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Abstract

This paper introduces variants of strangles, called Euro-American or hybrid strangles,
and it promotes a new numerical pricing technique. We highlight and compare the
properties of European, American, and hybrid strangles with pricing and hedging in
mind. The new quadrature approach we propose can account for systems of coupled
integral equations that locate the early exercise boundaries of finite-lived contracts.
We show that this method is efficient, accurate, and fast for pricing all types of early
exercisable strangles. Other advantages of this technique are that it avoids the non-
monotonic gradient problem faced by others and it allows users to control for errors.
We then investigate the hedging of all strangles, we derive analytical expressions for
some Greek parameters, and we stress how these parameters can differ (or not) from
each other.
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1. Introduction

According to Chaput & Ederington (2005), strangles and straddles represent about 80%
of option strategies. These strategies are used for risk management, volatility trading, and
volatility speculation (see §11.4 of Hull (2012)). The classical strangle is a European-style
strangle and it is comprises a long position in a European put option and a long position
in a European call option, with both options being written on the same underlying asset
and maturing at the same time. The call option strike is typically greater than the put
option one, but in the case where they are equal, the position is termed a straddle. Strangle
positions have recently been studied in terms of the American style, meaning that the holder
can decide to exercise earlier than maturity (see Gerber & Shiu (1994) and Chiarella & Ziogas
(2005), among others). An American strangle may be roughly viewed as a long position in
an American put and an American call option equipped with a non-standard early exercise
boundary (EEB) and a self-closing mechanism. This latter mechanism ensures that the right
to sell (or to buy) disappears as soon as the holder decides to exercise the right to buy (or
to sell)1. As such, American strangles are not simple portfolios of standard American puts
and calls2.

In this study, we extend the family of strangles by introducing a new variant called Euro-
American or hybrid strangles. These contracts can be exercised earlier than maturity given
that only one side, the call side or the put side, is exercisable before expiration. Due to this
possible early extinction, Euro-American contracts greatly differ from simple portfolios made
up of independent American and European options. Euro-American strangles have several
clear goals. From a practical viewpoint, these contracts can fit investors’ and speculators’
needs better than other strangles. Hybrids of American and European strangles can indeed
offer the best of each of these variants. From a theoretical perspective, they can be used to
understand and model real financial decisions. With real options in mind, strangle positions
can model a firm decision to expand (exercise the call side) or to transfer (exercise the
put side). In many cases, not all of these decisions can occur earlier than maturity, and
if one side is delayed to maturity we have a hybrid strangle contract. From an option
theory point of view, they contribute to an understanding of how American strangles work

1The self-closing mechanism has a number of interesting features for managers. Unlike sellers of portfolios
made up of individual American options, sellers of American strangles avoid the risk of successive exercises
because American strangles disappear once the early exercise is decided upon. For buyers, these contracts
are cheaper than their rough synthetic portfolios.

2Studying contracts with no maturity, Moraux (2009) found that holders of individual American options
can exercise earlier than holders of American strangles, can receive a greater value at the exercise time, and
if they manage their position through the synthetic portfolio characteristics may exercise their right to sell
or to buy rather suboptimally.
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and how the opportunity for early exercise makes them different from standard European
strangles. Hybrid contracts involve only a "one side" early exercise so we can assess the
relative importance of it. Because a Euro-American strangle lies contractually between an
American strangle and a European strangle, we can expect its price to be bounded by these
two strangles. However, it is not a priori straightforward to predict how much cheaper or
more expensive Euro-American strangles are compared to other strangles.

Pricing American-style contracts is known to be a challenge because the holder can exer-
cise at any time before maturity. Two interconnected questions must be answered simultane-
ously: what is the best time to exercise and what is the resulting payoff? Mathematically, this
free boundary problem can be addressed by solving a partial differential equation subject to
some (boundary) conditions (see McKean (1965) for an early treatment)3. Pricing American
strangles can appear even more challenging because they depend on two interdependent, self-
closing, and time-varying early exercise boundaries. For their part, Euro-American strangles
depend on a single time-varying early exercise boundary only, but this is subtly influenced by
the existing one-sided European feature of the contract, and furthermore, the opportunity
to exercise at maturity disappears if an early exercise is decided beforehand. Such contracts
have really special features to consider.

Past studies on the pricing of American strangles with finite maturity advocated the use of
various advanced numerical techniques. Alobaidi & Mallier (2002) used Laplace transforms
and derived analytical formulas for pricing American straddles as well as integral equations
to locate early exercise boundaries. Unfortunately, the expressions they provide cannot be
inverted analytically and they give no recommendation for numerical inversion. Chiarella &
Ziogas (2005)(CZ) used Fourier transforms and derived analytical formulas for finite-lived
American strangles as well as a system of coupled integral equations to locate early exercise
boundaries. Finally, they employed a two-step algorithm for pricing, mixing a quadrature
approach and an interpolation technique. This two-step approach seemed necessary to deal

3Various approaches have been developed for pricing American-style options. MacMillan (1986) provided
an analytic approximation for valuing the early exercise premium, which is the price difference between
an American option and its European equivalent. Kim (1990) later offered an intuitive representation of
the early exercise premium (see also Jacka (1991) and Carr, Jarrow, & Myneni (1992)). However, this
representation requires the knowledge of the early exercise boundary at any point in time and consequently
relies on a computational technique to solve the integral equation locating the boundary. Another way to
proceed is to use numerical methods for solving the free boundary problem. These methods are now well
known in finance. Finite difference-based methods are the most common (see, for instance, §28 of Wilmott
(2007)) and Monte Carlo simulations are also used (see Broadie, Glasserman, & Jain (1997) and Longstaff
& Schwartz (2001))
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with the non-monotonic gradient problem they faced4,5. To avoid the above advanced meth-
ods, one may be tempted to consider simpler portfolios made up of two individual American
call and put options. In some cases the pricing bias is indeed rather limited6, but in general,
this way to proceed is hazardous because it can lead to suboptimal early exercise decisions
(see Moraux (2009) for examples in the perpetual case).

In this study, we derive analytical formulas for all finite-lived strangles (among which
are the new variant contracts) and promote a new numerical approach able to deal with the
various systems of integral equations to locate early exercise boundaries. The quadrature
method we introduce combines some Newton-Cotes weights and some fourth-order Gregory
weights, as presented in Linz (1985, p.98) and Press, Teukolsky, Veterling, & Flannery (2007,
pp.159-160). This numerical approach in turn has several interesting features. First, it is
a rather simple (one-step) numerical approach. Second, it is accurate, efficient, and fast.
Third, the approach allows users to control for errors, and we show that numerical estimates
tend to the true price from above as the number of discrete points increases7. Finally,
the quadrature scheme faces no non-monotonic gradient problem and consequently requires
neither repeated computations of early exercise boundaries nor extrapolation techniques.

We expect the prices of Euro-American strangles to lie between those of European and
American comparable strangles. Indeed, our simulations reveal that Euro-American stran-
gles can effectively be more expensive than comparable European strangles and cheaper than
comparable American strangles, but we also provide scenarios where Euro-American stran-
gles are as expensive as their European or American counterparts. Hence, the opportunities
to buy or to sell the underlying asset earlier than the expiration date may be, in some con-
texts, effectively worthless. This information should be useful for potential users of existing
early exercisable strangles because they should not pay for such opportunities.

Beyond introducing new variants of early exercisable strangles, our (financial) analysis
differs from that of CZ. We split the price of strangles following the early exercise premium

4 CZ wrote, "the numerical scheme is firstly carried out using a time-step size of hand is then repeated
using h/2. In each case, since it is necessary to alternate between two different numerical integration schemes
(for odd and even values), it turns out that the free boundaries have non-monotonic gradients. This is
rectified by combining the two estimates using Richardson’s extrapolation. Pricing the American strangle is
then achieved via numerical integration using Simpson’s rule, combined with the estimates”.

5Perpetual (American) strangles have also been studied in the literature. Gerber & Shiu (1994) provided
the first pricing formula, but they did not solve the system of equations locating early exercise boundaries,
nor did they provide any simulations. Moraux (2009) analysed these contracts as asymmetric rebates of
double knock-out barrier options with special payoffs and found early exercise boundaries numerically. He
then provided simulations and insights on price properties and on the optimal exercise policy as well as
discussing hedging issues.

