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PREFACE 

 Prof. Göran Sundholm of Leiden University inspired the group of logicians who 

nowadays develop their work in Lille and Valparaíso to undertake a fundamental review 

of the dialogical conception of logic by linking it to Constructive Type Logic. One of 

Sundholm's insights was that inference can be understood as involving an implicit 

interlocutor. This led to several investigations whose purpose was to explore the 

consequences of joining winning strategies to the proof-theoretical conception of 

meaning: while introduction rules lay down the conditions under which a winning 

strategy for the Proponent can be built, the elimination rules lay down precisely those 

elements of the Opponent's assertions that the Proponent has the right to use for building 

a winning strategy. The pragmatic and ethical features of obligations and rights naturally 

brings forth the dialogical interpretation of natural deduction. 

 

During the 2012 Visiting Professorship of Prof. Sundholm in Lille, the logic group 

of Lille started probing possible ways of implementing Per Martin-Löf's Constructive 

Type Theory (CTT)
5
 in the dialogical perspective. The first publication in particular on 

the subject—Aarne Ranta's (1988) paper—was read and discussed during Sundholm’s 

seminar. These discussions strongly suggested that the game-theoretical conception of 

quantifiers, which marshalls interdependent moves, provides a natural link between CTT 

and dialogical logic. This idea triggered several publications by the group of Lille in 

collaboration with Nicolas Clerbout and Juan Redmond at the University of Valparaíso, 

including that of the (2015) book by Clerbout & Rahman providing a systematic 

development of this way of linking CTT and the dialogical conception of logic.  

 

However the (Clerbout & Rahman, 2015) book was written from the CTT 

perspective on dialogical logic, rather than the other way round. The present book, 

Immanent Reasoning or Equality in Action, should provide the other perspective in the 

dialogue between the dialogical framework and Constructive Type Theory. 

 

In order to develop a dialogical perspective on the links between CTT and 

dialogical logic we will follow three complementary paths: 

A. One of the chief ideas animating our study is that we believe Sundholm's (1997)6 

notion of epistemic assumption is closely linked to the Copy-Cat rule or Socratic 

rule that distinguishes the dialogical framework from any other game-theoretical 

approach; this link is established through the dialogical understanding of definitional 

equality.  

B. We will join—with some nuances linked to point C below—Martin-Löf’s (2017a; 

2017b) suggestions that the new insights provided by the dialogical framework 

mainly amount to the following three interconnected points: 

B.1. the introduction of rules of interaction rather than of inference rules; 

B.2. the challenge to what Kuno Lorenz (2010a, p. 71) calls the semantization of 

pragmatics: deontic features are formalized with the help of specific 

propositional operators (and indexes) upon which the truth-value of the resulting 

proposition is made dependent; 

B.3. the central role of the notion of execution in the rules of interaction: executions 

are responses to questions of knowing how.  

                                                 
5
 For an overview see for instance (Nordström, Petersson, & Smith, 1990; 2000), (Primiero, 2008), 

(Thompson, 1991). 
6
 See also (Sundholm, 1998; 2012; 2013b).  
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C. As indicated by the subtitle, “A Plaidoyer for the Play Level”, we will stress the 

importance of the play level over the strategy level: this binds the point of execution 

with that of equality.  

 

In relation to A and B.3, the present book can indeed be read as furthering 

Sundholm’s own extension to inference of Austin's remark (1946, p. 171) on assertion 

acts; Sundholm (2013a, p. 17) did indeed produce this forceful formulation:  
When I say therefore, I give others my authority for asserting the conclusion, given 

theirs for asserting the premisses. 

In recent lectures, Per Martin-Löf used the dialogical perspective with epistemic 

assumptions in order to escape a form of circle threatening the explanation of the notions 

of inference and demonstration. A demonstration may indeed be explained as a chain of 

(immediate) inferences starting from no premisses at all. That an inference  
𝐽1 . . . 𝐽𝑛

𝐽
 

is valid means that one can make the conclusion (judgement 𝐽 ) evident on the 

assumption that 𝐽1, … , 𝐽𝑛 are known. Thus the notion of epistemic assumption appears 

when explaining what a valid inference is. According to this explanation however, we 

cannot take 'known' in the sense of demonstrated, or else we would be explaining the 

notion of inference in terms of demonstration when demonstration has been explained in 

terms of inference. Hence the threatening circle. In this regard Martin-Löf suggests 

taking 'known' here in the sense of asserted, which yields epistemic assumptions as 

judgements others have made, judgements whose responsibility others have already 

assumed. An inference being valid would accordingly mean that, given others have 

assumed responsibility for the premisses, I can assume responsibility for the conclusion: 

A. Martin-Löf's circularity problem 

The circularity problem is this: if you define a demonstration to be a chain of 

immediate inferences, then you are defining demonstration in terms of inference. Now we 

are considering an immediate inference and we are trying to give a proper explanation of 

that; but, if that begins by saying: Assume that 𝐽1, … , 𝐽𝑛 have been demonstrated—then you 

are clearly in trouble, because you are about to explain demonstration in terms of the notion 

of immediate inference, hence when you are giving an account of the notion of immediate 

inference, the notion of demonstration is not yet at your disposal. So, to say: Assume that 

𝐽1, … , 𝐽𝑛 have already been demonstrated, makes you accusable of trying to explain things in 

a circle. The solution to this circularity problem, it seems to me now, comes naturally out of 

this dialogical analysis. […] 

The solution is that the premisses here should not be assumed to be known in the 

qualified sense, that is, to be demonstrated, but we should simply assume that they have 

been asserted, which is to say that others have taken responsibility for them, and then the 

question for me is whether I can take responsibility for the conclusion. So, the assumption is 

merely that they have been asserted, not that they have been demonstrated. That seems to 

me to be the appropriate definition of epistemic assumption in Sundholm's sense.7 

The present study makes a further step, namely that of relating judgemental 

equality with the rule known in the literature as the Copy-Cat rule, or Formal rule, or, as 

more aptly called now by (Marion & Rückert, 2015), the Socratic rule.
8
 We hold it as 

one of our main tenets that this relation provides both a simpler and a more direct way to 

implement the Constructive Type Theoretical approach within the dialogical framework. 

Such a reconsideration of the Socratic rule roughly amounts to the following: 

 

1. When Proponent P makes a move bringing forward a local reason—say 𝑏—

to defend an elementary proposition 𝐴, this move can be challenged by the 

                                                 
7
 Transcription by Ansten Klev of Martin-Löf's talk in May 2015 (Martin-Löf, 2015).  

8
 See for instance below, section  III.2.2 or section  VII.2.1. 
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Opponent O. That is, given 𝐏 𝑏: 𝐴 , the antagonist may play the attack 

𝐎 ? = b. 

2. To respond to such a challenge from O, P must bring forward a definitional 

equality expliciting that the local reason chosen by P copies precisely the 

reason O chose when stating 𝐴. In short, this equality expresses at the object-

language level the fact that P’s defence move rests on the authority O has 

previously asserted when producing her local reason. 

More generally, according to this view a definitional equality established by P and 

brought forward while defending the proposition 𝐴 expresses the equality between a 

local reason (introduced by O) on the one hand, and the instruction on the other hand 

used for building a local reason brought forward by O when stating 𝐴. A definitional 

equality can therefore be read as a computation rule indicating how to compute the 

instructions O brought forward during a play.
9
 

 

From the dialogical perspective though, providing local reasons must be 

distinguished from providing equalities: while providing an explicit local reason 𝑏 is a 

way of answering a why question, such as “why does 𝐴 hold?”, providing an equality is 

more a way of  answering a how question, such as “how do you show that 𝑏 

accomplishes the explicative task?”. Equalities thus express how to execute or carry out 

the actions encoded by the local reasons.  

 

Let us recall that from the strategic point of view, O's moves correspond to 

elimination rules (including the selector-functions deployed by these rules) of 

demonstrations. Thus, the dialogical rules prescribing how to introduce a definitional 

equality correspond—at the strategy level—to the definitional equality rules for CTT as 

applied to the selector-functions involved in the elimination rules.  

We are in this fashion extending the dialogical interpretation of Sundholm's 

epistemic assumption to the rules that set up the definitional equality of a type. Actually, 

Sundholm (2017) himself suggests in his section 4 this extension when he points out that 

if some object, say 𝑎, is granted by a suitable epistemic assumption to be a proof-object 

of 𝐶, then it executes to a canonical proof of 𝐶. In other words, on the grounds of the 

epistemic assumption we know that 𝑎 must be equal to a canonical element of 𝐶.  

 

Notice however that from the dialogical perspective equalities grounded on the 

sole authority of the Opponent (i.e. on epistemic assumptions) are a trade-mark of what 

we call formal dialogues.  

Yet the dialogical perspective also includes material dialogues, where the 

Opponent must carry out some process specific to the proposition at stake before the 

Proponent can answer to the how-question with a suitable equality. In other words, 

though equalities of material dialogues are the result of the application of the Socratic 

rule, they are not “merely” grounded on epistemic assumptions. 

 

In relation to B1 and B2, the Oslo and Stockholm lectures of Martin-Löf (2017a; 

2017b) contain challenging and deep insights in dialogical logic, and the understanding 

of defences as duties and challenges as rights is indeed at the core of the deontic feature 

underlying the dialogical framework. More precisely, these two rules Req1 and Req2: 

 

(𝑅𝑒𝑞 1)
⊢ 𝐶

? ⊢𝑚𝑎𝑦 𝐶
 

  

and  

                                                 
9
 These elements are formalized in the Socratic rule for immanent reasoning, section  VII.2.1. 
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(𝑅𝑒𝑞 2)
⊢ 𝐶         ? ⊢ 𝐶

⊢𝑚𝑢𝑠𝑡 𝐶′
 

both condense the particle rules of meaning and bring to the fore the normative feature 

of those rules. What is more, Martin-Löf points out rightly that they should not be called 

rules of inference but rules of interaction. 

Still, a dialogician might wish to draw further distinctions to the divide between 

play level rules and those of the strategy level, such as distinctions between players, or 

the distinction in terms of choice as to how to defend or challenge moves: it is such a 

distribution of choices that distinguishes the meaning for instance of the conjunction and 

of the disjunction; the meaning of a disjunction binds the right to state a disjunction with  

the defender’s duty to choose a component of the disjunction to defend, but the meaning 

of the conjunction binds the right to challenge it with the challenger’s duty to choose the 

side to be requested.
10

  

 

 On our view, point C is at the core of the innovations of the dialogical 

framework and our point of departure from Ranta’s (1988) seminal paper: he proposes to 

identify proof-objects with winning-strategies, so that we have canonical and non-

canonical winning-strategies. Winning strategies are however not primitive in the 

dialogical framework, but are constituted by some finite sequence of legal moves (that is, 

a sequence of moves which observes the game rules) called plays. The notion of plays is 

what grounds meaning within the dialogical framework, and this notion also leads to the 

notion of proposition: in the standard presentation of dialogical logic a proposition is 

defined as a dialogue-definite expression, that is, an expression 𝐴 such that there is an 

individual play about 𝐴 that can be said to be lost or won after a finite number of steps, 

following some given rules of dialogical interaction.
11

 

 

As discussed in chapter  III and section XI.1, the rock-bottom of the dialogical 

approach to CTT is the play level notion of dialogue definiteness of the proposition. 

Thus to paraphrase (Lorenz, 2001, p. 258): for an expression to count as a proposition 𝐴 

there must exist an individual play about the statement 𝐗 !  𝐴, in the course of which X is 

committed to bring forward a local reason to back that proposition, play which must 

reach a final position with either win or loss after a finite number of moves according to 

definite particle and structural rules. 

Though performing the interaction schemata defining a play is in this sense a 

crucial aspect of the dialogical framework, it must be stressed that the actualization of a 

play (performing it) does not require winning the play. Immanent reasoning thus 

conceives performance as putting dialogue definiteness into action. 

 

In a nutshell, we call our dialogues involving rational argumentation dialogues for 

immanent reasoning precisely because the reasons backing a statement, 

now explicit denizens of the object-language of plays, are internal to the development of 

the dialogical interaction itself: the emergence of concepts are not only games of giving 

and asking for reasons (games involving why-questions), they are also games including 

moves establishing how is it that the reason brought forward accomplishes the 

explicative task. Immanent reasoning is thus a dialogical framework for games of why 

and how.   

                                                 
10

 In the conclusion we enrich Martin-Löf’s (2017a; 2017b) rules Req1 and Req2 with players and 

with choice-options.  
11

 See for instance (Lorenz, 2001, p. 258): “[…] for an entity to be a proposition there must exist an 

individual play, such that this entity occupies the initial position, and the play reaches a final position with 

either win or loss after a finite number of moves according to definite rules.” See also below chapter  III 

and conclusion  XI.1. 
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I. INTRODUCTION: SOME BRIEF HISTORICAL AND 
PHILOSOPHICAL REMARKS 

The present volume develops a new way of linking Constructive Type Theory 

(CTT) with dialogical logic by following these three complementary paths, as 

mentionned in the preface: 

A. The path observing that Sundholm's (1997)
16

 notion of epistemic assumption is 

closely linked to the Copy-cat and Socratic rules
17

 and that it provides the dialogical 

conception of definitional equality; 

B. the path joining (in principle) Martin-Löf in his (2017a; 2017b) suggestions, 

according to which the new insights provided by the dialogical framework mainly 

amount to the following three interconnected points: 

B.1. the introduction of rules of interaction rather than of rules of inference; 

B.2. the challenge to the semantization of pragmatics and the claim of the deontic 

nature of logic;
18

 

B.3. the central role of the notion of execution in the rules of interaction: executions 

are responses to questions of knowing how. 

C. The path stressing the importance of the play level and the associated notion of 

dialogue-definiteness.  

 

Before displaying some of the conceptual background behind the project we will 

first make some brief historical remarks concerning the dialogical turn that took 

Lorenzen (1955) from his Operative Logik to the inception of dialogical logic.  

I.1 The dialogical turn and the operative justification of 
intuitionistic logic 

The origins of a deontic nature of logic in its dialogical conception can be traced 

back to Paul Lorenzen’s 1958 endeavour of overcoming difficulties specific to his  

(1955) Einführung in die Operative Logik und Mathematik (1955), which lead him to 

turn the normative perspectives of the operative logic into the dialogical framework. We 

will here closely follow Schroeder-Heister’s thorough (2008) paper on the subject.
19

 It 

should be noted that these difficulties are reminiscent of Martin-Löf’s circularity puzzle 

mentioned in the Preface and which motivated his dialogical interpretation of the notion 

of epistemic assumption (see p. 7). 

                                                 
16

 See also (Sundholm, 1998; 2012; 2013a).  
17

 See section  III.2.2 for the Copy-cat rule, and section  VII.2.1 for the Socratic rule. 
18

 In fact, as opposed to Martin-Löf’s understanding of dialogical logic, Lorenz’s dialogical 

constructivism does not only reject the semantization of pragmatics in which deontic features are 

formalized using specific propositional operators and indexes upon which depends the truth-value of the 

resulting proposition, but it also rejects the pragmatization of semantics in which a propositional kernel is 

complemented by moods yielding assertions, questions, commands, and so on. According to dialogical 

constructivism, pragmatic and semantic features are produced within one and the same act. See (Lorenzen, 

1969), (Kamlah & Lorenzen, 1972), (Lorenzen & Schwemmer, 1975). It is precisely this tenet on the dual 

nature of actions in both their significative and communicative role, thoroughly worked out by Lorenz 

(2010a, pp. 71-80), that leads to this central claim that logic is part of ethics—see section  XI.5 for further 

details. 
19

 See also Lorenz's (2001) study of the origins of the dialogical approach to logic. 
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 Admissibility in operative logic I.1.1

In the context of the operative justification of intuitionistic logic, the operative 

meaning of an elementary proposition is understood as a proof of its derivability in 

relation to some given calculus. Calculus is here understood as a general term close to 

the formal systems of Curry (1951) which include basic expressions, and rules for 

producing complex expressions out of basic ones. More precisely, as Schroeder-Heister 

puts it: 
Lorenzen starts with elementary calculi (OL, §1) which permit to generate words 

(strings of signs) over an arbitrary (finite) alphabet. The elements of the alphabet 

are called atoms, the words are called sentences (“Aussagen”). A calculus 𝐾 is specified by 

giving certain initial formulas (“Anfänge”) 𝐴 and rules 𝐴1, . . . , 𝐴𝑛 →  𝐴.
 20

 

Instead of starting with the functor-argument structure common in logic, Lorenzen 

starts here with an arbitrary word-structure, where expressions in 𝐾 are just strings of 

atoms and variables, allowing his notion of calculus to be particularly general. 

 

In such a framework, logic is introduced as a system of proof procedures for 

asserting the admissibility of rules:
21

 
A rule 𝑅  is called admissible in a calculus 𝐾 , if its addition to the primitive 

rules of 𝐾 —resulting in an extended calculus 𝐾 +  𝑅 —does not enlarge the set of 

derivable sentences. If ⊢𝐾 𝐴  denotes the derivability of 𝐴  in 𝐾 , then 𝑅  is admissible 

in K if 

⊢𝐾+𝑅 𝐴 implies ⊢𝐾 𝐴 

for every sentence A. 

Thus, implication is explained in terms of admissibility. But how is admissibility 

to be explained? 

 Implication and admissibility: another circle? I.1.2

Since implication is explained by the notion of admissibility, admissibility cannot 

be explained by the notion of implication. In fact, Lorenzen (1955) in his chapter 3 

invests admissibility with an operative meaning through the notion of an elimination 

procedure, stating that 𝑅 is admissible in 𝐾 if every application of 𝑅 can be eliminated 

from every derivation in 𝐾 + 𝑅.The above implication (⊢𝐾+𝑅 𝐴 implies ⊢𝐾 𝐴) reduces 

to a form of elimination procedure, for the derivation in 𝐾 + 𝑅 can be brought down to a 

derivation which no longer uses 𝑅: the 𝑅 rule can be disposed of. Schroeder-Heister thus 

concludes: 
According to Lorenzen, this is the sort of insight (evidence) on 

which constructive logic and mathematics is based. It goes beyond the insight that 
something is derivable in K, but is still something which has a “definite” meaning. 

(Schröder-Heister, 2008, p. 217) 

This approach thus goes beyond the formalistic focus on derivability: what provides 

meaning is the further understanding gained through the notion of admissibility. In this 

respect, according to Schröder-Heister: 
Lorenzen’s theory of implication is based on the idea that an implicational sentence 

𝐴 →  𝐵 expresses the admissibility of the rule 𝐴 →  𝐵, so the assertion of an implication 

is justified if this implication, when read as a rule, is admissible. In this sense an implication 

expresses a meta-statement about a calculus. This has a clear meaning as long 

as there is no iteration of the implication sign. (Schröder-Heister, 2008, p. 222) 

                                                 
20

  (Schröder-Heister, Lorenzen's Operative Justification of Intuitionistic Logic, 2008). All the 

following quotations of this section, if not otherwise specified, will come from this same source. 
21

 Nowadays, the notion of admissibility is a fundamental concept of proof-theory; Schröder-

Heister (2008, p. 218) pointed out that Lorenzen was the one to have coined this term.  
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It is precisely to deal with iterated implications that Lorenzen develops the idea of 

finitely iterated meta-calculi. Schröder-Heister (2008, p. 235) points out that the 

operative approach has its own means to draw the distinction between direct and indirect 

inferences, a distinction which triggered Martin-Löf’s puzzle quoted in our preface (see 

p. 7). In this sense, the implication 𝐴 → 𝐵 can be asserted as either  

(i) a direct derivation in a meta-calculus 𝑀𝐾, based on a demonstration of the 

admissibility in 𝐾 of the rule 𝐴 →  𝐵, or as 

(ii) an indirect derivation by means of a formal derivation in 𝑀𝐾 using axioms 

and rules already shown to be valid. 

In the context of operative logic, direct knowledge or canonical inference of the 

implication 𝐴 →  𝐵 is obtained by the demonstration of the admissibility in 𝐾 of the rule 

𝐴 → 𝐵, and indirect knowledge or non-canonical inference results from the derivation 

of 𝐴 →  𝐵 by means of rules already established as admissible. 

 From admissibility to dialogue-definiteness I.1.3

There is however a high price to pay for this way out of the circularity problem, 

as knowledge cannot be characterized in the required way showing that the reasoner 

actually masters the meaning of an implication. Schröder-Heister (2008, p. 236) indeed 

pointed out that in the Gentzen-style introduction rule for implication, the conclusion 

prescribes that there is a derivation of the consequent from the antecedent, independently 

of the validity of the hypothetical derivation itself. Indeed, the meaning explanation of 

the implication is based on the idea that from the assumption of a derivation of the 

antecedent a method can be found that transforms the derivation in one of the 

consequent.  

 

This undesired consequence on knowledge motivated Lorenzen to move to the 

dialogical framework in which the play level takes care of all the issues on meaning and 

strategies are associated to validity features: in this context, a proof of admissibility 

amounts to showing that some specific sequence of plays yields a winning strategy.  

Now, if dialogues are to be conceived as mediators of meaning, these dialogues 

must be games actually playable by human beings: it must be the case that we can 

actually perform them—see our chapter XI.1.
22

 These games must therefore be finite, 

though this does not excluded that there might be a (potentially) infinite number of them. 

In fact it is the notion of dialogue-definiteness that provides both, the basis for 

implementing the requirement of human-playable games, and the notion of proposition. 

Under such a background a proposition is defined as a dialogue-definite expression, that 

is, an expression 𝐴 such that there is an individual play about 𝐴, that can be said to be 

lost or won after a finite number of steps, following some given rules of dialogical 

interaction.  

 

Notice however that the notion of dialogue-definiteness is not bound to knowing 

how to win—this is rather a feature that characterizes winning strategies; to master 

meaning of an implication, within the dialogical framework, amounts rather to know how 

to develop an actual play for it. In this context it is worth mentioning that during the 

Stockholm and Oslo talks on dialogical logic, Martin-Löf (2017a; 2017b) points out that 

one of the hallmarks of the dialogical approach is the notion of execution, which—as 

mentioned in the preface—is close to the requirement of bringing forward a suitable 

equality while performing an actual play. Indeed from the dialogical point of view 

(see  I.2.2), an equality statement comes out as an answer to a question on the local 

reason 𝑏 of the form how: How do you show the efficiency of 𝑏 as providing a reason for 

𝐴? In this sense the how-question presupposes that 𝑏 has been brought-forward as an 

                                                 
22

 See also (Marion, 2006, p. 231). 
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answer to a why question: Why does A hold? Thus, equalities express the way how to 

execute or carry out the actions encoded by the local reason; however, the actualization 

of a play-schema does not require the ability of knowing how to win a play. Thus, while 

execution, or performance, is indeed important—see our point B.3 above, the backbone 

of the framework lies in the dialogue-definiteness notion of a play. 

Perhaps a way of formulating the distinction we are aiming at is to stress the 

difference between ability and knowing how. In this context, one might speak of ability 

in the sense of the ability to win—in a way not far from Peregrin’s (2014, pp. 228-229) 

notion of tactics—, but ability has strategy level underpinnings rather than play level 

ones. The fundamental notion in this dialogical perspective is therefore that of knowing 

how to do develop a play for some proposition 𝐶, rather than that of having the ability to 

develop a winning play for 𝐶.  

 

This is how the problematic case of operative logic is overcome by a turn where 

the actions that were understood as operations within the framework of operative logic 

are now understood as dialogical interaction. In other words, the dialogical approach 

turned monological operations into dialogical interactions (see section  XI.5).
23

  

Content and Interaction 

Another important issue in the passage from the operative to the dialogical 

framework is that while the operative framework allowed quite naturally to deal with 

mathematical content, the dialogical framework appears to be restricted to the meaning 

of logical constants. This has been the subject of many criticisms, old (Hintikka, 1973, 

pp. 77-82), and new (Trafford, 2017, pp. 86-88); see chapter  XI, in particular 

section  XI.4.  There have nonetheless been attempts to compensate this gap by 

introducing in the dialogical framework definitions conceived as operation rules—see 

(Piecha & Schröder-Heister, 2011) and (Piecha, 2012). However, these attempts have 

rather been received as highly programmatic.  

It is actually quite fair to say that the notion of material dialogues—that is 

dialogues containing rules for expressions other than logical constants—seems to be 

underdeveloped in respect to formal dialogues (restricted mostly to logical constants) 

which have gathered much more attention. It is also true that a similar kind of criticism 

has also been raised against inferentialist approaches to meaning, and operative logic 

and dialogical logic, inspired by these inferentialist approaches, seemed to inherit this 

problem. However, let us stress that the fathers of dialogical logic where aware of the 

need of a contentual (material was the chosen term) basis from the beginning, and they 

tackled the issue with different devices. Lorenz (1970) in particular dedicated to this 

issue very thorough and deep studies, most of them collected in (Lorenz, 2010a; 2010b).  

One of the widely acknowledged achievements of Constructive Type Theory 

rests in its ability to furnish the means to develop a language in which mathematical 

content can be introduced with the same kind of inferential rules displayed by systems of 

natural deduction. This virtue of CTT motivated us to explore the possibilities of 

enriching the language of the dialogical framework with the means of CTT. However, 

though chapter  X deals to some extent with mathematical content and contains some 

brief remarks on empirical content, we shall here content ourselves with the more 

modest task of setting the basis for future, more thorough, developments on the issue.  

The Ancient Greek Roots of the Dialogical Turn and its Renaissance  
Before turning to the links between CTT and the dialogical framework, let us point 

out that Lorenzen’s dialogical turn did not come out of the blue: Lorenzen was an 

                                                 
23

 Winning strategies in the first writings of Lorenzen and Lorenz (1978) were formulated in the 

form of sequent-calculus; thus the demonstration of “admissibility” amounts in this context to show that 

the sequence of plays determined by the local and structural rules for the logical constants yield those of 

the sequent calculus. 
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admirer of Ernst Kapp’s (1942) perspective on the dialectical origins of logic, and had a 

frequent and lively interaction with the philologist Kurt von Fritz. In fact, Lorenzen had 

a thorough and intimate knowledge of Ancient Greek mathematics and logic, even 

before he gathered the chair in Kiel in 1956, where he continued these kinds of studies 

then in contact with Oskar Becker (who influenced Lorenzen’s appointment). In this 

context it might also well be that the inception of operative logic had a dialectical 

background that finally found its explicit expression in his Logik und Agon (1958).
24

  

A striking witness of the Ancient Greek roots of the passage from the operative to 

the dialogical framework is Ein formales Modell der Syllogistik des Aristoteles (1964) 

by Lorenzen's student Kurt Ebbinghaus, where, after developing a remarkable proof-

theoretical reconstruction of Aristotle's syllogistic in the style of Operative Logik, he 

discusses the advantages of a dialogical approach to Aristotle's notion of 

quantification—see (Ebbinghaus, 1964, pp. 57-58).
25

  

In this context it is worth mentioning that nowadays history of mathematics is 

experiencing a revival in the studies linking the development of deductive proof in 

Ancient Greek mathematics with the dialogical practices of those days. Some of the 

most thorough studies on the subject are the ones of G. E. R. Lloyd (1996) and Reviel 

Netz (1999; 2005; 2009) who stress the importance of debates and oral dialogues for the 

emergence of classical mathematics in Ancient Greece. It seems like from the very start 

of mathematics the notion of proof was associated with the endeavour of explaining why 

the putative statement is true. Explaining why something is the case requires conceiving 

this explanation as directed towards a stubborn interlocutor, a point which does not hold 

only for the notion of proof in Ancient Greek mathematics—see (Fischer, 1989, p. 50).  

