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Abstract 12 
The present paper aims to identify ways to reduce pollution injected by residents in the urban 13 
wastewaters network system. Two approaches are considered. The first one uses flow and 14 

pollutant calculation to test whether a polluter can easily be identified in a neighborhood. The 15 
second approach uses a survey to examine what incentive would be most effective to 16 

influence residents’ behavior. Hydrodynamic simulation results show that concentration 17 
profiles at the network outlet corresponding to all possible polluters are similar and thus do 18 
not point out specific resident source of pollution. Household level survey results show that 19 
most socio-economic and public good-related characteristics do not play a significant role in 20 

explaining choices to discard in the home wastewaters network. Apart from the nature of the 21 
waste itself, by far, the belief that the respondent has about her neighbors’ and relatives’ 22 
discarding behavior is the main driver of the choice. 23 

 24 
Keywords. Household wastewaters behavior; Panel-data logit; Prosocial behavior; Sewage 25 

Hydrodynamic Simulation; Reynolds time- Averaged Navier-Stokes. 26 
 27 

1 Introduction 28 
Wastewater treatment is a significant and growing cost for communities. In 2008, according 29 

to the French Ministry of Ecology and Sustainable Development and Energy, it amounted to 30 
53% of the water bill for the domestic user (MEDDE 2015). The Greater Lyon Metropolitan 31 
Area (GL hereafter) estimated the volume of water collected in its sewer network at about 200 32 

million cubic meters per year, consisting of approximately 60 % rainwater and 40% 33 
wastewater of all kinds. In addition to this volume, some additional rainwater is collected in 34 

separate networks through stormdrains and gutters. Collected wastewaters are sent to 35 
treatment plants designed to degrade the traditional domestic pollutants during dry or light 36 
rain weather. Treated water is then discharged into receiving water bodies (rivers, 37 

watercourses, etc.). If specific pollutants or excessive rain water volumes are collected in the 38 
sewer network, the hydraulic capacity of the treatment plant is exceeded and part of the 39 

wastewaters may be discharged directly through combined sewer overflow structures without 40 

treatment. Consequently, the quality of the collected wastewaters in part determines the 41 

quality of the water that will eventually be released into the natural environment. 42 
Wastewaters are heavily loaded with organic matter and nitrogen; these substances are 43 
properly treated thanks to the processes involved in wastewater treatment plants. In addition, 44 
they also convey concentrations of phosphates, sulfates, chlorides, PAHs (polycyclic aromatic 45 
hydrocarbons), metals and pesticides, among others (see Padhye and Tezel 2014 for a review 46 

of most available rejected substances). Some of these substances are classified as dangerous 47 
by the European Water Framework Directive – WFD (2000) and the French Order of 25 48 
January 2010 (JO 2010) on the evaluation of ecological and chemical state of surface water. 49 
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Most of the residues of these substances are trapped in the sludge for which it is necessary to 50 

find beneficial reuse or pay the landfill. 51 
GL has already taken steps to reduce industrial wastewater injections and would like to extend 52 
this approach to individuals. Indeed, households cause pollution by occasionally discarding in 53 

the wastewaters network some wastes that should normally be brought to a waste disposal 54 
facility, including: paint, white spirit, motor and cooking oils, solid waste (wipes, cotton, ...), 55 
pesticides. However, GL perceives that residents may have a wrong perception of the issues 56 
of wastewaters and a very incomplete knowledge of where to release them. To address this 57 
perception issue, GL engaged in education and environmental-awareness activities, for 58 

example, educational visits of treatment plants for children, with free information leaflets 59 
along the path, for each participant; but this falls short from ambitious action plans. 60 
Furthermore, even though GL is in charge of the overall urban drainage system, sewer and 61 
treatment networks, for most cases, the water companies, instead of GL, are in direct contact 62 
with the residents about their water use and habits. This contact is however very much 63 

confined to sending and payment of the water bill (that include some information on the cost 64 
of treatment).  65 