6E.g., CZ report a moderate 6% for the largest bias in their simulations.
7By way of comparison, the existing two-step quadrature approach over/under-estimates the true price

unexpectedly.
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(EEP) representation advocated by Kim (1990)8. Hence, in the present study, the American
strangle is essentially the sum of a European strangle plus a premium to exercise it earlier
than maturity. By contrast, CZ price the American strangle as a whole and then represent the
contract as a portfolio made up of an American call and an American put with adjusted early
exercise boundaries9 (see their Proposition 7). Logically, most of their simulations compare
early exercise boundaries of strangles to those of standard American options. Instead, we
think it is important to consider European strangles as relevant benchmarks because we
know their price analytically. We can then explore the hedging parameters of every strangle
and highlight how they differ from each other.

The rest of the paper is organized as follows. Section 2 presents the framework and prob-
lem statement. Section 3 presents the early exercise premium representation of American-
style strangles. Section 4 presents and discusses the new numerical approach. Section 5
investigates the prices of American-style strangles with finite maturity. Section 6 consid-
ers the hedging issues and Greek parameters. The last section (Section 7) presents our
conclusions.

2. The framework and problem statement

This section introduces contract specifications, notations, and hypotheses. The financial
markets in our setting are perfect, efficient, and complete; trading takes place continuously
and information is free. There are neither taxes nor transaction costs. There is a risk-free
asset paying a known and constant interest rate denoted by r. There is also a risky asset,
say a stock, paying a continuous dividend rate δ that underlies the different contracts. When
the stock pays dividends, we know from standard option theory that it may be optimal to
exercise standard American call options earlier than at expiration. The risk neutral price
process of the underlying asset is denoted by S = (St)t≥0 and it is described by

dSt = (r − δ)Stdt+ σStdWt, S0 = x

where W = (Wt)t≥0 is a standard Brownian motion, σ is the volatility, and x ≥ 0. It follows
that St = x exp [(r − δ − σ2/2) t+ σWt]. Throughout the paper, the normal cumulative
density function is denoted by N and the normal probability density function is denoted by
ϕ.

A strangle (K1, K2, T ) is a contract expiring at time T that gives the holder the right
8see MacMillan (1986) and Barone-Adesi & Whaley (1987) for other approaches using the early exercise

premium.
9Standard early exercise boundaries are not suitable anymore due to the self-closing mechanism.
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to sell the underlying asset S at price K1 and the right to buy at price K2 (we omit S in
previous parentheses because there is no ambiguity). Hereafter, we use the terms "call side"
and "upper side" interchangeably for describing the right to buy embedded in the strangle.
Similarly, the terms "put side" and "lower side" are used interchangeably for describing the
right to sell. K1 may therefore be termed the "put side" strike of the strangle and K2 the
"call side" strike of the strangle. If ever K1 = K2, the contract is a straddle. It should be
noted that in this paper we do not discuss "American guts," for which K1 > K2. European
strangles allow the holder(s) to sell the underlying asset at K1 or to buy it at K2 at the
expiration of the contract only. American strangles allow the holder(s) to act at or before
the expiration; that is, at any time between inception and termination10. The Euro-American
or hybrid strangles that we introduce in this paper allow the holder(s) to sell or buy at the
expiration of the contract and provide an opportunity to act earlier than at expiration on
one side only. Such contracts can, for instance, allow the holder(s) to buy at any time before
T and to buy or sell at time T , or the converse (i.e., to sell at any time before T and to buy
or sell at time T ), but not both.

It is well known (see for instance Merton (1973)) that the price V (S, t) of every contract
written on S satisfies the following fundamental partial differential equation (PDE)

∂V

∂t
+ (r − δ)S∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV = 0, t ∈ [0, T ). (1)

Of course, the contract considered here is assumed to be alive. For early exercisable contracts,
this means that the time t-price of the underlying asset lies in the continuation region. Figure
1 gives a typical representation of the price of a classical American strangle that highlights the
intrinsic value (which is max (K1 − S; 0)+max (S −K2; 0)) and corresponding continuation
and stopping regions. These regions are characterized by the early exercise boundaries that
relate to the threshold values of the underlying asset where the decision to exercise early
should intervene (because it is optimal for holders to do so). In Figure 1, we emphasize these
threshold values with dotted lines. For Euro-American strangles with an early exercisable
call side feature (or, respectively, an early exercisable put side feature), the stopping region
on the left (on the right) does not exist.

"INSERT FIGURE 1 ABOUT HERE"

Let us now denote by τ = T − t the time to expiration, by Ac1c2 (S, τ) the price of the
American strangle, by c1(τ) the lower early exercise boundary associated with the right to

10We know that holding an American-style strangle is not equivalent to being long in a portfolio made
up of an American call option (K2, T ) and an American put option (K1, T ). Both rights (to sell/to buy)
disappear when the owner decides to exercise one.
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sell, and by c2(τ) the upper early exercise boundary associated with the right to buy. Due to
the exercise policy, finite-lived American-style contract boundaries are time dependent (see
Merton (1973, pp.170-171) and depend on the remaining time to expiration. As long as the
underlying stock price lies between these two thresholds, it is not optimal to exercise the
American strangle (cf. the continuation region in Figure 1). Consequently, the price of the
American strangle satisfies the fundamental equation (1) with a final condition

Ac1c2(ST , 0) = max [0, (K1 − ST )ψ(ST − c1 (0))]

+ max [0, (ST −K2)ψ (c2 (0)− ST )] , ST ≥ 0, (2a)

and some specific boundary conditions

lim
S↓c1(τ)

Ac1c2 (S, τ) = K1 − c1 (τ) , 0 ≤ τ ≤ T, (2b)

lim
S↑c2(τ)

Ac1c2 (S, τ) = c2 (τ)−K2, 0 ≤ τ ≤ T, (2c)

lim
S↓c1(τ)

∂Ac1c2 (S, τ)

∂S
= −1, lim

S↑c2(τ)

∂Ac1c2 (S, τ)

∂S
= 1, 0 ≤ τ ≤ T. (2d)

where ψ (x) is the Heaviside step function defined by ψ (x) = 0 if x ≤ 0 and ψ (x) = 1 if
x > 0.

Equation (2a) depicts the value of American strangles at expiration in the case where no
early exercise occurs. At expiration, a rational investor exercises the in-the-money side of the
American strangle. If ever the price of the underlying asset first reaches the early exercise
boundary c1 (τ) at a given time τ before expiration, then the holder of the American strangle
immediately exercises their right to sell the stock and the received payoff is Equation (2b).
If ever the underlying asset first reaches the early exercise boundary c2 (τ) at a given time
τ before expiration, then the holder of the American strangle immediately exercises their
right to buy the stock and the received payoff is as shown by Equation (2c). Equations
(2b)-(2c) represent value-matching conditions and Equations (2d) represent smooth-pasting
conditions. They can be deduced from Merton (1973, pp.170-171) or Chiarella & Ziogas
(2005, p.35). Notice that including step functions in the terminal payoff above is important
to limit cash flows at maturity toK1−c1 (0) or c2 (0)−K2, where c1 (0) and c2 (0) stand for the
limit of early exercise boundaries as τ tends to zero. It is impossible for the underlying asset
price to end beyond the boundaries without crossing them beforehand and hence provoking
an early exercise.

