper:

ω = 0.2, α = 0.06, β = 0.9 and θ = 0.03.

We estimate on the first 1000 observations a WV-ARCH(1), an ARCH(1)
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Model Equation

ARCH(1) ht = ω + αε2
t−1

NP-ARCH(1)
√
ht = m(εt−1)

GARCH(1,1) ht = ω + αε2
t−1 + βht−1

GJR-GARCH (1,1) ht = ω + αε2
t−1 + βht−1 + θ1εt−1<0ε

2
t−1

Table 1: Time series models.

Each model is defined by three equations: the first

two are shared by all the models (yt = xt + εt

and εt =
√
htzt), the third one is specific and

defines the volatility, as written in the table. All

the innovation processes (zt)t are assumed to be

standard Gaussian variables. In ARCH-NP, m is

a kernel function.

and a non-parametric ARCH(1) model. The WV-ARCH model with

number of lags l = 1 is estimated by the algorithm exposed in the previ-

ous section but without the wavelet part: no drift is assumed, neither for

WV-ARCH nor for the other models. The ARCH model is estimated

by a maximum-likelihood method and the non-parametric ARCH by

the Pagan-Schwert procedure [38]. The accuracy of the estimation of

the three models is gauged by the metrics gathered in Table 2.
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Mean Variance Skewness Excess kurtosis Log-lik. K.-S. p-value
ARCH 3.47e− 2

(23.8%)
0.999
(85.7%)

0.050
(51.7%)

2.10
(<0.1%)

-1418.6 3.6%

NP-ARCH 1.51e− 2
(57.8%)

0.998
(83.9%)

−0.125
(10.4%)

1.44
(<0.1%)

-1417.3 16.8%

WV-ARCH 3.46e− 2
(23.9%)

0.993
(76.0%)

−0.016
(83.0%)

−0.32
(2.0%)

-1415.5 47.8%

GARCH 4.22e− 2
(22.2%)

1.000
(98.4%)

0.077
(30.4%)

0.06
(58.5%)

-1416.3 32.4%

GJR-GARCH 1.26e− 2
(64.9%)

1.000
(97.3%)

−0.072
(30.8%)

0.04
(63.1%)

-1413.9 34.7%

Table 2: Gaussian innovations: Four first moments of the innovations, as well

as log-likelihood of the estimated model and p-value of a normality test for

the innovations. Models are estimated on the first 1000 observations of the

simulated process {st, t ∈ N}. The normality test is a Kolmogorov-Smirnov

test. Under the four first moments is indicated the p-value of the moment

for the null hypothesis of a standard Gaussian distribution. The tests are

respectively: T-test, F-test, D’Agostino test, Anscombe-Glynn test.

Since the random variables zt in the simulated process are Gaussian,

then the innovations are expected to be close to unit Gaussian random

variables. In Table 2, we observe that the WV-ARCH innovation distri-

bution better fits aN (0, 1)-distribution than do ARCH and NP-ARCH.

The innovations of each of the three models have a mean close to zero,

and the innovations of WV-ARCH and ARCH have a variance close to

1. Moreover, while the innovations of both ARCH and NP-ARCH are

leptokurtic and quite asymmetric, WV-ARCH’s skewness and kurto-

sis are close to zero. Globally, the higher Gaussianity of WV-ARCH’s

innovations is highlighted by the higher likelihood and by the larger

p-value for a normality test.

Models introducing persistence such as GARCH and GJR-GARCH are

also tested. It is expected to better fit the simulated process with
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such models because the dynamic of {st, t ∈ N} is defined by a GJR-

GARCH(1,1) process. In terms of likelihood, the GJR-GARCH model

indeed slightly better fits the simulated process, whereas the accuracy

of the simple GARCH model is similar to the WV-ARCH. In particular,

the skewness of the residual is closer to zero for the WV-ARCH than

for both the GARCH and GJR-GARCH models.

We also make out-of-sample forecasts. WV-ARCH, ARCH, NP-ARCH,

GARCH and GJR-GARCH are re-estimated at each time step using a

rolling window of length H = 500. In a realistic framework, the volatil-

ity is not directly observable. We thus have to choose a proxy measure

of the volatility to estimate the out-of-sample accuracy of the model.

This measure is a benchmark for our volatility forecasts. Two non-

parametric measures are commonly used in the volatility literature: the

realized volatility and the absolute-return volatility [48]. As absolute

returns are a noisy measure of volatility, we choose a kernel-estimator

proxy of realized volatility [4].