 

Let us end this more historical section with the remark that the normative approach 

underlying the Dialogical Constructivism Program of Erlangen that emerged from the 

dialogical turn coupled explaining why a putative statement is true with the task of 

explaining what the statement is good for: according to the Erlangen-Programme the 

general notion of explaining is always conceived as explaining to an audience what the 

purposes of an specific action (that give rise to the claim) are—see (Lorenzen, 1969), 

(Kamlah & Lorenzen, 1972), (Lorenzen & Schwemmer, 1975).
 26

  

The general epistemological lesson behind Lorenzen's bold proposal of a 

dialogical turn might be put in the following words: the dialogical turn is an invitation to 

think of actions involving scientific enquiry as interaction. It took a while until the 

scientific community picked up Lorenzen's gauntlet, but as the most recent studies and 

projects in history and philosophy of logic, mathematics, foundations of computer 

sciences, linguistics, and epistemology point out, the time seems ripe now for the 

development of such a perspective.
27

   

I.2 Linking Dialogues and Constructive Type Theory 

 Equality and the Socratic Rule I.2.1

One of the main tenets of the present study is that a direct way to implement the 

Constructive Type Theoretical (CTT) approach within the dialogical framework is to 

focus on the CTT notion of judgemental equality. 

  

                                                 
24

 Kuno Lorenz conveyed this information to S. Rahman by a personal email.  
25

 See (Crubellier, Marion, McConaughey, & Rahman, 2018) and (Rahman & Lion, 2018). 
26

 For a brief presentation of the philosophical tenets of Dialogical Constructivism see section  XI.7. 
27

 See, among others, (Fischer, 1989), (Sellars, 1991), (Brandom, 1997), (Girard, 1999), 

(Heinzmann, 2006), (Ginzburg, 2012), (Lecomte, 2011), (Lecomte & Quatrini, 2010), (Paseau, 2011), 

(Peregrin, 2014), Duthil Novaes (2015).   



16  I. Introduction: Some brief historical and philosophical remarks 

 

In CTT, every category needs to be associated with a criterion of identity (see 

chapter  II, written by Ansten Klev). More precisely, there are two basic forms of 

categorical judgement in CTT: 

i) 𝑎 ∶  𝐶 

ii) 𝑎 =  𝑏 ∶  𝐶 

The first is read “𝑎 is an object of the category 𝐶”, and the second, the judgemental or 

definitional equality,  is read “𝑎 and 𝑏 are identical objects of the category 𝐶”. We thus 

require that any category 𝐶 occurring in a judgement of CTT be associated with a 

 criterion of application, which tells us what a 𝐶 is; the fact that 𝑎 meets this 

criterion is precisely what is expressed in 𝑎 ∶  𝐶; and a 

 criterion of identity, which tells us what it is for 𝑎 and 𝑏 to be identical 𝐶’s; the 

fact that 𝑎 and 𝑏 together meet this criterion is precisely what is expressed in 

𝑎 =  𝑏 ∶  𝐶. 
 

In the dialogical framework, on the other hand, equality involves plays in which 

players explicitly expose in the object-language
28

 the reasons they have for stating 

judgements. More precisely, as mentioned in the preface, definitional equality is 

implemented at the play level by means of the Socratic rule.  

 

The Socratic rule is one of the most salient characteristics of dialogical logic. As 

discussed by  (Marion & Rückert, 2015), it can be traced back to Aristotle’s 

reconstruction of the Platonic dialectics. A purely argumentative point of view can be 

defined within dialectics as refraining from calling on some authority beyond what has 

actually been brought forward during the current argumentative interaction (following 

the suitable rules determined by the game). Thus, when an elementary statement is 

challenged, the challenge can be answered only by invoking the challenger’s own 

concessions (or his own constructions). In such a context, the Socratic rule can be 

understood in the following way, when a player plays an elementary statement:
 29

 

“My reasons for stating this proposition you are now challenging are 

exactly the same as the ones you brought forward when you yourself stated 

that very same proposition.” 

In this fashion the Socratic rule provides for equality, but through interaction: equality is 

built within an argumentative play by copying exactly the same reasons for a proposition 

as what the other player has already provided. Statements of definitional equality have 

thus emerged in a dialogical perspective, in particular reflexivity statements such as  

𝑝 =  𝑝 ∶  𝐴 

which express the fact that if the Opponent states the elementary proposition 𝐴, then the 

Proponent can do the same, that is, play the same move and do it on the same grounds 

which provide the meaning and justification of 𝐴, namely 𝑝. 

 

In order to introduce in the object-language of the dialogical framework (dialogues 

for immanent reasoning) definitional identities at the play level, we must extend the 

language of a dialogical game with statements of the form  

𝑝: 𝐴 

where on the right-hand side of the colon is the proposition 𝐴, and on the left-hand side 

is the local reason brought forward to back the proposition during a play (see 

chapter VI). The local reason is therefore local if the force of the statement is limited to 

the level of plays. But when the assertion 𝑝: 𝐴 is backed by a winning strategy, the 

                                                 
28

 This is the main feature of dialogues for immanent reasoning, the dialogical framework which 

incorporates features of CTT. For a presentation of this framework, see chapters  VI- VII. The Socratic rule 

is the equivalent in immanent reasoning of the Copy-Cat rule in the standard dialogical framework. For a 

presentation of the standard framework, see chapters  III- V. 
29

 See  (Rahman, Clerbout, & Keiff, 2009) and  (Rahman & Keiff, 2010).  
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judgement asserted draws its justification precisely from that strategy, thus endowing 𝑝 

with the status of a strategic reason (see section VII.7). 

Thus reasons backing a statement are manifest at the object-language level, and 

are internal to the development of a play, which is why we have named this dialogical 

framework incorporating CTT features making these reasons explicit, dialogues for 

immanent reasoning. 

The notion of reason (local and strategic) shows how we link the dialogical 

framework to CTT, but also how we can preserve the flexibility of the dialogical 

framework and bring out its full potential, ranging from material dialogues (at the play 

level) to the equivalent of the CTT demonstrations (at the strategy level) and all that 

which comes in-between. Immanent reasoning and equality in action are in this sense not 

exclusively at one level, but are embedded in the whole framework through the 

constitutive role of the Socratic rule.  

 Local Reasons and Content: The Socratic Rule within Material I.2.2
Dialogues 

Local reasons are fundamental to dialogues for immanent reasoning as they also 

contribute to material dialogues for elementary propositions (see chapter  X). Informally, 

the idea is that if the Proponent is entitled to his statement on the elementary proposition 

𝐴, it is because he is ready to defend 𝐴 by giving a reason in favor of that statement. The 

Proponent can find such a local reason backing 𝐴 in a process governed by the Socratic 

rule which spells out the precise forms of the local reason required by the content of 𝐴. 

The appropriate local reason will thus be governed by the Socratic rule (which ensures, 

by preventing the Proponent to provide his own grounds for what he says, that the 

grounds for stating an elementary proposition are taken from the play itself, that is, it 

ensures the reasons are immanent to the play), but this rule will have to be adapted to 

each individual content brought forward, bringing us to material dialogues, and should 

be contrasted with the development of formal dialogues in which the Socratic rule 

allows the Proponent to replicate an elementary proposition 𝐴 stated by the Opponent, 

but also to replicate the local reasons that the Opponent brought forward when stating 𝐴, 

and this independently of checking what these local reasons are: in purely formal 

dialogues, if the Opponent states for instance that 2 is odd, the Proponent can state this 

too on the sole grounds that the Opponent herself stated it and provided some reason for 

it, whatever this reason be. 

But in material dialogues, if the Proponent asserts for example: “1 is an uneven 

number,” the Opponent would be entitled to request of the Proponent a natural number 𝑛 

such that 1 = 2. 𝑛 + 1. The local reason in this case would be 1 = 2. 0 + 1, which is a 

reason specific to that particular statement the Opponent challenged. 

In these dialogues, the Socratic rule determines the canonical elements and the 

definitions (the definitional equalities) specific to each of the elementary expressions in 

a play. This yields material truth.  

Stating the material truth of a proposition requires exhibiting a local reason 

specific to the content of that proposition.  

 

The origins of the normative approach to meaning can be found in this aspect of 

the dialogical framework: meaning as use should be understood as the use is spelled out 

by a rule of dialogical interaction which applies to the meaning of the logical constants, 

but also to the meaning of the elementary propositions. Strictly speaking, the meaning of 

each elementary expression requires a specific rule that determines its proper content 

and distinguishes it from other elementary propositions.
30

 Material dialogues in this 

                                                 
30

 Jaroslav Peregrin (2014, pp. 3-5) calls the notion of use understood as following a rule “role”. 

Role distinguish linguistic uses from other uses such as using a hammer. 
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perspective are not only a matter of putting back normativity in logic, they also deal with 

the important matter of elaborating a contentful language. 

 Dialogues for Immanent Reasoning as Games of Why and How  I.2.3

The present study aims at showing that, if we follow Lorenzen's and Lorenz's advice 

of looking at mathematical operations as interaction, then definitional equality can be 

considered as exposing the dialogical intertwining of entitlements and duties. In this 

perspective, the standard monological presentation of these rules for both definitional 

and predicative equality implicitly encodes an underlying process, a process in which the 

Proponent “copies” some of the Opponent’s choices, thus providing its dialogical and 

normative roots.  

We shall in this fashion rally to some extent to Robert Brandom’s insight
31

 that 

conceptual meaning is entirely constituted by the way judgements are inserted into 

games of giving and asking for reasons, the touchstone of inferential pragmatism. Our 

task now lies in describing, in the context of these games of giving and asking for 

reasons, the moves on the ontological level grounding statements of equality 

(definitional equality), and on the propositional level grounding statements of identity 

(the dyadic-predicate of standard first-order logic). This is necessary in order to have 

games of Why and How.
32

  

 

The emergence of concepts, we claim, are not only games of giving and asking for 

reasons (games involving Why-questions), they are also games that include moves 

establishing how it is that the reason brought forward accomplishes the explicative 

task. Immanent reasoning are dialogical games of Why and How. 

We call our dialogues involving rational argumentation dialogues for immanent 

reasoning precisely because reasons backing a statement, now explicit denizens of the 

object-language of plays, are internal to the development of the dialogical interaction 

itself. 

I.3 A Basic Overview of the Book 

One of the important lessons of the Constructive Type Theory approach to 

meaning is that equality is at the center of a constructivist project of types. Indeed, it has 

been stressed that the constructivist parallel to Quine's  (1969, p. 23) notorious "no entity 

without identity" is 

 No entity without a type 

 No type without a criterion of identity 

                                                 
31

 See for instance (Brandom, 1994). To some extent only, for it seems like Brandom starts from 

the strategy level rather than from the play level as we do.  

32 As discussed in section  X.5, Brandom’s approach only has the propositional level (i.e. his 

framework does not include the ontological level of the local reasons relevant fort the backing of the 

proposition involved in the judgement), perhaps because he fears that such a move would amount to 

incorporating into the framework an authority which would be external to the games that determine 

concepts. As far as we understand it, this is a serious limitation of Brandom’s approach since it fails to 

distinguish between the notations, or written forms, concerning the ontological level, and those concerning 

the propositional level: the present book, we hope, shows how to make the ontological level immanent to 

the dialogical process of reasoning. This suggests that the dialogical approach to CTT offers a way to 

integrate within one epistemological framework the two conflicting readings of Willfried Sellars’ (1991, 

pp. 129-194) notion of space of reasons brought forward by John McDowell (2009, pp. 221-238) on the 

one side, who insists in distinguishing world-direct thought and knowledge gathered by inference, and by 

Robert Brandom (1997) on the other side, who interprets Sellars’ work in a more radical anti-empiricist 

manner. The point is not only that we can deploy the CTT-distinction between reason as a premise and 

reason as the piece of evidence justifying a proposition, but it is also that the dialogical framework allows 

distinguishing between the objective justification (strategy) level targeted by Brandom  (1997, p. 129) and 

the subjective (play) level stressed by McDowell—see also (Rahman, 2017).  
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Definitional equality is central to the constitution of a type. Moreover, in the context of 

logic, definitional equality makes the coordination of analytic and synthetic steps 

explicit. So, if we are looking at ways of linking the normativity of dialogical logic with 

the normativity of CTT, it becomes apparent that we should try to provide an answer to 

the question of how the criterion of identity of a type is manifested in the dialogical 

framework—this is what the book is about.  

 

The purpose of the book is therefore rather technical, though it has deep 

philosophical roots in what argumentation and reasoning are. Perhaps one way to 

condense our philosophical perspective on identity is that it has been developed in the 

general epistemological framework according to which 

argumentation is, all in all, nothing more—but nothing less—than a 

collaborative enquiry into the ways of constructing the symmetries 

grounding rationality within inquisitive interaction.
33

 By building these 

symmetries we provide meaning to our actions, a meaning deployed in our 

actions' internal coordination with the actions of others (interaction). 

 

In order to allow readers to follow the technical aspects of this book, we have 

divided it into progressive sections, with examples and exercises.  

The next section (chapter II) provides an elementary introduction to Constructive 

Type Theory (CTT), original in its equal emphasis on basic ideas and finer technical 

details.  

The third chapter introduces essential notions for the dialogical framework and 

provides a basic and step by step approach to dialogues.  

The fourth and fifth chapters aim at more advanced readers, who are either already 

familiar with the dialogical framework or well versed into logic; they respectively deal 

with the two fundamental levels characteristic of dialogues: the play level and the 

strategy level.  

The reader should by then be fully equiped for the following sections, which are 

the core of this book and deal precisely with the problem at issue, that is, with immanent 

reasoning and equality in action. Thus the sixth chapter introduces local reasons in the 

dialogical framework, a crucial step for immanent reasoning; the seventh chapter 

presents again the local reasons but from a more technical side, deals with the strategy 

level in dialogues for immanent reasoning, and introduces a key notion: strategic objects, 

the dialogical counterpart to CTT proof-objects. 

The eighth chapter illustrates some of the imports of the constructive perspective 

in general and of dialogues for immanent reasoing in particular through the case of the 

Axiom of Choice. 

The ninth chapter provides an algorithm allowing to go from dialogical strategies 

to CTT demonstrations, and reversewise.  

The tenth chapter touches on the less studied material dialogues, that is, dialogues 

with rules for local and global meaning that are not restricted to the rules of logical 

constants. We study the case of propositional identity, the set 𝐁𝐨𝐨𝐥, Boolean operations, 

and finite sets. 

The final chapter will be our conclusion, which contains some philosophical 

remarks on dialogical constructivism and suggests some responses to standard objections 

to the dialogical framework. 
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 For more details on symmetry in the dialogical framework, see section  IV.3. 
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II. A BRIEF INTRODUCTION TO CONSTRUCTIVE TYPE 
THEORY 

By Ansten Klev 

 

Martin-Löf’s Constructive Type Theory (CTT) is a formal language developed in 

order to reason constructively about mathematics. It is thus a formal language conceived 

primarily as a tool to reason with rather than a formal language conceived primarily as a 

mathematical system to reason about. Constructive Type Theory is therefore much 

closer in spirit to Frege’s ideography and to the language of Russell and Whitehead’s 

Principia Mathematica than to the majority of logical systems (“logics”) studied by 

contemporary logicians. Since CTT is designed as a language to reason with, much 

attention is paid to the explanation of basic concepts. This is perhaps the main reason 

why the style of presentation of CTT differs somewhat from the style of presentation 

typically found in, for instance, ordinary logic textbooks. For those new to the system it 

might be useful to approach an introduction, such as the one given below, more as a 

language course than as a course in mathematics. 

II.1 Judgements and categories 

Statements made in Constructive Type Theory are called judgements. Judgement is 

thus a technical term, chosen because of its long pedigree in the history logic. (cf. e.g. 

(Martin-Löf, 1996; 2011) and (Sundholm, 2009)). Judgement thus understood is a 

logical notion and not, as it is commonly understood in contemporary philosophy, a 

psychological notion. As in traditional logic, a judgement may be categorical or 

hypothetical. Categorical judgements are conceptually prior to hypothetical judgements, 

hence we must begin by explaining them. 

 Forms of categorical judgement II.1.1

There are two basic forms of categorical judgement in CTT:  

𝑎 ∶ 𝒞 

𝑎 = 𝑏 ∶ 𝒞 

The first is read “𝑎 is an object of the category 𝒞” and the second is read “𝑎 and 𝑏 

are identical objects of the category 𝒞”. Ordinary grammatical analysis of 𝑎 ∶ 𝒞  yields 𝑎 

as subject, 𝒞 as predicate, and the colon as copula. We thus call the predicate 𝒞 in 𝑎 ∶ 𝒞 

a category. This use of the term ‘category’ is in accordance with one of the original 

meanings of the Greek katēgoria, namely as predicate. It is also in accordance with a 

common use of the term ‘category’ in current philosophy.
34

 We require, namely, that any 

category 𝒞 occurring in a judgement of CTT be associated with  

 a criterion of application, which tells us what a 𝒞  is; that 𝑎  meets this 

criterion is precisely what is expressed in 𝑎 ∶  𝒞; 

 a criterion of identity, which tells us what it is for 𝑎 and 𝑏 to be identical 𝒞s; 

that 𝑎 and 𝑏 together meet this criterion is precisely what is expressed in 

𝑎 = 𝑏 ∶ 𝒞. 

What the categories of CTT are will be explained below.  

 

In CTT any object belongs to a category. The theory recognizes something as an 

object only if it can appear in a judgement of the form 𝑎 ∶ 𝒞  or 𝑎 = 𝑏 ∶ 𝒞 . Since 
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 See, in particular, the definition of category given by Dummett (1973, pp. 75-76), which has 

been taken over by Hale and Wright (2001) for instance. 



IMMANENT REASONING OR EQUALITY IN ACTION 21 

 

associated with any category there is a criterion of identity, we can recover Quine’s 

(1969, p. 23) precept of “no entity without identity” as 

 

no object without category + 

no category without a criterion of identity. 

 

Thus we derive Quine’s precept from two of the fundamental principles of CTT. 

We shall have more to say later about the treatment of identity in CTT. 

 

Neither semantically nor syntactically does 𝑎 ∶ 𝒞  agree with the basic form of 

statement in predicate logic:  

𝐹(𝑎) 
 

In 𝐹(𝑎) a function 𝐹 is applied to an argument 𝑎 (in general there may be more 

than one argument). The judgement 𝑎 ∶ 𝒞, by contrast, does not have function–argument 

form. In fact, the ‘𝑎 ∶ 𝒞’-form of judgement is closer to the ‘𝑆 is 𝑃’-form of traditional 

syllogistic logic than to the function-argument form of modern, Fregean logic. Since we 

have required that the predicate 𝒞 be associated with criteria of application and identity, 

the judgement 𝑎 ∶ 𝒞 can only  be compared with a special case of the ‘𝑆 is 𝑃’-form, for 

no such requirement is in general laid on the predicate 𝑃 in a judgement of Aristotle’s 

syllogistics—it can be any general term.  

To understand the restriction that 𝑃 be associated with criteria of application and 

identity, in terms of traditional logic, we may invoke Aristotle’s doctrine of predicables 

from the Topics.
35

 A predicable may be thought of as a certain relation between the 𝑆 

and the 𝑃  in an ‘𝑆  is 𝑃 ’-judgement. Aristotle distinguishes four predicables: genus, 

definition, idion or proprium, and accident. That 𝑃 is a genus of 𝑆 means that 𝑃 reveals a 

what, or a what-it-is, of the subject 𝑆; a genus of 𝑆 may thus be proposed in answer to 

the question of what 𝑆 is. The class of judgements of Aristotelian syllogistics to which 

judgements of the form 𝑎 ∶ 𝒞  may be compared is the class of judgements whose 

predicate is a genus of the subject. Provided the judgement 𝑎 ∶ 𝒞 is correct, the category 

 𝒞 is namely an answer to the question of what 𝑎 is; we may thus think of 𝒞 as the genus 

of 𝑎. Aristotle’s other predicables will not concern us here. 

 

Being a natural number is in a clear sense a what of 7. The number 7 is also a 

prime number; but being prime is not a what of 7 in the sense that being a natural 

number is, even though 7 is necessarily, and perhaps even essentially, a prime number. 

Following Almog (1991) we may say that being prime is one of the hows of 7. This 

difference between the what and the how of a thing captures quite well the difference in 

semantics between a judgement 𝑎 ∶ 𝒞 of CTT and a sentence 𝐹(𝑎) of predicate logic. In 

the predicate-logical language of arithmetic we do not express the fact that 7 is a number 

by means of a sentence of the form 𝐹(𝑎). That the individual terms of the language of 

arithmetic denote numbers is rather a feature of the interpretation of the language that we 

may express in the metalanguage.
36

 We do, however, say in the language of arithmetic 

that 7 is prime by means of a sentence of the form 𝐹(𝑎), for instance as 𝐏𝐫(7). It is 

therefore natural to suggest that by means of the form of statement 𝐹(𝑎) we express a 

how, but not the what, of the object 𝑎. The opposite holds for the form of statement 𝑎 ∶
𝒞—by means of this we express the what, but not the how, of the object 𝑎. Thus, in CTT 

we do say that 7 is a number by means of a judgement, namely as 7 ∶  ℕ, where ℕ is the 

category of natural numbers; but we do not say that 7 is prime by means of a similar 

judgement such as 7 ∶  𝐏𝐫. Precisely how we express in CTT that 7 is prime will become 
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 (Barnes, 1984), (Crubellier, 2008). 
36

 Compare Carnap’s treatment of what he calls Allwörter (‘universal words’ in the English 

translation) in §§ 76, 77 of Logische Syntax der Sprache, (Carnap, 1934). 
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clear only later; it will then be seen that we express the primeness of 7 by a judgement of 

the form 

 

𝑝 ∶  𝐏𝐫(7) 
 

where 𝐏𝐫(7) is a proposition and 𝑝 is a proof of this proposition. The proposition 𝐏𝐫(7) 

has function-argument form, just as the atomic sentences of ordinary predicate logic. 

 Categories II.1.2

The forms of judgement 𝑎 ∶ 𝒞  and 𝑎 = 𝑏 ∶ 𝒞  are only schematic forms. The 

specific forms of categorical judgement employed in CTT are obtained from these 

schematic forms by specifying the categories of the theory. There is then a choice to be 

made, namely between what may be called a higher-order and a lower-order presentation 

of the theory. The higher-order presentation results in a somewhat conceptually cleaner 

theory, but the lower-order presentation is preferable for pedagogical purposes, both 

because it requires less machinery and because it is the style of presentation found in the 

standard references of Martin-Löf (1975b; 1982; 1984) and Nordström et al. (1990, pp. 

ch. 4-16). We shall therefore follow this style of presentation. The categories are then 

the following. There is a category set of sets in the sense of Martin-Löf; and for any set 

𝐴, 𝐴 itself is a category. We therefore have the following four forms of categorical 

judgement: 

𝐴 ∶ 𝐬𝐞𝐭 
𝐴 = 𝐵 ∶ 𝐬𝐞𝐭 

and for any set 𝐴, 

𝑎 ∶ 𝐴 
𝑎 =  𝑏 ∶ 𝐴 

In the higher-order presentation the categories are type and 𝛼 , for any type 𝛼 . The 

higher-order presentation in a sense subsumes the lower-order presentation, since we 

have there, firstly, as an axiom set : type, hence set itself is a category; and secondly, 

there is a rule to the effect that if 𝐴 ∶ set, then 𝐴 ∶ type, hence also any set 𝐴 will be a 

category. The higher-order presentation can be found in Nordström et al. (1990, pp. ch. 

19-20; 2000). 

We have so far only given names to our categories. To justify calling set as well 

as any set 𝐴 a category we must specify the criteria of application and identity of set and 

of A, for any set A. Thus we have to explain four things: what a set is, what identical sets 

are, what an element of a set 𝐴 is, and what identical elements of a set 𝐴 are. By giving 

these explanations we also explain the four forms of categorical judgement 𝐴 ∶ set, 

𝐴 = 𝐵 ∶ 𝐬𝐞𝐭, 𝑎 ∶ 𝐴, and 𝑎 = 𝑏 ∶ 𝐴. Our explanations follow those given by Martin-Löf 

(1984, pp. 7-10). 

 

We explain the form of judgement 𝐴 ∶ set as follows. A set 𝐴  is defined by 

saying what a canonical element of 𝐴 is and what equal canonical elements of 𝐴 are. 

(Instead of ‘canonical element’ one can also say ‘element of canonical form’.) What the 

canonical elements are, as well as what equal canonical elements are, of a set 𝐴  is 

determined by the so-called introduction rules associated with 𝐴 . For instance, the 

introduction rules associated with the set of natural numbers ℕ are as follows. 

 

0 ∶  ℕ 0 =  0 ∶  ℕ 
𝑛 ∶ ℕ

𝐬(𝑛) ∶ ℕ
 

𝑛 = 𝑚 ∶ ℕ

𝐬(𝑛)= 𝐬(𝑚)∶ ℕ
 

 

By virtue of these rules 0 is a canonical element of ℕ, as is 𝐬(𝑛) provided 𝑛 is a ℕ, 

which does not have to be canonical. Moreover, 0 is the same canonical element of ℕ as 
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0, and 𝐬(𝑛) is the same canonical element of ℕ as 𝐬(𝑚) provided 𝑛 =  𝑚 ∶  ℕ. It is 

required that the specification of what equal canonical elements of a set 𝐴 are renders 

this relation reflexive, symmetric, and transitive. 

The form of judgement 𝐴 =  𝐵 ∶ set means that from 𝑎 ’s being a canonical 

element of 𝐴 we may infer that 𝑎 is also a canonical element of 𝐵, and vice versa; and 

that from 𝑎 and 𝑏’s being identical canonical elements of 𝐴 we may infer that they are 

also identical canonical elements of 𝐵, and vice versa.  

Thus we have given the criteria of application and identity for the category set. 

Suppose that 𝐴  is a set. Then we know how the canonical elements of 𝐴  are 

formed as well as how equal canonical elements of 𝐴 are formed. The judgement 𝑎 ∶  𝐴 

means that 𝑎 is a programme which, when executed, evaluates to a canonical element of 

𝐴. For instance, once one has introduced the addition function, +, and the definitions 

1 =  𝐬(0) ∶ ℕ and 2 =  𝐬(1) ∶ ℕ, one can see that 2 +  2 is an element of ℕ, since it 

evaluates to 𝐬(2 +  1), which is of canonical form. A canonical element of a set 𝐴 

evaluates to itself; hence, any canonical element of 𝐴 is an element of 𝐴. 

The judgement 𝑎 =  𝑏 ∶  𝐴 presupposes the judgements 𝑎 ∶  𝐴 and 𝑏 ∶  𝐴. Hence, 

if we can make the judgement 𝑎 =  𝑏 ∶  𝐴, then we know that both 𝑎 and 𝑏 evaluate to 

canonical objects of 𝐴. The judgement 𝑎 =  𝑏 ∶  𝐴 means that 𝑎 and 𝑏 evaluate to equal 

canonical elements of 𝐴. The value of a canonical element 𝑎 of a set 𝐴 is taken be 𝑎 

itself. Hence, if 𝑏 evaluates to 𝑎, then we have 𝑎 =  𝑏 ∶  𝐴. 

Thus we have given the criteria of application and identity for the category A, for 

any set A. 