Since GL seeks to reduce sources of polluting waste, it seems relevant to know which means 66 
can be used to efficiently influence residents’ behavior. There is a dual approach for this 67 
issue. The first approach relates to understanding the diffusion of pollutants released in a 68 
wastewaters network to assess local policy effects. Understanding pollutant diffusion could 69 

also help identifying polluters based on available pollution concentration measurement, 70 
maybe at the level of a neighborhood; in that case, financial incentive might be used in a kind 71 
of polluter-pay principle. The second approach is based on non-monetary and non-72 

individualized incentives. This second approach focuses on understanding how residents 73 
decide what to discard in the wastewater network and what could motivate a behavior change; 74 

how to influence this change, with what information. Despite the existence of an EU WFD, 75 
the 1991 Urban Waste Water Treatment Directive (UWWTC 1991), the literature, broadly in 76 

behavioral sciences, appears rather silent on such prosocial behaviors (that is, behaviors 77 
beneficial for the public good, at large) in the domain of wastewaters. OECD (2008) 78 

summarizes studies and papers on “Household Behaviors and the Environment” that state the 79 
interest in understanding heterogeneity of behaviors and people’s “private” and “public” 80 
motives. Among others it reviews solid wastes generation and residential water use, but fails 81 

to identify works on household wastewaters behaviors. 82 
Therefore, the paper aims to i) simulate the pollutant transport and diffusion into a selected 83 

sewer network in order to to evaluate how pollutant concentration profiles away from the 84 
injection location may help identifying the origin of the pollution and ii) survey the users to 85 
detect residents’ knowledge of wastewaters issues, and motivations to avoid disposing of 86 

liquid pollutants in the wastewater network, and maybe bring them to a facility. The paper is 87 
organized as follows. The methodological basis of the two approaches mentioned above is 88 

first presented, followed by the results and discussions. The last section concludes regarding 89 

the best-suited measures which the demander should apply to reduce the pollutant 90 

concentration is its network. 91 
 92 

2 Methodology of Research 93 
2.1 Hydrodynamic Simulation 94 
This approach aims to identify a source of pollution by means of the analysis of pollutant 95 

concentrations at the outlet of a wastewaters separated sewer network (where a sensor would 96 
be implemented). It is assumed that the signature of a pollution at the downstream section of 97 
the sewer network changes according to the location of the pollution injection. In order to 98 
check this assumption, the propagation of a pollutant concentration in a typical sewer network 99 
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is investigated numerically (see De Marchis et al. 2013 for a similar approach based on a 1D 100 

numerical model to simulate the dispersion of E. coli). The following paragraphs highlight the 101 
selected methodology. 102 
The separated sewer network presented in Fig. 1 is selected in the St Priest city (close to 103 

Lyon, France). It is located within a 1 km
2
 area, mainly comprising individual houses. The GL 104 

water management services provided maps and GIS data detailing: i) the topology of the 105 
sewer network, ii) the slope and diameter of each conduit and iii) the location of the inlets and 106 
corresponding number of connected houses (see Fig. 2). 107 

 108 

Figure 1: Selected studied area within St Priest city detailing each conduit (black lines) and 109 

corresponding slope and each inlet (red dots). 110 

 111 

Figure 2: Simplified sketch of the selected network with the number of houses located within 112 
the catchment watershed and connected to the branches of the present network (red squares), 113 

connected to each inlet (blue ellipses). The total number of involved houses finally equals 114 
3858 (end-of-pipe green diamond). Three specific injection locations noted A, B and C will be 115 

used for analyzing the numerical results in Figs. 4 and 5. 116 

The discharge entering the network at each inlet is assumed to be equal to the number of 117 
houses connected to this inlet multiplied by four inhabitants per house and multiplied by the 118 

average individual water consumption at 9:00 am (0.31 L per minute per inhabitant) 119 

according to the standard dry weather flow components (Dorval, 2011). 120 

The discharges being known at each inlet and thus everywhere in the network, the normal 121 