To compare by pairs the forecast accuracy between the three models,

we choose a criterion reflecting the accuracy, that is the ability of the

predicted volatility, ĥt, to depict the proxied realized volatility, σt. It

is done with a so-called loss function, which satisfies two conditions:

to be robust both to the noise induced by the volatility proxy and

to the conditional distribution of log-returns (especially their first two

moments). Patton and Sheppard [39] demonstrated that the QLIKE

loss function satisfies these two conditions. The QLIKE loss function

is defined by:
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L(σ2
t , ĥt) = −1− log

(
σ2
t

ĥt

)
+
σ2
t

ĥt
.

The higher L, the less accurate the model.

We then compare the volatility forecasts of two models using a Diebold-

Mariano-West test (DMW)[11, 46] with a QLIKE loss function. WV-

ARCH, ARCH, NP-ARCH, GARCH and GJR-GARCH are estimated

on a rolling window of size H = 500. We thus make a first forecast in

time H + 1. We iterate by estimating the model on the data at times

t to t + H − 1 and make a forecast for time t + H, t ranging from 1

to T = 500. The DMW test statistic for the T forecasts of each of

two models, DMWT , is computed by taking the difference of the loss

functions of the two models:

dT =
1

T

H+T∑
t=H+1

[
L(σ2

t , ĥt,1)− L(σ2
t , ĥt,2)

]
,

where ĥt,i is the forecast provided by model i. By definition:

DMWT =

√
TdT√

ˆavar(
√
TdT )

,

where ˆavar is the Newey-West long-run variance estimator of the re-

scaled sample mean
√
TdT [37].

Table 3 presents the results of DMW tests for the two models compared

to WV-ARCH. Among all the tested ARCH-type models, WV-ARCH

has the smallest QLIKE loss function. Its forecast ability is signifi-
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cantly higher since, in addition, the test statistic of DMW test permits

to reject, respectively at 99% and 90% confidence level, the equality

of losses with ARCH and NP-ARCH. However, GARCH-type models,

which are closer to the definition of the simulated process, predict sig-

nificantly better than the WV-ARCH.

Model QLIKE DMWT vs WV-ARCH
ARCH 9.45e− 2 4.00***

NP-ARCH 7.27e− 2 1.71*
WV-ARCH 6.72e− 2 -

GARCH 3.27e− 2 -3.44***
GJR-GARCH 2.93e− 2 -3.66***

Table 3: Gaussian innovations: QLIKE losses and DMW vs WV-ARCH

statistics. *, ** and *** signify rejecting the null hypothesis of equal losses

for respectively 90%, 95% and 99% confidence levels.

In conclusion, WV-ARCH has better estimation results and shows a

better out-of-sample forecast accuracy on simulated data than the ARCH

and NP-ARCH models. However, the GARCH and GJR-GARCH mod-

els are more accurate, in particular out of sample. This is true for

Gaussian innovations. We now want to illustrate that the superiority

of GARCH-type models on the WV-ARCH model does not hold in more

realistic frameworks. It will be highlighted in the next section, which

deals with financial data, but it can also be underlined by simulations,

in which the innovation is not a Gaussian but a Student’s random vari-

able with 8 degrees of freedom. We also change the parameters of the

model of the simulated process: now, α = 0.2 and β = 0.1.

In this Student’s framework, the estimation technique is unchanged.

More precisely, this case depicts a model error, in which we try to

18

Preliminary version – February 2, 2017

Documents de travail du Centre d'Economie de la Sorbonne - 2015.86RR (Version révisée)



estimate five Gaussian models whereas the simulated dynamic has Stu-

dent’s innovations. Table 4 shows in-sample results and Table 5 out-

of-sample results. It is shown that the WV-ARCH model is better

specified than the four other models, including GARCH-type models:

it has a higher likelihood and a very good normality test. More strik-

ingly, the leptokurtic innovations in the simulated process result in

leptokurtic residuals for the ARCH, NP-ARCH, GARCH and GJR-

GARCH models, whereas the WV-ARCH model has residuals with no

positive excess kurtosis. The WV-ARCH, thanks to its nonparamet-

ric news impact curve estimated by maximizing the likelihood, is thus

able to depict leptokurtic dynamics by the mean of a simple Gaussian

model. The superiority of the WV-ARCH model over the four other

models is confirmed significantly out of sample. Besides, GARCH and

GJR-GARCH models better perform out of sample than ARCH and

NP-ARCH models. The superiority of the WV-ARCH model among

the ARCH-type models is thus even more striking that it is the only

ARCH-type model we tested to do better than GARCH-type models.