 

A note on terminology is here in order. ‘Set’ is the term used by Martin-Löf from 

(Martin-Löf, 1984) onwards for what in earlier writings of his were called types.
37

 A set 

in the sense of Martin-Löf is a very different thing from a set in the sense of ordinary 

axiomatic set theory. In the latter sense a set is typically conceived of as an object 

belonging to the cumulative hierarchy 𝑉. It is, however, this hierarchy 𝑉 itself rather 

than any individual object belonging to 𝑉 that should be regarded as a set in the sense of 

Martin-Löf. A set in the sense of Martin-Löf is in effect a domain of individuals, and 𝑉 

is precisely a domain of individuals. That was certainly the idea of Zermelo in his paper 

on models of set theory (Zermelo, 1930): he there speaks of such models as 

Mengenbereiche, domains of sets. And Aczel (1978) has defined a set in the sense of 

Martin-Löf that is “a type theoretic reformulation of the classical conception of the 

cumulative hierarchy of types” (Aczel, 1978, p. 61). It is in order to mark this difference 

in conception that we denote a set in the sense of Martin-Löf with boldface type, thus 

writing ‘set’.
38

 

 General rules of judgemental equality II.1.3

Recall that when defining a set 𝐴, it is required that the relation of being equal 

canonical elements then specified be reflexive, symmetric, and transitive. From the 

explanation of the form of judgement 𝑎 =  𝑏 ∶  𝐴, it is then easy to see that the relation 

of the so-called judgemental identity, namely the relation expressed to hold between a 

and b by means of the judgement 𝑎 = 𝑏 ∶ 𝐴, is also reflexive, symmetric, and transitive. 

Thus the following three rules are justified. 

 

𝑎 ∶  𝐴  𝑎 =  𝑏 ∶  𝐴   𝑎 =  𝑏 ∶  𝐴  𝑏 =  𝑐 ∶  𝐴 
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 This older terminology is retained for instance in Homotopy Type Theory (The Univalent 

Foundations Program, 2013); what is there called a set (The Univalent Foundations Program, 2013, p. 

Definition 3.1.1) is only a special case of a set in Martin-Löf’s sense, namely a set over which every 

identity proposition has at most one proof. 
38

 For a further discussion of the difference between Martin-Löf’s notion and other notions of set, 

see (Granström, 2011, pp. 53-63) and (Klev, 2014a, pp. 138-140). 
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𝑎 =  𝑎 ∶  𝐴  𝑏 =  𝑎 ∶  𝐴  𝑎 =  𝑐 ∶  𝐴 
   

The explanation of the form of judgement 𝐴 =  𝐵 ∶ set justifies the same rules at the 

level of sets. 

 

𝐴 ∶  𝐬𝐞𝐭  𝐴 = 𝐵 ∶ 𝐬𝐞𝐭   𝐴 = 𝐵 ∶ 𝐬𝐞𝐭  𝐵 = 𝐶 ∶ 𝐬𝐞𝐭 

𝐴 = 𝐴 ∶ 𝐬𝐞𝐭  𝐵 =  𝐴 ∶ 𝐬𝐞𝐭  𝐴 =  𝐶 ∶ 𝐬𝐞𝐭 

 

They also justify the following two important rules. 

 

𝑎 ∶  𝐴 𝐴 = 𝐵 ∶ 𝐬𝐞𝐭   𝑎 =  𝑏 ∶  𝐴  𝐴 = 𝐵 ∶ 𝐬𝐞𝐭 

𝑎 ∶ 𝐵  𝑎 =  𝑏 ∶ 𝐵 
 

 Propositions II.1.4

The notion of proposition has already been alluded to above; and it is reasonable to 

expect that a system of logic should give some account of this notion. In CTT there is a 

category prop of propositions. The reason this category was not explicitly introduced 

above is that it is identified in CTT with the category set. Thus we have  

 

prop = set 

 

The identification of these two categories
39

 is the manner in which the so-called Curry–

Howard isomorphism (Howard, 1980) is implemented in CTT. This “isomorphism” is 

one of the fundamental principles on which the theory rests. 

When regarding 𝐴 as a proposition, the elements of 𝐴 are thought of as the proofs 

of 𝐴 . Thus proof is employed as a technical term for elements of propositions. A 

proposition is, accordingly, identified with the set of its proofs. That a proposition is true 

means that it is inhabited. 

By the identification of set and prop the meaning explanation of the four basic 

forms of categorical judgement carries over to the explanation of the similar forms 

 

𝐴 ∶ 𝐩𝐫𝐨𝐩  
𝐴 =  𝐵 ∶  𝐩𝐫𝐨𝐩 

𝑎 ∶  𝐴 
𝑎 =  𝑏 ∶  𝐴 

 

To define a prop one must lay down what are the canonical proofs of 𝐴 and what 

are identical canonical proofs of 𝐴. That the propositions 𝐴 and 𝐵 are identical means 

that from 𝑎’s being a canonical proof of 𝐴 we may infer that it is also a canonical proof 

of 𝐵, and vice versa; and that from 𝑎 and 𝑏’s being identical canonical proofs of 𝐴 we 

may infer that they are also identical canonical proofs of 𝐵, and vice versa. Thus, by the 

identification of set and prop we get for free a criterion of identity for propositions.  

That 𝑎 is a proof of 𝐴 means that 𝑎 is a method which, when executed, evaluates 

to a canonical proof of 𝐴. That 𝑎 and 𝑏 are identical proofs of 𝐴 means that 𝑎 and 𝑏 

evaluate to identical canonical proofs of 𝐴. Thus we have provided a criterion of identity 

for proofs. 

 

Let us illustrate the concept of a canonical proof in the case of conjunction. A 

canonical proof of 𝐴 ∧ 𝐵 is a proof that ends in an application of ∧-introduction 

                                                 
39

 In the higher-order presentation this identification can be made in the language itself, namely as 

the judgement 𝐩𝐫𝐨𝐩 = 𝐬𝐞𝐭 ∶ 𝐭𝐲𝐩𝐞. 
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𝒟1 𝒟2 

𝐴 𝐵 

𝐴 ∧ 𝐵 
 

where 𝒟1 is a proof of 𝐴 and 𝒟2 a proof of 𝐵. An example of a non-canonical proof is 

therefore 

𝒟1 𝒟2 

𝐶 ⊃ 𝐴 ∧  𝐵 𝐶 

𝐴 ∧ 𝐵 
 

where 𝒟1 is a proof of 𝐶 ⊃ 𝐴 ∧  𝐵  and 𝒟2 a proof of 𝐶. 

 

The proofs occurring in the above illustration are in tree form. Proofs in the 

technical sense of CTT are not given in tree form, but rather as the subjects 𝑎  of 

judgements of the form 𝑎 ∶  𝐴, where 𝐴 is a prop. Proofs in this sense are in effect terms 

in a certain rich typed lambda-calculus and they are often called proof-objects (this term 

was introduced by (Diller & Troelstra, 1984)). 

 

We may introduce a new form of judgement ‘𝐴 𝑡𝑟𝑢𝑒’ governed by the following 

rule of inference 

𝑎 ∶ 𝐴 

𝐴 𝑡𝑟𝑢𝑒 

Thus, provided we have found a proof 𝑎 of 𝐴, we may infer 𝐴 true. The conclusion 

𝐴 𝑡𝑟𝑢𝑒 can be seen as suppressing the proof 𝑎 of 𝐴 displayed in 𝑎 ∶  𝐴. 

 Forms of hypothetical judgement II.1.5

One of the characteristic features of Constructive Type Theory is that it 

recognizes hypothetical judgements as a form of statement distinct from the assertion of 

the truth of an implicational proposition 𝐴 ⊃  𝐵. In fact, hypothetical judgements are 

fundamental to the theory. It is, for instance, hypothetical judgements that give rise to 

the various dependency structures in CTT, by virtue of which it is a dependent type 

theory. 

 

Assume 𝐴 ∶ set. Then we have the following four forms of hypothetical judgement 

with one assumption. 

 𝑥 ∶  𝐴 ⊢  𝐵 ∶  𝐬𝐞𝐭 
 𝑥 ∶  𝐴 ⊢  𝐵 =  𝐶 ∶  𝐬𝐞𝐭 
 𝑥 ∶  𝐴 ⊢  𝑏 ∶  𝐵  
 𝑥 ∶  𝐴 ⊢  𝑏 =  𝑐 ∶  𝐵 

 

We have used the turnstile symbol, ⊢, to separate the antecedent, or assumption, of the 

judgement from the consequent. In (Martin-Löf, 1984) the notation used is  

 

𝐵 ∶  𝐬𝐞𝐭 (𝑥 ∶  𝐴) 
 

for what we here write 𝑥 ∶  𝐴 ⊢  𝐵 ∶  𝐬𝐞𝐭. We read this judgement as “𝐵 is a set under 

the assumption 𝑥 ∶  𝐴”. Similar remarks apply to the other three forms of hypothetical 

judgement. Let us consider the more precise meaning explanations of these forms of 

judgement. 

A judgement of the form 𝑥 ∶  𝐴 ⊢  𝐵 ∶  𝐬𝐞𝐭 means that 
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𝐵[𝑎/𝑥] ∶  𝐬𝐞𝐭 whenever 𝑎 ∶  𝐴, and 

𝐵[𝑎/𝑥]  =  𝐵[𝑎′/𝑥] ∶  𝐬𝐞𝐭 whenever 𝑎 =  𝑎′ ∶  𝐴. 

 

Here ‘𝐵[𝑎/𝑥]’ signifies the result of substituting ‘𝑎’ for ‘𝑥’ in ‘𝐵’. Thus we may 

think of 𝐵 as a function from 𝐴 into set; or using a different terminology, 𝐵 may be 

thought of as a family of sets over 𝐴. We are assuming that 𝑥 is the only free variable in 

𝐵  and that 𝐴  contains no free variables, hence that the judgement 𝐴 ∶  𝐬𝐞𝐭  holds 

categorically, that is, under no assumptions. It follows that 𝐵[𝑎/𝑥] is a closed term, 

hence that 𝐵[𝑎/𝑥] ∶  𝐬𝐞𝐭 holds categorically; by the explanation given of the form of 

categorical judgement 𝐴 ∶  𝐬𝐞𝐭 we therefore know the meaning of 𝐵[𝑎/𝑥] ∶  𝐬𝐞𝐭. Thus 

we see that the meaning of a hypothetical judgement is explained in terms of the 

meaning of categorical judgements. It holds in general that the meaning explanation of 

hypothetical judgements is thus reduced to the meaning explanation of categorical 

judgements. 

The explanation of the form of judgement 𝑥 ∶  𝐴 ⊢  𝐵 ∶  𝐬𝐞𝐭 justifies the following 

two rules. 

𝑎 ∶  𝐴 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝐬𝐞𝐭  𝑎 =  𝑎′ ∶  𝐴 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝐬𝐞𝐭 

𝐵[𝑎/𝑥] ∶  𝐬𝐞𝐭  𝐵[𝑎/𝑥] =  𝐵[𝑎′/𝑥] ∶  𝐬𝐞𝐭 
 

Note that by the second rule here, substitution into sets is extensional with respect to 

judgemental identity. That is to say, if we think of 𝑥 ∶  𝐴 ⊢  𝐵 ∶  𝐬𝐞𝐭 as expressing that 

𝐵 is a set-valued function (a family of sets), then 𝐵 has the expected property that for 

identical arguments 𝑎 =  𝑎′ ∶  𝐴 we get identical values 𝐵[𝑎/𝑥]  =  𝐵[𝑎′/𝑥] ∶  𝐬𝐞𝐭. 
 

We note that the notion of substitution is here understood only informally and that 

the notation 𝐵[𝑎/𝑥] belongs to the metalanguage. The notion of substitution can be 

made precise, and a notation for substitution introduced into the language of CTT itself; 

but it would take us too far afield to get into the details of that (cf. (Martin-Löf, 1992) 

and (Tasistro, 1993)). 

A judgement of the form 𝑥 ∶  𝐴 ⊢  𝐵 =  𝐶 ∶  𝐬𝐞𝐭 means that 

 

𝐵[𝑎/𝑥]  =  𝐶[𝑎/𝑥] ∶  𝐬𝐞𝐭 whenever 𝑎 ∶  𝐴. 

 

Hence, in this case we may think of 𝐵 and 𝐶 as identical families of sets over 𝐴. The 

explanation justifies the following rule. 

 

𝑎 ∶  𝐴  𝑥 ∶ 𝐴 ⊢  𝐵 = 𝐶 ∶ 𝐬𝐞𝐭  
𝐵[𝑎/𝑥] = 𝐶[𝑎/𝑥] ∶  𝐬𝐞𝐭 

 
A judgement of the form 𝑥 ∶  𝐴 ⊢  𝑏 ∶  𝐵 means that 

 

𝑏[𝑎/𝑥] ∶  𝐵[𝑎/𝑥] whenever 𝑎 ∶  𝐴, and 

𝑏[𝑎/𝑥]  =  𝑏[𝑎′/𝑥] ∶  𝐵[𝑎/𝑥] whenever 𝑎 =  𝑎′ ∶  𝐴. 

 

Here we are presupposing 𝑥 ∶  𝐴 ⊢  𝐵 ∶  𝐬𝐞𝐭 , hence we know that 𝐵[𝑎/𝑥] ∶ 𝐬𝐞𝐭 

whenever 𝑎 ∶  𝐴 , and therefore we also know the meaning of 𝑏[𝑎/𝑥] ∶  𝐵[𝑎/𝑥]  and 

𝑏[𝑎/𝑥]  =  𝑏[𝑎′/𝑥] ∶ 𝐵[𝑎/𝑥] whenever 𝑎 ∶  𝐴 and 𝑎 =  𝑎′ ∶  𝐴. The judgement 𝑥 ∶  𝐴 ⊢
 𝑏 ∶  𝐵 can be understood as saying that 𝑏 is a function from 𝐴 into the family 𝐵; that is 

to say, 𝑏 is a function that for any 𝑎 ∶  𝐴 yields an element 𝑏[𝑎/𝑥] of the set 𝐵[𝑎/𝑥]. The 

explanation justifies the following two rules. 

 

𝑎 ∶  𝐴 𝑥 ∶  𝐴 ⊢  𝑏 ∶ 𝐵  𝑎 =  𝑎′ ∶  𝐴 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 

𝑏[𝑎/𝑥] ∶  𝐵[𝑎/𝑥]  𝑏[𝑎/𝑥]  =  𝑏[𝑎′/𝑥] ∶  𝐵[𝑎/𝑥] 
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Note that by the second rule here, substitution into elements of sets is extensional with 

respect to judgemental identity. That is to say, if we think of 𝑥 ∶  𝐴 ⊢  𝑏 ∶  𝐵  as 

expressing that 𝑏  is a function, then 𝑏  has the expected property that for identical 

arguments 𝑎 =  𝑎′ ∶  𝐴 we get identical values 𝑏[𝑎/𝑥]  =  𝑏[𝑎′/𝑥] ∶  𝐵[𝑎/𝑥]. 
A judgement of the form 𝑥 ∶  𝐴 ⊢  𝑏 =  𝑐 ∶  𝐵 means that 

 

𝑏[𝑎/𝑥]  =  𝑐[𝑎/𝑥] ∶  𝐵[𝑎/𝑥] whenever 𝑎 ∶  𝐴. 

 

Thus, in this case, 𝑏 and 𝑐 are identical functions into the family 𝐵. The explanation 

justifies the following rule. 

 

𝑎 ∶  𝐴  𝑥 ∶  𝐴 ⊢  𝑏 =  𝑐 ∶  𝐵 

𝑏[𝑎/𝑥]  =  𝑐[𝑎/𝑥] ∶  𝐵[𝑎/𝑥] 
 

 Assumptions and other speech acts II.1.6

The notions of proposition, categorical judgement, and hypothetical judgement can 

be seen all of them to be presupposed by what is arguably the most natural interpretation 

of natural deduction derivations (Sundholm, 2006). Consider the following natural 

deduction proof sketch: 

𝐴 

𝒟1 

𝐵 

 

 

𝒟2 

𝐴 ⊃ 𝐵 𝐴 

𝐵 
 

Here 𝒟1 is a proof of 𝐵 from 𝐴, and 𝒟2 is a closed proof of 𝐴. Let us regard this natural 

deduction proof sketch as a representation of an actual mathematical demonstration and 

let us consider which speech acts the individual formulae here then represent.  
 The topmost 𝐴  represents an assumption, namely the assumption that the 

proposition 𝐴 is true.  

 The formula 𝐴  that is the conclusion of 𝒟2  is the conclusion of a closed 

proof; this formula therefore represents the categorical judgement, or 

assertion, that 𝐴 is true; the same considerations apply to 𝐴 ⊃  𝐵 and to the 

final conclusion 𝐵.  

 The 𝐵 that is the conclusion of 𝒟1  represents neither an assumption nor a 

categorical assertion; it rather represents a hypothetical judgement, namely 

the judgement that 𝐵 is true on the hypothesis that 𝐴 is true.  

 The formula 𝐴 occurring as a subformula in 𝐴 ⊃  𝐵  represents neither an 

assumption nor a categorical assumption nor a hypothetical judgement. It 

rather represents a proposition that is a part of a more complex proposition 

𝐴 ⊃  𝐵, which in the given proof is asserted categorically to be true. 

 

Thus we see that in order to make the semantics of natural deduction derivations 

explicit we should employ a notation that is able to distinguish not only propositions 

from judgements, but also categorical judgements from hypothetical judgements, and 

perhaps also assumptions from all of these. Assumptions can, however, be subsumed 

under hypothetical judgements, since we may regard the assumption of some categorical 

judgement 𝐽 as the assertion of 𝐽 on the hypothesis that 𝐽. In particular, the assumption of 

𝑎 ∶  𝐴 and the assumption that the proposition 𝐴 is true may be analyzed as respectively: 
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𝑎 ∶ 𝐴 ⊢ 𝑎 ∶ 𝐴  and  𝐴 𝑡𝑟𝑢𝑒 ⊢  𝐴 𝑡𝑟𝑢𝑒 

 

In CTT one can therefore make the semantics of the above natural deduction proof 

sketch explicit as follows 

 

𝐴 𝑡𝑟𝑢𝑒 ⊢  𝐴 𝑡𝑟𝑢𝑒 

𝒟1 

𝐴 𝑡𝑟𝑢𝑒 ⊢  𝐵 𝑡𝑟𝑢𝑒 

 

 

𝒟2 

𝐴 ⊃ 𝐵 𝑡𝑟𝑢𝑒 𝐴 𝑡𝑟𝑢𝑒 

𝐵 𝑡𝑟𝑢𝑒 
 

From the meaning explanation of hypothetical judgements it is clear that the 

following rule is justified. 

 

𝐴 ∶ 𝐬𝐞𝐭 

𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 
 

Nordström et al. (1990, p. 37) call this the rule of assumption, since it in effect allows us 

to introduce assumptions. 

 Hypothetical judgements with more than one assumption II.1.7

The forms of hypothetical judgement where the number of hypotheses is 𝑛 >  1 

are explained by induction on 𝑛. We consider the case of 𝑛 =  2 for illustration. We 

assume that 𝐴1 ∶ 𝐬𝐞𝐭 and 𝑥 ∶ 𝐴1 ⊢ 𝐴2 ∶ 𝐬𝐞𝐭. Thus 𝐴1 is a 𝐬𝐞𝐭 categorically, while 𝐴2 is a 

family of 𝐬𝐞𝐭s over 𝐴1. The four forms of judgement to be considered are the following. 

 

 𝑥 ∶ 𝐴1, 𝑥2 ∶ 𝐴2 ⊢ 𝐵 ∶ 𝐬𝐞𝐭 

 𝑥 ∶ 𝐴1, 𝑥2 ∶ 𝐴2 ⊢ 𝐵 = 𝐶 ∶ 𝐬𝐞𝐭 

 𝑥 ∶ 𝐴1, 𝑥2 ∶ 𝐴2 ⊢ 𝑏 ∶ 𝐵 

 𝑥 ∶ 𝐴1, 𝑥2 ∶ 𝐴2 ⊢ 𝑏 = 𝑐 ∶ 𝐵 
 

The first of these judgements means that 𝐵[𝑎1/𝑥1, 𝑎2/𝑥2] ∶ 𝐬𝐞𝐭 whenever 𝑎1 ∶ 𝐴1 and 

𝑎2 ∶ 𝐴2[𝑎1/𝑥1]  and that 𝐵[𝑎1/𝑥1, 𝑎2/𝑥2] = 𝐵[𝑎1
′ /𝑥1, 𝑎2

′ /𝑥2] ∶ 𝐬𝐞𝐭  whenever 𝑎1 =
𝑎1 

′ ∶ 𝐴1 and 𝑎2 = 𝑎2
′ ∶ 𝐴2 [𝑎1/𝑥1]. Note that 𝐴2 here in general may be a family of 𝐬𝐞𝐭s 

over 𝐴1. Which member of the family the second argument 𝑎2 is taken from depends on 

the first argument 𝑎1. Thus 𝐵 is a family of 𝐬𝐞𝐭s over 𝐴1 and 𝐴2, where 𝐴2 itself may be 

a family of 𝐬𝐞𝐭s over 𝐴1. 

The meaning of the third judgement is that 𝑏[𝑎1/𝑥1, 𝑎2/𝑥2] ∶ 𝐵[𝑎1/𝑥1, 𝑎2/𝑥2] 
whenever 𝑎1 ∶ 𝐴1  and 𝑎2 ∶ 𝐴2[𝑎1/𝑥1] , and that 𝑏[𝑎1/𝑥1, 𝑎2/𝑥2] = 𝑏[𝑎1

′ /𝑥1, 𝑎2
′ /𝑥2] ∶

 𝐵[𝑎1/𝑥1, 𝑎2/𝑥2] whenever 𝑎1 = 𝑎1
′ ∶ 𝐴1  and 𝑎2 = 𝑎2

′ ∶ 𝐴2 [𝑎1/𝑥1]. Thus 𝑏 is a binary 

function whose first argument is an element of 𝐴1; if this element is 𝑎1, then the second 

argument is an element of 𝐴2[𝑎1/𝑥1]; if the second argument is 𝑎2 , then the value 

𝑏[𝑎1/𝑥1, 𝑎2/𝑥2]  is an element of 𝐵[𝑎1/𝑥1, 𝑎2/𝑥2] . Here one sees the complex 

dependency structures that can be expressed in CTT. 

It should be clear how the explanation of the second and fourth forms of 

judgement above, as well as the explanation for arbitrary 𝑛, should go. 

Let 𝐽  be any categorical judgement, that is, a judgement of one of the forms 

𝐵 ∶ 𝐬𝐞𝐭, 𝐵 = 𝐶 ∶ 𝐬𝐞𝐭, 𝑏 ∶ 𝐵, 𝑏 = 𝑏′ ∶ 𝐵. In a hypothetical judgement 

 

𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶  𝐴𝑛 ⊢ 𝐽 
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we call the sequence of hypotheses 𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶  𝐴𝑛 a context. A judgement of the 

form 

 

𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶  𝐴𝑛 ⊢ 𝐵 ∶ 𝐬𝐞𝐭 

 

may thus be expressed by saying that 𝐵 is a 𝐬𝐞𝐭 in the context 𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶  𝐴𝑛. Let Γ 

be a context. From the meaning explanation of hypothetical judgements one sees that 

rules of the following kind are justified. 

 

Γ ⊢ 𝐽 Γ ⊢ 𝐵 ∶ 𝐬𝐞𝐭 

Γ, 𝑦: 𝐵 ⊢ 𝐽 
 

These rules may be called rules of weakening, in accordance with the terminology used 

in sequent calculus. 

 

With the general hypothetical form of judgement explained we may introduce a 

notion of category in a wider sense, in effect what is called a category in (Martin-Löf, 

1984, p. 21-23). Let us write the four general forms of judgement in the style of Martin-

Löf, namely as follows. 

 

 𝐵 ∶  𝐬𝐞𝐭 (𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶  𝐴𝑛) 

 𝐵 =  𝐶 ∶  𝐬𝐞𝐭 (𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶  𝐴𝑛) 
 𝑏 ∶  𝐵 (𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶  𝐴𝑛) 

 𝑏 =  𝑐 ∶  𝐵 (𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶  𝐴𝑛) 
 

In a grammatical analysis of the first of these it is natural to view not only 𝐬𝐞𝐭 but 

everything that is to the right of the colon, namely 

 

𝐬𝐞𝐭 (𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶  𝐴𝑛) 
 

as the predicate. The relation between the notions of predicate and category thus 

suggests that we may regard this as a category. Indeed, this may be regarded as the 

category of families of 𝐬𝐞𝐭s in 𝑛 variables ranging over the 𝐬𝐞𝐭s or families of 𝐬𝐞𝐭s 

𝐴1, … , 𝐴𝑛, among which there may be dependency relations as explained for the case of 

𝑛 = 2 above. Likewise we may regard 

 

𝐵 (𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶  𝐴𝑛) 
 

as a category. It is the category of n-ary functions from 𝐴1, … , 𝐴𝑛  into the family 𝐵 

(again keeping dependency relations in mind). 

Thus we may extend the notion of category to include not only 𝐬𝐞𝐭 and 𝐴 for any 

𝐬𝐞𝐭 𝐴, but also 𝑛-ary families of 𝐬𝐞𝐭s and 𝑛-ary functions into a 𝐬𝐞𝐭 𝐴. Note that these 

are indeed categories in the present sense since they are associated with criteria of 

application and identity, namely through the explanation of the general forms of 

hypothetical judgement. 

II.2 Rules 

So far we have only the frame of a language, namely an explanation of its basic 

forms of statement as well as explanations of the basic notions of 𝐬𝐞𝐭, proposition, 

element of a 𝐬𝐞𝐭, and proof of a proposition. The frame is filled by the introduction of 

symbols signifying 𝐬𝐞𝐭 s, operations for forming 𝐬𝐞𝐭 s, and operations for forming 

elements of 𝐬𝐞𝐭s. These symbols are not explained one by one, but rather in groups. The 
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meaning of the symbols in a given group is determined by rules of four kinds: 

 

• Formation rules 

• Introduction rules 

• Elimination rules 

• Equality, or computation, rules 

 

The inclusion of formation rules in the language itself is a distinctive feature of CTT. 

The introduction and elimination rules are like those of Gentzen (1933), though 

generalized to the syntax of CTT so as also to cover the construction of proof objects. 

The equality rules correspond to the reduction rules of Prawitz (1965). The best way of 

getting a grip on these notions is by looking at concrete examples, which we now 

proceed to do. 

In the following we shall in most cases write 𝐴[𝑏, 𝑐] and 𝑎[𝑏, 𝑐], etc., instead of 

𝐴[𝑏/𝑥, 𝑐/𝑦] and 𝑎[𝑏/𝑥, 𝑐/𝑦], etc. That is, for ease of readability we shall usually not 

mention the variables for which 𝑏, 𝑐, etc. are substituted in 𝐴, 𝑎, etc. Which variables are 

replaced will usually be clear from the context. Although variables are not mentioned, 

square brackets will still stand for substitution and not for function application. 

 Cartesian product of a family of sets II.2.1

Given a 𝐬𝐞𝐭 𝐴 and a family 𝐵 of 𝐬𝐞𝐭s over 𝐴 we can form the product of 𝐵 over 𝐴. 