Euro-American strangles are new variants introduced in this study. Let us first consider
Euro-American strangles with an early exercisable call side. These contracts offer the right
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to sell or buy the underlying asset at maturity and the right to buy it earlier. Similar to
standard American call options, these contracts imply, in the presence of dividends, an upper
early exercise boundary (placed on the price of the underlying asset) whose value at time t
can be denoted by h (τ) with τ = T − t. Holders of these contracts should exercise early if
and when the price of the underlying asset reaches the boundary h. As long as the underlying
stock price lies below the threshold h, it is not optimal for holders to exercise the right (to
buy) earlier than at expiration. Consequently, the price of Euro-American strangles with
an early exercisable call side, denoted by EAh (S, τ), satisfies the fundamental Equation (1)
with the following final time and boundary conditions:

EAh (ST , 0) = max [0, K1 − ST ] + max [0, (ST −K2)ψ (h (0)− ST )] , ST ≥ 0, (3a)

lim
S↑c2(τ)

EAh (S, τ) = h(τ)−K2, 0 ≤ τ ≤ T, (3b)

lim
S↓0

EAh (S, τ) = 0, 0 ≤ τ ≤ T, (3c)

lim
S↑c2(τ)

∂EAh (S, τ)

∂S
= 1, 0 ≤ τ ≤ T. (3d)

Let us now consider Euro-American strangles with an early exercisable put side. These
contracts offer the right to sell or buy the underlying asset at maturity and the right to sell
it earlier. This hybrid contract implies a lower early exercise boundary (placed on the price
of the underlying asset) whose value at time t is denoted by l (τ) with τ = T − t. Holders of
these contracts should exercise early if and when the price of the underlying asset reaches the
boundary l. As long as the underlying stock price lies above the threshold l it is not optimal
for holders to exercise the right (to sell) earlier than expiration. In view of this, the price of
Euro-American strangles with an early exercisable put side, denoted by EAl (S, τ), satisfies
the fundamental Equation (1) with the following final time and boundary conditions:

EAl (ST , 0) = max [0, (K1 − ST )ψ(ST − l (0))] + max [0, (ST −K2)] , ST ≥ 0, (4a)

lim
S↓l(τ)

EAl (S, τ) = K1 − l (τ) , 0 ≤ τ ≤ T, (4b)

lim
S↑∞

EAl (S, τ) = 0, 0 ≤ τ ≤ T, (4c)

lim
S↓c1(τ)

∂EAl (S, τ)

∂S
= −1, 0 ≤ τ ≤ T. (4d)

3. Early exercise premium representation

Kim (1990), Jacka (1991), and Carr et al. (1992) showed that the price of standard Amer-
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ican options can be decomposed into the price of a European option plus an early exercise
premium having a special but intuitive integral representation. These authors demonstrated
the EEP representation by different means. Hereafter, we provide EEP representations for
all American and hybrid strangles. Such a representation strategy appears especially useful
for early exercisable strangles for at least two reasons. First, we can price European strangles
analytically. Second, European strangles can then play the role of common benchmarks for
all contracts11.

Proposition 1 splits the price of an American strangle (Ac1c2(S, τ)) into the price of a
European strangle (E(S, τ)) plus an early exercise premium (EEPc1c2(S, τ)) with an integral
representation.

Proposition 1. The price of an American strangle is given by:

Ac1c2 (S, τ) = E (S, τ) + EEPc1c2 (S, τ) (5)

where

E(S, τ) = K1e
−rτN (−d2 (S, τ ;K1))− Se−δτN (−d1 (S, τ ;K1))

+ Se−δτN (d1 (S, τ ;K2))−K2e
−rτN (d2 (S, τ ;K2))

and

EEPc1c2(S, τ) =

∫ τ

0

[
K1re

−r(τ−η)N (−d2 (S, τ − η; c1(η)))

− Sδe−δ(τ−η)N (−d1 (S, τ − η; c1(η)))

+ Sδe−δ(τ−η)N (d1 (S, τ − η; c2(η)))

−K2re
−r(τ−η)N (d2 (S, τ − η; c2(η)))

]
dη

with early exercise boundaries c1 (.) and c2 (.) defined by

c2 (τ)−K2 = Ac1c2 (c2 (τ) , τ) (6)

K1 − c1 (τ) = Ac1c2 (c1 (τ) , τ) (7)

and d1 (S, τ ; β) =
ln(S

β )+
�
r−δ+σ2

2

�
τ

σ
√

τ
, d2 (S, τ ; β) = d1 (S, τ ; β)− σ

√
τ .

Proof. To prove Proposition 1, we follow Kim (1990) and divide the pricing problem into
11This can be compared with CZ, who essentially favor another decomposition; that is, Ac1c2(S, τ) =
C(S, τ, c2(.))+P(S, τ, c1(.)), where C(S, τ, c2(.)), and P(S, τ, c1(.)) stand for the prices of standard American
calls and puts that use c2(.) and c1(.) for the respective early exercise boundaries.
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two parts. We can then solve these two sub-problems independently using the results of
Kolodner (1956) and McKean (1965) directly.

Hence, the main difference with CZ is that we have recourse to the techniques introduced
by Kim (1990) to deal with the standard American options. We split the pricing of strangles
into two problems that we solve by using the results of McKean (1965) and Kolodner (1956).
We end up with the European component of the considered strangle and its EEP. By contrast,
CZ consider the problem as a whole and apply a Fourier transform approach on the whole.
They transform the PDE and apply the incomplete Fourier transform approach used by
McKean to solve the free boundary problem. They decide to reorganize, to highlight the
sum of an American-style put option and an American-style call option (with non-standard
and adjusted EEPs). Of course our Proposition 1 conforms to their results.

The expression for the early exercise premium is semi-analytical only because it depends
on a couple of early exercise boundaries to be determined. To this end, Equations (6) and
(7) form a coupled integral equation system that we need to solve numerically by some
techniques (see next section for details).

Proposition 2 details our core result on Euro-American strangles. The lengthy proof
(relegated to the Appendix) uses the results of Kolodner (1956) and McKean (1965) on free
boundary problems.

Proposition 2. i) The price of a Euro-American strangle with an American call side is
given by:

EAh (S, τ) = E (S, τ) + EEPh (S, τ) (8)

where

EEPh(S, τ) =

∫ τ

0

[Sδe−δ(τ−η)N (d1 (S, τ − η;h(η)))

−K2re
−r(τ−η)N (d2 (S, τ − η;h(η)))

]
dη

the early exercise boundary h is given by

h (τ)−K2 = EAh(h (τ) , τ). (9)

ii) The Price of a Euro-American strangle with an American put side is given by:

EAl (S, τ) = E (S, τ) + EEPl (S, τ) (10)

9



  

where

EEPl(S, τ) =

∫ τ

0

[
K1re

−r(τ−η)N (−d2 (S, τ − η; l(η)))

− Sδe−δ(τ−η)N (−d1 (S, τ − η; l(η)))]dη

and the early exercise boundary is given by

K1 − l (τ) = EAl(l (τ) , τ). (11)

Proof. See Appendix A.

The next step is to compute the Volterra integrals involved in Equations (5), (8), and
(10).

4. Numerical implementation and algorithmic issues

We will use a quadrature approach to evaluate the integrals of Equation (5) and to
transform Equations (6) and (7). A quadrature is a way to approximate an integral in
general. If f is a real function of, say, one variable defined on [a, b], then the integral of f
over [a, b] may be approximated by∫ b

a

f(x)dx ≈ h

n∑
k=0

wkf(xk)

where (xk)k=1,...,n are equally spaced sample points such that x0 = a, xk = x0 + kh, and
xn = b. The interval [a, b] has been divided here into n subintervals of equal width (with
h = (b− a)/n). Quadrature methods differ essentially in terms of weights (wk); for instance,
CZ use Cavalieri-Simpson weights (see Table 1).

The Cavalieri-Simpson approach has significant drawbacks when applied to American
strangles. It requires an even number of intervals, as highlighted by Table 1, leads to non-
monotonic gradients, requires a double computation of each early boundary, and then needs
a technique to average both estimates. CZ suggest the use of Richardson’s extrapolation tech-
nique to rectify this and to combine the two boundaries (found for h and h/2). Nevertheless,
there is no possibility here to control for errors. To address this issue, we follow another
way and propose a new quadrature method that is able to compute in the one-step integrals
involved in the American and Euro-American strangles. We will see that this alternative
way is accurate, efficient, and faster.
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The new one-step quadrature method that we propose is as follows. Consider first a
number of points n to approximate the EEB along the time line and i an index position
taking values in {1, 2, ..., n}. The points of the EEB(s) are then obtained by computing
integral(s) iteratively at i for i equal to 1 up to n. Each i is associated with a point of the
EEB. i = 1 points to the first position before expiration (where we want to compute the
EEB(s)). At each position i, integral equations are computed using i intervals and (i + 1)
weighted endpoints. For weights, we use the closed-form formulas of Newton-Cotes when
i is smaller than or equal to six (listed in Table 2). For i greater than six, we use the
fourth-order Gregory quadrature formulas12 (derived by fitting cubic polynomials through
successive groups of four points; see Linz (1985) and Press et al. (2007)). Unlike Simpson’s
quadrature, this quadrature method can deal with odd and even values of intervals. The
general form of Gregory weights is

∫ b

a

f(x)dx ≈ h

[
3
8
f(x0) + 7

6
f(x1) + 23

24
f(x2) + f(x3) + f(x4)...