We suppose that the superiority of the WV-ARCH model stems from

the combination of a maximum-likelihood estimation technique and of a

non-parametric news impact curve, since the ARCH and the NP-ARCH

models each have only one of these two features.
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Mean Variance Skewness Excess kurtosis Log-lik. K.-S. p-value
ARCH −9.73e− 3

(69.4%)
1.001
(86.9%)

0.173
(2.47%)

1.91
(<0.1%)

-1419.2 25.19%

NP-ARCH −1.21e− 2
(65.8%)

1.124
(0.05%)

0.126
(10.0%)

1.50
(<0.1%)

-1480.7 84.75%

WV-ARCH −1.64e− 2
(54.5%)

1.000
(89.1%)

0.054
(48.1%)

−0.26
(6.10%)

-1418.6 73.80%

GARCH −9.38e− 3
(70.2%)

1.000
(87.8%)

0.175
(2.31%)

1.93
(<0.1%)

-1418.9 23.32%

GJR-GARCH −8.47e− 3
(88.1%)

1.006
(82.7%)

0.167
(3.02%)

1.95
(<0.1%)

-1421.4 33.65%

Table 4: Student’s innovations of the simulated process: Four first moments

of the innovations, as well as log-likelihood of the estimated model and p-

value of a normality test for the innovations. Models are estimated on the

first 1000 observations of the simulated process {st, t ∈ N}. The normality

test is a Kolmogorov-Smirnov test. Under the four first moments is indicated

the p-value of the moment for the null hypothesis of a standard Gaussian

distribution. The tests are respectively: T-test, F-test, D’Agostino test,

Anscombe-Glynn test.

Model QLIKE DMWT vs WV-ARCH
ARCH 2.61e− 2 2.53***

NP-ARCH 6.25e− 2 3.82***
WV-ARCH 1.97e− 2 -

GARCH 2.31e− 2 1.40**
GJR-GARCH 2.39e− 2 1.74**

Table 5: Student’s innovations of the simulated process: QLIKE losses and

DMW vs WV-ARCH statistics. *, ** and *** signify rejecting the null

hypothesis of equal losses for respectively 90%, 95% and 99% confidence

levels.

3.2 Financial data

We now apply the model to daily financial data. We consider three

stock indexes: S&P 500, FTSE 100 and DAX. First, we present the

results of the algorithm for the estimation of the news impact curve
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g. Then, we forecast the instantaneous volatility and we compare the

obtained results with other conditional volatility models.

In the applicative part of this paper, we only provide g for l = 1.

The main challenge of the WV-ARCH model is to provide a relevant

estimate of g. As the theoretical form g for an observable system is

unknown, we cannot compare graphically the estimate ĝ to g. To over-

come this issue, we compare each estimated news impact curve ĝ to an

estimate σt of the realized volatility5.

Figure 1 shows an example of the estimation of g for S&P 500 log-

returns between the 3rd of January 2000 and the 24th of August 2007.

For the three log-return series used, we obtain a relationship between

the instantaneous innovations and the one-time-ahead volatility which

captures both returns asymmetry and volatility clustering. The clus-

tering effect occurs because high returns in absolute value are followed

by high volatility. The asymmetry is striking in Figure 1, in which

the distance between our non-parametric news impact curve and the

asymptotic line of the ARCH hyperbolic news impact curve is much

bigger on the left than on the right. For the particular case of stock

returns, the returns asymmetry can be interpreted as the leverage effect.

To validate the model we designed, we compare it to the classical time

series framework. We treat four well-known models, whose equations

are given in Table 1: the ARCH model [14], the non-parametric ARCH

model based on Nadaraya-Watson kernel estimator [38], GARCH(1,1) [5]

5An estimate of the realized volatility for S&P 500, FTSE 100 and DAX is avail-
able on Oxford-Man Institute realized library. The realized volatility is estimated
using a Kernel method [1].
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Figure 1: Estimates of g for S&P 500 log-returns.

The bullet points are the realized volatility, the

red line is the estimate of g after one iteration

in the first loop indexed by i of the pseudocode

presented in section 2. The blue line is the news

impact curve estimated for an ARCH(1) model.

and the GJR-GARCH(1,1) [24]. To improve the accuracy and the fair-

ness of the comparisons, we replaced the constant drift term in all

the time series model by a moving drift term, xt, obtained by wavelet

shrinkage.