water depth (referring to a uniform open-channel flow) and the corresponding wet cross-122 
section are computed within each conduit of the sewer network. In order to better control the 123 
geometry (with junctions, drop structures etc.) and increase the quality of the computational 124 
mesh, an equivalent rectangular wet cross-section is assumed with the same free surface width 125 

as within the actual circular conduit. 126 
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Adding all the conduits, the geometry of the water volume is finally generated and meshed, 127 

using 1.1 million cells (about 8 cells per conduit width and 4 per conduit depth) as shown on 128 
Fig. 3. A robust 3D calculation of the flow with clear water (without pollution) is performed 129 
using StarCCM+ CFD code solving the 3D-steady-RANS (Reynolds time-Averaged Navier 130 

Stokes) equations using the k-epsilon turbulent closure scheme, the rigid lid representation of 131 
the free surface and the standard wall functions for the wall boundary conditions. Regarding 132 
the pollutant propagation, the 3D advection-diffusion equation is solved considering a passive 133 
scalar (assuming same density) and a timely and spatially constant turbulent Schmidt number 134 
equal to 0.9 (see Romero-Gomez et al. (2008) or Franck et al., 2010). It is used to compute 135 

the turbulent diffusivity coefficients from the turbulent viscosity coefficients obtained through 136 
the hydrodynamics calculation. Momplot et al. (2012 and 2013) and Riviere et al. (2015) 137 
showed that this 3D numerical methodology, despite the use of a rigid-lid, fairly reproduces 138 
the complex hydrodynamics which occurs in the downstream branch of an individual 139 
junction. Similarly, Riviere et al. (2015) showed that this numerical approach also reproduces 140 

the pollutant dispersion in these junctions. 141 

It was notably observed by Riviere et al (2015) and Dalmon et al (2015) that as the velocity of 142 
the flow entering from the lateral (or tributary) inlet exceeds that entering from the main inlet 143 
(see Fig. 3), the flow pattern in the downstream branch exhibits a complex helicoidally 144 

secondary motion (previously described by Shakibainia et al., (2010) which deeply enhances 145 

the pollutant homogenization in the downstream branch (see also Lane et al., 2008). The 146 
length for complete mixing of the downstream branch as proposed by Fischer et al. (1979) 147 
can then pass from about 100 to 15 branch widths, in a similar way as the consequence from a 148 

bed discordance at the intersection (see Gaudet and Roy, 1995) or a density ratio between 149 
both incoming fluids (see Rice et al., 2008). A pollutant concentration is then injected at each 150 

inlet point of the sewer network one after the other, by replacing the generated clear water by 151 
passive tracer during 14 seconds. This permits the simulation of a pollutant load of 0.27 liter 152 

generated by each house. 153 

Analysis of pollutant diffusion in the sewer until reaching the outlet is finally performed by 154 

post-processing the numerical results as detailed in section 3. 155 

 156 

Figure 3: Computational mesh near a junction. 157 

2.2 Household Waste Behavior 158 
The Bénabou and Tirole (2006) model of prosocial behavior is now used to model the (in 159 
principle simpler) case of wastewaters household behaviors. There is an abundant literature in 160 
economics on the topic of prosocial behaviors; the Bénabou and Tirole model has been 161 
adopted in the present paper because it has certainly been a milestone in this field and 162 
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synthetized several approaches. Bénabou and Tirole observed that individuals engaging in 163 

prosocial behaviors might not appear rational at first economic glance because such behaviors 164 
are costly in terms of time or effort, often without apparent economic benefit. Indeed, one 165 
may legitimately wonder why people do not discard more through the home wastewaters 166 

network and instead adopt behaviors (recycling or others) that are costly to them, at least in 167 
time and effort if not in money. Bénabou and Tirole propose that individuals engage in such 168 
prosocial behaviors following three broad types of incentives: “monetary”, “altruism / public 169 
good”, and “reputational”. 170 
Monetary incentives usually stem from fines in the case of pollution, but might also be 171 