+f(xn−4) + f(xn−3) + 23
24
f(xn−2) + 7

6
f(xn−1) + 3

8
f(xn)

]
.

"INSERT TABLE 1 AND 2 ABOUT HERE"

In terms of convergence, a key advantage of this quadrature is that we have analytical
expressions for computing errors for each value of i. Consequently, we can control for errors.
For the Newton-Cotes part, the analytical expressions are as follows. For even values of i
and any function f ∈ C(i+2)([a, b]), the quadrature error is

Ei(f) =
Mi

(i+ 2)!
hi+3f (i+2)(ξ)

where ξ ∈ [a, b] and Mi =
∫ i

0
t

(
i∏

k=0

(t− k)
)
dt < 0. For odd values of i and any function

f ∈ C(i+1)([a, b]), the quadrature error is

Ei(f) =
Ki

(i+ 1)!
hi+2f (i+1)(η)

where η ∈ [a, b] and Ki =
∫ i

0

i∏
k=0

(t− k) dt < 0. The degree of exactness (DE hereafter) is

equal to i+1 for even values of i and i for other values. For the Gregory part, the analytical
12Note that the Newton-Cotes weights may become negative for i greater than six and this causes numerical

instability.
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expressions are quite lengthy and we refer to Linz (1985, pp.100-107), where a detailed and
complete error analysis is provided.

Table 3 summarizes the numerical values of Mi/(i + 2)! and Ki/(i + 1)! and the DEs
for the Newton-Cotes part13. It should be noted that from i = 2, the integration order is
higher or equal to that of the extended Simpson’s quadrature 14. The DE of the fourth-
order Gregory formulas is three. As emphasized earlier, our quadrature approach is suitable
for even and odd values of i and only one step is necessary whatever the value of i. By
comparison, the usual interpolation techniques implement the same algorithm twice (a first
step for odd values of i and a second step for even values) and they then compute a weighted
average of both. Consequently, our approach leads to less calculus and so should be less time
consuming (this is verified below in Table 4.). A pseudo-code for the hybrid quadrature is
presented in Appendix C (see Algorithm 1).

Discretizing the time interval is the next step in a numerical quadrature strategy. Fol-
lowing Linz (1985) and Kim (1990), we divide the time interval into n parts of length h and
define τi = ih for i = 1, 2, 3, . . . , n and h = T/n.

Before computing the price of an American or Euro-American strangle we must determine
early exercise boundaries by iteratively solving integral equations for each value τi. The
initial values for c1, c2, h and l are c1(0) = l(0) = min

(
K1,

r
δ
K1

)
and c2(0) = h(0) =

max
(
K2,

r
δ
K2

)
15. Then, for each step i, starting from i = 1, the only unknown variables in

the system of integral equations are c1(τi), c2(τi), h(τi), and l(τi). Given that the values of
c1(τj), c2(τj), h(τj), and l(τj) for j < i are known from previous steps, we have:

- For American strangles

K1 − c1(ih) = E(c1(ih), ih) + ÊEP c1c2(c1(ih), ih)

c2(ih)−K2 = E(c2(ih), ih) + ÊEP c1c2(c2(ih), ih)

where

E(ck(ih), ih) = K1e
−rihN (−d2 (ck(ih), ih;K1))− ck(ih)e−δihN (−d1 (ck(ih), ih;K1))

+ ck(ih)e
−δihN (d1 (ck(ih), ih;K2))−K2e

−rihN (d2 (ck(ih), ih;K2))

13For more details on the error analysis, readers may consult Quarteroni, Sacco, & Saleri (2007).
14For more efficiency, Linz (1985, p.98) recommends the use of the high-order quadrature when computing

a Volterra integral equation type with lower values of i.
15Following Kim (1990), CZ give the proof for c1(0) and c2(0). We can obtain the results of h(0) and l(0)

similarly.
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and

ÊEP c1c2(ck(ih), ih) = h
i∑

j=0

wj


K1re

−rh(i−j)N (−d2 (ck(ih), (i− j)h; c1(jh)))
−ck(ih)δe−δh(i−j)N (−d1 (ck(ih), (i− j)h; c1(jh)))
+ck(ih)δe

−δh(i−j)N (d1 (ck(ih), (i− j)h; c2(jh)))
−K2re

−rh(i−j)N (d2 (ck(ih), (i− j)h; c2(jh)))


for k = 1, 2, given that the weights (wj)j depend on the above hybrid scheme.

- For Euro-American strangles with an American call side

h(ih)−K2 = E(h(ih), ih) + ÊEP h(h(ih), ih)

where

E(h(ih), ih) = K1e
−rihN (−d2 (h(ih), ih;K1))− h(ih)e−δihN (−d1 (h(ih), ih;K1))

+ h(ih)e−δihN (d1 (h(ih), ih;K2))−K2e
−rihN (d2 (h(ih), ih;K2))

and

ÊEP h(h(ih), ih) = h
i∑

j=0

wj

[
h(ih)δe−δh(i−j)N (d1 (h(ih), (i− j)h;h(jh)))
−K2re

−rh(i−j)N (d2 (h(ih), (i− j)h;h(jh)))

]

- For Euro-American strangles with an American put side

K1 − l(ih) = E(l(ih), ih) + ÊEP l(l(ih), ih)

where

E(l(ih), ih) = K1e
−rihN (−d2 (l(ih), ih;K1))− l(ih)e−δihN (−d1 (l(ih), ih;K1))

+ l(ih)e−δihN (d1 (l(ih), ih;K2))−K2e
−rihN (d2 (l(ih), ih;K2))

and
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ÊEP l(l(ih), ih) = h

i∑
j=0

wj

[
K1re

−rh(i−j)N (−d2 (l(ih), (i− j)h; l(jh)))
−l(ih)δe−δh(i−j)N (−d1 (l(ih), (i− j)h; l(jh)))

]

For d1 we have the following limits:

lim
ξ→τ

N (d1 (c1(τ), τ − ξ; c2(ξ))) = lim
ξ→τ

N (−d1 (c2(τ), τ − ξ; c1(ξ))) = 0

lim
ξ→τ

N (d1 (c2(τ), τ − ξ; c2(ξ))) = lim
ξ→τ

N (−d1 (c1(τ), τ − ξ; c1(ξ))) = 0.5

lim
ξ→τ

N (d1 (h(τ), τ − ξ;h(ξ))) = lim
ξ→τ

N (−d1 (l(τ), τ − ξ; l(ξ))) = 0.5

These expressions are derived using the limits of the function d1 (cu(τ), τ − ξ; cv(ξ)) given
by:

lim
ξ→τ

ln
(

cu(τ)
cv(ξ)

)
+
(
r − δ + σ2

2

)
(τ − ξ)

σ
√
τ − ξ

=


0 if u = v

∞ if u > v

−∞ if u < v

for u, v ∈ {1, 2}.
From a financial point of view, it is notable that limξ→τ N (d1 (c1(τ), τ − ξ; c2(ξ))) and

limξ→τ N (−d1 (c2(τ), τ − ξ; c1(ξ))) represent the probabilities that c1(τ) > c2(ξ) and c2(τ) >
c1(ξ), respectively, within a short period of time τ − ξ. By definition, at any time un-
til maturity, we have c1(.) < c2(.). So both probabilities are zero. Along similar lines,
limξ→τ N (d1 (c2(τ), τ − ξ; c2(ξ))), limξ→τ N (−d1 (c1(τ), τ − ξ; c1(ξ))), limξ→τ N (d1 (h(τ), τ − ξ;h(ξ))),
and limξ→τ N (−d1 (l(τ), τ − ξ; l(ξ))) represent the respective probabilities that c2(τ) > c2(ξ),
c1(τ) < c1(ξ), h(τ) > h(ξ), and l(τ) < l(ξ) within a short period of time τ−ξ. When ξ tends
to τ , due to the property of the cumulative normal distribution function, the probabilities
are equal to 0.5. In discrete time, the equations yield to:

lim
j→i

N (d1 (c1(ih), (i− j)h; c2(jh))) = lim
j→i

N (−d1 (c2(ih), (i− j)h; c1(jh))) = 0

lim
j→i

N (d1 (c2(ih), (i− j)h; c2(jh))) = lim
j→i

N (−d1 (c1(ih), (i− j)h; c1(jh))) = 0.5

lim
j→i

N (d1 (h(ih), (i− j)h;h(jh))) = lim
j→i

N (−d1 (l(ih), (i− j)h; l(jh))) = 0.5

Similar limits hold also for d2. As a result, when j reaches the value of i, the numerical
implementation does not involve the boundaries values at jh and ensures the existence of

14



  

d1 and d2 . To determine the unknown value of the boundaries at step i, we introduce two
different functions:

f1(x) = −K1 + x+ A(x, ih)

f2(x) = −x+K2 + A(x, ih)

where A is the price of the considered strangle contract, either a hybrid American strangle
or a standard one, at time to maturity ih. The roots of f1 (or f2) computed at i correspond
exactly to the lower (or upper) early exercise boundaries at that time16.