First, we estimate the five models between the 3rd of January 2000

and the 24th of August 2007 (approximately 2000 observations) and

we study the distribution of the innovations obtained. Second, we re-

cursively forecast the volatility. Finally we study forecast errors.

3.2.1 In-sample estimation

To find the model that better reproduces the stylised facts of log-

returns, we compare their residuals. The purpose of this study is to
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find whether our model better matches the statistical properties of fi-

nancial assets log-returns. Various papers have studied these statistical

properties [34, 8, 40]. We focus on five stylised facts: conditional het-

eroskedasticity, volatility clustering, leverage effects, fat tails and asym-

metric distributions. A model reflecting those stylised facts should have

residuals consistent with the distribution specified in the model. It is

thus expected from the innovations of all these Gaussian models to

have moments close to those of a unit Gaussian. In particular, we focus

on the four first moments. We also expect that the innovations pass

a Gaussian test. And finally, a significantly better model will have a

higher likelihood. We gather those statistics for the five models on S&P

500, FTSE 100 and DAX in Table 6.

The estimates of the WV-ARCH model are obtained after only one

iteration of our first loop, indexed by i, in the pseudocode provided in

Section 2.6 By doing so, all the tested models have the same estimated

trend xt, which does not depend on our non-parametric news impact

curve g.

6For a practical use, more iterations can provide a slightly higher accuracy in the
estimation of the WV-ARCH model. However, by doing so, the drift incorporates
iterated estimations of the news impact curve. Therefore, in order to make a fair
comparison of all the models, we restrict to only one iteration so that the drift does
not depend on the estimated non-parametric news impact curve. It can thus be
used as a mutual drift for all the models.
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S&P 500
Model Mean Variance Skewness Excess Kurtosis Log-lik. K.-S. p-value
ARCH −5.28e− 3

(81.4%)
1.005
(93.8%)

0.116
(3.4%)

1.65
(<0.1%)

-2842 <0.1%

NP-ARCH 2.18e− 2
(32.0%)

0.966
(23.9%)

0.170
(0.2%)

0.91
(<0.1%)

-2803 8.9%

GARCH −7.45e− 3
(74.0%)

1.006
(91.4%)

−0.144
(0.8%)

1.10
(<0.1%)

-2843 35.6%

GJR-GARCH −2.44e− 2
(27.6%)

1.006
(93.0%)

−0.263
(<0.1%)

1.20
(<0.1%)

-2843 28.6%

WV-ARCH −1.32e− 3
(95.1%)

0.929
(1.7%)

0.014
(80.1%)

−0.62
(<0.1%)

-2766 29.5%

FTSE 100
Model Mean Variance Skewness Excess Kurtosis Log-lik. K.-S. p-value
ARCH −5.56e− 3

(80.4%)
1.005
(95.0%)

−0.078
(15.6%)

2.10
(<0.1%)

-2842 < 0.1%

NP-ARCH 8.61e− 3
(70.0%)

0.996
(82.9%)

0.037
(49.6%)

1.08
(<0.1%)

-2833 3.3%

GARCH −8.48e− 3
(70.5%)

1.007
(88.3%)

−0.192
(<0.1%)

0.26
(<0.1%)

-2843 80.3%

GJR-GARCH −1.60e− 2
(47.5%)

1.006
(91.4%)

−0.230
(<0.1%)

0.26
(<0.1%)

-2844 84.9%

WV-ARCH 4.45e− 4
(98.4%)

0.987
(62.5%)

−0.018
(74.4%)

−0.61
(<0.1%)

-2818 2.1%

DAX
Model Mean Variance Skewness Excess Kurtosis Log-lik. K.-S. p-value
ARCH −1.00e− 2

(65.5%)
1.003
(99.0%)

−0.051
(34.7%)

1.84
(<0.1%)

-2840 < 0.1%

NP-ARCH 1.97e− 2
(37.3%)

0.981
(49.0%)

0.206
(<0.1%)

1.55
(<0.1%)

-2818 < 0.1%

GARCH −9.20e− 3
(68.2%)

1.003
(98.4%)

−0.167
(0.2%)

0.36
(0.4%)

-2840 23.6%

GJR-GARCH −2.22e− 2
(32.3%)

1.004
(96.3%)

−0.237
(<0.1%)

0.36
(0.3%)

-2842 27.0%

WV-ARCH −1.20e− 3
(95.8%)

0.961
(18.6%)

0.015
(77.8%)

−0.64
(<0.1%)

-2798 14.8%

Table 6: Estimation results for S&P 500, FTSE 100 and DAX log-returns:

four first moments of the innovations, as well as log-likelihood of the esti-

mated model and p-value of a normality test for the innovations. Under the

four first moments is indicated the p-value of the moment for the null hy-

pothesis of a standard Gaussian distribution. Models are estimated on the

first 2000 observations. For WV-ARCH, N = 36, and the parameters of the

variational problem defined in Appendix A are µ = 4× 10−4, δ = 1× 10−4.