subsidies to install more environmental-friendly equipment. Conventional wisdom has 172 
considered that wastewater is a nonpoint source pollution, that is, it is not possible to identify 173 
a particular pollution. If that is indeed the case, monetary incentives appear pointless even if 174 
they are sometimes enacted as it is not possible to fine or incent people for untraceable 175 
behavior. Whether wastewater is indeed a nonpoint source pollution is the object of the first 176 

approach of the present paper. 177 
Altruism and public good considerations include such motives for an immaterial return of a 178 

prosocial action as caring for the well-being of others or the “health” of the aquatic 179 
environment in the area. Such motives require, in the case of wastewaters, a least some 180 
understanding of the water cycle and waste network. 181 
Reputational incentives reflect the benefits that may be derived from the image of ourselves 182 

we send to others or to ourselves. The reflection of our own image may include such benefits 183 
as moral satisfaction or “warm glow” feelings, but also many immaterial benefits which have 184 
a more social nature : being accepted into a group, or on the contrary differentiating oneself 185 

from it, or networking benefits such as in a job or client search. The reputational incentives 186 
may exist with household wastewaters because of a partial observationality of the behaviors, 187 

e.g. while having friends over, or possibly during maintenance works. 188 
The objective of assuming such a model is to seek leverages with which we might expect to 189 

influence behavior. With the Bénabou and Tirole model in mind, a household survey on such 190 
behaviors has been designed and administered with the purpose to test, using econometric 191 

analysis, whether different motives have a statistically significant effect on a resident’s 192 
wastewaters behavior. Even though it is not possible to ask directly what the motivations of a 193 
respondent are, it is possible to examine the statistical significance of factors that would 194 

reveal whether each motive has a significant influence on the behavior. The public good 195 
motives might appear through such indicators of knowledge of wastewaters system, e.g. what 196 

is the use of a treatment plant? what is the destination of home wastewaters? does the 197 
individual have recreational or other use of the aquatic medium? is the person concerned by 198 
water pollution issues and does she feel that she can contribute to these issues ? The 199 

reputational motives have a significant effect for an agent i if her opinion of what her friends’ 200 
or relatives’ wastewaters behaviors matters for her own wastewaters behavior. The image of 201 

oneself appears difficult to measure without sophisticated psychological tests; instead, an 202 

indication of a willingness to change one’s behaviors about waste has been used as a proxy. 203 

 204 

3 Results and Discussion  205 
3.1 Concentration profiles in sewer pipes 206 
For each simulation, the pollution propagation is computed from the corresponding inlet to 207 
the downstream section. The pollutant cloud appears to be conveyed with the main current 208 

and to diffuse laterally, vertically and along the streamwise direction. Moreover, complex 209 
turbulent mixing takes place within the junctions with other pipes (Mignot et al., 2013). 210 
The time-evolution of pollutant concentration at the center of the downstream section (outlet) 211 
is presented for 18 selected injection locations in Fig.4. These time-evolutions are centered on 212 
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the arrival time of the concentration peak at this outlet (all injections are then performed at 213 

different negative times). The figure reveals that the shape of the curve is similar for each 214 
simulation, that is, for each injection location: the concentration data are normally distributed 215 
around a central maximum magnitude. Indeed, even though complex mixing occurs within 216 

each junction leading to a complex pollution cloud just downstream the junction, the distance 217 
before reaching the next junction (typically 100 meters in the case study) is much larger than 218 
the lateral and vertical dimensions of the flow section (typically 1 meter). Thus the flow 219 
recovery toward a uniform velocity and pollutant concentration distribution is systematically 220 
obtained before reaching the following junction (Mignot et al., 2012). Nevertheless, the 221 

concentration peak and lateral diffusion appear to vary strongly between all simulations. 222 