That is the content of the Π-formation rule: 

 

(Π-form) 
𝐴 ∶ 𝐬𝐞𝐭 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝐬𝐞𝐭 

(Π𝑥 ∶ 𝐴)𝐵 ∶ 𝐬𝐞𝐭 
 

This rule lays down when we may judge that (Π𝑥 ∶  𝐴)𝐵 is a 𝐬𝐞𝐭. There is a second Π-

formation rule that lays down when we may judge that two sets of the form (Π𝑥 ∶  𝐴)𝐵 

are identical: 

 

 
𝐴 = 𝐴′ ∶ 𝐬𝐞𝐭 𝑥 ∶ 𝐴 ⊢ 𝐵 = 𝐵′ ∶ 𝐬𝐞𝐭 

(Π𝑥 ∶ 𝐴)𝐵 = (Π𝑥 ∶ 𝐴′)𝐵′ ∶ 𝐬𝐞𝐭 
 

All formation, introduction, and elimination rules are paired with identity rules of this 

kind, but we shall state these rules explicitly only in the present case of Π. 

The conclusion of Π-formation says that (Π𝑥 ∶ 𝐴)𝐵 is a 𝐬𝐞𝐭. Since we have the 

right to judge that 𝐶 is a 𝐬𝐞𝐭 only if we can say what the canonical elements of 𝐶 are, as 

well as what equal canonical elements of 𝐶  are, we see that the rule of Π-formation 

requires justification. 

 

The required justification is provided by the Π-introduction rules: 

 

(Π-intro) 
𝑥 ∶  𝐴 ⊢  𝑏 ∶  𝐵  𝑥 ∶ 𝐴 ⊢ 𝑏 = 𝑏′ ∶ 𝐵 

λ𝑥. 𝑏 ∶ (Π𝑥 ∶  𝐴)𝐵   λ𝑥. 𝑏 = λ𝑥. 𝑏′ ∶  (Π𝑥 ∶ 𝐴)𝐵 
 

According to this rule a canonical element of (Π𝑥 ∶  𝐴)𝐵  has the form  λ𝑥. 𝑏 , where 

𝑏[𝑎] ∶  𝐵[𝑎]  whenever 𝑎 ∶ 𝐴 . Note that such a 𝑏  is of a category different from the 

category of λ𝑥. 𝑏 . Namely, 𝑏  is of category 𝐵(𝑥 ∶ 𝐴)  whereas λ𝑥. 𝑏  is of category 

(Π𝑥 ∶ 𝐴)𝐵. It was noted above that we may regard such a 𝑏 as a function from 𝐴 into the 

family 𝐵. We may think of λ𝑥. 𝑏 as an individual that codes this function. The λ-operator 

is thus similar to Frege’s course-of-values operator (cf. e.g. (Frege G. , 1893, p. § 9)) 

which, given a function 𝑓(𝑥), yields an individual ά𝑓(𝛼). Note, however, that λ𝑥. 𝑏 
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belongs to a separate 𝐬𝐞𝐭 (Π𝑥 ∶  𝐴)𝐵 and not to the domain 𝐴 of the function 𝑏; whence 

we cannot make sense of applying the function 𝑏 to λ𝑥. 𝑏, hence a contradiction along 

the lines of Russell’s Paradox cannot be derived. 

The role of the elements of (Π𝑥 ∶  𝐴)𝐵 as codes of functions is made clear by the 

Π-elimination rule: 

 

(Π-elim) 
𝑐 ∶ (Π𝑥 ∶ 𝐴)𝐵  𝑎 ∶ 𝐴  𝑐 = 𝑐′: (Π𝑥 ∶ 𝐴)𝐵 𝑎 =  𝑎′: 𝐴  

 𝐚𝐩(𝑐, 𝑎) ∶ 𝐵[𝑎]  𝐚𝐩(𝑐, 𝑎)  =  𝐚𝐩(𝑐′, 𝑎′) ∶  𝐵[𝑎] 
 

The conclusion of this rule asserts that 𝐚𝐩(𝑐, 𝑎) is an element of the set 𝐵[𝑎]. Since we 

have the right to judge that 𝑐 is an element of a set 𝐶 only if we can specify how to 

compute 𝑐 to a canonical element of 𝐶, we see that the rule of Π-elimination requires 

justification. 

The required justification is provided by the rule of Π-equality, which specifies 

how 𝐚𝐩(𝑐, 𝑎) is computed in the case where 𝑐 is of canonical form, namely λ𝑥. 𝑏. 

 

(Π-eq) 
𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 𝑎 ∶  𝐴 

𝐚𝐩(λ𝑥. 𝑏, 𝑎) = 𝑏[𝑎] ∶ 𝐵[𝑎] 
 

We can now justify Π-elimination as follows. By the assumption 𝑐 ∶ (Π𝑥 ∶  𝐴)𝐵  we 

know how to evaluate 𝑐  to canonical form λ𝑥. 𝑏 , where 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 ; thus we have 

𝑐 = λ𝑥. 𝑏 ∶ (Π𝑥 ∶ 𝐴)𝐵 . But then also 𝐚𝐩(𝑐, 𝑎) = 𝐚𝐩(λ𝑥. 𝑏, 𝑎) ∶ 𝐵[𝑎] , so 𝐚𝐩(𝑐, 𝑎) =
𝑏[𝑎] ∶ 𝐵[𝑎] , whence the value of 𝐚𝐩(𝑐, 𝑎)  is equal to the value of 𝑏[𝑎] ; by the 

assumption 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 we know how to find this value. 

From the Π-equality rule we see that 𝐚𝐩 is an application operator; as such it is 

similar to the function 𝑥 ͡  𝑦, satisfying the equation Δ ͡  ά𝑓(𝛼)  =  𝑓(Δ), defined by Frege 

(1893, p. § 34). 

We have now seen that the Π-introduction rules enable us to justify the Π-

formation rule and that the Π-equality rule enables us to justify the Π-elimination rule. 

These relations of justification hold in general and not only in the case of Π. 

The advantage of the higher-order presentation of CTT is most readily seen when 

we ask about the categories of Π, λ, and 𝐚𝐩. Intuitively we may think of Π as a certain 

higher-order function that takes a 𝐬𝐞𝐭 𝐴 and a family of 𝐬𝐞𝐭s 𝐵 over 𝐴 and yields a 𝐬𝐞𝐭 

(Π𝑥 ∶ 𝐴)𝐵. But we have no means of naming the category of such a function in the 

language frame introduced here. In the higher-order presentation such a name is easily 

constructed; indeed we then express the category assignment of Π  by means of the 

judgement Π ∶ (𝑋 ∶ 𝐬𝐞𝐭)((𝑋)𝐬𝐞𝐭)𝐬𝐞𝐭. Similar remarks apply to λ and 𝐚𝐩, and in fact to 

all of the various symbols that we are now in the process of introducing into the 

language (apart from the constant sets ℕ𝑛 and ℕ to be introduced below—these are of 

category 𝐬𝐞𝐭). 

 The logical interpretation of the Cartesian product II.2.2

Recall that 𝐩𝐫𝐨𝐩 = 𝐬𝐞𝐭. Hence we may regard a family 𝐵 of 𝐬𝐞𝐭s over a 𝐬𝐞𝐭 𝐴 as 

a family of propositions over 𝐴. A family of propositions over 𝐴 is a function from 𝐴 

into the category of propositions; it is thus a propositional function. 

Let us consider 𝐵  as a propositional function over 𝐴  and (Π𝑥 ∶  𝐴)𝐵  as a 

proposition, and let us ask what a canonical proof of this proposition looks like. Such a 

canonical proof has the form λ𝑥. 𝑏, where 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵, and is in effect a code of the 

function 𝑏 . This function 𝑏  takes an element 𝑎  of 𝐴  and yields a proof 𝑏[𝑎]  of the 

proposition 𝐵[𝑎]. Keeping in mind the Brouwer–Heyting–Kolmogorov interpretation of 

the logical connectives (cf. e.g. (Troelstra & van Dalen, 1988, pp. 9-10)), we see thus 

that (Π𝑥 ∶  𝐴)𝐵, when regarded as a proposition, is the proposition (∀𝑥 ∶  𝐴)𝐵, which 
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intuitively says that all elements of 𝐴 have the property 𝐵. Note that this proposition is 

not written ∀𝑥𝐵 as in ordinary predicate logic; rather, the domain of quantification, 𝐴, is 

explicitly mentioned. 

On the understanding of Π as ∀, we can recover the rule of ∀-introduction from the 

rule of Π-introduction by employing the form of judgement ‘𝐶 𝑡𝑟𝑢𝑒’ as follows. 

 

𝑥 ∶ 𝐴 ⊢  𝐵 𝑡𝑟𝑢𝑒 

(∀𝑥 ∶  𝐴)𝐵 𝑡𝑟𝑢𝑒 
 

That is to say, if 𝐵[𝑎]  is true whenever 𝑎 ∶ 𝐴 , then (∀𝑥 ∶ 𝐴)𝐵  is true. Let us also 

consider the version of ∀-introduction where the proof objects have not been suppressed: 

 

𝑥 ∶ 𝐴 ⊢  𝑏 ∶ 𝐵 

λ𝑥. 𝑏 ∶ (∀𝑥 ∶ 𝐴)𝐵 
 

Here we should think of 𝑏 as an open proof of 𝐵, a proof depending on a parameter 𝑥 ∶
𝐴 . For instance, 𝐴  may be the natural numbers, ℕ , and 𝐵  may be the propositional 

function that for any element 𝑛 of ℕ yields the proposition that 𝑛 is either even or odd; 𝑏 

is then a proof of the proposition that 𝑥 is either even or odd, where 𝑥 is a generic or 

arbitrary natural number. By binding 𝑥 we get a proof λ𝑥. 𝑏 of (∀𝑥 ∶ 𝐴)𝐵 where 𝑥 is no 

longer free; if 𝑥 is the only free variable in 𝑏, then λ𝑥. 𝑏 is a closed proof of (∀𝑥 ∶ 𝐴)𝐵. 

Since the domain of quantification is explicitly mentioned in (∀𝑥 ∶ 𝐴)𝐵, it also has 

to be mentioned in the ∀-elimination rule: 

 

(∀𝑥 ∶ 𝐴)𝐵 𝑡𝑟𝑢𝑒 𝑎 ∶ 𝐴 

𝐵[𝑎]𝑡𝑟𝑢𝑒 
 

Making the proof-objects explicit yields the following ∀-elimination rule. 

 

𝑐 ∶ (∀𝑥 ∶ 𝐴)𝐵 𝑎 ∶ 𝐴 

𝐚𝐩(𝑐, 𝑎) ∶ 𝐵[𝑎] 
 

The rule says that if 𝑐 is a proof of (∀𝑥 ∶ 𝐴)𝐵 and 𝑎 ∶  𝐴, then 𝐚𝐩(𝑐, 𝑎) is a proof of 

𝐵[𝑎]. The Π-equality rule can now be seen to correspond to the ∀-reduction of Prawitz 

(1965, p. 37) at the level of proof-objects. We shall illustrate this in the case of ⊃, to 

which we now turn. 

Suppose 𝐵 ∶ 𝐬𝐞𝐭 . Then, by weakening,  𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝐬𝐞𝐭  holds. In this case an 

element of (Π𝑥 ∶ 𝐴)𝐵 codes a function from the 𝐬𝐞𝐭 𝐴 to the 𝐬𝐞𝐭 𝐵. Since 𝑥 is not free in 

𝐵 in this case, we may write 𝐴 →  𝐵 instead of (Π𝑥 ∶ 𝐴)𝐵, thereby also indicating that 

this is the function space from 𝐴 to 𝐵 . Regarding both 𝐴 and 𝐵  as propositions, and 

again keeping in mind the Brouwer–Heyting–Kolmogorov interpretation of the logical 

connectives, it is clear that 𝐴 →  𝐵 can be interpreted as the implication 𝐴 ⊃ 𝐵. 

The Π-introduction and elimination rules become ⊃-introduction and elimination 

in this case. A canonical proof-object of 𝐴 ⊃ 𝐵 has the form λ𝑥. 𝑏, where 𝑏 is an open 

proof from 𝐴 to 𝐵. Given a proof of 𝑐 ∶ 𝐴 ⊃ 𝐵 and a proof 𝑎 ∶ 𝐴, then 𝐚𝐩(𝑐, 𝑎) is a proof 

of 𝐵. 

The Π-equality rule yields the following rule of ⊃-equality. 

 

 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵  𝑎 ∶ 𝐴 

𝐚𝐩(λ𝑥. 𝑏, 𝑎) = 𝑏[𝑎] ∶ 𝐵 
 

Here 𝑎  is a proof of 𝐴 ; 𝑏  is an open proof of 𝐵  from 𝐴 ; λ𝑥. 𝑏  is a proof of 𝐴 ⊃ 𝐵 

obtained by extending 𝑏  with one application of ⊃ -introduction; 𝐚𝐩(λ𝑥. 𝑏, 𝑎)  is the 
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proof of B got by applying ⊃-elimination to λ𝑥. 𝑏 and 𝑎; and 𝑏[𝑎] is a proof of 𝐵 got 

from 𝑏 by supplying it in the suitable sense with the proof 𝑎 of 𝐴. The ⊃-equality rule 

says that 𝐚𝐩(λ𝑥. 𝑏, 𝑎) and 𝑏[𝑎] are equal proofs of 𝐵. Using the standard notation of 

natural deduction this equality can be expressed as follows (where we write  
𝒟1 instead of 𝑏 and 𝒟2 instead of 𝑎). 

 

𝐴 

𝒟1 

𝐵 

   

  𝒟2 

𝒟2 = 𝐴 

𝐴 ⊃ 𝐵 𝐴 
 𝒟1 

𝐵 

𝐵   

 

By replacing ‘=’ here with a sign for Prawitz’s reduction relation, one sees that what is 

displayed here is just the rule of ⊃-reduction. Thus the rule of ⊃-equality can be read as 

saying that a proof containing a “detour” like that in the proof on the left hand side 

above is identical to the proof got by deleting this detour by means of a ⊃-reduction. 

 Disjoint union of a family of sets II.2.3

Given a 𝐬𝐞𝐭 𝐴 and a family 𝐵 of 𝐬𝐞𝐭s over 𝐴 we can form the disjoint union of the 

family 𝐵. That is the content of Σ-formation: 

 

(Σ-form) 
𝐴 ∶ 𝐬𝐞𝐭 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝐬𝐞𝐭 

(Σ𝑥 ∶ 𝐴)𝐵 ∶ 𝐬𝐞𝐭 
 

According to the rule of Σ-introduction, the canonical elements of (Σ𝑥 ∶ 𝐴)𝐵 are pairs: 

   

(Σ-intro ) 
𝑎 ∶ 𝐴 𝑏 ∶ 𝐵[𝑎] 

〈𝑎, 𝑏〉 ∶ (Σ𝑥 ∶ 𝐴)𝐵 
 

Assume 𝐴 ∶ 𝐬𝐞𝐭, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝐬𝐞𝐭. Then we may form (Σ𝑥 ∶ 𝐴)𝐵 ∶  𝐬𝐞𝐭. Assume further 

that 𝐶 is a family of sets over (Σ𝑥 ∶ 𝐴)𝐵, that is, assume 𝑧 ∶ (Σ𝑥 ∶ 𝐴)𝐵 ⊢ 𝐶 ∶ 𝐬𝐞𝐭. The 

rule of Σ-elimination is as follows: 

 

(Σ-elim) 
𝑐 ∶  (Σ𝑥 ∶ 𝐴)𝐵 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑑 ∶ 𝐶[〈𝑥, 𝑦〉] 

𝐄(𝑐, 𝑥𝑦. 𝑑) ∶ 𝐶[𝑐] 
 

We may think of the binary function 𝑑 as a unary function on the canonical elements of 

(Σ𝑥 ∶ 𝐴)𝐵—it takes 〈𝑎, 𝑏〉, where 𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵[𝑎], and yields an element 𝑑[𝑎, 𝑏] of 

𝐶[〈𝑎, 𝑏〉]. The Σ-elimination rule provides us with a function 𝑐 ↦  𝐄(𝑐, 𝑥𝑦. 𝑑) defined 

for all elements 𝑐 (not only canonical ones) of (Σ𝑥 ∶ 𝐴)𝐵. 

Two clarificatory remarks pertaining to Σ-elimination are in order here. The first 

remark concerns the premiss 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑑 ∶ 𝐶[〈𝑥, 𝑦〉]. By the preliminary assumption 

𝑧 ∶ (Σ𝑥 ∶ 𝐴)𝐵 ⊢  𝐶 ∶  𝐬𝐞𝐭, the variable 𝑧, ranging over (Σ𝑥 ∶ 𝐴)𝐵, occurs (or, is allowed 

to occur) in 𝐶 . Since 𝑥 ∶ 𝐴 , 𝑦 ∶ 𝐵 ⊢ 〈𝑥, 𝑦〉 ∶ (Σ𝑥 ∶ 𝐴)𝐵  holds by Σ -introduction, the 

substitution of 〈𝑥, 𝑦〉  for 𝑧  in 𝐶  in the context 𝑥 ∶ 𝐴 , 𝑦 ∶ 𝐵  makes sense. The second 

remark concerns the conclusion 𝐄(𝑐, 𝑥𝑦. 𝑑) ∶ 𝐶[𝑐]. The operation 𝐄 is variable-binding: 

it binds the free variables 𝑥 and 𝑦 in 𝑑. This is symbolized by prefixing 𝑑 with 𝑥 and 𝑦 

inside 𝐄(−, −).
40

 

                                                 
40

 In the higher-order presentation there is only one variable-binding operation, namely abstraction, 

by means of which higher-order functions are formed. The 𝐄 above is then a higher-order function whose 

second argument is itself a higher-order function 𝑑 ∶  (𝑥 ∶  𝐴)(𝑦 ∶  𝐵) 𝐶(〈𝑥, 𝑦〉). To make the notation for 
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The Σ-equality rule tells us how to compute 𝐄(𝑐, 𝑥𝑦. 𝑑) when 𝑐  is in canonical 

form. 

 

(Σ-eq) 
𝑎 ∶ 𝐴 𝑏 ∶ 𝐵[𝑎] 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑑 ∶ 𝐶[〈𝑥, 𝑦〉] 

𝐄(〈𝑎, 𝑏〉, 𝑥𝑦. 𝑑) = 𝑑[𝑎, 𝑏] ∶ 𝐶〈𝑎, 𝑏〉 
 

The conclusion of Σ-elimination introduces a non-canonical element 𝐄(𝑐, 𝑥𝑦. 𝑑) in 𝐶[𝑐]. 
To justify this rule we have to explain how to evaluate this non-canonical element to 

canonical form. This is done by reference to the Σ-equality rule. First evaluate 𝑐 ∶ (Σ𝑥 ∶
𝐴)𝐵 to get a pair 〈𝑎, 𝑏〉, where 𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵[𝑎]. We have  

 

𝐄(𝑐, 𝑥𝑦. 𝑑) = 𝐄(〈𝑎, 𝑏〉, 𝑥𝑦. 𝑑) = 𝑑[𝑎, 𝑏] ∶  𝐶[〈𝑎, 𝑏〉] 
 

by Σ-equality. By the premiss 𝑥 ∶ 𝐴 , 𝑦 ∶ 𝐵 ⊢ 𝑑 ∶ 𝐶[〈𝑥, 𝑦〉]  we know how to compute 

𝑑[𝑎, 𝑏] to obtain a canonical element of 𝐶[〈𝑎, 𝑏〉]; since 𝐶[𝑐]  =  𝐶[〈𝑎, 𝑏〉] ∶ 𝐬𝐞𝐭, this 

will also be a canonical element of 𝐶[𝑐]. 
By means of 𝐄 we can define projection operations, which justifies our speaking of 

the canonical elements of (Σ𝑥 ∶ 𝐴)𝐵 as pairs. For the first projection we put 𝐶 = 𝐴 and 

𝑑 = 𝑥 in the rule of Σ-elimination, thereby obtaining: 

 

 

𝑐 ∶  (𝛴𝑥 ∶ 𝐴)𝐵 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑥 ∶ 𝐴 

𝐄(𝑐, 𝑥𝑦. 𝑥) ∶ 𝐴 
 

By Σ-equality we have in this case: 

 

𝐄(〈𝑎, 𝑏〉, 𝑥𝑦. 𝑥) = 𝑥[𝑎/𝑥, 𝑏/𝑦] = 𝑎 ∶ 𝐴 
 

We may therefore define the first projection 𝐟𝐬𝐭 as follows. 

 

𝑐 ∶ (Σ𝑥 ∶ 𝐴)𝐵 ⊢ 𝐟𝐬𝐭(𝑐) = 𝐄(𝑐, 𝑥𝑦. 𝑥) 
 

For the second projection we put 𝐶 = 𝐵[𝐟𝐬𝐭(𝑧)] and 𝑑 = 𝑦 in the rule of Σ-elimination: 

 

 

𝑐 ∶ (Σ𝑥 ∶ 𝐴)𝐵 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑦 ∶ 𝐵[𝐟𝐬𝐭(〈𝑥, 𝑦〉)] 
𝐄(𝑐, 𝑥𝑦. 𝑦) ∶ 𝐵[𝐟𝐬𝐭(𝑐)] 

 

The second premiss here is valid since 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝐵[𝐟𝐬𝐭(〈𝑥, 𝑦〉)] = 𝐵[𝑥] = 𝐵 ∶ 𝐬𝐞𝐭 

holds. By Σ-equality we have 

 

𝐄(〈𝑎, 𝑏〉, 𝑥𝑦. 𝑦) = 𝑦[𝑎/𝑥, 𝑏/𝑦] = 𝑏 ∶ 𝐵[𝐟𝐬𝐭(〈𝑎, 𝑏〉)] 
 

But 𝐟𝐬𝐭(〈𝑎, 𝑏〉) = 𝑎 ∶ 𝐴, hence 

 

𝐵[𝐟𝐬𝐭(〈𝑎, 𝑏〉)] = 𝐵[𝑎] ∶  𝐬𝐞𝐭 
 

We therefore define the second projection by 

 

𝑐 ∶ (Σ𝑥 ∶ 𝐴)𝐵 ⊢ 𝐬𝐧𝐝(𝑐) = 𝐄(𝑐, 𝑥𝑦. 𝑦) 
 

The following four rules are then justified 

                                                                                                                                                
λ in the Π-introduction rule accord with the notation here used for 𝐄 we should write λ(𝑥. 𝑏) instead of 

λ𝑥. 𝑏. The latter, being more familiar, will be preferred here. 
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𝑐 ∶  (Σ𝑥 ∶ 𝐴)𝐵  𝑎 ∶ 𝐴 𝑏 ∶ 𝐵[𝑎] 

 𝐟𝐬𝐭(𝑐) ∶  𝐴  𝐟𝐬𝐭(〈𝑎, 𝑏〉) = 𝑎 ∶ 𝐴 
 

 

 
𝑐 ∶  (Σ𝑥 ∶ 𝐴)𝐵  𝑎 ∶ 𝐴 𝑏 ∶ 𝐵[𝑎] 

𝐬𝐧𝐝(𝑐) ∶ 𝐵[𝐟𝐬𝐭(𝑐)]  𝐬𝐧𝐝(〈𝑎, 𝑏〉) = 𝑏 ∶ 𝐵[𝑎] 

 The logical interpretation of the disjoint union of a family of sets II.2.4

If we regard 𝐵 as a propositional function over 𝐴, then (Σx : A)B can be regarded 

as the existentially quantified proposition (∃𝑥 ∶ 𝐴)𝐵. A canonical proof of (∃𝑥 ∶ 𝐴)𝐵 is 

a pair 〈𝑎, 𝑏〉 where 𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵[𝑎]; that is to say, 𝑎 is a witness and 𝑏 is a proof that 

𝑎 indeed has the property 𝐵. When suppressing proof objects and employing the form of 

judgement 𝐷 𝑡𝑟𝑢𝑒, the rule of Σ-elimination becomes ∃-elimination: 

 

(∃𝑥 ∶ 𝐴)𝐵 𝑡𝑟𝑢𝑒 𝑥 ∶ 𝐴, 𝐵 𝑡𝑟𝑢𝑒 ⊢  𝐶 𝑡𝑟𝑢𝑒 

𝐶 𝑡𝑟𝑢𝑒  
 

In ordinary natural deduction the assumption 𝑥 ∶ 𝐴 in the second premiss is usually not 

made explicit. 

If 𝐵 ∶ 𝐬𝐞𝐭  holds categorically, then the rules for Σ  yield rules for ordinary 

Cartesian product. On the logical interpretation, the Cartesian product becomes 

conjunction. Indeed the Σ-formation and introduction rules then become: 

 

 
𝐴 ∶ 𝐩𝐫𝐨𝐩 𝐵 ∶ 𝐩𝐫𝐨𝐩  𝑎 ∶ 𝐴 𝑏 ∶ 𝐵 

𝐴 ∧ 𝐵 ∶ 𝐩𝐫𝐨𝐩  〈𝑎, 𝑏〉 ∶  𝐴 ∧ 𝐵 
 

The Σ-elimination rule, with and without proof-objects, becomes: 

 

𝐴 ∧ 𝐵 𝑡𝑟𝑢𝑒 𝐴 𝑡𝑟𝑢𝑒, 𝐵 𝑡𝑟𝑢𝑒 ⊢  𝐶 𝑡𝑟𝑢𝑒 

𝐶 𝑡𝑟𝑢𝑒  
 

𝑐 ∶ 𝐴 ∧ 𝐵 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑑 ∶  𝐶[〈𝑎, 𝑏〉] 
𝐄(𝑐, 𝑥𝑦. 𝑑) ∶ 𝐶[𝑐] 

 

This is a generalization of the ordinary rules of ∧-elimination also found in Schroeder-

Heister (1984, p. 1294). The ordinary rules are obtained as a special case by letting 𝐶 be 

𝐴 or 𝐵. We remark that in the higher-order presentation a generalized elimination rule in 

this sense can also be given for Π Nordström et al. (Nordström, Petersson, & Smith, 

1990, pp. 51-52); using this generalized elimination rule instead of the rule of Π-

elimination presented above in fact yields a strictly stronger theory, as shown by Garner 

(2009). 

 Disjoint union of two sets II.2.5

Given two sets we may form their disjoint union. That is content of the rule of +- 

formation. 

 

(+-form ) 
𝐴 ∶ 𝐬𝐞𝐭 𝐵 ∶ 𝐬𝐞𝐭 

𝐴 + 𝐵 ∶ 𝐬𝐞𝐭 

 

A canonical element of 𝐴 + 𝐵 is an element of 𝐴 or an element of 𝐵 together with the 
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information that it comes from 𝐴  or 𝐵  respectively. Thus there are two rules of +-

introduction: 

 

(+-intro ) 
𝑎 ∶ 𝐴  𝑏 ∶ 𝐵 

𝐢(𝑎) ∶ 𝐴 + 𝐵  𝐣(𝑏) ∶ 𝐴 + 𝐵 
 

Assume 𝐴 ∶ 𝐬𝐞𝐭, 𝐵 ∶ 𝐬𝐞𝐭, and 𝑧 ∶ 𝐴 + 𝐵 ⊢ 𝐶 ∶ 𝐬𝐞𝐭. The rule of +-elimination is: 

 

(+-elim ) 
𝑐 ∶ 𝐴 + 𝐵 𝑥 ∶ 𝐴 ⊢ 𝑑 ∶ 𝐶[𝐢(𝑥)] 𝑦 ∶ 𝐵 ⊢ 𝑒 ∶ 𝐶[𝐣(𝑦)] 

𝐃(𝑐, 𝑥. 𝑑, 𝑦. 𝑒) ∶  𝐶[𝑐] 
 

The rule can be glossed as follows. Assume that 𝐶 is a family of 𝐬𝐞𝐭s over 𝐴 + 𝐵 and 

that we are given a function 𝑑 which takes an 𝑎 ∶ 𝐴 to an element 𝑑[𝑎] of 𝐶[𝐢(𝑎)] and a 

function 𝑒 which takes a 𝑏 ∶ 𝐵 to an element 𝑒[𝑏] of 𝐶[𝐣(𝑏)]. Then 𝐶[𝑐] is inhabited for 

any 𝑐 ∶  𝐶, namely by 𝐃(𝑐, 𝑥. 𝑑, 𝑦. 𝑒). How to compute 𝐃(𝑐, 𝑥. 𝑑, 𝑦. 𝑒) is determined by 

the +-equality rules. Since there are two +-introduction rules, there are also two +-

equality rules. 