For NP-ARCH, the bandwidth is set to 2× 10−3.
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The innovations of the WV-ARCH model seem globally close to a stan-

dard Gaussian distribution. More precisely, among the three ARCH

models, the innovations of the WV-ARCH model are the closest to

a Gaussian variable, regarding the mean, the skewness, the kurtosis

and the log-likelihood. Except for the FTSE 100, The p-value of the

Kolmogorov-Smirnov test on the innovations is always higher for the

WV-ARCH than for ARCH and NP-ARCH models. In particular, the

normality is not rejected for the WV-ARCH, whereas it is always re-

jected for ARCH and NP-ARCH. The difference with innovations of

GARCH-oriented model mitigates the superiority of the WV-ARCH

model. This is due to the introduction of the persistence of the volatil-

ity, β. Across all the datasets, only the mean, the skewness and the

log-likelihood unanimously state a higher closeness of theN (0, 1) distri-

bution with WV-ARCH innovations than with GARCH and GARCH-

GJR innovations. This result highlights the ability of WV-ARCH to

model log-returns asymmetry.

3.2.2 Out-of-sample forecasts

In this section, we compare the forecast ability of WV-ARCH model

out-of-sample with the forecast ability of the four other models pre-

sented in the previous section.

Table 7 presents the results of DMW tests for the five models.

Forecasts are done during 400 trading days, between the 27th of August

2007 and the 6th of March 2009, so that it includes periods of high and

low volatility. Models are re-estimated at each time step using a rolling-
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Data Model QLIKE DMW vs WV-ARCH

S&P 500 ARCH 3.57 2.96***
NP-ARCH 3.81 2.87***

GARCH 0.27 2.13**
GJR-GARCH 0.25 1.90**

WV-ARCH 0.18 -
FTSE 100 ARCH 3.08 4.16***

NP-ARCH 2.47 3.93***
GARCH 0.31 2.64***

GJR-GARCH 0.32 2.62***
WV-ARCH 0.13 -

DAX ARCH 2.97 3.19***
NP-ARCH 1.50 4.19***

GARCH 0.34 2.92***
GJR-GARCH 0.35 3.04***

WV-ARCH 0.12 -

Table 7: QLIKE losses and DMW statistics for the three series of log returns.

*, ** and *** respectively signify rejecting the null hypothesis of equal losses

for 90%, 95% and 99% confidence levels. Forecasts are done during 400

trading days, between the 27th of August 2007 and the 6th of March 2009.

The benchmark is the WV-ARCH model.
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window procedure. The size of the rolling window is set to 1000 trading

days. In Table 7 we observe that, for each series of log-returns, the null

hypothesis of equality of QLIKE loss function is always rejected and

so, better predicting abilities of the WV-ARCH model are confirmed

for all the datasets. Indeed, differences in terms of mean of QLIKE loss

functions are significant. Among all other models, GARCH-oriented

models have better results than ARCH and NP-ARCH. This can be

explained by the different ways we include the volatility persistence in

GARCH- (β, as in Table 1) and ARCH-oriented models (only implied

by the rolling-window procedure). However, when comparing QLIKE

losses, differences between GARCH and GJR-GARCH do not seem

significant.

4 Conclusion

In this paper we introduced a new method to model asset log-returns

and volatility. Instead of using parametric and non-parametric tech-

niques from econometrics, our approach is based on variational calcu-

lus.

The WV-ARCH enables to model the news impact curve and its asym-

metry with a quite simple algorithm. This method has better estima-

tion and forecast results than standard heteroskedastik models for sim-

ulated processes and financial data, without visible overfitting. More-

over, the model is well specified since we get standard Gaussian in-

novations. Therefore, heavy tails or asymmetry are well described by
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the non-parametric news impact curve g rather than by the probability

law of the innovations. Common alternative such as introducing more

sophisticated probability laws to improve the basic ARCH model are

thus avoided.