The peak concentration displayed on Fig.4 for each curve is plotted in Fig.5 as a function of 223 
the convection time of the pollutant from the corresponding injection inlet to the downstream 224 
section. A fine correlation is obtained: as the convection time increases, the pollution cloud 225 

diffusion increases and thus the concentration peak at the outlet decreases. However, for one 226 
measured peak concentration at the outlet, the number of possible injection locations equals 227 

the number of main branches of the sewer network (equal to four in the present case). 228 

To conclude, the analysis of the pollutant concentration data, from a sensor supposed to be 229 
located within the sewer network (as in Namour et al., 2010) does not permit the pollution 230 

origin to be identified even if the sewer network is perfectly known, and in spite of 231 
hypotheses made in the present study (mainly: same water consumption from each inhabitant 232 
in the area and sudden release of non-mixing pollutant load). This prevents further attempts to 233 

detect the source of pollution within a network using only measurements at the outlet, and to 234 
develop corresponding inverse methods. The only possible approach to identify sources of 235 

pollution would be to deploy a large sensor network, with at least one sensor per principal 236 
branch, which is impractical due to access complexity and prohibiting cost. Thus non-237 

monetary, non-individualized incentives must be sought after, such as described in the next 238 

subsection. 239 

 240 

Figure 4: Time evolution of the simulated pollutant concentration at the center of the outlet 241 
section for 18 selected simulations (corresponding to 18 different injection locations) with 242 
t=0s the peak concentration arrival time at the outlet for each of them. The curves noted A, B 243 

and C, correspond to the injection locations indicated on Fig. 2.  244 
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 245 

Figure 5: Outlet concentration peaks (obtained from Fig.4) as a function of the pollution 246 
advection time from its injection location to the outlet section (small advection times, such as 247 

A, refer to inlet injections located near the outlet on Fig.2, high advection times, such as C, 248 

refer to injections located near the inlet branches on Fig.2). 249 

3.2 Survey and Econometric Model 250 

The data proceed from a survey administered in April and May 2013 on the Saint Priest 251 
municipality (to encompass the hydrodynamic simulations context). The questionnaire has 252 

been designed jointly with GL; it is quite in-depth, so that relatively a lot of information is 253 
extracted from each observation, as shown below. The response rate was rather high, around 254 

20 to 30%, considering that it was not possible to make an appointment beforehand. The 255 
respondents chose to participate before knowing the subject of the survey, so that we can 256 
exclude sample selection bias. 101 complete and usable questionnaires have been collected, in 257 

face to face interviews using a planned random sampling procedure designed to avoid all 258 

forms of spatial clustering. In spite of its small size, the sample appears quite representative of 259 

the municipality in terms of age and gender, somewhat less in terms of professions. 260 

The main question of the survey is summarized in Table 1; it shows that respondents are well 261 
aware of what their household does with each type of waste as there are very few “don’t 262 
know” or “other/unspecified” answers (6

th
 and 8

th
 columns). Those wastes that are discarded 263 

via the exterior network, e.g. storm drains, are also marginal (5
th

 column of Table 1). 264 
Depending on the waste category, the three main ways of discarding are the general waste bin 265 

(0 to 91%), the recycling bin (0 to 79%), or the home wastewaters system (0 to 85%). Seven 266 
categories of waste are never (or 1%) discharged into the home wastewaters network: Solid 267 
foodstuffs, Phytosanitaries, Hydrocarbons, Pharmaceuticals, Cosmetics & hygiene: solids, 268 

Cigarette stubs and Soil/sand. 269 

Table 1: Statistics sorted from the answers to the questionnaire. The question asked to the 270 

respondents was (translated here from French to English): “For each of the following refuse, 271 
indicate how you usually discard it. This question is about your own habits; later, you will be 272 

asked about what you think neighbors and relatives do.” 273 



8 
 

 274 

The row and column titles are summarized for presentation; they are more complete and less technical in the questionnaire 275 