 

(+-eq ) 

𝑎 ∶ 𝐴 𝑥 ∶ 𝐴 ⊢ 𝑑 ∶ 𝐶[𝐢(𝑥)] 𝑦 ∶ 𝐵 ⊢ 𝑒 ∶ 𝐶[𝐣(𝑦)] 
𝐃(𝐢(𝑎), 𝑥. 𝑑, 𝑦. 𝑒)  =  𝑑[𝑎] ∶  𝐶[𝐢(𝑎)] 

 
 

 

𝑏 ∶ 𝐵 𝑥 ∶ 𝐴 ⊢ 𝑑 ∶ 𝐶[𝐢(𝑥)] 𝑦 ∶ 𝐵 ⊢ 𝑒 ∶ 𝐶[𝐣(𝑦)] 
𝐃(𝐣(𝑏), 𝑥. 𝑑, 𝑦. 𝑒)  =  𝑒[𝑏] ∶ 𝐶[𝐣(𝑏)] 

 
In the logical interpretation + becomes disjunction ∨. 

 Finite sets II.2.6

We have introduced operations for constructing 𝐬𝐞𝐭s from other 𝐬𝐞𝐭s or families of 

𝐬𝐞𝐭s; but so far we have no basic 𝐬𝐞𝐭 to start from. We shall now provide a scheme of 

rules which, when specified for any particular natural number 𝑛, gives us a 𝐬𝐞𝐭 with 𝑛 

canonical elements. 

In the following n is a generic natural number. There is a set ℕn: 

 

(ℕ𝑛-form)   ℕ𝑛 ∶ 𝐬𝐞𝐭 
 

The set ℕ has 𝑛 canonical elements, each introduced by its own introduction rule; thus 

ℕ𝑛 has 𝑛 introduction rules: 

 

(ℕ𝑛-intro)   𝑚1 ∶ ℕ𝑛, … , 𝑚𝑛 ∶ ℕ𝑛 
 

The ℕ𝑛-elimination rule can be seen as a principle of proof by 𝑛 cases. We assume that 

𝐶 is a family of 𝐬𝐞𝐭s over ℕ𝑛; that is, we assume 𝑧 ∶ ℕ𝑛 ⊢ 𝐶 ∶ 𝐬𝐞𝐭. 

 

(ℕ𝑛-elim) 
𝑚 ∶ ℕ𝑛 𝑐1 ∶ 𝐶[𝑚1] … 𝑐𝑛 ∶ 𝐶[𝑚𝑛] 

𝐜𝐚𝐬𝐞𝑛(𝑚, 𝑐1, … , 𝑐𝑛) ∶ 𝐶[𝑚] 
 

Thus, assume that for each canonical 𝑚𝑘 ∶ ℕ𝑛 we have an element 𝑐𝑘 ∶ 𝐶[𝑚𝑘]. The ℕ𝑛-

elimination rule allows us to infer that for any 𝑚 ∶ ℕ𝑛  there is an element, namely 

𝐜𝐚𝐬𝐞𝑛(𝑚, 𝑐1, … , 𝑐𝑛), in 𝐶[𝑚]. How to compute 𝐜𝐚𝐬𝐞𝑛(𝑚, 𝑐1, … , 𝑐𝑛) to canonical form is 

determined by the ℕ𝑛-equality rules. Since there are 𝑛 ℕ𝑛-introduction rules, there are 
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also 𝑛 ℕ𝑛-equality rules, one for each introduction rule. We state the rule for a generic 

𝑘 ≤ 𝑛. 

 

(ℕ𝑛-eq) 
𝑐1 ∶ 𝐶[𝑚1] … 𝑐𝑛 ∶ 𝐶[𝑚𝑛] 

𝐜𝐚𝐬𝐞𝑛(𝑚𝑘, 𝑐1, … , 𝑐𝑛) = 𝑐𝑘 ∶ 𝐶[𝑚𝑘] 
 

On the basis of this rule we may explain how to compute 𝐜𝐚𝐬𝐞𝑛(𝑚, 𝑐1, … , 𝑐𝑛) ∶  𝐶[𝑐]. 
Evaluate 𝑚 ∶ ℕ𝑛, thereby obtaining a canonical element 𝑚𝑘 ∶ ℕ𝑛. Since 𝑚 = 𝑚𝑘 ∶ ℕ𝑛, 

we have both 𝐜𝐚𝐬𝐞𝑛(𝑚, 𝑐1, … , 𝑐𝑛) =  c 𝐚𝐬𝐞𝑛(𝑚𝑘, 𝑐1, … , 𝑐𝑛)  ∶  𝐶[𝑚𝑘]  and 𝐶[𝑚𝑘] =
𝐶[𝑚] ∶ 𝐬𝐞𝐭 . Therefore, 𝐜𝐚𝐬𝐞𝑛(𝑚, 𝑐1, … , 𝑐𝑛) =  𝑐𝑘 ∶ 𝐶[𝑚] , by ℕ𝑛 -equality. Hence the 

value of 𝐜𝐚𝐬𝐞𝑛(𝑚, 𝑐1, … , 𝑐𝑛) equals the value of 𝑐𝑘, which we know how to compute by 

the premiss 𝑐𝑘 ∶ 𝐶[𝑚𝑘]. 
We may give ℕ2 the name 𝐛𝐨𝐨𝐥; the canonical elements of ℕ2 the names 𝐭 and 𝐟; 

and the expression 𝐜𝐚𝐬𝐞2(𝑚, 𝑐1, 𝑐2) may be written if 𝑚  then 𝑐1  else 𝑐2 . Let 𝐶  be a 

family of 𝐬𝐞𝐭s over 𝐛𝐨𝐨𝐥; that is, assume 𝑧 ∶ 𝐛𝐨𝐨𝐥 ⊢ 𝐶 ∶ 𝐬𝐞𝐭. We have the following 

two rules of 𝐛𝐨𝐨𝐥-elimination, which we here state as one rule with two conclusions:  

 

𝑐 ∶  𝐶[𝐭]   𝑑 ∶  𝐶[𝐟] 
𝐢𝐟 𝐭 𝐭𝐡𝐞𝐧 𝑐 𝐞𝐥𝐬𝐞 𝑑 =  𝑐 ∶   𝐶[𝐭] 
𝐢𝐟 𝐟 𝐭𝐡𝐞𝐧 𝑐 𝐞𝐥𝐬𝐞 𝑑 =  𝑑 ∶   𝐶[𝐟] 

 

Familiar Boolean functions can be defined from 𝐭, 𝐟, and if 𝑚 then 𝑐1 else 𝑐2 as follows. 

 𝑎 ∶  𝐛𝐨𝐨𝐥, 𝑏 ∶  𝐛𝐨𝐨𝐥  ├ 𝑎 𝐚𝐧𝐝 𝑏 =  𝐢𝐟 𝑎 𝐭𝐡𝐞𝐧 𝑏 𝐞𝐥𝐬𝐞 𝐟 ∶ 𝐛𝐨𝐨𝐥  

 𝑎 ∶  𝐛𝐨𝐨𝐥, 𝑏 ∶  𝐛𝐨𝐨𝐥  ├ 𝑎 𝐨𝐫 𝑏 =  𝐢𝐟 𝑎 𝐭𝐡𝐞𝐧 𝐭 𝐞𝐥𝐬𝐞 𝑏 ∶ 𝐛𝐨𝐨𝐥  

 𝑎 ∶  𝐛𝐨𝐨𝐥 ├ 𝐧𝐨𝐭 𝑎 =  𝐢𝐟 𝑎 𝐭𝐡𝐞𝐧 𝐟 𝐞𝐥𝐬𝐞 𝐭 ∶ 𝐛𝐨𝐨𝐥  

The 𝐬𝐞𝐭 ℕ0 has 0, that is no, introduction rules; but it does have an elimination rule: 

 

𝑚 ∶  ℕ0 

𝐜𝐚𝐬𝐞0(𝑚) ∶ 𝐶[𝑚] 
 

Thus, in particular, if we are given 𝐶 ∶ 𝐬𝐞𝐭 and 𝑚 ∶ ℕ0 , then we may infer that 𝐶  is 

inhabited, namely by 𝐜𝐚𝐬𝐞0(𝑚). Since there is no ℕ0-introduction rule, neither is there a 

ℕ0-equality rule. The justification of ℕ0-elimination is therefore different in character 

from the justification of the other elimination rules. A rule of inference is justified if we 

can make the conclusion of the rule evident on the assumption that its premisses are 

known (cf. eg. (Sundholm, 2012)). Since ℕ0 has no introduction rule and therefore no 

canonical elements, the premiss 𝑚 ∶ ℕ0 of ℕ0-elimination cannot be known. The rule of 

ℕ0-elimination is therefore vacuously justified, for the assumption that its premiss is 

known cannot be fulfilled. 

In the logical interpretation ℕ0 becomes absurdity ⊥. In CTT absurdity is thus the 

proposition that by definition has no introduction rule. The rule of ⊥-elimination is the 

principle of ex falso quodlibet: 

⊥ 𝑡𝑟𝑢𝑒 

𝐶 𝑡𝑟𝑢𝑒 
 

We define the negation of a proposition 𝐴 to be the proposition 𝐴 ⊃⊥41
 

                                                 
41

 In the higher-order presentation ¬ may be defined in the empty context, namely as follows. 

¬ =  [𝐴]𝐴 ⊃⊥ ∶ (𝐩𝐫𝐨𝐩)𝐩𝐫𝐨𝐩 
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𝐴 ∶ 𝐩𝐫𝐨𝐩 ⊢ ¬𝐴 = 𝐴 ⊃⊥ 
 

The following rules are then derivable. 

 

𝐴 ∶ 𝐩𝐫𝐨𝐩  𝑥 ∶ 𝐴 ⊢ 𝑏 ∶⊥  𝑏 ∶ ¬𝐴 𝑎 ∶ 𝐴 

¬𝐴 ∶ 𝐩𝐫𝐨𝐩    λ𝑥. 𝑏 ∶ ¬𝐴  𝐚𝐩(𝑏, 𝑎) ∶ 𝐶 

 The natural numbers II.2.7

We shall not need the natural numbers in later chapters, but it may nevertheless be 

useful to see that the primitive notions of arithmetic can be introduced by Gentzen–

Prawitz style rules. 

 

(ℕ-form)    ℕ ∶ 𝐬𝐞𝐭 

 

The canonical elements of ℕ  are 0  and 𝒔(𝑛) , where 𝑛  is any ℕ , not necessarily of 

canonical form: 

 

(ℕ-intro)  0 ∶  ℕ 
𝑛 ∶  ℕ 

𝒔(𝑛) ∶  ℕ 
 

The rule of ℕ-elimination is simultaneously a principle of definition by recursion and 

proof by mathematical induction. Assume that 𝐶  is a family of 𝐬𝐞𝐭s over ℕ; that is, 

assume 𝑧 ∶ ℕ ⊢ 𝐶 ∶ 𝐬𝐞𝐭. 

 

(ℕ-elim) 
𝑛 ∶  ℕ 𝑑 ∶  𝐶[0] 𝑥 ∶ ℕ, 𝑦 ∶ 𝐶[𝑥] ⊢ 𝑒 ∶ 𝐶[𝒔(𝑥)] 

𝐑(𝑛, 𝑑, 𝑥𝑦. 𝑒) ∶  𝐶[𝑛] 
 

We are given an element 𝑑 ∶ 𝐶[0]  together with a function 𝑒  that takes 𝑘 ∶ ℕ  and 

𝑐 ∶ 𝐶[𝑘] and yields 𝑒[𝑘, 𝑐] ∶ 𝐶[𝒔(𝑘)]. The rule tells us that for an arbitrary 𝑛 ∶ ℕ the 𝐬𝐞𝐭 

𝐶[𝑛] is then inhabited, namely by 𝐑(𝑛, 𝑑, 𝑥𝑦. 𝑒). 

To see that ℕ-elimination encapsulates the ordinary principle of proof by induction 

over the natural numbers, assume that 𝐶 is a propositional function over ℕ. Then 𝑑 is a 

proof of the base case 𝐶[0] and 𝑒 is a proof of the induction step; that is, 𝑒 is an open 

proof from 𝐶[𝑘]  to 𝐶[𝒔(𝑘)] . The conclusion of ℕ -elimination says that 𝐶[𝑛]  is 

inhabited, that is, true, for an arbitrary 𝑛 ∶ ℕ. 

The rule of ℕ -equality tells us how to compute 𝐑(𝑛, 𝑑, 𝑥𝑦. 𝑒)  when 𝑛  is of 

canonical form. Since there are two ℕ-introduction rules, there are also two ℕ-equality 

rules, which we here state more simply without the premisses 

 

𝐑(0, 𝑑, 𝑥𝑦. 𝑒)  =  𝑑 ∶  𝐶[0] 
(ℕ-eq)  𝐑(𝒔(𝑛), 𝑑, 𝑥𝑦. 𝑒) = 𝑒[𝑛, 𝐑(𝑛, 𝑑, 𝑥𝑦. 𝑒)] ∶ 𝐶[𝒔(𝑛)] 
 

This gives in particular: 

 

 𝐑(𝒔(0), 𝑑, 𝑥𝑦. 𝑒) = 𝑒[0, 𝐑(0, 𝑑, 𝑥𝑦. 𝑒)] = 𝑒[0, 𝑑] ∶  𝐶[𝒔(0)] 

 𝐑(𝒔(𝒔(0)), 𝑑, 𝑥𝑦. 𝑒) = 𝑒[𝒔(0), 𝐑(𝒔(0), 𝑑, 𝑥𝑦. 𝑒)] = 𝑒[𝒔(0), 𝑒[0, 𝑑]] ∶  𝐶[𝒔(𝒔(0))] 

 𝐑 (𝒔 (𝒔(𝒔(0))) , 𝑑, 𝑥𝑦. 𝑒) = 𝑒 [𝒔(𝒔(0)), 𝑒[𝒔(0), 𝑒[0, 𝑑]]] ∶ 𝐶 [𝒔 (𝒔(𝒔(0)))] 
 

                                                                                                                                                
Thus, ¬ is a function which takes a 𝐩𝐫𝐨𝐩 𝐴 as argument and yields a 𝐩𝐫𝐨𝐩 ¬𝐴 as value. Similar 

considerations apply to the definitions of 𝐟𝐬𝐭 and 𝐬𝐧𝐝 above as well as to the definitions given below 

pertaining to ℕ. 
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It should be clear from these few computations that R provides a means for defining 

functions by recursion. 

In general, to compute 𝐑(𝑚, 𝑑, 𝑥𝑦. 𝑒) first evaluate 𝑚  to canonical form. If the 

value is 0, output 𝑑; if the value is 𝒔(𝑛), continue by computing 𝑒[𝑛, 𝐑(𝑛, 𝑑, 𝑥𝑦. 𝑒)]. 

By letting 𝐶  be ℕ  and 𝑒  be 𝒔(𝑦) in ℕ-elimination, one can infer 𝑎 ∶ ℕ,  𝑏 ∶ ℕ ⊢

𝐑 (𝑏,  𝑎,  𝑥𝑦. 𝒔(𝑦)) ∶ ℕ. The reader may check that we here have the definiens of the 

addition function, in other words, that addition can be defined as follows. 

 

𝑎 ∶ ℕ, 𝑏 ∶ ℕ ⊢ 𝑎 + 𝑏 = 𝐑(𝑏, 𝑎, 𝑥𝑦. 𝒔(𝑦)) ∶ ℕ  
 

To define multiplication we let 𝐶 be ℕ, 𝑑 be 0, and 𝑒 be 𝑦 + 𝑎. 

 

𝑎 ∶ ℕ, 𝑏 ∶ ℕ ⊢ 𝑎 × 𝑏 = 𝐑(𝑏, 0, 𝑥𝑦. (𝑦 + 𝑎)) ∶ ℕ  

 Propositional identity II.2.8

In the language developed so far we can express identities by means of judgements  
𝑎 = 𝑏 ∶ 𝒞. Judgements cannot, however, be operated on by the propositional operators, 

that is, for instance by conjunction or universal quantification. Since we want to be able 

to operate on identity statements with the propositional operations, it is clear that we 

need identity propositions. Thus, for each 𝐬𝐞𝐭  𝐴  we wish to introduce a binary 

propositional function 𝑥 =𝐴 𝑦 of identity over 𝐴. Instead of 𝑥 =𝐴 𝑦, we shall usually 

write 𝐈𝐝(𝐴, 𝑥, 𝑦). The rule of 𝐈𝐝-formation states that given a 𝐬𝐞𝐭 𝐴 and two elements 𝑎, 

𝑏 of 𝐴, there is a proposition 𝐈𝐝(𝐴, 𝑎, 𝑏). 

 

(𝐈𝐝-form) 
𝐴 ∶ 𝐬𝐞𝐭 𝑎 ∶ 𝐴 𝑏 ∶ 𝐴 

𝐈𝐝(𝐴, 𝑎, 𝑏) ∶ 𝐩𝐫𝐨𝐩 
 

Note that by this rule there is no identity proposition between 𝑎 and 𝑏 unless 𝑎 and 𝑏 

belong to the same 𝐬𝐞𝐭. Hence, assuming that Julius Caesar and the number 7 do not 

belong to the same 𝐬𝐞𝐭, there is no proposition to the effect that Julius Caesar and 7 are 

identical. 

It is only with the introduction of 𝐈𝐝  that we are able to define propositional 

functions in our language. Namely, given a 𝐬𝐞𝐭 𝐴 we now have a propositional function 

𝐈𝐝(𝐴, 𝑥, 𝑦) over 𝐴, by means of which other propositional functions can be defined. For 

instance, we may now define 𝑥 ≤ 𝑦 over ℕ by 

 

𝑥 ∶ ℕ, 𝑦 ∶ ℕ ⊢ 𝑥 ≤ 𝑦 = (∃𝑧 ∶ ℕ)𝐈𝐝(ℕ, 𝑥 + 𝑧, 𝑦) ∶ 𝐩𝐫𝐨𝐩 

 

Notice the use of judgemental identity 𝐴 = 𝐵 ∶ 𝐩𝐫𝐨𝐩  here: the definition in effect 

identifies two propositions in the context 𝑥 ∶ ℕ, 𝑦 ∶ ℕ. It may be useful to see how one 

may define the propositional function 𝐏𝐫(𝑥), saying that 𝑥 is a prime number, in CTT. 

In ordinary predicate logic with restricted quantifiers we may use a definition such as the 

following (for the purposes of this presentation let us assume that 0 and 1 are prime 

numbers). 

𝐏𝐫(𝑛) ≡ ∀𝑥, 𝑦 ≤ 𝑛(𝑥 × 𝑦 = 𝑛 ⊃  (𝑥 = 1 ∨ 𝑥 = 𝑛)) 

 

In CTT restricted quantification may be defined as quantification over (∃𝑧 ∶ ℕ)𝑧 ≤ 𝑛. 

Such quantification makes sense, since (∃𝑧 ∶ ℕ)𝑧 ≤ 𝑛 is a set for any 𝑛 ∶ ℕ. An element 

of this set is a pair 〈𝑘, 𝑝〉, where 𝑘 is a ℕ and 𝑝 is a proof of 𝑘 ≤ 𝑛. We may define 𝐏𝐫 as 

follows. 
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 𝑛 ∶ ℕ ⊢ 𝐏𝐫(𝑛) = (∀𝑥, 𝑦 ∶ (∃𝑧 ∶ ℕ)𝑧 ≤ 𝑛) 

  ((𝐟𝐬𝐭(𝑥) × 𝐟𝐬𝐭(𝑦) =ℕ 𝑛) ⊃ (𝐟𝐬𝐭(𝑥) =ℕ 1 ∨ 𝐟𝐬𝐭(𝑥) =ℕ 𝑛)) ∶ 𝐩𝐫𝐨𝐩 
 

Here we have used the notation 𝑥 =ℕ 𝑦 instead of the official 𝐈𝐝(ℕ, 𝑥, 𝑦), and we 

have contracted the two quantifiers by writing (∀𝑥, 𝑦 ∶ (∃𝑧 ∶ ℕ)𝑧 ≤ 𝑛). 

To justify the rule of 𝐈𝐝-formation we have to specify what is a canonical proof of 

𝐈𝐝(𝐴, 𝑎, 𝑏) . What, for instance, should be a canonical proof of the proposition 

𝐈𝐝(ℕ,  0,  0) ? The Brouwer–Heyting–Kolmogorov explanation will not help us in 

answering this question, since it is silent about identity propositions. Since we want 

𝐈𝐝(ℕ, 𝑥, 𝑦) to be the relation of identity over ℕ and since a proposition is here taken to 

be true if it is inhabited as a 𝐬𝐞𝐭, it is clear that we simply have to introduce a proof of 

𝐈𝐝(ℕ, 0, 0) by stipulation; we call this proof 𝐫𝐞𝐟𝐥(ℕ, 0). The rule of 𝐈𝐝-introduction is as 

follows. 

 

(𝐈𝐝-intro) 
𝑎 ∶ 𝐴 

𝐫𝐞𝐟𝐥(𝐴, 𝑎) ∶ 𝐈𝐝(𝐴, 𝑎, 𝑎) 
 

Thus, provided 𝑎 ∶ 𝐴, we stipulate that there is a proof 𝐫𝐞𝐟𝐥(𝐴, 𝑎) ∶ 𝐈𝐝(𝐴, 𝑎, 𝑎). We here 

emphasize the aspect of stipulation, but in fact, all introduction rules are purely 

stipulatory in nature. An introduction rule stipulates that the canonical elements of the 

𝐬𝐞𝐭 under consideration look such and such. The 𝐈𝐝-introduction rule is in this regard no 

different from other introduction rules. 

The 𝐈𝐝-introduction rule is different from other introduction rules in that it does 

not immediately yield an answer to the question of what is a canonical element of 

𝐈𝐝(𝐴,  𝑎,  𝑏), that is, of a 𝐬𝐞𝐭 of the form introduced by 𝐈𝐝-formation. It yields an answer 

only to the question of what is a canonical element of 𝐈𝐝(𝐴, 𝑎, 𝑎). Since no introduction 

rule has 𝐈𝐝(𝐴, 𝑎, 𝑏) as the predicate 𝒞 of its conclusion 𝑐 ∶ 𝒞, it is clear that the only way 

in which we can come to judge that 𝑐 is a canonical element of 𝐈𝐝(𝐴, 𝑎, 𝑏) is on the basis 

of an identity judgement of the form 𝐶 = 𝐈𝐝(𝐴, 𝑎, 𝑏) ∶ 𝐩𝐫𝐨𝐩 , where 𝑐 ∶ 𝐶  is the 

conclusion of an application of an introduction rule. It is, moreover, clear that any such 

𝐶  must have the form 𝐈𝐝(𝐴′, 𝑎′, 𝑎′), where 𝐴 = 𝐴′ ∶ 𝐬𝐞𝐭, 𝑎 = 𝑎′ ∶ 𝐴 and 𝑏 = 𝑎′ ∶ 𝐴. A 

canonical element of 𝐈𝐝(𝐴, 𝑎, 𝑏) is therefore of the form 𝐫𝐞𝐟𝐥(𝐴′, 𝑎′) where 𝐴 = 𝐴′ ∶ 𝐬𝐞𝐭, 

𝑎 = 𝑎′ ∶ 𝐴 and 𝑏 = 𝑎′ ∶ 𝐴. 

 

Martin-Löf (1971), in a paper concerned with natural deduction rather than Type 

Theory, provided a general scheme of introduction and elimination rules as well as 

reduction procedures for so-called inductively defined predicates. The rules provided 

above for ℕ𝑛 and ℕ follow this scheme, although they are adapted to the syntax of CTT. 

Also the identity predicate of ordinary predicate logic is covered by this rule scheme 

(Martin-Löf, 1971, p. 190). The ordinary binary identity predicate, which Martin-Löf 

designates by 𝐸, is the predicate that has the introduction rule  

 

𝐸𝑥𝑥 
with no premisses. It should be clear how the rule of 𝐈𝐝 -introduction above is an 

adaptation of this rule to the syntax of CTT. Martin-Löf’s scheme yields the following 

elimination rule for 𝐸: 

 

𝐸𝑡𝑢 𝐶[𝑧/𝑥, 𝑧/𝑦] 
𝐶[𝑡/𝑥, 𝑢/𝑦] 

 

Here 𝐶 is any formula of the language, and 𝐶[𝑧/𝑥, 𝑧/𝑦] is the result of substituting the 

variable 𝑧 for both 𝑥 and 𝑦 in 𝐶 . If we assume that 𝑥 and 𝑦 are all and only the free 

variables in 𝐶, then we may think of 𝐶 as defining a binary relation over the underlying 
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domain. That we can prove 𝐶[𝑧/𝑥, 𝑧/𝑦]  means that the relation defined by 𝐶  is 

reflexive. The 𝐸-elimination rule allows us to infer that the relation defined by 𝐶 is true 

of 𝑡 and 𝑢 provided we have a derivation of 𝐸𝑡𝑢. Thus the rule says in effect that 𝐸 is 

the smallest reflexive relation over the underlying domain. 

The rule of 𝐈𝐝-elimination generalizes the 𝐸-elimination rule to the syntax of CTT; 

it generalizes the 𝐸-elimination rule also in allowing the relation 𝐶  occurring in the 

minor premiss to include as argument a proof-object of the identity proposition being 

eliminated. Assume 𝐴 ∶ 𝐬𝐞𝐭, 𝑎 ∶ 𝐴, 𝑏 ∶ 𝐴, and 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐴, 𝑢 ∶ 𝐈𝐝(𝐴, 𝑥, 𝑦) ⊢ 𝐶 ∶ 𝐬𝐞𝐭. 

 

(𝐈𝐝-elim) 
𝑝 ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏)  𝑧 ∶ 𝐴 ⊢ 𝑑 ∶ 𝐶[𝑧, 𝑧, 𝐫𝐞𝐟𝐥(𝐴, 𝑧)] 

𝐉(𝑝, 𝑧. 𝑑) ∶ 𝐶[𝑎, 𝑏, 𝑝] 
 

Thus, if we have a proof 𝑝 of the proposition 𝐈𝐝(𝐴, 𝑎, 𝑏) and a function 𝑑 taking any 𝑎′ 
of 𝐴 to a proof that the ternary relation 𝐶 holds of the triple 𝑎′, 𝑎′, 𝐫𝐞𝐟𝐥(𝐴, 𝑎′); then 𝐈𝐝-

elimination allows us to infer that there is a proof 𝐉(𝑝, 𝑧. 𝑑) of 𝐶[𝑎, 𝑏, 𝑝]. 
The rule of 𝐈𝐝-equality tells us how to compute 𝐉(𝑝, 𝑧. 𝑑) when 𝑝 is of canonical 

form, 𝐫𝐞𝐟𝐥(𝐴, 𝑎). 