To analyze the complexity of our approach, assume that there are m operations in the
bisection method (m depends on the targeted level of accuracy). To find each boundary
at step i, we have i + 1 evaluations of the integral equation. For n evaluations we have
((n + 1)(n + 2))/2 operations. The total number of operations (considering an evaluation
of the integrand as one operation) is m[((n + 1)(n + 2))/2]; its order is mn2. This number
highlights how the runtime of the code is influenced by the choice of n. This is the same as
in Chiarella & Ziogas (2005) only when the Richardson’s extrapolation step is ignored.

Appendix C shows the explicit pseudo-codes for the hybrid quadrature, the determination
of the EEB, and the price of a Euro-American strangle with an early exercisable call side17.
Algorithms 2 and 3 are iteratively and recursively linked. Algorithm 2 involves the index i,
whereas Algorithm 3 refers to n. We can see that at each step i the function HybridQuad(i)
gives the quadrature weights for i+ 1 endpoints.

5. Simulations

First, it is worth schematically comparing our method to that of CZ. Figure 2 shows how
the numerical scheme of CZ and ours differ in their principles. n and 2n are the numbers of
the discretization length of the integrals in the price formula.

Next, Figure 3 plots the call side early exercise boundary computed with the CZ numer-
ical scheme before (checkered gray line) and after (black line) Richardson’s extrapolation.
The checkered gray line in this figure clearly shows the non-monotonic gradient problem.

16The bisection method is used with a six-digit precision for the root searching result. The Newton-
Raphson method, the bisection method, and other methods are available for root finding. By the nature
of the contract, the holder of the option will choose the best of a put with strike K1 and a call with strike
K2 (with a self-closing mechanism). Accordingly, the function A(x, ih) is a decreasing function of x within
[0,K1] and an increasing function of x within [K2,∞) (see Figure 1). This monotonic property is extended
to functions f1 and f2 within the root searching intervals and ensures that the bisection method succeeds at
any arbitrary level of confidence.

17Parameter sigma, the volatility, is implicitly used in functions d1 and d2.
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Interestingly, we can also notice a) that there is a need for an extrapolation technique and
b) that the Richardson’s extrapolation technique is far from being a simple averaging of
external points.

Figure 4 compares the call side early exercise boundary of CZ after the Richardson’s
extrapolation (gray line) with the one we obtain from our own procedure (black line). Both
EEBs are associated with the same American strangle but both boundaries differ from each
other. Our boundary appears to be lower than the one provided by the CZ algorithm.
Consequently, our method suggests to exercise the call side of the strangle earlier and this
increases the probability of exercising the call side. Due to the smoothness of the EEB
pricing the accuracy should be improved in our context. It becomes clear that the choice
of the quadrature method deserves particular attention and significantly affects the pricing
and the management of American-Style strangles. Table 3, introduced below, will confirm
these statements.

"INSERT FIGURES 2 AND 3 ABOUT HERE"

"INSERT TABLE 3 ABOUT HERE"

Using the one-step procedure saves computational time because it is run with an interval
length of h/2 only, whereas the two-step algorithm uses both h and h/2. So, by construction,
CZ use 50% more subintervals than we do. To assess the gain in time, we proceed as follows.
We implement both of the codes for the different values of n that are the number of h/2
long subintervals. The computational times are then displayed on the bottom line of Table
4. The table reveals that for a given n, the convergence towards the common long-run value
is faster with our method. The computational time for the two-step procedure is at least
about 25% longer. The maximum difference is obtained for n = 400, with a difference of
36%.

"INSERT TABLE 4 ABOUT HERE"

Table 4 compares the prices computed with the new quadrature method to those provided
by CZ for n = 100, 200, 400, and 800. We consider different values of the stock price S to
represent five different situations: in-the-money (on the call and put sides), at-the-money
(on the call and put sides), and out-of-the-money (i.e., in between K2 and K2). The prices
obtained by both methods share four decimal digits. When n increases, the fifth decimal
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converges to the same value. We can see that our algorithm converges faster than that of
CZ in the sense that for an equivalent computational time our prices are closer to the exact
solution than CZ’s. Table 4 also shows that, as predicted, the price limit is reached from
above when using our approach. By contrast, the CZ numerical approximation can converge
from above or below (see for instance S = 1.5 and S = 1.75). The bottom line is that
we can avoid the non-monotonic gradient problem, save computational time, improve the
convergence rate, and control for errors.

"INSERT TABLE 5 ABOUT HERE"

Table 5 compares the prices of American and Euro-American strangles for three different
environments (Panels A, B, and C) and for a range of asset prices chosen to highlight the
price differences in all cases. We can check that the prices of the European and American
strangles bound all other values. Panel A displays a situation where the risk-free rate is far
smaller than the dividend rate. Here, the Euro-American strangles with American put sides
are cheaper than their American strangle counterparts, whereas the Euro-American strangles
with American call sides are as expensive. This panel highlights a situation where the lower
early exercise boundary does not matter. In other words, the American strangle contract
offers an opportunity to sell earlier than maturity that is worth nothing. Panel B provides
simulations in an environment where the risk-free rate is far greater than the dividend rate.
In that situation, the upper early exercise boundary does not matter, reflecting that an
American strangle contract offers, in such a context, a worthless opportunity to buy earlier
than maturity. Panel C highlights a situation where the risk-free rate is equal to the dividend
rate. Here, the prices of both the Euro-American strangles are different from those of the
standard American strangles.

6. Hedging management issues

It is important for traders and writers to hedge option positions. Dynamic hedging
strategies suggest the need to consider price sensibilities. Delta (∆), gamma (Γ), and theta
(Θ) are in these respects key parameters. Kim-style representations of American and Euro-
American strangles within the Black-Scholes model are useful to find analytical formulas.
Proofs for the following hedging parameters are in Appendix B.

Delta, which is the first derivative of the position with respect to the stock price, mea-
sures the sensitivity of the contract price to the underlying stock price. This hedging ratio
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indicates the number of stocks to hold in a dynamic hedging strategy. From our previous
representations of strangles, we have

∆V =
∂V (S, τ)

∂S
= ∆E + ∆EEP (12)

where ∆E is the delta of a European strangle (∆E = e−δτ (N (d1 (S, τ ;K2))−N (−d1 (S, τ ;K1))))
and ∆EEP is the delta of the early exercise premium. For the American strangle, we have

∆AS
EEP =

∫ τ

0

δe−δ(τ−η) {N (d1 (S, τ − η; c2(η)))−N (−d1 (S, τ − η; c1(η)))

+
1

σ
√
τ − η

[
ϕ (d1 (S, τ − η; c2(η)))

(
1− K2

c2(η)

r

δ

)
+ϕ (−d1 (S, τ − η; c1(η)))

(
1− K1

c1(η)

r

δ

)]}
dη.

For a Euro-American strangle with an American upper side we have

∆EcAS
EEP =

∫ τ

0

δe−δ(τ−η) {N (d1 (S, τ − η;h(η)))

+
1

σ
√
τ − η

ϕ (d1 (S, τ − η;h(η)))
(

1− K2

h(η)

r

δ

)}
dη.

For a Euro-American strangle with an American lower side, we have

∆EpAS
EEP =

∫ τ

0

δe−δ(τ−η) {−N (−d1 (S, τ − η; c1(η)))

+
1

σ
√
τ − η

ϕ (−d1 (S, τ − η; l(η)))
(

1− K1

l(η)

r

δ

)}
dη.