The sequential nature of the responses in Table 1 is a panel: each respondent answers several 276 
times, once for each type of waste (i.e. each line of Table 1). In the following, we consider 277 
only the decision to discard in the home wastewaters network or not; that is, collapsing all the 278 
columns of Table 1 but the “home wastewaters” one. Formally, following Cameron and 279 

Trivedi (2005), such a dichotomic decision, in a panel-data setting, can be represented by the 280 

logit panel-data model : 281 

   
 




iti

iti
iit

x

x
y






exp1

exp
,1Pr  (1) 282 

where yit=1 if respondent i chooses to discard waste t in the home wastewaters system, and 283 

yit=0 otherwise; xit is a vector of regressors or explanatory factors; i is the respondent’s 284 

unknown specific effect and  is a vector of unknown coefficients. Estimation of the  285 

coefficients is classically by maximum likelihood and is implemented in many econometric 286 

packages. The sign of an estimated coefficient indicates its qualitative effect on Pr{yit=1}: if 287 
the sign is positive (negative), then an increase in the corresponding factor increases 288 

(decreases) Pr{yit=1}, other things equal. The full marginal effect can also be computed, but 289 

that is beyond the scope of this paper. 290 

The Hausman (1978) test indicates unequivocally an absence of endogeneity on the 291 

individual-specific effects i; therefore, we prefer the so-called random-effects model for its 292 
statistical efficiency; that means in particular that unobserved individual factors, although 293 
certainly effecting the decision to discard, are uncorrelated with any of the factors that are 294 
included in the model – there is no confounding effect. Presumably there is a correlation 295 
between waste behaviors; for example, one might think that some people prefer recycling any 296 

waste wherever possible. The random-effects panel-data model assumes that the correlation is 297 

the same among all wastes and respondents (equicorrelation, Cameron and Trivedi, 2005). 298 

The results are presented in Table 2 for the seven “chemical” wastes from Table 1, 5
th

 to 11
th

 299 

rows, that is 707 observations for 101 respondents. The focus has been on the “chemical” 300 

wastes because it seemed intuitive to consider relatively homogenous wastes. 301 

Table 2: Probability to reject in home wastewaters network various “chemical” wastes. 302 

Random-effects panel data logit. 303 
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 304 

Table 2 shows very different intercepts for each type of waste, as is expected from Table 1 on 305 
behaviors. The probability of discarding in the home network changes dramatically (from 306 
about 85% to virtually 0%) among waste types. That is reflected by the high significance (p-307 

values much smaller than the conventional 5%) of the 12 variables indicating the waste type 308 
in Table 2. On the other hand, none of the classical socio-economic variable is statistically 309 
significant (p-values larger than the conventional 5%) to explain the discarding decision: age, 310 
gender, education, family composition, presence of pet, home ownership; in other words, no 311 

socio-economic characteristic has a statistically discernible effect on the discarding decision. 312 
But also the regressors that could indicate “public good / altruism” motivated respondents – 313 

the respondent “Lived a long time in the region”, “Knows what treatment plants are for”, 314 
“Knows if home network connect to treatment plant”, “Worried by water pollution” or “Has 315 
water-based leisures” – have no statistically significant influence (p-values higher than 5%), 316 

or in any case, no influence that is similar among all respondents. 317 

The dichotomous variable “Neighbors reject same waste in home network” takes the value 318 
one if the respondent believes that neighbors and relatives discard the corresponding waste in 319 
the home wastewaters network; this variable is called “mimic” for short. Mimic is certainly 320 

striking as potentially endogenous in the sense that it may be governed by the same, possibly 321 
unobserved, variables as the variable of interest (Reject in home wastewaters network, 0/1); 322 
that is, the respondents might rationalize or justify their behavior by stating that they are not 323 

worse or better than their neighbors. Tests show however that this is not the case and this 324 
gives a causal sense to the mimic regressor in the sense that changing (or informing) the 325 

perception that residents have from their neighbors or relatives discarding behavior, for 326 
example through a public awareness campaign, certainly would cause a change in residents’ 327 
behavior. A detailed account of the testing is given by Polome (2013). Mimic is highly 328 

significant (p-value much smaller than 5%); its 𝛽̂ sign is positive (“if I think others discard in 329 

the network, it is more likely that I do it myself”) and the coefficient is relatively large when 330 
compared to the dichotomous variables that indicate the type of waste. 331 