 

(𝐈𝐝-eq)   𝐉(𝐫𝐞𝐟𝐥(𝐴, 𝑎), 𝑧. 𝑑) = 𝑑[𝑎] ∶ 𝐶[𝑎, 𝑎, 𝐫𝐞𝐟𝐥(𝐴, 𝑎)] 
 

The rule of 𝐈𝐝-elimination can now be justified as follows. To evaluate 𝐉(𝑝, 𝑧. 𝑑) first 

evaluate 𝑝 to get a canonical element of 𝐈𝐝(𝐴, 𝑎, 𝑏). As noted above, such a canonical 

element has the form 𝐫𝐞𝐟𝐥(𝐴′, 𝑎′) , where 𝐴 = 𝐴′ ∶ 𝐬𝐞𝐭 , 𝑎 = 𝑎′ ∶ 𝐴  and 𝑏 = 𝑎′ ∶ 𝐴 . 

Hence,  

 

𝐉(𝑝, 𝑧. 𝑑) = 𝐉(𝐫𝐞𝐟𝐥(𝐴′, 𝑎′), 𝑧. 𝑑) = 𝑑[𝑎′] ∶ 𝐶[𝑎′, 𝑎′, 𝐫𝐞𝐟𝐥(𝐴′, 𝑎′)]. 
 

By the assumption 𝑧 ∶ 𝐴 ⊢ 𝑑 ∶ 𝐶[𝑧, 𝑧, 𝐫𝐞𝐟𝐥(𝑧)]  we know how to evaluate 𝑑[𝑎′]  to 

canonical form. It remains then only to see that 𝐶[𝑎′, 𝑎′, 𝐫𝐞𝐟𝐥(𝐴′, 𝑎′)] = 𝐶[𝑎, 𝑏, 𝑝] ∶ 𝐬𝐞𝐭, 

but this follows from the judgemental identities  

 

𝐴 = 𝐴′ ∶ 𝐬𝐞𝐭; 𝑎 = 𝑎′ ∶ 𝐴; 𝑏 = 𝑎′ ∶ 𝐴; 𝑝 = 𝐫𝐞𝐟𝐥(𝐴′, 𝑎′) ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏) 

 

together with the extensionality of substitution into 𝐬𝐞𝐭s with respect to judgemental 

identity. 

In many applications of 𝐈𝐝-elimination the family 𝐶 in its minor premiss does not 

depend on the set 𝐈𝐝(𝐴, 𝑎, 𝑏) of its major premiss. Thus, 𝐶 will then be a 𝐬𝐞𝐭 already in 

the context 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐴; that is, 𝐶 will then be a binary relation over 𝐴. What is required 

then for an application of 𝐈𝐝-elimination is that we have a function 𝑑 witnessing that 𝐶 is 

a reflexive relation over 𝐴; more precisely, that 𝑑[𝑎] is a proof of 𝐶[𝑎, 𝑎] for any 𝑎 ∶ 𝐴. 

We shall now demonstrate how 𝐈𝐝-elimination is used in practice by showing that the 

relation 𝐈𝐝(𝐴, 𝑥, 𝑦)  is symmetric and transitive, and by showing that if 𝐹[𝑎]  and 

𝐈𝐝(𝐴,  𝑎,  𝑏) are true, then so is 𝐹[𝑏], that is, by showing the indiscernibility of elements 

related by 𝐈𝐝(𝐴, 𝑥, 𝑦). The main task in each case is to find a suitable 𝐶 and a suitable 

function 𝑑 taking 𝑎 ∶ 𝐴 and yielding a proof of 𝐶[𝑎, 𝑎]. 
For symmetry let 𝐶 be 𝐈𝐝(𝐴, 𝑦, 𝑥). It is clear that 𝑧 ∶ 𝐴 ⊢ 𝐫𝐞𝐟𝐥(𝐴, 𝑧) ∶ 𝐈𝐝(𝐴, 𝑧, 𝑧), 

so we let 𝑑 be 𝐫𝐞𝐟𝐥(𝐴, 𝑧). If we insert these data into 𝐈𝐝-elimination we get: 

 

𝑝 ∶  𝐈𝐝(𝐴, 𝑎, 𝑏) 𝑧 ∶ 𝐴 ⊢ 𝐫𝐞𝐟𝐥(𝐴, 𝑧) ∶ 𝐈𝐝(𝐴, 𝑧, 𝑧) 

𝐉(𝑝, 𝑧. 𝐫𝐞𝐟𝐥(𝐴, 𝑧)) ∶ 𝐈𝐝(𝐴, 𝑏, 𝑎) 

 

Hence, from a proof 𝑝 ∶  𝐈𝐝(𝐴, 𝑎, 𝑏) we get a proof 𝐉(𝑝, 𝑧. 𝐫𝐞𝐟𝐥(𝐴, 𝑧)) ∶ 𝐈𝐝(𝐴, 𝑏, 𝑎). 
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Assuming that p here is a closed term, one can argue, on the basis of the explanation of 

what a canonical proof of an identity proposition is, that 𝑝 is identical with the proof 

𝐉 (𝑝,  𝑧. 𝐫𝐞𝐟𝐥(𝐴, 𝑧)). Namely, the judgement 𝑝 ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏) means that 𝑝, since it is a 

closed term, evaluates to a proof of the form 𝐫𝐞𝐟𝐥(𝐴’, 𝑎’), where 𝐴 = 𝐴’ ∶ 𝐬𝐞𝐭, 𝑎 = 𝑎’ ∶
𝐴, and 𝑏 = 𝑎’ ∶ 𝐴; hence, 𝑝 = 𝐫𝐞𝐟𝐥(𝐴’, 𝑎’) ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏). Therefore, 

 

𝐉(𝑝, 𝑧. 𝐫𝐞𝐟𝐥(𝐴, 𝑧)) = 𝐉(𝐫𝐞𝐟𝐥(𝐴’, 𝑎’), 𝑧. 𝐫𝐞𝐟𝐥(𝐴, 𝑧)) = 𝐫𝐞𝐟𝐥(𝐴, 𝑎’) ∶ 𝐈𝐝(𝐴, 𝑏, 𝑎) 

 

Since 𝐴 = 𝐴’ ∶ 𝐬𝐞𝐭, we get: 

 

𝑝 = 𝐫𝐞𝐟𝐥(𝐴’, 𝑎’) = 𝐫𝐞𝐟𝐥(𝐴, 𝑎’) = 𝐉(𝑝, 𝑧. 𝐫𝐞𝐟𝐥(𝐴, 𝑧)) ∶ 𝐈𝐝(𝐴, 𝑏, 𝑎) 
 

It should be emphasized that this reasoning i) presupposes that p is closed and ii) is not a 

computation in the theory itself; the computation in any particular case depends on what 

the given proof-object 𝑝 ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏) looks like. 

For transitivity we let 𝐶  be 𝐈𝐝(𝐴, 𝑦, 𝑐) ⊃ 𝐈𝐝(𝐴, 𝑥, 𝑐)  for an arbitrary 𝑐 ∶ 𝐴 . We 

have λ𝑢. 𝑢 ∶  𝐈𝐝(𝐴, 𝑧, 𝑐) ⊃ 𝐈𝐝(𝐴, 𝑧, 𝑐), so we let 𝑑 be λ𝑢. 𝑢. Inserting these data into 𝐈𝐝-

elimination yields: 

 

𝑝 ∶  𝐈𝐝(𝐴, 𝑎, 𝑏) 𝑧 ∶ 𝐴 ⊢ λ𝑢. 𝑢 ∶  𝐈𝐝(𝐴, 𝑧, 𝑐) ⊃ 𝐈𝐝(𝐴, 𝑧, 𝑐) 

𝐉(𝑝, λ𝑢. 𝑢) ∶ 𝐈𝐝(𝐴, 𝑏, 𝑐) ⊃ 𝐈𝐝(𝐴, 𝑎, 𝑐) 
 

Hence, from a proof 𝑝 ∶  𝐈𝐝(𝐴, 𝑎, 𝑏)  and a proof 𝑞 ∶ 𝐈𝐝(𝐴, 𝑏, 𝑐) , we get a proof 

𝐚𝐩(𝐉(𝑝,  λ𝑢. 𝑢), 𝑞) ∶ 𝐈𝐝(𝐴, 𝑎, 𝑐) . Note that λ𝑢. 𝑢  does not depend on 𝑧 ∶ 𝐴 , hence no 

variable gets bound by this application of 𝐈𝐝-elimination. Assuming that 𝑝 is closed, we 

can argue as above that 𝑝 = 𝐫𝐞𝐟𝐥(𝐴’, 𝑎’) ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏), whence by 𝐈𝐝-equality and Π-

equality we get:  

 

𝐚𝐩(𝐉(𝑝, λ𝑢. 𝑢), 𝑞) = 𝐚𝐩(𝐉(𝐫𝐞𝐟𝐥(𝐴’, 𝑎’), 𝜆𝑢. 𝑢), 𝑞) = 𝐚𝐩(𝜆𝑢. 𝑢, 𝑞) = 𝑞 ∶ 𝐈𝐝(𝐴, 𝑎, 𝑐) 
 

Again it must be emphasized that this argument is not the same as an actual computation 

in the theory. 

For the indiscernibility of elements 𝑎, 𝑏 for which 𝐈𝐝(𝐴, 𝑎, 𝑏) is true, let 𝐹  be a 

propositional function over 𝐴, that is 𝑥 ∶ 𝐴 ⊢ 𝐹 ∶ 𝐩𝐫𝐨𝐩. Let 𝐶 be 𝐹[𝑥] ⊃ 𝐹[𝑦]. Again 

we have λ𝑢. 𝑢 ∶ 𝐹[𝑧] ⊃ 𝐹[𝑧], hence 𝐈𝐝-elimination yields: 

 

𝑝 ∶  𝐈𝐝(𝐴, 𝑎, 𝑏) 𝑧 ∶ 𝐴 ⊢ λ𝑢. 𝑢 ∶  𝐹[𝑧] ⊃ 𝐹[𝑧] 
𝐉(𝑝, λ𝑢. 𝑢) ∶ 𝐹[𝑎] ⊃ 𝐹[𝑏] 

 

Hence, from a proof 𝑝 ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏) and a proof 𝑞 ∶ 𝐹[𝑎], we get a proof 

 

𝐚𝐩(𝐉(𝑝, λ𝑢. 𝑢), 𝑞) ∶ 𝐹[𝑏]. 
 

As in the case of transitivity above we can argue that 𝐚𝐩(𝐉(𝑝, λ𝑢. 𝑢), 𝑞) = 𝑞 ∶ 𝐹[𝑏] on 

the assumption that 𝑝 is closed. 

The second 𝐈𝐝-formation rule, the rule that governs when two sets of the form 

𝐈𝐝(𝐴,  𝑎,  𝑏) are identical, is as follows. 

 

𝐴 = 𝐴′ ∶ 𝐬𝐞𝐭 𝑎 = 𝑎′ ∶ 𝐴 𝑏 = 𝑏′ ∶ 𝐴 
𝐈𝐝(𝐴, 𝑎, 𝑏) = 𝐈𝐝(𝐴′, 𝑎′, 𝑏′)  ∶ 𝐬𝐞𝐭 

 

Employing this rule together with the general rules governing judgemental identity, one 
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sees that the following rule is derivable: 

 

𝑎 = 𝑏 ∶ 𝐴 

𝐫𝐞𝐟𝐥(𝐴, 𝑎) ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏) 
 

The rule of identity elimination employed in (Martin-Löf, 1984) lays down that one can 

also go the other way: 

 

𝑝 ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏) 
𝑎 = 𝑏 ∶ 𝐴 

 
In the literature this rule is sometimes called extensional identity elimination, whereas 

the rule of 𝐈𝐝-elimination is called intensional. Subsequent metamathematical work has 

shown that this extensional rule has several undesirable consequences, perhaps the 

strongest of which is that in the presence of this rule judgements of the form 𝑎 = 𝑏 ∶ 𝐴 

become undecidable in general (Hofmann, 1995, p. Theorem 3.2.1). From the 

normalization theorem of Martin-Löf (1975b) for the system employing the intensional 

𝐈𝐝-elimination rule it follows that judgements of the form 𝑎 = 𝑏 ∶ 𝐴 are decidable in this 

system. For this and other reasons,
42

 most presentations of CTT prefer the intensional 

system. 

 

It follows from Martin-Löf’s normalization theorem that if 𝑝 ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏)  is 

demonstrable in the empty context, then so is 𝑎 = 𝑏 ∶ 𝐴; hence if one can construct a 

closed proof 𝑝 of 𝐈𝐝(𝐴, 𝑎, 𝑏), then the judgemental identity 𝑎 = 𝑏 ∶ 𝐴 is demonstrable 

(Martin-Löf, 1975b, p. Theorem 3.14). In a non-empty context, however, one can in 

general not infer 𝑎 = 𝑏 ∶ 𝐴 from 𝑝 ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏). For instance, using Σ-elimination one 

can prove 

𝑧 ∶ 𝐴 × 𝐵 ⊢ 𝐄(𝑧, 𝑥𝑦. 𝐫𝐞𝐟𝐥(𝐴 × 𝐵, 〈𝑥, 𝑦〉))  ∶ 𝐈𝐝(𝐴 × 𝐵, 𝑧, 〈𝐟𝐬𝐭(𝑧), 𝐬𝐧𝐝(𝑧)〉) 
 

But there is no way of demonstrating the corresponding judgemental identity 

 

𝑧 ∶ 𝐴 × 𝐵 ⊢ 𝑧 = 〈𝐟𝐬𝐭(𝑧), 𝐬𝐧𝐝(𝑧)〉 ∶ 𝐴 × 𝐵 
 

since 𝑧 and 〈𝐟𝐬𝐭(𝑧), 𝐬𝐧𝐝(𝑧)〉 are different normal forms in the context 𝑧 ∶ 𝐴 × 𝐵  (this 

example is taken from (Martin-Löf, 1975a, pp. 103-104)). We see therefore that 

judgemental identity 𝑎 = 𝑏 ∶ 𝐴 and propositional identity 𝐈𝐝(𝐴, 𝑎, 𝑏) do not only have 

different logical form, but also that they differ in logical strength. These are therefore 

two essentially different notions of identity. 
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 In Homotopy Type Theory the main reason to prefer the intensional 𝐈𝐝-elimination rule is that it does 

not entail 

(∀𝑝, 𝑞 ∶ 𝐈𝐝(𝐴, 𝑎, 𝑏))𝐈𝐝(𝐈𝐝(𝐴, 𝑎, 𝑏), 𝑝, 𝑞) 𝑡𝑟𝑢𝑒 

for arbitrary 𝐴 and 𝑎, 𝑏 ∶ 𝐴, a result that was established by (Hofmann & Streicher, 1998). 
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Exercises 

The word ‘proof’ has been reserved for proof-objects. Derivations in Constructive Type Theory 

are often called demonstrations. Most exercises below ask the reader to demonstrate A true for a given 

proposition A. It is then intended that a demonstration be given whose conclusion has the form a : A. 

 

1. Let A : prop, B : prop. Demonstrate the following judgements. 

 

a) A  (B  A) true 

b) (AB)  (AB) true 

c) (A  B)  A true 

 

2. Let D : set, x : D ⊢ A : prop, and x : D ⊢ B : prop. That is to say, A and B are propositional functions 

over D. Demonstrate the following judgements.  

 

a) (x : D)(A B)  ((x : D)A(x : D)B) true 

b) (x : D)(AB)  ((x : D)A (x : D)B) true  

c) (x : D)(AB)  ((x : D)A(x : D)B) true 

 

3. Let D : set and x : D, y : D ⊢ R : prop. That is to say, R is a binary relation over D. Demonstrate 

 

(x : D)(y : D)R[x, y]  (y : D)(x : D)R[x, y] true 

 

(Note that R[x, y] ≡ R[x/x, y/y] ≡ R.) 

 

4. In its class-theoretic form, the syllogism of Barbara may be formulated as follows.  

 

All A’s are B. 

All B’s are C. 

——————— 

∴ All A’s are C. 

 

Formalize Barbara in CTT. Assume that you have been given proof-objects of the premisses; 

construct a proof-object of the conclusion. 

 

5. Formalize in CTT the following class-theoretical reasoning. “Everything is an A; whatever is an A is a 

B; hence, everything is a B.”  

 

Given a proof-object of the two premisses, construct a proof-object of the conclusion.  

 

6. Let A : set, B : set, and assume c : A → B. Demonstrate 

 

Id(A, a, a')  Id(B, ap(c, a), ap(c, a')) true  

 

7. Let A : set, B : set. Assume p : Id(A, a, a') and q : Id(B, b, b'). Demonstrate 

 

Id(A × B, <a, b>, <a', b'>) true 

 

8. Demonstrate 

a) (x : bool)(Id(bool, x, f)  Id(bool, x, f)) true 

b) (x : ℕ)(Id(ℕ, x, 0)  (y : ℕ)Id(ℕ, x, s(y))) true 
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Solutions 

 

1. In the solutions to these exercises we will include all the details. Each demonstration begins with the 

judgements A : prop and B : prop. These judgements could also be included in the demonstration as 

hypotheses, namely by placing them to the left of ⊢. Here we rather choose to regard these judgements 

as given. We may think of an interlocutor who has taken responsibility for these judgements, A : prop 

and B : prop, and consider it to be our task to make evident each of A  (B  A) true, (AB)  

(AB) true, and (A  B)  A true.
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a) 

 

A : prop   B : prop 

————  ——————  

x : A ⊢ x : A  x : A ⊢ B : prop 

————————————————  

x : A, y : B ⊢ x : A 

——————— 

x : A ⊢ λy.x : B  A 

——————— 

λx.λy.x : A  (B  A) 

 

b) 

 

A : prop  B : prop 

——————————— 

A B : prop 

——————————— 

x : AB ⊢ x : AB 

——————————— 

x : AB ⊢ fst(x) : A 

——————————— 

x : AB ⊢ i(fst(x)) : A B 

——————————— 

λx.i(fst(x)) : (AB)  (A B) 

 

There is a similar demonstration having as conclusion 

 

λx.j(snd(x)) : (AB)  (A B). 

 

c) 

 

A : prop  B : prop   

—————————— 

A B : prop   A : prop 

——————————  ————  

(A B) : prop   x : A ⊢ x : A 

——————————  ——————— 

y : (A B) ⊢ y : (A B)  x : A ⊢ i(x) : A B 

——————————————————————— 

y : (A B), x : A ⊢ ap(y, i(x)) :  

——————————————— 

y : (A B) ⊢ λx.ap(y, i(x)) : A 
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 This dialogical view on demonstration has been developed in some recent lectures of Per Martin-

Löf. This proposal, as communicated by Prof. Sundholm to the group of dialogicians in Lille, is one of the 

main motivations for the research documented in the following chapters of this book.  
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——————————————— 

λy.λx.ap(y, i(x)) : (A B)  A 

 

 

2. Here we shall use the natural deduction style of presenting demonstrations. That means that we shall 

not exhibit the hypotheses, but take these to be implicitly understood. The reader may want to supply 

the missing hypotheses.  

 

a ) To save space we shall write p instead of fst and q instead of snd. 

 

y : (x : D)(AB)     y : (x: D)(AB) 

———————     ——————— 

y : (x : D)(AB) q(y) : (AB)[p(y)]       y : (x : D)(AB)  q(y): AB)[p(y)] 

——————— ————————     —————————                 ——————— 
p(y) : D   p(q(y)) : A[p(y)]   p(y) : D   q(q(y)) : B[p(y)] 

—————————————————       ———————————————————  

<p(y), p(q(y))> : (x : D)A   <p(y), q(q(y))> : (x : D)B 

——————————————————————————————— 

<<p(y), p(q(y))>, <p(y), q(q(y))>> : (x : D)A(x : D)B 

 

b) 

 

z : (x : D)(AB)  x : D  z : (x : D)(AB) x : D 

—————————————  ———————————— 

ap(z, x) : AB    ap(z, x) : AB 

———————    ———————— 
fst(ap(z, x)) : A    snd(ap(z, x)) : B  

———————————   ——————————— 

λx.fst(ap(z, x)) : (x : D)A   λx.snd(ap(z, x)) : (x : D)B 

—————————————————————————————— 

<λx.fst(ap(z, x)), λx.snd(ap(z, x))> : (x : D)A (x : D)B 

—————————————————————————————————— 

λz.<λx.fst(ap(z, x)), λx.snd(ap(z, x))> : (x : D)(AB)  ((x : D)A(x : D)B) 

 

c) In the solution to this exercise we use both Σ-elimination and +-elimination. To save space 

we define Dis = (x : D)A (x : D)B : prop. 

 

x : D v : A  x : D w : B 

————————  ——————— 

<x, v> : (x : D)A  <x, w> : (x : D)B 

———————  ———————— 

y : A B  i(<x, v>) : Dis  j(<x, w>) : Dis 

—————————————————————————— 

z : (x : D)(A  B)   D(y, v.i(<x, v>), w.j(<x, w>)) : Dis 

—————————————————————————————————— 
E(z, xy.D(y, v.i(<x, v>), w.j(<x, w>))) : Dis 

————————————————————————— 

λz.E(z, xy.D(y, v.i(<x, v>), w.j(<x, w>))) : (x : D)(A B)  Dis 

 

Note that since A and B are propositional functions over D, the judgement v : A is made in the context x : D, 

v : A; the judgement w : B is made in the context x : D, w : B; and the judgement y : A  B is made in the 

context x : D, y : A B. The variables w and v get bound by the application of D, whereas x and y get bound 

by the application of E. 

 

 

3. Again we use the natural deduction style of presenting demonstrations.  
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z : (x : D)(y : D)R[x, y] 

———————————— 

z : (x : D)(y : D)R[x, y]   snd(z) : (y : D)R[fst(z), y]  y : D 

—————————   ————————————————————— 
fst(z) : D     ap(snd(z), y) : R[fst(z), y)] 

—————————————————————————————————— 

<fst(z), ap(snd(z), y)> : (x : D)R[x, y] 

———————————————————— 

λy.<fst(z), ap(snd(z), y)> : (y : D)(x : D)R[x, y] 

————————————————————————————————————— 

λz.λy.<fst(z), ap(snd(z), y)> : (x : D)(y : D)R[x, y]  (y : D)(x : D)R[x, y] 

 

 

4. The important observation is that the classes A, B and C are defined over a universe of discourse. The 

universe of discourse is made explicit in CTT. Thus we let D : set and we let A, B and C be 

propositional functions over D, that is, we assume x : D ⊢ A : prop, x : D ⊢ B : prop, and 

x : D ⊢ C : prop. That all A’s are B is not formalized as (x : D)(A  B). This proposition says that all 

D’s have property of being “B–if–A”. The formalization is rather (z : (x : D)A)B[fst(z)]. A set of the 

form (x : D)A may be understood as formalizing the idea of “the D’s such that A” or “the D’s that are 

A” (Ranta, 1995, p. 61-64). The proposition (z : (x : D)A)B[fst(z)] can therefore be understood as 

expressing that all the D’s that are A are B. Since B is a propositional function over D, B[fst(z)] is a 

family over (x : D)A in the variable z. The formalization, then, is as follows. 

 

(z : (x : D)A)B[fst(z)] true 

(z : (x : D)B)C[fst(z)] true 

—————————————— 

(z : (x : D)A)C[fst(z)] true 

 

Assume now that we are given 

 

p : (z : (x : D)A)B[fst(z)] 

q : (z : (x : D)B)C[fst(z)] 

 

To save space we define 

 

P = (z : (x : D)A)B[fst(z)] : prop 

Q = (z : (x : D)B)C[fst(z)] : prop 

 

We construct a proof of (z : (x : D)A)C[fst(z)] as follows. 

 

z : (x : D)A    p : P z : (x : D)A 

———————   —————————— 
fst(z) : D    ap(p, z) : B[fst(z)] 

——————————————————————————  

q : Q   <fst(z), ap(p, z)> : (x : D)B 

——————————————————————————— 
ap(q, <fst(z), ap(p, z)>) : C[fst(z)] 

———————————————————————— 

λz.ap(q, <fst(z), ap(p, z)>) : (z : (x : D)A)C[fst(z)] 

 

 

5. Again we must be careful to remember the universe of discourse. Hence, when we say that everything 

is an A, we mean that everything in the universe of discourse is an A. We have the following 

formalization. We assume D : set, x : D ⊢ A : set, and x : D ⊢ B : set. 
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(x : D)A true 

(z : (x : D)A)B[fst(z)] true 

————————————— 

∴  (x : D)B true 

Now assume 

 

q : (x : D)A 

p : (z : (x : D)A)B[fst(z)] 

 

We construct a proof of (x : D)B as follows. We use P as in the previous exercise. 

 

q : (x : D)A x : D 

—————————  
x : D  ap(q, x) : A 

—————————————  

p : P <x, ap(q, x)> : (x : D)A   fst(<x, ap(q, x)>) = x : D 

——————————————————  ————————————— 
ap(p, <x, ap(q, x)>) : B[fst(<x, ap(q, x)>)]  B[fst(<x, ap(q, x)>)] = B : set 

———————————————————————————————————— 
ap(p, <x, ap(q, x)>) : B 

————————————— 

λx.ap(p, <x, ap(q, x)>) : (x : D)B 

 

Note here the use of the extensionality of substitution into sets as well as the use of the principle that we 

can infer a : B from a : A and A = B : set. We rely on the syntactic identity B[x] ≡ B. 

 

 

6. We apply Id-elimination. 

 

x : A ⊢ ap(c, x) = ap(c, x) : B 

—————————————————————  

p : Id(A, a, a')  x : A ⊢ refl(B, ap(c, x)) : Id(B, ap(c, x), ap(c, x)) 

——————————————————————————————— 

J(p, x.refl(B, ap(c, x))) : Id(B, ap(c, a), ap(c, a')) 
————————————————————————— 

λp.J(p, x) : Id(A, a, a')  Id(B, ap(c, a), ap(c, a')) 
 

An alternative demonstration is the following. 

 

 

x : A ⊢ ap(c, x) = ap(c, x) : B 

—————————————————————  

x : A ⊢ refl(B, ap(c, x)) : Id(B, ap(c, x), ap(c, x)) 

—————————————————————————— 

x : A, p : Id(A, x, x) ⊢ refl(B, ap(c, x)) : Id(B, ap(c, x), ap(c, x)) 

——————————————————————————————— 

q : Id(A, a, a')  x : A ⊢ λp.refl(B, ap(c, x)) : Id(A, x, x)  Id(B, ap(c, x), ap(c, x)) 

—————————————————————————————————————— 

J(q, x.λp.refl(B, ap(c, x))) : Id(A, a, a')  Id(B, ap(c, a), ap(c, a')) 
 

 

7. We apply Id-elimination twice. 

 

p : Id(A, a, a') x : A, y : B ⊢ refl(A × B,<x, y>) : Id(A × B, <x, y>, <x, y>) 

——————————————————————————————— 

 q : Id(B, b, b')  y : B ⊢ J(p, x.refl(<x, y>)) : Id(A × B, <a, y>, <a', y>) 

——————————————————————————————————— 

J(q, y.J(p, x.refl(<x, y>))) : Id(A × B, <a, b>, <a', b'>) 
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8. a) We apply bool-elimination with Id(bool, x, t)  Id(bool, x, f) as our C. Hence we need a proof-

object of Id(bool, t, t)  Id(bool, t, f) and a proof-object of Id(bool, f, t)  Id(bool, f, f). These are 

constructed as follows. 