Gamma is the second derivative of the position with respect to the stock price. Viewed as
the first derivative of the delta, this Greek parameter provides information on the rebalancing
frequency of the self-financing replicating portfolio. It is a very important parameter for risk
management because it informs option sellers about their exposure to an abrupt movement
in the underlying asset price. Gamma is

ΓV =
∂2V (S, τ)

∂S2
= ΓE + ΓEEP (13)

where ΓE is the gamma of a European strangle given by

ΓE =
e−δτ

Sσ
√
τ

(ϕ (d1 (S, τ ;K1)) + ϕ (d1 (S, τ ;K2))) .
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For an American strangle, we have

ΓAS
EEP =

∫ τ

0

e−δ(τ−η)

Sσ
√
τ − η

[
ϕ (d1 (S, τ − η; c2(η)))

{
1− d1 (S, τ − η; c2(η))

σ
√
τ − η

(
1− K2

c2(η)

r

δ

)}
+ ϕ (d1 (S, τ − η; c1(η)))

{
1− d1 (S, τ − η; c1(η))

σ
√
τ − η

(
1− K1

c1(η)

r

δ

)}]
dη.

For a Euro-American strangle with an American upper side, we have

ΓEcAS
EEP =

∫ τ

0

e−δ(τ−η)

Sσ
√
τ − η

ϕ (d1 (S, τ − η;h(η)))
{

1− d1 (S, τ − η;h(η))
σ
√
τ − η

(
1− K2

h(η)

r

δ

)}
dη.

For a Euro-American strangle with an American lower side, we have

ΓEpAS
EEP =

∫ τ

0

e−δ(τ−η)

Sσ
√
τ − η

ϕ (d1 (S, τ − η; l(η)))
{

1− d1 (S, τ − η; l(η))
σ
√
τ − η

(
1− K1

l(η)

r

δ

)}
dη.

The time decay theta is an important Greek parameter to consider (see Taleb (1997,
pp.167-170) for a discussion). Because strangles satisfy the fundamental Black-Scholes Mer-
ton partial differential equation (Equation (1)), this Greek parameter can be deduced from
the delta and gamma. We have

ΘV =
∂V

∂τ
= − (r − δ)S∆V −

1

2
σ2S2ΓV + rV. (14)

Theta mixes delta and gamma in a quite subtle way (see Equation (14)). For American and
Euro-American strangles, it is (of course) zero in stopping regions, because the time effect
disappears once the contracts are exercised. Theta reaches its minimum when the option is
approximately at the money (see Figure 5). Actually, the value of an option decreases when
it nears expiry without being in the money because the probability that the option expires
out of the money increases.

From a computational perspective, the hedging parameters can be easily evaluated once
we know the early exercise boundaries. These boundaries are computed with the recursive
method introduced earlier. Clearly, this method is quite likely to be more efficient than the
alternative methods relaying on perturbation schemes. In perturbation analysis, repeating
the price computations is necessary and this compounds numerical errors. By contrast, the
direct computation of Greek parameters, as permitted by our formulas, restricts the errors
to those associated with the determination of the boundaries (see Huang, Subrahmanyam,
& Yu (1996) for an investigation of the recursive method).

19



  

"INSERT FIGURE 5 ABOUT HERE".

Figure 5 portrays the prices and Greek parameters of all the strangles on the same
graph as a function of the underlying asset (contemporaneous) price. The upper-left graph
illustrates the price differences between the strangles (for r < δ).18. The upper-right graph
deals with the deltas. As expected, the deltas lie between –1 and 1. When the stock price is
larger than K2, the call side of the American strangle is in the money and the right to buy
becomes influential. When the stock price is lower than K1, the put side is in the money and
the right to sell takes the lead. The gammas highlight the extinction of the early exercise
strangles very clearly. The values simply drop to zero in such a case. All the gammas reach
their maximum near strikes. The large gammas indicate that the delta hedging may be more
demanding for these contracts compared to the European equivalent contracts.

7. Conclusions

This study reconsiders the pricing and hedging of strangles with finite maturity. It also
introduces a new variant of these contracts called Euro-American strangles, and it provides
a new (efficient and accurate) one-step numerical algorithm. The quadrature approach we
propose combines Newton-Cotes and Gregory weighting schemes. Our algorithm avoids the
non-monotonic gradient problem faced by the Chiarella and Ziogas’ approach and has no
recourse to any extrapolation scheme. We show that the computational time is significantly
lowered and that the convergence rate is also improved. In addition, the new scheme allows
us to control for errors. Our approach relies extensively on the Kim-style representation of
American-style strangles. As a result of this, we can derive analytical expressions for prices
and for hedging parameters. Finally, we make simulations to compare the parameters with
each other. Our results suggest that the hedging of strangles deserves specific attention.

18In this case, the Euro-American strangle price with an American call side is similar to that of an American
strangle.
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Appendix A. Solving PDE(1) with Kim’s decomposition

The goal here is to solve the PDE (1) equipped with boundary conditions (3a)-(3d).
Along the lines of Kim (1990), we transform the problem so we can solve it using the results
of Kolodner (1956) and McKean (1965). Due to the linear property of differentiation, we
can divide the Euro-American strangle with an American upper side into two components

EAh(S, τ) = F (S, τ) +G(S, τ)

where both F and G satisfy PDE (1). The function F is precisely characterized by

F (S, 0) = 0, S ≥ 0, (15)

F (S, τ) = h(τ)−K2, 0 ≤ τ ≤ T, (16)

lim
S→h(τ)

∂F

∂S
= 1, 0 ≤ τ ≤ T. (17)

while
G(S, 0) = max [0, K1 − S] + max [0, (S −K2)ψ(h(0)− S)] , S ≥ 0, (18)

The solution of the second problem (i.e., the partial differential Equation (1) with bound-
ary condition (18)) is equivalent to the price of a portfolio made up of two independent
standard options (a call and a put), given that the price of the underlying asset at maturity
is at most equal to h(0). In fact, in the case where there is no early exercise (of the American
side), it is impossible for the underlying asset to be above h(0) (due to continuity of the h(.)).
The linear property of differentiation allows us to divide the problem into two subproblems
and solve them separately. The first challenge is to solve the PDE(1) under the boundary
condition

G1(S, 0) = max [0, K1 − S] , S ≥ 0.

The solution is available from the Black-Scholes framework and we have:

G1(S, τ) = E
[
e−rτ (K1 − Sτ )1Sτ <K1 |S0 = S

]
=

∫ ∞

−∞
e−rτ

(
K1 − Se(r−δ−σ2

2
)τ+σ

√
τu
)

1
Se(r−δ−σ2

2 )τ+σ
√

τu<K1

1√
2π
e−

u2

2 du

=

∫ − ln(S/K1)+(r−δ−σ2

2 )τ

σ
√

τ

−∞
e−rτ

(
K1 − Se(r−δ−σ2

2
)τ+σ

√
τu
) 1√

2π
e−

u2

2 du

where E[.] is the mathematical expectation under the risk-neutral probability.
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Separating the integral above yields:

G1(S, τ) = K1e
rτN

(
−

ln(S/K1) + (r − δ − σ2

2
)τ

σ
√
τ

)

− Se−δτN

(
−

ln(S/K1) +
(
r − δ + 1

2
σ2
)
τ

σ
√
τ

)
.

The second challenge is to solve the PDE(1) under boundary condition

max [0, (S −K2)ψ(h(0)− S)] , S ≥ 0.

Similarly, its solution is given by:

G2(S, τ) = E
[
erτ (Sτ −K2)1K2<Sτ <h(0)|S0 = S

]
=

∫ ∞

−∞
erτ
(
Se(r−δ−σ2

2
)τ+σ

√
τu −K2

)
1

K2<Se(r−δ−σ2
2 )τ+σ

√
τu<h(0)

1√
2π
e−

u2

2 du

=

∫ − ln(S/h(0))+(r−δ−σ2

2 )τ

σ
√

τ

− ln(S/K2)+(r−δ−σ2
2 )τ

σ
√

τ

erτ
(
Se(r−δ−σ2

2
)τ+σ

√
τu −K2

) 1√
2π
e−

u2

2 du

=

∫ ln(S/K2)+(r−δ−σ2

2 )τ

σ
√

τ

ln(S/h(0))+(r−δ−σ2
2 )τ

σ
√

τ

erτ
(
Se(r−δ−σ2

2
)τ−σ

√
τu −K2

) 1√
2π
e−

u2

2 du

=

∫ ln(S/K2)+(r−δ−σ2

2 )τ

σ
√

τ

−∞
erτ
(
Se(r−δ−σ2

2
)τ−σ

√
τu −K2

) 1√
2π
e−

u2

2 du

−
∫ ln(S/h(0))+(r−δ−σ2

2 )τ

σ
√

τ

−∞
erτ
(
Se(r−δ−σ2

2
)τ−σ

√
τu −K2

) 1√
2π
e−

u2

2 du

= Se−δτN

(
ln(S/K2) +

(
r − δ + 1

2
σ2
)
τ

σ
√
τ

)