A Estimation algorithm

For this section, we do not use the econometric subscript anymore: y(t)

replaces yt. It will allow a greater clarity since subscripts are used here

for other purposes, such as indexing the iteration in the estimation. The

parenthesis choice is also consistent with the use in functional analysis,

where wavelets and variational problems come from.

A.1 Overview of the algorithm

The estimation of x and g is based on an iterative algorithm, since

both the estimations require distinct techniques. However, a similar

transformation of the data is used in each iterations. Therefore, it

can be extracted from the iterative loop and it can be executed only

once. It must be considered as a preliminary step of the algorithm.

This step relates to the wavelet approach for estimating x. Besides,

the estimation of g is based on a variational approach, which supposes

the computation of a line integral over ranked innovations. Since the

innovations change after each estimate of x, their ranking also changes

at each iteration. It is thus not a preliminary step of the algorithm.

However, we present this ranking technique apart so as not to overload
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the global presentation of the iteration with such a technical specificity.

A.1.1 Preliminary step of the algorithm

The preliminary step of our estimation algorithm is devoted to the

decomposition of the signal y in a wavelet basis. This basis (ψj,k) of

functions is obtained by dilatations and translations from a unique real

mother wavelet, Ψ ∈ L2(R):

ψj,k : t ∈ R 7→ 2−j/2Ψ
(
2−jt− k

)
,

where j ∈ Z is the scale parameter and k ∈ Z is the translation pa-

rameter. As the observations are equispaced, we define the empirical

wavelet coefficient 〈y, ψj,k〉 of y, for the parameters j and k, by:

〈y, ψj,k〉 =
T∑
t=0

y(t)ψj,k(t). (7)

In fact, we decompose the signal in gross structure and details. Details

are given by wavelet coefficients for a unique scale parameter j. In

our examples, j is set to 4. The gross structure is given by scaling

coefficients at the same scale j. They are given by:

〈y, φj,k〉 =
T∑
t=0

y(t)φj,k(t),

where φ is the scaling function related to the wavelet function. Further

details on wavelets and its use to denoise time series can be found

in [32, 19]. For the applicative part of the paper, we used a Daubechies
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wavelet with 4 vanishing moments.

A.1.2 Permutation of the innovations

This step of the algorithm relates to the variational approach and is

repeated just before each iteration of the estimation of g. In the vari-

ational method, we will minimize an integral of a function in which g

appears. When g is multidimensional, that is when l > 1, we can face

an empirical multidimensional integral with an irregular grid. Several

methods are possibles, such as a distortion of the observation grid, a sig-

nal interpolation or Voronoi cells [19]. Due to its simplicity, we choose

a distortion of the grid and more precisely we use a line integral. We

thus select a bijective function θ : {0, ..., T} → {0, ..., T}. θ links the

new time variable t to the natural observation time θ(t). It leads to

the path E ◦ θ along which the integral of g is empirically calculated.

The idea is to minimize the Euclidean distance between E(θ(t)) and

E(θ(t+ 1)) for all t ∈ {0, ..., T − 1}. For example, if l = 1, we choose θ

so that the innovations are sorted: E(θ(0)) ≤ E(θ(1)) ≤ ... ≤ E(θ(T )).

For higher l, the choice of θ may be related to the travelling salesman

problem, for which an approximation algorithm may be used. What-

ever the choice made for θ, there will be an impact on the estimate of g

when l > 1. Indeed, in our variational problem, we aim to minimize the

squared derivative of g over all the observations. But this derivative is

a derivative in only one direction while using the line integral, instead

of a derivative thought as a gradient. Therefore, when we choose a

particular θ we may incidentally favour the smoothness of g at each ob-
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servation point in one direction and not necessarily in all the directions.

However, this limitation does not appear in dimension l = 1.

A.2 The algorithm for estimating x and g

We achieve the estimation of x and g iteratively:

1. We begin by initializing the series of estimators: g0 = M/0.6745,

where M is the median of the absolute value of the wavelet coef-

ficients of y at the finer scale, as usually done for wavelet denois-

ing techniques with an homogeneous variance of the noise [12].

Indeed, M/0.6745 is a robust estimator for the Gaussian noise

standard deviation.

2. We assume that we have already an estimate gi of g, where i ∈ N.

Then, estimating xmatches the quite classical problem of estimat-

ing a variable linearly disrupted by an inhomogeneous Gaussian

noise. We can achieve it using wavelets filtering, like SureShrink,

for example. More precisely, we have decomposed the signal y in a

basis of wavelet functions. The coefficients of this decomposition

are a noisy version of the pure coefficients 〈x, ψj,k〉. In order to

get rid of this additive noise, we filter the coefficients and we build

an estimate of x thanks to the inverse wavelet transform. Since

the noise is Gaussian, we propose to use a soft-threshold filter.