 

 

t : bool 

___________________ 

refl(t) : Id(bool, t, t) 
________________________________ 

i(refl (t)) : Id(bool, t, t)  Id(bool, t, f) 

 

f : bool 

___________________ 

refl (f) : Id(bool, f, f) 

________________________________ 

j(refl (f)) : Id(bool, f, t)  Id(bool, f, f) 

 

 

Continuing the demonstration, we write the three premisses of bool-elimination below each other. 

 

x : bool 

i(refl (t)) : Id(bool, t, t)  Id(bool, t, f) 

j(refl (f)) : Id(bool, f, t)  Id(bool, f, f) 

_____________________________________________________ 

if x then i(refl (t)) else j(refl (f)) : Id(bool, x, t)  Id(bool, x, f) 

________________________________________________________________ 

λx.if x then i(refl(t)) else j(refl(f)) : (x : bool)(Id(bool, x, t)  Id(bool, x, f)) 

 

b) In this solution, we sometimes omit parentheses and write, for instance, sx instead of s(x). We aim 

to apply ℕ-elimination with Id(ℕ, x, 0)  (y : ℕ)Id(ℕ, x, sy) as our C. Hence we need a proof-object d of 

Id(ℕ, 0, 0)  (y : ℕ)Id(ℕ, 0, sy) and a function e which, given a proof-object 

w : Id(ℕ, x, 0)  (y : ℕ)Id(ℕ, x, y) 

yields a proof-object 

e[w] : Id(ℕ, sx, 0)  (y : ℕ)Id(ℕ, sx, y) 

 

The proof-object d is easily constructed. 

0 : ℕ 

_________________ 

refl(0) : Id(ℕ, 0, 0) 

______________________________________ 

i(refl(0)) : Id(ℕ, 0, 0)  (y : ℕ)Id(ℕ, 0, sy) 

 

To find the function e requires more work. Since we are given 

w : Id(ℕ, x, 0)  (y : ℕ)Id(ℕ, x, y) 

 

it is natural to try to construct e[w] by means of -elimination. Assume, therefore, first that we are given q : 

Id(ℕ, x, 0). 

 

q : Id(ℕ, x, 0)   refl(sz) : Id(ℕ, sz, sz) 

_____________________________________ 

J(q, z.refl(sz)) : Id(ℕ, sx, s0) 

__________________________________ 

<0, J(q, z.refl(sz))> : (y : ℕ)Id(ℕ, sx, sy) 

_______________________________________________ 

j<0, J(q, z.refl(sz))> : Id(ℕ, sx, 0)  (y : ℕ)Id(ℕ, sx, sy) 

 

Next assume that we are given p : (y : ℕ)Id(ℕ, x, sy). 

 

         p : (y : ℕ)Id(ℕ, x, sy) 
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        ___________________ 

sndp : Id(ℕ, x, s(fstp))  refl(sz) : Id(ℕ, sz, sz) 

____________________________________________ 

J(sndp, z.refl(sz)) : Id(ℕ, sx, ss(fstp)) 

__________________________________________ 

<s(fstp), J(sndp, z.refl(sz))> : (y : ℕ)Id(ℕ, sx, sy) 

_______________________________________________________ 

 j<s(fstp), J(sndp, z.refl(sz))> : Id(ℕ, sx, 0)  (y : ℕ)Id(ℕ, sx, sy)  

 

With w : Id(ℕ, x, 0)  (y : ℕ)Id(ℕ, x, sy) as major premiss, -elimination then yields 

 

D(w, q.j<0, J(q, z.refl(sz))>, p.j<s(fstp), J(sndp, z.refl(sz))>) : 

Id(ℕ, sx, 0)  (y : ℕ)Id(ℕ, sx, sy) 

 

With the assumption x : ℕ as major premiss, ℕ-elimination yields 

 

R(x, i(refl0),w.D(w, q.j<0, J(q, z.refl(sz))>, p.j<s(fstp), J(sndp, z.refl(sz))>)) : 

Id(ℕ, x, 0)  (y : ℕ)Id(ℕ, x, sy) 

 

Note that w has become bound here, so only x is free. A proof-object of 

(x : ℕ)(Id(ℕ, x, 0)  (y : ℕ)Id(ℕ, x, sy)) 

 

is then constructed by means of Π-introduction. 
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III. BASIC NOTIONS FOR DIALOGICAL LOGIC 

The dialogical approach to logic is not a specific logical system; it is rather a 

general framework having a rule-based approach to meaning (instead of a truth-functional 

or a model-theoretical approach) which allows different logics to be developed, combined 

and compared within it. The main philosophical idea behind this framework is that 

meaning and rationality are constituted by argumentative interaction between epistemic 

subjects; it has proved particularly fruitful in history of philosophy and logic.  We shall 

here provide a brief overview of dialogues in a more intuitive approach than what is 

found in the rest of the book in order to give a feeling of what the dialogical framework 

can do and what it is aiming at. 

III.1 The general framework 

Dialogues and interaction 

As hinted by its name, this framework studies dialogues; but it also takes the form 

of dialogues. In a dialogue, two parties (players) argue on a thesis (a certain statement 

that is the subject of the whole argument) and follow certain fixed rules in their argument. 

The player who states the thesis is the Proponent, called P, and his rival, the player who 

challenges the thesis, is the Opponent, called O. By convention, we refer to P as he and to 

O as she. In challenging the Proponent’s thesis, the Opponent is requiring of the 

Proponent that he defends his statement.  

The interaction between the two players P and O is spelled out by challenges and 

defences, implementing Robert Brandom’s take on meaning as a game of giving and 

asking for reasons (see the introduction, section I.2). Actions in a dialogue are called 

moves; they are often understood as speech-acts involving declarative utterances 

(statements) and interrogative utterances (requests).
44

 The rules for dialogues thus never 

deal with expressions isolated from the act of uttering them. 

 

The rules in the dialogical framework are divided into two kinds of rules: particle 

rules, and structural rules.  

Particle rules 

Particle rules (Partikelregeln), or rules for logical constants, determine the legal 

moves in a play and regulate interaction by establishing the relevant moves constituting 

challenges: moves that are an appropriate attack to a previous move (a statement) and 

thus require that the challenged player play the appropriate defence to the attack. If the 

challenged player defends his statement, he has answered the challenge.  

Particle rules determine how reasons are asked for and are given for each kind of 

statement, thus providing the meaning of that statement. In other words, the appropriate 

attacks and defences—that is, the appropriate ways of asking for and giving reasons—for 

                                                 
44

 Litterature pertaining to the dialogical framework also uses the terms posits and assertions to 

designate what we will here call statements, that is, the act of stating a proposition within a game of giving 

and asking for reasons; the meaning of a statement is defined by an appropriate challenge and defence, or, 

in other words, how reasons for this statement can be requested, what constitutes reasons for this statement 

and how these reasons can be provided. 
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each statement (or move) gives the meaning of these statements: a conjunction, a 

disjunction, or a universal quantification, for instance, receive their meaning through the 

appropriate interaction in a dialogical game, spelled out by the particle rules.  

The particle rules provide the meaning of the different logical connectives, which 

they provide in a dynamic way through appropriate challenges and answers. This feature 

of dialogues is fundamental for immanent reasoning: the meaning of the moves in a 

dialogue does not lie in some external semantic, but is immanent to the dialogue itself,
45

 

that is, in the specific and appropriate way the players interact; we here join the 

Wittgensteinian conception of meaning as use. The particle rules are spelled out in an 

anonymous way, that is, without mentioning if it is P or O who is attacking or defending: 

the rules are the same for the two players; the meaning of the connectives is therefore 

independent of who uses them.
46

 

An essential aspect of the meaning of logical constants in the dialogical framework 

pertains to the actions, such as choices, the particle rules associate to the use of such 

constants. In this regard, since the interaction constitutes the meaning, all the actions 

involved in the constitution of the meaning of an expression should be made explicit; —

otherwise part of the meaning would be left implicit. These essential aspects must 

therefore be part of the object language in order to figure explicitly. This is the main 

reason for importing in the dialogical framework many Constructive Type Theory 

features (and will be presented in chapters VI-VII). The roots of this kind of perspective 

can be found in Wittgenstein’s Unhintergehbarkeit der Sprache:
47

 language games are 

supposed to show this internal feature of meaning. 

Structural rules 

Structural rules (Rahmenregeln) on the other hand determine the general course of a 

dialogue game, such as how a game is initiated, how to play it, how it ends, and so on. 

The point of these rules is not so much to spell out the meaning of the logical constants 

by specifying how to act in an appropriate way—this is the role of the particle rules—; it 

is rather to specify according to what structure interactions will take place. It is one thing 

to determine the meaning of the logical constants as a set of appropriate challenges and 

defences, it is another to define whose turn it is to play and when a player is allowed to 

play a move. One could thus have the same local meaning and change a structural rule, 

saying for instance that one of the players is allowed to play two moves at a time instead 

of simply one: this would considerably change the game without changing the local 

meaning of what is said.  

 One of the most important structural rules for the present study on immanent 

reasoning is the Copy-cat rule (or Socratic rule when introducing CTT features in the 

                                                 
45

 Göran Sundholm (1997; 2001) voiced some criticism against metalogical frameworks for 

meaning: standard model-theoretic semantics convert semantics in a formal metamathematical object for 

which the syntax is linked to the meaning by attributing truth values to each sign that is uninterpreted 

(formula). The language thus does not express any content but is rather conceived as a system of signs 

speaking of the world, provided that a metalogical adequation between the signs and the world has been 

defined. For more on this issue, see section VI.  
46

 In this sense, the particle rules are said to be symmetric, see section  IV.3. This is imperative to 

preserve the dialogical framework from connectives as Prior’s (1960) tonk. See (Redmond & Rahman, 

2016). 
47

 This is a Wittgensteinian principle that Hintikka explicitely adopted. The reasons for linking the 

dialogical framework to CTT, allowing a greater explicitation of the meaning in the object-language, are 

thus analogous to Hintikka’s vindication for the fecundity of game-theoretic semantics (GTS) in the 

epistemic framework for logic, semantics, and the foundations of mathematics.  
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dialogical context). This rule is not anonymous, it is a restriction on the moves the 

Proponent is allowed to play: the Proponent is allowed to assert an elementary judgement 

only if the Opponent has already asserted it. So the Opponent is not concerned by the 

same exact rules as the Proponent. 

The Copy-cat rule accounts for analyticity: the Proponent, who brings forward the 

thesis, will have to defend it without bringing any element of his own in the play: his 

defence of the thesis will have to rely only on what the Opponent has conceded, and 

everything the Opponent concedes comes only from the meaning of the thesis. The 

Opponent will be challenging the thesis, and challenging and defending the subsequent 

moves made by the Proponent in reaction to her initial challenge of the thesis; but all 

these challenges and defences are made according to the particle rules. So everything the 

Opponent will concede during a play stems from an application of the particle rules 

starting with the thesis. The only elements whose meaning is left unspecified, in formal 

plays, are the elementary statements (specifying their meaning is the point of material 

plays, see chapter X). The Copy-cat rule makes sure that the Proponent is not bringing in 

any elementary statement to back his thesis that the Opponent might not agree with: the 

Proponent can only back his thesis with elementary statements that the Opponent herself 

has already conceded. 

III.2 The rules at the play level 

 Particle rules III.2.1

Here are the particle rules for propositional logic in a standard framework. We use 

anonymous players, X and Y, so that the meaning of the logical constants stays player-

independent. The exclamation mark after the player indicates that the player states the 

following proposition (utterance), the question mark indicates that the player is making a 

request. 

Conjunction : 𝐗 ! 𝑨 ∧ 𝑩 
The meaning of logical constants are not defined in the dialogical framework by their 

truth-values, but by the appropriate challenges and defences: a conjunction is a statement 

that is challenged by asking one of the two conjuncts, the choice lying with the challenger 

(Y). The challenge is answered by providing the conjunct asked, so the defender (X) does 

not have the choice in a conjunction: 

 if the challenger asks for the left conjunct (𝐘 ? 𝐿∧ ) then the defender must 

provide the left conjunct (𝐗 ! 𝐴)  to defend his initial conjunction; 

 if the challenger asks for the left conjunct (𝐘 ? 𝑅∧) then the defender must 

provide the left conjunct (𝐗 ! 𝐵)  to defend his initial conjunction. 

Table 1: particle rules for conjunction 

 Move Challenge Defence 

Conjunction 𝐗 ! 𝐴 ∧ 𝐵 

𝐘 ? 𝐿∧ 
or 

𝐘 ? 𝑅∧ 

𝐗 ! 𝐴 
(respectively) 

𝐗 ! 𝐵 

Properties of conjunction: 

 the challenge is a request; 

 the challenger has the choice; 

 the defender must provide the conjunct requested. 
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Disjunction: 𝐗 ! 𝑨 ∨ 𝑩 
A disjunction is a statement that is challenged by asking one of the two disjuncts, but 

the challenger (Y) does not have the choice. The challenge is answered by providing 

either of the two disjuncts, the choice lying with the defender (X).  

Table 2: particle rules for disjunction 

 Move Challenge Defence 

Disjunction 𝐗 ! 𝐴 ∨ 𝐵 𝐘 ?∨ 

𝐗 ! 𝐴 
or 

𝐗 ! 𝐵 

Properties of disjunction: 

 the challenge is a request; 

 the defender has the choice; 

 the defender provides the disjunct he wants. 

Implication: 𝐗 ! 𝑨 ⊃ 𝑩  
An implication is a statement that is challenged by stating the antecedent. The challenge 

is answered by stating the consequent. So to challenge an implication stated by the other 

player 𝐗 ! 𝐴 ⊃ 𝐵, the challenger must state the antecedent 𝐘 ! 𝐴; the defender must then 

state the consequent 𝐗 ! 𝐵.  

Notice that by challenging an implication, the challenger himself is making a 

statement, which can be challenged if it is not elementary. Implication in this sense can 

be considered as distributing the burden of proof. 

Table 3: particle rules for implication 

 Move Challenge Defence 

Implication 𝐗 ! 𝐴 ⊃ 𝐵 𝐘 ! 𝐴 𝐗 ! 𝐵 

Properties of implication: 

 the challenge is the stating of the antecedent; 

 the defence is the stating of the consequent; 

 there is no choice involved. 

Negation: 𝐗! ¬𝑨  

A negation  is a statement that is challenged by stating the negated proposition (𝐘 ! 𝐴). 

It cannot be answered.  

In the table presentation of dialogues, to distinguish the cells that are empty because the 

defence is still pending from the cells that will remain empty because a challenge on a 

negation cannot be defended, we insert the sign “—“ in the cell for the defence of 

negation.  

Table 4: particle rules for negation 

 Move Challenge Defence 

Negation 𝐗 ! ¬𝐴 𝐘! 𝐴 — 

Properties of negation: 

 the challenge is the stating of the negated proposition; 

 there is no defence; 
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 there is no choice involved. 

Summing up the particle rules for propositional classical logic 

Table 5: particle rules 

 Conjunction Disjunction Implication Negation 

Move 𝐗 ! 𝐴 ∧ 𝐵 𝐗 ! 𝐴 ∨ 𝐵 𝐗 ! 𝐴 ⊃ 𝐵 𝐗 ! ¬𝐴 

Challenge 

𝐘 ? 𝐿∧ 
or 

𝐘 ? 𝑅∧ 

𝐘 ?∨ 𝐘 ! 𝐴 𝐘 ! 𝐴 

Defence 

𝐗 ! 𝐴
(resp.) 

 𝐗 ! 𝐵

𝐗 ! 𝐴 
or 

𝐗 ! 𝐵 

𝐗 ! 𝐵 — 

 Structural rules III.2.2

Here are the structural rules for standard classical logic in the dialogical framework. 

They define how a play unravels, that is how a statement (the thesis) can generate a 

certain dialogue. There are four basic structural rules (SR) specifying: 1. how to start; 2. 

how to play; 3. how to preserve formality (Copy-cat rule); 4. how to win.  

Each of these rules can be modified, producing variants in the dialogical 

framework: adding for instance a condition on 3—called “last duty first”—will yield 

intuitionistic logics. Some variants will be introduced in the next section for more 

advanced dialogues. 

SR 1: starting the play 

A play starts with a player stating a proposition called the thesis; that player becomes 

the Proponent (P) and the move is labelled move 0. 

The other player—the Opponent (O)—chooses a repetition rank determining how many 

times she is allowed to challenge or defend any move in a play. It is usually enough for O 

to choose a repetition rank of 1 (𝑚 ≔ 1), it is move 1.  

P then chooses a repetition rank: 2 is usually enough (𝑛 ≔ 2); it is move 2. 

SR 2: how to play 

Each player in turn plays one move: once the repetition ranks have been chosen, each 

move is either a challenge on a previous statement or a defence of a previous challenge. 

SR 3: Copy-cat rule 

P cannot play an elementary statement if O has not stated it previously. 

SR 4: winning rule 
The play ends when it is a player’s turn to make a move but that player has no available 

move left. That player loses, the other player wins. 
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III.3 Building a dialogue: step-by-step instructions 

Setting up the game 

In order to build a dialogue, first start with a large table with two columns, one 

for the Opponent (on the left) and one for the Proponent (on the right). 

 

O P 

  

 

Add a column: 

 on the outer side of your two columns (A cells); this column will specify the 

number of the move played; 

 on the inner side of your two columns (B cells); this column will specify the 

number of the move challenged, if applicable. 

 

O P 

A  B B  A 

A  B B  A 

 

Write the thesis as P’s first move, that is move 0 (see the structural rule for 

initializing the play, SR0). 

 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐴 0 

      

 

Each player (O first, then P) now choose their repetition rank. For convenience, we 

usually choose rank 1 for O and rank 2 for P.
48

 Repetition ranks determine how many 

times a player is allowed to attack or to defend each and every move. 

 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐴 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

      

Playing the game 

 Each player in turn will play a move,
49

 that is, he will either attack a move made 

by the other player, or defend against an attack. 

o If the player attacks: write the attack on a new line, and specify the 

number of the attacked move in the inner column.
50

 

                                                 
48

 These ranks are enough for propositional logic: P can attack the two sides of a conjunction and 

defend the two sides of a disjunction. If the players are playing at their best (no mistakes), then 1 is enough 

for O: if she has a move allowing her to win, she will choose it straightaway. 
49

 Since the players will play alternately, all of O’s moves will be uneven numbers, whereas all of 

P’s moves will be even numbers. There are no exceptions. 
50

 Expressions are not listed by following the order of the moves, but by writing an attack on a new 

line and the defence on the same line as the corresponding attack, thus showing when a challenge is 

answered. 
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Elementary statements cannot be attacked.
51

 

o If the player defends: write the defence on the same line as the attack. 

An attack on a negation cannot be defended, though the player can 

attack or defend some other move, if there are any available. 

Ending the game 

A play stops when one of the two players has no move left (attack or defence).  

In order to be sure that every possible move has been played, ask yourself, for the 

player whose turn it is to play: 

 if there are any non-elementary statements played by the adversary that has not 

been attacked (or that has been attacked only once if the repetition rank is 2). 

If there are, then the player can attack it (except if there is a restriction by 

the Copy-cat rule). 

 If there are any attacks left undefended (or defended only once if the repetition 

rank is 2). You can see this easily by the empty case in the player’s column. 

Remember: attacks on negations cannot be defended, so cells with "— " are left 

empty. 

 

If it is a player’s turn and everything that could be attacked has already been 

attacked, and everything that could be defended has already been defended, then, and 

then only, has the play ended and that player has lost. 

III.4 Commented construction of a play: (𝑨 ∧ 𝑩) ⊃ 𝑨 

The thesis to be tested will be (𝐴 ∧ 𝐵) ⊃ 𝐴. 

 

0. The play starts with the Proponent (P) stating the thesis. It is move 0. 

 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐴 0 

      

 

1. It is now the Opponent’s (O’s) turn to play. She must choose her repetition rank, 

that is, the number of times she can attack or defend any move. We will in general 

use a repetition rank of 1 (𝑚 ≔ 1) for O, and of 2 (𝑛 ≔ 2) for P. 

 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐴 0 

1 𝑚 ≔ 1     

      

 

2. Now it is P’s turn to choose his repetition rank. 

 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐴 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

                                                 
51

 This would bring us into material plays. See the introduction, section  I.2 and chapter Erreur ! 

Source du renvoi introuvable.. 
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3. It is O’s turn, and she has only one availaible move: attacking the thesis (move 0). 

Since it is an implication, she must state the antecedent (𝐴 ∧ 𝐵). 

 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐴 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! 𝐴 ∧ 𝐵 0    

      

 

4.  P has two available moves: either he defends his thesis against O’s challenge 

(move 3), or he attacks O’s move 3. 

O’s challenge being on an implication, the defence must be to state the 

consequent, here 𝐴. But 𝐴 is an elementary statement, so P is not allowed to state 

𝐴 if O has not played it beforehand—according to the Copy-cat (structural) rule. 

So P cannot defend his thesis (move 0) as long as he has not found a way of 

making O assert 𝐴.  

P must therefore attack. His move is written on a new line (each new 

challenge is written on a new line, so that the corresponding defence can be 

written on the same line: at a glance one should see if challenges are left 

unanswered). 

P has to challenge O’s move 3 which is a conjunction. So P has the choice 

as to which of the conjuncts to ask for. Since P wants to be able to defend his 

thesis, he chooses to ask for the first conjunct. 
 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐴 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! 𝐴 ∧ 𝐵 0    

   3 ? 𝐿∧ 4 

      

 

5. It is now O’s turn to play, and she has only one available move: she must defend 

her conjunction (move 3) from P’s challenge (move 4). 

 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐴 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! 𝐴 ∧ 𝐵 0    

5 ! 𝐴  3 ? 𝐿∧ 4 

      

 

6. Since O has stated 𝐴, P is now allowed to state 𝐴: he can defend his thesis (move 

0) against O’s still unanswered challenge (move 3). 

 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐴 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 
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3 ! 𝐴 ∧ 𝐵 0  ! 𝐴 6 

5 ! 𝐴  3 ? 𝐿∧ 4 

      

 

7. It is now O’s turn, but she has no available move: every P-challenge has been 

answered and every non-elementary statement of P has been challenged. 

Therefore the play is over and O has lost. 

 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐴 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! 𝐴 ∧ 𝐵 0  ! 𝐴 6 

5 ! 𝐴  3 ? 𝐿∧ 4 

P wins. 

Exercises 

Build a play for the following theses: 

 

1. (𝐴 ∨ 𝐵) ⊃ (𝐵 ∨ 𝐴) 

2. 𝐴 ∨ ¬𝐴 

3. ¬¬𝐴 ⊃ 𝐴 

4. ¬¬(𝐴 ∨ ¬𝐴) 

Solutions 

The solution for 1 is given in the next section (III.5) as the first step in building a 

winning strategy.  

The other solutions are given as examples at the end of the next chapter (IV). See 

the following passages: 

 p. 71 for the third excluded: 𝐴 ∨ ¬𝐴;  

 p. 72 for the double negation elimination: ¬¬𝐴 ⊃ 𝐴;  

 p. 73 for the double negation of the third excluded: ¬¬(𝐴 ∨ ¬𝐴).  

The examples in the next section compare the intuitionistic (structural) rules and the 

classical ones; in this section we have only presented the classical (structural) rules.  

III.5 Approaching the strategy level 

Up to now we have only looked at individual plays; that is, we have stayed at the 

play level, which is a distinctive feature of the dialogical framework. The strategy level 

on the other hand converges with other logical frameworks, for a winning strategy can be 

turned into a demonstration in a non-dialogical framework (and reversely): such an 

algorithm will be provided in chapter IX.  

The strategy level allows to compare different plays on the same thesis. A winning 

strategy is always defined in relation to a specific player, either O or P, though it must be 

noted that strategies are not actually carried out by the players, they are only a 

perspective on the possibles plays for a given thesis. Usually (and by default), we 

consider P-winning strategies. A P-winning strategy determines if P has a way to win a 

play regardless of O’s choices during the play: whatever be O’s choice, P will be able to 
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find a way to win. P-strategies are therefore built on O’s choices: each possible choice of 

O must be taken into account and dealt with in order to determine if P is able to win in all 

the different cases stemming from O’s possible choices. 

A P-strategy is constructed first like a normal play, which must end with P winning 

(otherwise we will not be constructing a P-winning strategy). Then we proceed from the 

last move up to the first move and we stop when we come across a choice made by O. At 

that point, we branch the play: on the first branch we leave the initial play and on the 

second branch we do as if O had chosen her other option at that point, that is with exactly 

the same previous moves of the play. This play also needs to be won by P in order to 

continue building the P-strategy. We then proceed again by going up the moves until we 

find another O-choice and make another branching, up to the thesis. Once all of O’s 

choices have been dealt with, we can determine whether or not P has a winning strategy 

for this thesis: if somewhere O won a play, then O has a way of playing that will allow 

her to win; but if for each and every choices of O, P has a way to play allowing him to 

win, he has a winning strategy. Winning strategies are analogous in chess to saying 

“checkmate in 𝑥 moves”: whatever the opponent will play, the other player has a way to 

win in maximum 𝑥 moves. 

With the particle rules given in this didactic section, O has a choice only when: 

 Challenging a conjunction and 

 Defending a disjunction. 

Building a P-winning strategy step-by-step 

In order to illustrate how to build a winning strategy, let us consider the thesis 

𝐏 ! (𝐴 ∨ 𝐵) ⊃ (𝐴 ∨ 𝐵). 

1. First build a play for this thesis. 

O P 

    ! (𝐴 ∨ 𝐵) ⊃ (𝐴 ∨ 𝐵) 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! 𝐴 ∨ 𝐵 0  ! 𝐴 ∨ 𝐵 4 

5 ?∨ 4  ! 𝐴 8 

7 !  𝐴  3 ?∨ 6 

  P wins. 

 

2. Proceed backwards from the last move up and stop at the first O choice 

encountered.  

O P 

    ! (𝐴 ∨ 𝐵) ⊃ (𝐴 ∨ 𝐵) 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! 𝐴 ∨ 𝐵 0  ! 𝐴 ∨ 𝐵 4 

5 ?∨ 4  ! 𝐴 8 

7 !  𝐴  3 ?∨ 6 

P wins. 

Here it is move 7, in which O had a choice because she had to defend a 

disjunction. The other option that was available to her was to choose the other 

disjunct, 𝐎 ! 𝐵. We need to branch the plays so that both options are considered. 

We therefore copy the play up to move 7 and leave this move blank; we draw two 

branches and copy the first play on one branch and continue the other play with 

move 7 being the other option, that is 𝐎 ! 𝐵. 



IMMANENT REASONING OR EQUALITY IN ACTION 61 

 

 

 

O P 

    ! (𝐴 ∨ 𝐵) ⊃ (𝐴 ∨ 𝐵) 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! 𝐴 ∨ 𝐵 0  ! 𝐴 ∨ 𝐵 4 

5 ?∨ 4    

7   3 ?∨ 6 

 

 

 

Play 1: left option 

O P 

    ! (𝐴 ∨ 𝐵) ⊃ (𝐴 ∨ 𝐵) 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! 𝐴 ∨ 𝐵 0  ! 𝐴 ∨ 𝐵 4 

5 ?∨ 4  ! 𝐴 8 

7 !  𝐴  3 ?∨ 6 

P wins 

Play 2: right option 

O P 

    ! (𝐴 ∨ 𝐵) ⊃ (𝐴 ∨ 𝐵) 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! 𝐴 ∨ 𝐵 0  ! 𝐴 ∨ 𝐵 4 

5 ?∨ 4  !  𝐵 8 

7 !  𝐵  3 ?∨ 6 

P wins. 