Another variable, “Ready to change [one’s] habits”, may be categorized as reputation effect in 332 
the sense of Bénabou and Tirole (2006) because it is an attempt to demonstrate a form of 333 
goodwill to the outside world (or at least to the interviewer). Its p-value is close to 10%, 334 
which, although not significant, is the smallest one except mimic and the waste types; that is 335 
another sign that the reputation effects are the main, if not the only, drivers of household 336 

wastewater behaviors. 337 
 338 

4 Conclusions 339 
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The aim of the present paper was for the Greater Lyon Metropolitan Area (GL) to identify 340 

ways to reduce the pollutions injected by residents in the wastewater network system. Two 341 
possibilities, corresponding to the two main parts of this study, were tested: i) is it possible to 342 
easily identify the polluter in order to focus on the house or neighborhood to work with for 343 

changing habits and ii) what incentives should be considered to induce changes in residents’ 344 
habits of discarding waste in the wastewater network. 345 
The first part aimed at verifying whether it is possible to identify a polluter from the analysis 346 
of the concentration signal acquired by a sensor located at the outlet of a wastewater 347 
watershed. To do so, the geometry of the wastewater sewer network of St Priest, a suburb of 348 

Lyon in France, is created and meshed and the typical 3D flow corresponding to the statistical 349 
water discharge consumed at 9am by the residents is computed. Pollutant injection from each 350 
house is modelled and the pollutant concentration responses at the outlet are compared to each 351 
other. It appears that all signals are alike, resemble normal distributions, and thus prohibit any 352 
identification of the polluter. The only information that could be sorted would be an 353 

estimation of the pollutant advection time which would be useful only for very restrictive 354 
configurations. 355 

The second part of the paper presented results of a survey on the behavior of discarding 356 
wastes in the home wastewater network. Behaviors were seen to be markedly different among 357 
different types of wastes. The respondents appear well aware of how their households discard 358 
each type of wastes. A striking result is that none of the “typical” socio-economic factors are 359 

near standard statistical significance levels. Following Bénabou and Tirole (2006), factors are 360 
separated between those that might reflect “altruism / public good” and “reputational” 361 
motives for these behaviors (financial motives are non-existent in this case). It is surprising 362 

that none of the factors that might reflect an “altruism / public good” motive is significant. 363 
Therefore, it does not seem possible to influence the behavior of discarding in the home 364 

wastewater system through the “altruism / public good” motives, e.g. conscientization of the 365 
environmental impact wastewater is unlikely to effect individual behavior. Two factors reflect 366 

reputational motives: “Willingness to change one’s habits” and “Whether the respondent 367 
thinks that his neighbors reject the corresponding waste category in the home wastewaters 368 

network”. The latter is the only factor that has a clear statistically significant effect (in 369 
addition to the dichotomous factors that indicate each waste type). In other words, when a 370 
respondent thinks her neighbors discard a particular type of waste through the home 371 

wastewaters, it is much more likely she does it herself for the same waste. Statistical tests 372 
allows to interpret these results in a causal sense, that is to say, it is not because a respondent 373 

discards a particular type of waste in the home wastewaters network that she will declare that 374 
her neighbors do likewise. 375 
Therefore, if one can influence the perception of what neighbors discard in the home 376 

wastewaters network, one could likely influence discharges into that network. The present 377 
study does not determine what form such influence should take, but the results clearly suggest 378 

that the most effective topic will likely be the behavior of neighbors or relatives, and not, for 379 

example, the effects on the environment, or images of water pollution. Campaigns like those 380 

on the proportion of the population that recycles batteries or lightbulbs would fit such 381 
description. 382 
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