−K2e
−rτN

(
ln(S/K2) +

(
r − δ − 1

2
σ2
)
τ

σ
√
τ

)

− Se−δτN

(
ln(S/h(0)) +

(
r − δ + 1

2
σ2
)
τ

σ
√
τ

)

+K2e
−rτN

(
ln(S/h(0)) +

(
r − δ − 1

2
σ2
)
τ

σ
√
τ

)
.
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The overall solution of the first problem is therefore given by:

G(S, τ) = G1(S, τ) +G2(S, τ)

= K1e
−rτN

(
−

ln(S/K1) +
(
r − δ − 1

2
σ2
)
τ

σ
√
τ

)

− Se−δτN

(
−

ln(S/K1) +
(
r − δ + 1

2
σ2
)
τ

σ
√
τ

)

+ Se−δτN

(
ln(S/K2) +

(
r − δ + 1

2
σ2
)
τ

σ
√
τ

)

−K2e
−rτN

(
ln(S/K2) +

(
r − δ − 1

2
σ2
)
τ

σ
√
τ

)

− Se−δτN

(
ln(S/h(0)) +

(
r − δ + 1

2
σ2
)
τ

σ
√
τ

)

+K2e
−rτN

(
ln(S/h(0)) +

(
r − δ − 1

2
σ2
)
τ

σ
√
τ

)
. (19)

Kolodner (1956) and McKean (1965) analyzed the heat equation that is a free boundary
problem similar to the system-formed PDE (1) under conditions (15)-(17). They solved this
by means of Fourier transforms. Because it is long and tedious, we directly apply their
results to our problem. We obtain:

F (S, τ) =

∫ τ

0

e−r(τ−ξ) e
−[α−β(ξ)]2/2(τ−ξ)√

2π(τ − ξ)
×
[
h(ξ)σ

2
+

(
β′(ξ)− α− β(ξ)

2(τ − ξ)

)
(h(ξ)−K2)

]
dξ

where

β(ξ) =

[
ln(h(ξ)) +

(
r − δ − 1

2
σ2

)
ξ

]
/σ,

α =

[
ln(S) +

(
r − δ − 1

2
σ2

)
τ

]
/σ.
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By rearranging the terms of F (S, τ) we have

F (S, τ) =

∫ τ

0

e−r(τ−ξ)h(ξ)
e−[α−β(ξ)]2/2(τ−ξ)√

2π(τ − ξ)
×
[
σ

2
+ β′(ξ)− α− β(ξ)

2(τ − ξ)

]
dξ

−K2

∫ τ

0

e−r(τ−ξ) e
−[α−β(ξ)]2/2(τ−ξ)√

2π(τ − ξ)
×
[
β′(ξ)− α− β(ξ)

2(τ − ξ)

]
dξ. (20)

And, by noticing that

e−r(τ−ξ)h(ξ)
e−[α−β(ξ)]2/2(τ−ξ)√

2π(τ − ξ)
×
[
σ

2
+ β′(ξ)− α− β(ξ)

2(τ − ξ)

]
= −e−δ(τ−ξ)S

∂

∂ξ
N

(
α− β(ξ) + σ(τ − ξ)√

τ − ξ

)
and

e−r(τ−ξ) e
−[α−β(ξ)]2/2(τ−ξ)√

2π(τ − ξ)
×
[
β′(ξ)− α− β(ξ)

2(τ − ξ)

]
= e−r(τ−ξ) ∂

∂ξ
N

(
α− β(ξ)√
τ − ξ

)
as well as using integration by parts, Equation(20) then gives

F (S, τ) = δS

∫ τ

0

e−δ(τ−ξ)N

(
α− β(ξ) + σ(τ − ξ)√

τ − ξ

)
dξ

− rK2

∫ τ

0

e−r(τ−ξ)N

(
α− β(ξ)√
τ − ξ

)
dξ

+ Se−δτN

(
ln(S/h(0)) +

(
r − δ + 1

2
σ2
)
τ

σ
√
τ

)

−K2e
−rτN

(
ln(S/h(0)) +

(
r − δ − 1

2
σ2
)
τ

σ
√
τ

)
. (21)

Finally, by adding Equations (21) and (19) we obtain Equation (8). The proof of Propo-
sition (3) is similarly obtained.
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Appendix B. Derivation of Greek parameters.

In this appendix we derive the deltas of American strangles. The deltas for European and
Euro-American strangles, as well as gammas, may be found similarly. Once we get deltas
and gammas, thetas can be deduced by using the fundamental Black-Scholes PDE (Equation
(14)). Let us consider an American strangle option

Ac1c2(S, τ) = E(S, τ) + EEPc1c2(S, τ)

According to the linearity of differentiation, we have

∆A =
∂Ac1c2(S, τ)

∂S
= ∆E + ∆EEP

where ∆E = ∂E(S,τ)
∂S

and ∆EEP =
∂EEPc1c2 (S,τ)

∂S
. To simplify the proof let us divide ∆E and

∆EEP into two components. For ∆E, we have ∆E = ∆E1 + ∆E2 where

∆E1 =
∂

∂S

[
K1e

−rτN (−d2 (S, τ ;K1))− Se−δτN (−d1 (S, τ ;K1))
]

and
∆E2 =

∂

∂S

[
Se−δτN (d1 (S, τ ;K2))−K2e

−rτN (d2 (S, τ ;K2))
]
.

For ∆EEP , we have ∆EEP = ∆EEP1 + ∆EEP2 where

∆EEP1 =
∂

∂S

[∫ τ

0

[
K1re

−r(τ−η)N (−d2 (S, τ − η; c1(η)))− Sδe−δ(τ−η)N (−d1 (S, τ − η; c1(η)))
]
dη

]
and

∆EEP2 =
∂

∂S

[∫ τ

0

[
Sδe−δ(τ−η)N (d1 (S, τ − η; c2(η)))−K2re

−r(τ−η)N (d2 (S, τ − η; c2(η)))
]
dη

]
.

For ∆E, things are straightforward and well known. We have: ∆E2 = e−δτN (d1 (S, τ ;K2))+

Se−δτ 1
Sσ

√
τ
ϕ (d1 (S, τ ;K2)) −K2e

−rτ 1
Sσ

√
τ
ϕ (d2 (S, τ ;K2)) where the two last terms collapse.

∆E1 is obtained with a similar calculation and we have ∆E1 = −e−δτN (d1 (S, τ ;K1)). The
next step is to investigate ∆EEP1 and ∆EEP2 .

∆EEP2 =

∫ τ

0

∂

∂S

[
Sδe−δ(τ−η)N (d1 (S, τ − η; c2(η)))−K2re

−r(τ−η)N (d2 (S, τ − η; c2(η)))
]
dη
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where the derivatives are

δe−δ(τ−η)N (d1 (S, τ − η; c2(η)))+Sδe−δ(τ−η)ϕ (d1 (S, τ − η; c2(η)))
Sσ
√
τ − η

−K2re
−r(τ−η)ϕ (d2 (S, τ − η; c2(η)))

Sσ
√
τ − η

Given that Se−δτϕ (d1 (S, τ ;K)) = Ke−rτϕ (d2 (S, τ ;K)) is verified for all K, we obtain after
simplification

δe−δ(τ−η)N (d1 (S, τ − η; c2(η))) + δe−δ(τ−η)ϕ (d1 (S, τ − η; c2(η)))
σ
√
τ − η

(
1− K2

c2(η)

r

δ

)
With all in one we get

∆EEP2 =

∫ τ

0

δe−δ(τ−η)

[
N (d1 (S, τ − η; c2(η))) +

ϕ (d1 (S, τ − η; c2(η)))
σ
√
τ − η

(
1− K2

c2(η)

r

δ

)]
dη.