It means that the filtered wavelet coefficients are Fi,j,k(〈y, ψj,k〉),
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where:

Fi,j,k : c ∈ R 7→ (c− Λi,j,k)1c≥Λi,j,k
+ (c+ Λi,j,k)1c≤−Λi,j,k

,

for a level-dependent threshold Λi,j,k = λi
√
〈(gi ◦ Ei−1)2, ψ2

j,k〉 where

λi is a parameter and Ei−1 is the (i − 1)-th estimate of E .7 Ex-

amples indeed show that a level-dependent threshold much better

performs than a constant threshold [22]. The choice for λi may

be arbitrary, but we prefer to optimize it, that is to choose the

value of λi which minimizes an estimate of the reconstruction er-

ror. This is the aim of SureShrink [43, 13, 32]. The estimate of

the reconstruction error is

S̄i =
∑
k

Si,j,k(〈y, ψj,k〉),

where

Si,j,k : c ∈ R 7→

 (λ2
i + 1)〈(gi ◦ Ei−1)2, ψ2

j,k〉 if |c| ≥ λi
√
〈(gi ◦ Ei−1)2, ψ2

j,k〉

c2 − 〈(gi ◦ Ei−1)2, ψ2
j,k〉 else,

because 〈(gi ◦ Ei−1)2, ψ2
j,k〉 is the estimated variance of the em-

pirical wavelet coefficient 〈y, ψj,k〉 [21]. Conditionally to y, S̄i is

an unbiased estimate of the reconstruction error. Any basic op-

timization algorithm enables then to get the λi minimizing S̄i.
7More precisely, for any time t and for i ≥ 1, Ei−1(t) = (y(t − 1) − xi−1(t −

1), ..., y(t− l)− xi−1(t− l)). For the estimate xi, we use the threshold Λi,j,k, which
thus depends on the previous estimate xi−1. However, for i = 0, xi−1 is not defined
and thus cannot be used in estimating E . But since g0 is a constant function, Λ0,j,k

will be the same, whatever the choice made for E−1. As a consequence, Λ0,j,k is not
level-dependent.
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Thus, Λi,j,k and Fi,j,k for all j and k are now defined. We can

hence write the estimate xi of the function x as:

xi(t) =
∑
k

〈y, φj,k〉φj,k(t) +
∑
k

Fi,j,k(〈y, ψj,k〉)ψj,k(t),

for each t ∈ {0, ..., T}.

3. We now use the i-th estimate of x to estimate g. This is similar

to estimating a signal disrupted by a multiplicative noise. We can

then use a variational approach to estimate g. In the literature

devoted to multiplicative noise, the case of a Gaussian variable

is often excluded since the noisy signal is positive. However, in

our case, the estimate of g, which stems from the estimate xi, is

evaluated from the noisy signal y − xi, which is not expected to

be positive at each t. The idea of the variational method is to

find a function gi+1 which will be the solution of an optimization

problem. This optimization problem consists, for each observa-

tion time, in maximizing the likelihood of y − xi conditionally to

gi+1 given that the noise is a Gaussian noise. In addition to that

local criterion, we add a global constraint. This constraint is a

penalty term which favours the smoothness of gi+1 along a given

path θi, which is re-estimated at each iteration.8 Our method is

partially inspired by the one proposed by Aubert and Aujol for

removing Gamma multiplicative noise [2]. It leads to the follow-

ing equation for the estimate gi+1 ◦Ei of g ◦E , where we introduce

8More details about choosing θi are provided in Appendix A.1.2.
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Gi+1 which we define9 by Gi+1 = gi+1 ◦ Ei ◦ θi:

µ
(Gi+1)2 − (y ◦ θi − xi ◦ θi)2

(Gi+1)3
− d2

dt2
Gi+1 = 0, (8)

where µ > 0 is a parameter which allows to tune the priority be-

tween smoothness of gi+1 and accuracy of the model by means of

the maximum-likelihood approach. More precisely, the smooth-

ness of gi+1 increases when µ decreases. Details about how this

equation is obtained are given in appendix A.5. Then, in order to

solve numerically this equation, we use a dynamical version of it

which is expected, like in [2], to lead to a steady state after some

iterations of the series of estimators (Gi+1,n)n of Gi+1:

Gi+1,n+1 − Gi+1,n

δ
=

d2

dt2
Gi+1,n − µ

(Gi+1,n)2 − (y ◦ θi − xi ◦ θi)2

(Gi+1,n)3
,

where δ is a parameter controlling the speed to which (Gi+1,n)n

evolves. More precisely, for each t ∈ {0, ..., T}, the series (Gi+1,n(t))n

is iteratively defined by:


Gi+1,0(t) = Median{|y(s)− xi(s)|}/0.6745

Gi+1,n+1(t) = Gi+1,n(t)

+δ
[
Gi+1,n(t+ 1)− 2Gi+1,n(t) + Gi+1,n(t− 1)− µGi+1,n(t)2−(y(θi(t))−xi(θi(t)))2

Gi+1,n(t)3

]
.

Gi+1,n is expected to converge towards Gi+1 when n tends

9Gi+1 will be more clearly defined if we write its domain and codomain: Gi+1 :
{0, ..., T} → R, since it is obtained by the composition of θi : {0, ..., T} → {0, ..., T}
with Ei : {0, ..., T} → Rh and gi+1 : Rh → R.
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towards infinity. The convergence is sensitive to the choice of

parameters. In particular, the higher δ, the faster the initial

estimator Gi+1,0 of Gi+1 will be distorted. However, if δ is too

big, fine adjustments from Gi+1,n to Gi+1,n+1 will often be

excluded and the convergence towards a steady state will be

compromised.

A.3 Improving the algorithm

Some refinements, concerning the initial condition Gi+1,0 given i or the

number of iterations N used to lead to the estimate Gi+1, can be made

in order to improve the algorithm, even though the standard conditions

provided in the previous paragraph in general lead to satisfying results.

The main motivation for modifying these conditions is the fact that the

choice of δ has an impact on the way the series of estimators (Gi+1,n(t))n

evolves and finally on the accuracy of the estimated news impact curve.

The choice of δ or of N can hence be optimized so that the innovations

(zt)t better fit a unit Gaussian distribution.

Besides, some specific financial conditions may need a particular pro-

cessing. For example, when different volatility regimes appear, one may

prefer to initiate the series (Gi+1,n(t))n with the constant function Gi+1,0

estimated on some quantile of the residuals rather than on their median.
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A.4 Proof of Proposition 1

We consider the estimation problem of g, from the model:

y(t)− x(t) = g(E(t))zt.

Let δz be the probability density function of a unit Gaussian random

variable:

δz : z ∈ R 7→ 1√
2π

exp

(
−z

2

2

)
.

Since g is assumed to be positive, we can apply the standard relation [2]:

δz

(
y(t)− x(t)

g(E(t))

)
1

g(E(t))
= δy(t)−x(t)|g(E(t))(y(t)− x(t)|g(E(t))). (9)

Thus, in a time θ(t), we get:

L̃(t,G(t)) = log(g(E(θ(t)))) +
1

2

(
y(θ(t))− x(θ(t))

g(E(θ(t)))

)2

.

A.5 Justification of equation (8)

The maximum-likelihood problem consists in maximizing the right-

hand side of equation (9). It is therefore equivalent to minimizing the

opposite of the logarithm of the left-hand side of the same equation,

that is, excluding constant terms, for each time t:

log(g(E(t))) +
1

2

(
y(t)− x(t)

g(E(t))

)2

.
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Summing that function over all the observations by the path θ leads to

the following continuous form of the minimization problem:

∫ T

0

[
log(G(t)) +

1

2

(
y(θ(t))− x(θ(t))

G(t)

)2
]
dt,

where G = g ◦ E ◦ θ. Moreover, we impose a condition of smoothness

for g, as an additional objective of minimizing its quadratic variations

over the path θ. Therefore, we now aim to minimize, for each time t:

∫ T

0

L
(
t,G(t),

d

dt
G(t)

)
dt,

where

L
(
t,G(t),

d

dt
G(t)

)
= µ

[
log(G(t)) +

1

2

(
y(θ(t))− x(θ(t))

G(t)

)2
]

+
1

2

(
d

dt
G(t)

)2

,

where µ > 0 is a given parameter. G is therefore the solution of the

corresponding Euler-Lagrange equation:

0 = ∂
∂GL

(
t,G(t), d

dt
G(t)

)
− d

dt
∂

∂ d
dt
GL
(
t,G(t), d

dt
G(t)

)
= µ

[
1
G(t)
− (y(θ(t))−x(θ(t)))2

G(t)3

]
− d2

dt2
G(t).
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