We can derive the expression for ∆EEP1with the same procedure. We get

∆EEP1 =

∫ τ

0

δe−δ(τ−η)

[
−N (−d1 (S, τ − η; c1(η))) +

ϕ (−d1 (S, τ − η; c1(η)))
σ
√
τ − η

(
1− K1

c1(η)

r

δ

)]
dη.
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Appendix C. Pseudo-codes

Algorithm 1: Hybrid quadrature
Function: HybridQuad
Input: n /* number of subinterval */
Output: w /* vector of weights of n+ 1 endpoints */
begin

Create vector w of length n+ 1 and full with default value 1;
switch n do

case n = 1 /* Closed Newton-Cotes weights */

w(0)←− 0.5; w(1)←− 0.5;

case n = 2
w(0)←− 1/3; w(1)←− 4/3; w(2)←− w(0);

case n = 3
w(0)←− 3/8; w(1)←− 9/8;
w(2)←− w(1); w(3)←− w(0);

case n = 4
w(0)←− 14/45; w(1)←− 64/45; w(2)←− 24/45;
w(3)←− w(1); w(4)←− w(0);

case n = 5
w(0)←− 95/288; w(1)←− 375/288; w(2)←− 250/288;
w(3)←− w(2); w(4)←− w(1); w(5)←− w(0);

case n = 6
w(0)←− 41/140; w(1)←− 216/140; w(2)←− 27/140; w(3)←− 272/140
w(4)←− w(2); w(5)←− w(1); w(6)←− w(0);

otherwise /* fourth-order Gregory weights */

w(0)←− 3/8;w(1)←− 7/6; w(2)←− 23/24;
w(n− 2)←− w(2); w(n− 1)←− w(1); w(n)←− w(0);

return w
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Algorithm 2: Euro-American strangle with early exercisable call side .
Function: EAS
Input: S,K1, K2, r, q, sigma, i, h, c2 /* t = ih stands for time to maturity */
Output: A /* price of the strangle */
begin

t←− ih;

E ←−
(
K1e

−rtN (−d2 (S, t;K1))− Se−qtN (−d1 (S, t;K1)) +
Se−qtN (d1 (S, t;K2))−K2e

−rtN (d2 (S, t;K2))

)
;

EEP (v)←−
(

Sqe−q(i−v)hN (d1 (S, (i− v)h; c2(vh)))
−K2re

−r(i−v)hN (d2 (S, (i− v)h; c2(vh)))

)
;

/* new function of v */

w ← HybridQuad (i) /* weights of the hybrid quadrature */

sum← 0
for j ← 0 to i do

sum← sum+ w(j)× EEP (j)

A← E + h× sum;

return A

Algorithm 3: Early exercise boundary .
Function: EEBoundary
Input: S, T,K1, K2, r, q, sigma, n
Output: c2 /* vector of call side early exercise boundary */
begin

h← T/n ;
Create vector c2 of length n+ 1 and full with default value 0 ;
c2(0)←max(K2, K2 × (r/q)) ;

/* recursive computation of c2 starting with c2(0) */

for i← 1 to n do
f2(x)← x−K2 − EAS(x,K1, K2, r, q, sigma, i, h, c2) /* new function */

c2(i)←Bisection(f2(x)); /* Bisection(f) gives the root of f */

return c2
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Figure 1. American strangles continuation & stopping regions.
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Figure 2. Comparing numerical strategies.
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Figure 3. Call side early exercise boundaries: CZ’s algorithm.
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These two "call side" early exercise boundaries are provided by the Chiarella and Ziogas algorithm.
The boundaries are considered before (gray checkered line) and after (black line) the Richardson’s
extrapolation technique to illustrate the non-monotonic gradient problem.
Parameter values are K1 = 1, K2 = 1.1, r = 5%, δ = 10%, T = 1, σ = 20% and n = 100.
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Figure 4. Call side early exercise boundaries: a comparison.
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These two "call side" early exercise boundaries are provided by the CZ procedure (upper line) and
our own procedure (lower line). The boundary of CZ is considered after Richardson’s extrapolation.
Our procedure does not need such a device.
The parameter values are K1 = 1, K2 = 1.1, r = 5%, δ = 10%, T = 1, σ = 20%, and n = 100.
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Figure 5. Simulations.
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The graphs of these figures represent the prices and Greeks of the following strangles: European
(gray line), American (black line), Euro-American with American call side (marker "+"), and Euro-
American with American put side (marker "o"). The parameter values are K1 = 1, K2 = 1.001,
r = 10% (r = 0.5 for prices graph), δ = 10%, T = 1, σ = 20%.
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  Table 1. Simpson’s weights used by CZ.

n w0 w1 w2 w3 w4 . w2k

1 − − − − − . −

2 1
3

4
3

1
3

0 0 . 0

3 − − − − − . −

4 1
3

4
3

2
3

4
3

1
3

. 0

. . . . . . . .

2k − 1 − − − − − . −

2k 1
3

4
3

2
3

4
3

2
3

. 1
3

With k ∈ {1, 2, 3, ...}.
For odd values of n, the quadrature does not exist theoretically. Consequently, inserting an
arbitrarily additional coefficient (4/3 or 2/3) for odd values of n, as CZ did, may lead to an

additional bias in the integral approximation.
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  Table 2. Hybrid quadrature weights.

n w0 w1 w2 w3 w4 w5 w6 w7 . wi

1 1
2

1
2

0 0 0 0 0 0 . 0

2 1
3

4
3

1
3

0 0 0 0 0 . 0

3 3
8

9
8

9
8

3
8

0 0 0 0 . 0

4 14
45

64
45

24
45

64
45

14
45

0 0 0 . 0

5 95
288

375
288

250
288

250
288

375
288

95
288

0 0 . 0

6 41
140

216
140

27
140

272
140

27
140

216
140

41
140

0 . 0

7 3
8

7
6

23
24

1 1 23
24

7
6

3
8

. 0

. . . . . . . . . . .

i 3
8

7
6

23
24

1 1 1 1 1 . 3
8
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Table 3. Degree of Exactness (DE) and error associated with Newton-Cotes.

i DE Mi

(i+2)!
Ki

(i+1)!

1 1 − 1
12

2 3 1
90

−

3 3 − 3
80

4 5 8
945

−

5 5 − 275
12096

6 7 9
1400

−
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Table 4. Values of American strangles: convergence and speed.

Method CZ LAM
HHHHHHHS

n 100 200 400 800 100 200 400 800

0.75 0.275647 0.275647 0.275647 0.275647 0.275647 0.275647 0.275647 0.275647

1.00 0.100332 0.100332 0.100332 0.100332 0.100332 0.100332 0.100332 0.100332

1.25 0.038563 0.038562 0.038561 0.038561 0.038562 0.038561 0.038561 0.038561

1.50 0.092344 0.092341 0.092341 0.092340 0.092342 0.092341 0.092340 0.092340

1.75 0.255631 0.255632 0.255633 0.255633 0.255634 0.255634 0.255633 0.255633

Total Subint. 300 600 1200 2400 200 400 800 1600

time (sec) 64 244 1032 3920 51 193 758 3148

"Total Subint." represents the total number of subintervals needed for implementing the approach. "time" is the computational time

needed to compute American strangle prices. The parameter values are K1 = 1, K2 = 1.5, r = 5%, δ = 10%, σ = 20%, and τ = 1. Notice

that for n = 100, (100 + 2× 100) = 300 subintervals have been used by CZ whereas LAM requires 2× 100 subintervals only.
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Table 5. Prices of American strangles vs. Euro-American strangles.

S American
strangle

Euro-American
strangle with

American call side

Euro-American
strangle with

American put side

European strangle

Panel A: r < δ (r = 5%, δ = 10%)

1.0 0.156485 0.156485 0.152081 0.152081

1.1 0.169608 0.169608 0.158479 0.158479

1.2 0.219351 0.219351 0.195680 0.195680

1.3 0.299809 0.299809 0.255461 0.255461

Panel B: r > δ (r = 10%, δ = 5%)

0.7 0.299959 0.247329 0.299959 0.247329

0.8 0.205527 0.179077 0.205527 0.179077

0.9 0.156331 0.145270 0.156331 0.145270

1.0 0.156364 0.151920 0.156364 0.151920

Panel C: r = δ (r = δ = 5%)

0.9 0.165262 0.163381 0.165033 0.163152

1.0 0.152594 0.151846 0.151853 0.151104

1.1 0.178339 0.178052 0.176449 0.176162

1.2 0.234506 0.234400 0.230451 0.230345

The parameter values are K1 = 1, K2 = 1.001, T = 1, and σ = 20%. Both r, δ, and S vary.
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