 

3. Proceed backwards: we fall on the thesis without any other O-choice; so we have 

considered all the relevant cases for a P strategy. Since P can win in every case, P 

has a winning strategy for (𝐴 ∨ 𝐵) ⊃ (𝐴 ∨ 𝐵). 

Exercise 

Build a P-winning strategy for the following thesis, with the repetitions ranks O 

!𝑚 ≔ 1 and P ! 𝑚 ≔ 2: 

1. ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 

Solution 

The branching is here triggered by O’s repetition rank 𝑚 ≔ 1: she cannot defend 

twice against the same attack (move 8), so her two options yield two different plays (play 

2 and play 3) in which she chooses each time one of the two options (right option in play 

2 and left option in play 3). 
 

Play 1: ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 

 O   P  

    ! ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 



62  III. Basic notions for dialogical logic 

 

3 ! (𝐴 ∨ 𝐵) ∧ ¬𝐴 0    

5 !¬𝐴  3 ? 𝑅∧ 4 

7 ! 𝐴 ∨ 𝐵  3 ? L∧ 6 

   7 ?∨ 8 

 

 

Play 2: right option 

 O   P  

    ! ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! (𝐴 ∨ 𝐵) ∧ ¬𝐴 0  ! 𝐵 10 

5 ! A  3 ? 𝑅∧ 4 

7 ! A  B  3 ? 𝐿∧ 6 

9 ! 𝐵  7 ?∨ 8 

P wins (intuitionistic rules, see section IV.4.2, p. 69) 

 

Play 3: left option 

 O   P  

    ! ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! (𝐴 ∨ 𝐵) ∧ ¬𝐴 0    

5 ! A  3 ? 𝑅∧ 4 

7 ! A  B  3 ? 𝐿∧ 6 

9 ! 𝐴  7 ?∨ 8 

   5 ! 𝐴 10 

P wins (intuitionistic rules) 

III.6 Rounding up some key notions 

Considering what has been said up to now, the following points are essential to the 

dialogical approach:  

1. The distinction between local meaning (particle rules for logical constants) and 

global meaning (structural rules determining how to play). 

2. The player independence of local meaning. 

3. The distinction between the play level (local winning, or winning of a play) and 

the strategic level (existence of a winning strategy).  

4. A notion of demonstration that amounts to building a winning strategy. 

5. The distinction between material dialogues, formal dialogues that include a rule 

allowing Copy-cat moves, and dialogues combining both.  
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III.7 Further reading 

Textbook presentations 

For a textbook presentation of the dialogical framework, see (Clerbout, 2014b), 

(Redmond & Fontaine, 2011) or (Rückert, 2011a).  

Logical studies in dialogic 

 The main original papers on the dialogical approach to logic are collected in 

(Lorenzen & Lorenz, 1978).  

 For a historical overview of the transition from operative logic to dialogical 

logic see (Lorenz, 2001).  

 For a presentation about the initial role of the dialogical framework as a 

foundation for intuitionistic logic, see (Felscher, 1985);  

 for its bearings with argumentation theory and everyday dialogues see 

(Krabbe, 1982; 1985; 2006).  

 Other papers have been collected more recently in (Lorenz, 2010a; 2010b).  

 An account of developments since (Rahman, 1993) can be found in (Rahman 

& Keiff, 2005; 2010), (Keiff, 2007; 2009), (Beirlaen & Fontaine, 2016) and 

(Cardascia, 2016).  

 For the underlying metalogic see (Clerbout, 2014a; 2014b; 2014c).  

On the use of the dialogical framework in epistemology, 
philosophy and history of ideas 

The dialogical framework has proven a powerful tool in logic, but it also has further 

ambitions: the fact that meaning in entirely provided by the interaction that makes a 

dialogue (even, in a large part, the material aspect of meaning; see chapter  1) and that this 

dialogical framework allows for multiple levels of consideration (the play level and the 

strategy level are the most important ones) makes this framework a very flexible and 

adaptable tool useful in history of philosophy, deontics, epistemology, and many other 

fields of inquiry that are not primarily logical. Here are a few studies showing the range 

of possible applications of the dialogical framework; many more are currently under 

progress, exploring the gamut of immanent reasoning.  

 

 For the key role of the dialogical framework in linking dialectics, games, and 

logic, see (Rahman & Tulenheimo, 2009), (Rahman & Keiff, 2010) and (Marion 

& Rückert, 2015).  

 (Clerbout, Gorisse, & Rahman, 2011) studied Jain Logic in the dialogical 

framework.  

 (Popek, 2012) develops a dialogical reconstruction of medieval obligationes.  

For other books see  

 (Redmond, 2010) and (Rahman & Redmond, 2015) on fiction and the dialogical 

framework;  

 (Fontaine, 2013) on intentionality, fiction, and dialogues;  

 (Magnier, 2013) on dynamic epistemic logic and legal reasoning in a dialogical 

framework;  

 and (Nzokou, 2013) on the dialogical framework and non-monotonic reasoning in 

legal debates within oral traditions. 
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IV. ADVANCED DIALOGUES: PLAY LEVEL 

This chapter will provide a more technical approach to the standard (non-CTT) 

dialogical framework at the play level. The next chapter (V) will do the same at the 

strategy level. It will then be possible to introduce local reasons in the dialogues and thus 

start making it explicit that dialogues are games of giving and asking for reasons;
52

 in this 

sense, the elements contributing to the meaning as use will appear in the object language. 

The link to equality in action will then be spelled out in the following two chapters (VI-

VII), based on what will be presented in the next two chapters (IV-V). 

 

In the previous chapter (III), we have introduced less formally the standard dialogical 

framework and have given step-by-step instructions as how to proceed in building a 

dialogue. We shall here be presenting the same material, but in a more technical way. 

First (section IV.1), we will provide some preliminary notions. Then (section IV.2) we 

will deal with local meaning (provided by the particle rules) with a more extended 

language than the propositional logic presented in the previous chapter. Third 

(section IV.3), we will expound briefly on the distinction between harmony at the global 

and the strategy level on the one hand, which defines dynamic identity, and a kind of 

harmony at the local level on the other hand, which we call symmetry and is player-

independent, a feature essential to the particle rules. Then (section IV.4) we will provide 

the structural rules and the global meaning these rules convey, and provide different 

variants for games in this framework, giving in particular the rules for intuitionistic logic 

(as opposed to classical logic). Last (section IV.5), we will carry out three examples of 

plays and insist on the difference between classical and intuitionistic logic. 

IV.1 Preliminary notions 

The language 

Let L be a first-order language built as usual upon the propositional connectives, 

the quantifiers, a denumerable set of individual variables, a denumerable set of individual 

constants and a denumerable set of predicate symbols (each with a fixed arity). 

 

We extend the language L with two labels O and P, standing for the players of the game, 

and the two symbols ‘!’ and ‘?’ standing respectively for statements and requests. When 

the identity of the player does not matter, we use the variables X or Y (with X ≠ Y).
53

 

Plays 

A play is a legal sequence of moves, that is, a sequence of moves which observes the 

game rules. Particle rules are not the only rules which must be observed in this respect: 

the second kind of rules, the structural rules, are the rules providing the precise 

conditions under which a given sequence is a play.  

                                                 
52

 This idea will remain implicit until then, appearing only when we stress that the particle rules as 

provide the meaning of logical constants through appropriate challenges and defences 
53

 This aspect (player independence) is fundamental for the symmetry of the rules. See section  IV.3. 
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Dialogical games 

The dialogical game for a statement is the set of all plays from a given thesis (initial 

statement, see below the Starting rule, SR0).  

A move in a play 

A move M is an expression of the form ‘X-e’, where e is either  

 of the form ‘! 𝐴’ (read: the player X states 𝐴), for some proposition 𝐴 of L; we say 

it is an elementary statement, or  

 of one of the forms specified by the particle rules (see below).  

Challenges and defences 

The words ‘attack’ and ‘defence’ are convenient to name certain moves according to 

their relation to other moves which can be defined in the following way.  

 Let  be a sequence of moves. The function  assigns a position to each move in 

, starting with 0. 

 The function Fσ assigns a pair [𝑚, 𝑍] to certain moves M in 𝜎, where 𝑚 denotes a 

position smaller than ρ𝜎 (M) and 𝑍  is either 𝐴  or 𝐷 , standing respectively for 

‘attack’ and ‘defence’. That is, the function Fσ keeps track of the relations of 

attack and defence as they are given by the particle rules. 

 

Let us point that at the local level (the level of the particle rules), this terminology 

should be bereft of any strategic undertone. 

Terminological note: challenge, attack and defence 

The standard terminology uses the terms challenge, or attack, and defence (sometimes 

answer in respect of challenges). We shall here make a (subtle) distinction between 

challenge and attack: a challenge is initiated by an attack and needs this attack to be 

defended against in order to be answered to. So a challenge requires a defence to be 

settled, whereas an attack is simply the move that opens the challenge. For instance, using 

the particle rules exposed below, an attack on an implication will be simply to state the 

antecedent, and challenging an implication will be to attack it and thus demanding that 

the player who stated the implication defends her posit by positing the consequent, 

knowing that the challenger stated the antecedent. As one can see, the difference between 

challenge and attack is slim, and they may oftentimes be taken as synonymous.  

IV.2 Local meaning of logical constants 

Particle rules: 

In the dialogical framework, the particle rules state the local semantics: only 

challenges and the corresponding defences for a given logical constant are at stake here, 

that is, we only take the main logical constant of the proposition into account. 

Particle rules provide a decontextualized description of how the game can proceed 

locally: they specify the way a statement can be challenged and defended according to its 

main logical constant. In this way the particle rules govern the local level of meaning.  

The table for the propositional connectives has already been presented in the previous 
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chapter (see p. 53) and we simply refer the reader to that section as an explanation of the 

following table summing up these particle rules. 

Table 6: Particle rules for dialogical games: propositional connectives 

 Conjunction Disjunction Implication Negation 

Move 𝑿 ! 𝐴 ∧ 𝐵 𝑿 ! 𝐴 ∨ 𝐵 𝑿 ! 𝐴 ⊃ 𝐵 𝑿 ! ¬𝐴 

Challenge 

𝒀 ? 𝐿∧ 
or 

𝒀 ? 𝑅∧ 

𝒀 ?∨ 𝒀 ! 𝐴 𝒀 ! 𝐴 

Defence 

𝑿 ! 𝐴
(resp.) 

 𝑿 ! 𝐵

𝑿 ! 𝐴 
or 

𝑿 ! 𝐵 

𝑿 ! 𝐵 — 

  

The particle rules for quantifiers has not been introduced, so we will be 

commenting these rules briefly.  

 

The rules for universal quantification are similar to those for conjunction: stating a 

universally quantified proposition means that the challenger may choose any individual 

constant 𝑎𝑖 and request of the utterer to make his statement by instantiating every free 

occurrence of 𝑥 with 𝑎𝑖. That is, the challenger chooses which proposition he wants the 

utterer to state. 

Properties of universal quantification: 

 the challenge is a request; 

 the challenger has the choice; 

 the defender must state the requested proposition. 

 

The rules for existential quantification are similar to those for disjunction: it is the 

defender who chooses the proposition he wants to state in response to the challenge. 

Properties of existential quantification: 

 the challenge is a request; 

 the defender has the choice; 

 the defender chooses which proposition to state. 

 

Table 7: Particle rules for dialogical games: quantifiers 

 
Universal 

quantification 

Existential 

quantification 

Move 𝑿 ! ∀𝑥𝐵(𝑥) 𝑿 ! ∃𝑥𝐵(𝑥) 

Challenge 𝒀 ? [𝑥/𝑎𝑖] 𝑿 ?∃ 

Defence 𝑿 ! 𝐵(𝑥/𝑎𝑖) 
𝑿 ! 𝐵(𝑥/𝑎𝑖)  

with 1 ≤ 𝑖 ≤ 𝑛  
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Summing up 

Table 8: Summing up the properties of  the particle rules 

 
Nature of the 

challenge 

Who has the 

choice 
Step to defend 

Conjunction Request Challenger 
State the requested 

proposition 

Universal 

quantification 
Request Challenger 

State the requested 

proposition 

Disjunction Request Defender 
State the desired 

proposition 

Existential 

quantification 
Request Defender 

State the desired 

proposition 

Implication Statement No choice State the consequent 

Negation Statement No choice None 

 

Table 9: Summing up the particle rules 

 Conjunction Disjunction Implication Negation 
Universal 

quantification 

Existential 

quantification 

Move 𝑿 ! 𝐴 ∧ 𝐵 𝑿 ! 𝐴 ∨ 𝐵 𝑿 ! 𝐴 ⊃ 𝐵 𝑿 ! ¬𝐴 𝑿 ! ∀𝑥𝐵(𝑥) 𝑿 ! ∃𝑥𝐵(𝑥) 

Challenge 

𝒀 ? 𝐿∧ 
or 

𝒀 ? 𝑅∧ 

𝒀 ?∨ 𝒀 ! 𝐴 𝒀 ! 𝐴 𝒀 ? [𝑥/𝑎𝑖] 𝑿 ?∃ 

Defence 

𝑿 ! 𝐴
(resp.) 

 𝑿 ! 𝐵

𝑿 ! 𝐴 
or 

𝑿 ! 𝐵 

𝑿 ! 𝐵 — 𝑿 ! 𝐵(𝑥/𝑎𝑖) 
𝑿 ! 𝐵(𝑥/𝑎𝑖)  

with 1 ≤ 𝑖 ≤ 𝑛  

 

IV.3 Symmetry and harmony 

In providing the properties of the particle rules, a central feature we have 

distinguished is who has the choice: is it the challenger or the defender? The meaning of 

the logical constants is largely determined by who has the choice in the interaction. But 

notice that in formulating the particle rules, the players' identities are not specified: we do 

not use O and P but we use X and Y instead, thus only specifying who is the challenger 

and who is the defender for this particular statement. That is, we simply provide the 

appropriate challenge and defence for certain logical constants and determine in this way 

who has the choice: we provide their meaning in terms of interaction within a dialogue (a 

game of giving and asking for reasons).  

It would not be reasonable to base a game-theoretical approach to the meaning of 

logical constants in which the meaning differs according to which players utters it: this 

approach would make interaction senseless, for each player would be meaning something 

different when uttering the same thing. Equality in action is precisely based on the 

possibility for a player to say the same thing as the other player, and by that to be 

meaning also the same thing. Equality in action is in this regard the idea that a statement 
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made by a player can be made by another player in a game of giving and asking for 

reasons (a dialogue) with the exact same meaning as the statement made by the first 

player, that is with the same particle rules for challenging and defending it. It is thus the 

interaction based on player-independent rules that allows two different players to be 

speaking of the same thing: equality between different statements emerges from the 

interaction itself. 

Since the rules for the logical constants are independent of the player’s identities—

the rules are exactly the same for the two players—we say that these rules are symmetric. 

This feature captures one of the strengths of the dialogical approach to meaning: the 

dialogical approach is in this way immune to a wide range of trivializing connectives 

such as Prior's tonk.
54  

 

Symmetry, or player-independence in the particle rules, must be contrasted with the 

dialogical rendering of harmony, which concerns the structural rules and the strategy 

level, not the particle rules. The structural rules, which will be introduced in the next 

section, are not player independent: the first rule (SR0) specifies who the players are 

(Proponent or Opponent) according to who plays the first move, that is who states the 

thesis; that player will be the Proponent. But the rule that matters most in regard to 

immanent reasoning is the Copy-cat rule (or Socratic rule in a CTT framework); this rule 

puts a restriction on the Proponent’s moves, while those of the Opponent are left 

unrestricted: which the Proponent cannot play an elementary statement that has not been 

previously stated by the Opponent. 

The purpose of this restriction is to insure that the thesis will be grounded only on what 

the Opponent has conceded, and thereby secure a form of analyticity that we call 

immanent reasoning: the Proponent has to ground his thesis on what the Opponent brings 

forward in the course of their interaction (the dialogue), an interaction that is initiated by 

the Proponent stating a thesis, which the Opponent challenges with the ensuing series of 

challenges and defences defined by the particle rules and constituting the dialogue. Thus 

the Opponent will not bring forward anything that does not stem from the meaning 

(defined by the particle rules) of the thesis, and the Proponent will not bring any 

elementary proposition into the game that he cannot justify within that very same 

dialogue by refering to the Opponent’s own statements (“I am entitled to state this 

because you have stated it yourself”).  

Symmetry and harmony are two essential aspects of the dialogical framework and are 

the principles for immanent reasoning. 

 

Dialogical harmony thus coordinates a player-independent level (the local meaning) 

and a player-dependent level (the global meaning and the strategy level). This aspect 

contrasts with the Constructive Type Theory notion of harmony which belongs to proof-

theory and stays only at the level of strategies.
55

 Immanent reasoning and equality in 

action emerge from taking the specific aspects of the three levels (local, global and 

strategic) into account and considering how they intertwine to build these complex and 

dynamic frameworks that are dialogues. 

IV.4 Global meaning:  

The global meaning—as opposed to the local meaning defined by the particle 

rules—is defined by means of structural rules which specify the general way plays 

                                                 
54

 See (Rahman, Clerbout, & Keiff, 2009) and (Redmond & Rahman, 2016).  
55

 See (Rahman & Redmond, 2016) and (Rahman, Redmond, & Clerbout, 2017). 
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unravel by specifying who starts in a play, what moves are allowed and in which order, 

when a play ends and who wins it. For a more informal presentation of the structural rules 

determining the global meaning in the dialogical framework, see chapter III.2.2, p.55. 

 Preliminary terminology IV.4.1

Terminal plays:  

A play is called terminal when it cannot be extended by further moves in compliance 

with the rules.  

X-terminal plays:  
A play is X-terminal when the play is terminal and the last move in the play is an X-

move. 

 The structural rules IV.4.2

SR0 (Starting rule) 

Any dialogue starts with the Opponent stating initial concessions (if any) and the 

Proponent stating the thesis (labelled move 0). After that, each player chooses in turn a 

positive integer called the repetition rank which determines the upper boundary for the 

number of attacks and of defences each player can make in reaction to each move during 

the play.  

Example: if the repetition rank of O is 𝑚 ≔ 1, then O may attack or defend against 

at most once each move of P. If P’s repetition rank is 𝑛 ≔ 2 , then P may attack or 

defend against at most twice each move of O.  

SR1: Development rule 

The Development rule depends on what kind of logic is chosen: if the game uses 

classical logic, then it is SR1c that should be used; but if intuitionistic logic is used, then 

SR1i must be used. 

SR1c (Classical Development rule) 
Players move alternately. Once the repetition ranks have been chosen, each move is 

either attacking or defending a move made by the other player, in accordance with the 

particle rules. 

SR1i (Intuitionisitic Development rule) 

Players move alternately. Once the repetition ranks have been chosen, each move is 

either attacking or defending a move made by the other player, in accordance with the 

particle rules. 

Players can respond only to the last non-answered challenge of the other player. 

 

Note: This last clause is known as the Last Duty First condition, and makes 

dialogical games suitable for intuitionistic logic (hence this rule’s name). 

SR2 (Copy-cat rule) 

P may not play an elementary statement unless O has stated it first.  

Elementary propositions cannot be challenged. 
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Note: The formulation of this rule has a downside: the thesis of a dialogical game 

cannot be an elementary statement. For a special version of the Copy-cat rule allowing 

plays on elementary statements, see below (section  0) where we link this rule to equality.  

SR3 (Winning rule) 

Player X wins the play ζ only if it is X-terminal. 

Linking the Copy-cat rule (SR2) and equality 

The Copy-cat rule
56

 is one of the most salient characteristics of dialogical logic. As 

discussed by (Marion & Rückert, 2015), it can be traced back to Aristotle’s 

reconstruction of the Platonic dialectics. A purely argumentative point of view can be 

defined within dialectics as refraining from calling on some authority beyond what has 

actually been brought forward during the current argumentative interaction, the ultimate 

authority being the fact that the other person has said it, any other consideration being set 

aside for the time of the dialectical exchange (in this argumentative perspective). Thus, 

when an elementary statement is challenged, the challenge can be answered only by 

invoking the challenger’s own concessions. In such a context, the Copy-cat rule can be 

understood in the following way, when a player plays an elementary statement:  

my grounds for stating the proposition you are challenging are exactly the same 

as the ones you brought forward when you yourself stated that very same 

proposition.
57

 

In this regard, elementary statements actually can be challenged (as opposed to the 

SR2 formulation above), the answer then being of the form “but you have said it 

yourself”.  A special formulation of the Copy-cat rule SR2 addresses this problem. 

Special Copy-cat rule 

 O's elementary statements cannot be challenged. However, O can challenge an 

elementary statement played by P. The challenge and corresponding defence is 

determined by the following table. Notice that this (structural) rule is not player-

independent and uses the names of the players. 

 

Table 10: SR2 special Copy-cat rule 

 Move Challenge Defence 

Special Copy-cat rule 

(Structural rule 2) 

𝐏 ! 𝐴 

For elementary 𝐴 
𝐎 ?𝐴 

𝐏 ! 𝑠𝑖𝑐(𝑛) 
P indicates that O 

stated 𝐴 at move 𝑛 

 

The Copy-cat rule, and even more in this special formulation, introduces an 

asymmetry between the two players (the Proponent’s moves are restricted in a way the 

Opponent’s are not). 

                                                 
56

In previous literature on dialogical logic this rule has been called the Formal rule. Since here we will 

distinguish different formulations of this rule that yield different kind of dialogues we will use the term 

Copy-cat rule when we speak of the rule in standard contexts (such as in the present section)—contexts in 

which the constitution of the elementary propositions involved in a play is not rendered explicit. When we 

use the rule in a dialogical framework for CTT, as in the next chapter,  we speak of the Socratic rule. 

However, we will continue to use the expression Copy-cat move in order to characterize moves of P that 

copies moves of O.  
57

 See (Rahman, Clerbout, & Keiff, 2009) and (Rahman & Keiff, 2010).  
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IV.5 Examples of plays 

These examples should allow the reader to fully understand the rules given above 

and their implications, especially the difference between SR1c (classical Development 

rule) and SR1i (intuitionistic Development rule). For an introduction to the table 

presentation of dialogues, see chapter III.3, p.56. In the next chapter (V), strategies will 

be introduced, which allow to compare different plays (with different choice sequences of 

the players) and build the best possible way of playing for one of the players. 

First example, the third excluded: 𝑨 ∨ ¬𝑨 

The third excluded (tertium non datur) is a principle stating that a proposition either 

is (A) or is not (A), without any third possible option. This principle is much discussed 

in philosophy and logic,
58

 it is a valid principle in classical logic, but is not accepted in 

intuitionistic logic. If this principle is accepted, the principle of non-contradiction 

(¬(𝐴 ∧ ¬𝐴)) follows, but the reverse is not the case (and intuitionistic logic accepts the 

principle of non-contradiction but not the principle of third excluded). We will here give a 

play according to the classical (structural) rules, and then a play according to the 

intuitionistic (structural) rules. 

 

Play 4: the third excluded—classical rules 

O P 

    ! A   A 0 

1 𝑛 ≔ 1   𝑚 ≔ 2 2 

3 ?∨ 0  !  A 4 

5 ! A 2  —  

{3} {?∨ } {0}  ! 𝐴 6 
P wins (classical rules). 

 
Note : the curly brackets are inserted to stress the fact that O is not actually making a 

move, but that P is using his repetition rank of 2 in order to defend twice O’s challenge (move 3). 

We repeat that challenge (in brackets) in order to know where P’s move 6 comes from. 

 

Notice that P would not have won without a repetition rank higher than 1: he would 

not have been allowed to answer twice to O’s challenge (move 3), and thus use her own 

assertion of 𝐴 (move 5) triggered by P’s first defence to O’s challenge (move 3). This 

example is a good illustration for the Copy-cat rule and for the use of repetition ranks. 

 

Notice also that P’s move 6 is an answer to the challenge of move 3, that is a 

challenge preceeding the last unanswered challenge, which is move 5. This challenge of 

move 5 will never be answered, because an attack on the negation cannot be defended. So 

P wins because the classical rules for dialogues do not restrict P’s answers only to the last 

unanswered challenge. This fact is the key to understand the outcome of the next play, 

which uses the intuitionistic rules.  
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 For an overview of the philosophical positions behind such principles, see for instance (Read, 

1995, pp. 222-224), or see (Dummett, 1978) for seminal papers. 
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Play 5: the third excluded—intuitionistic rules 

O P 

    ! A   A 0 

1 𝑛 ≔ 1   𝑚 ≔ 2 2 

3 ?∨ 0  !  A 4 

5 ! A 4  —  
O wins (intuitionistic rules). 

 

Second example, the double negation elimination: ¬¬𝑨 ⊃ 𝑨 

The elimination of double negation is another example of a principle accepted in 

classical logic but rejected in intuitionistic logic. This principle is at the core of classical 

mathematics, for it is what is used in indirect proofs (concluding 𝐴  from the 

demonstration that the negation of 𝐴 leads to a contradiction, that is from the fact that 

¬¬𝐴 holds). This principle is closely linked to the principle of excluded middle. Once 

again, we give a play with classical rules (P wins) and a play with intuitionistic rules (P 

loses). 

 

Play 6: the elimination of double negation—classical rules 

 O   P  
    ! A A 0 
1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! A 0  ! A 6 

 —  3 ! A 4 

5 ! A 4  —  

P wins (classical rules). 

 

Notice that as for the third excluded, P wins here because he does not have to 

answer only to the last unanswered challenge (which is move 5) but answers a previous 

challenge (his move 6 is an answer to the challenge of move 3). This move is forbidden 

by the intuitionistic (structural) rules (“Last Duty First”) illustrated in the next play: P 

should play his move 6, but is not allowed to; it is his turn and he cannot play, so he 

loses. 
 
 

Play 7: the elimination of double negation—intuitionistic rules 

 O   P  
    ! A A 0 
1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ! A 0    

 —  3 ! A 4 

5 ! A 4  —  

O wins (intuitionistic rules). 

 

It should be clear from these two examples that the intuitionistic rules for dialogues 

only concern the structural rules, namely when (in what conditions) a move (challenge or 
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defence) is allowed, but not the particle rules which determine how to challenge a move 

or how to answer a challenge.  

The intuitionistic rules are only a restriction imposed on the classical rules, so if P 

wins a play according to the intuitionistic rules, a fortiori he should win according to the 

classical rules. 

Third example, the double negation of the third excluded: ¬¬(𝑨 ∨ ¬𝑨) 

This example is a combination of the previous two. But whereas the principle of 

third excluded and the principle of double negation elimination are not intuitionistic 

principles (P loses), the double negation of the third excluded ¬¬(𝐴 ∨ ¬𝐴) does actually 

hold with intuitionistic rules. This clearly shows that, for intuitionistic logic, an 

expression is not equivalent to its double negation (the elimination of the double negation 

of the third excluded would not yield the third excluded, which would contradict the first 

example). 
 

Play 8: double negation of third excluded—intuitionistic rules 

 O   P  

    ! (A  A) 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 
 

2 

3 ! ( A  A) 0  —  

 —  3 ! A  A 4 

5 ?∨ 4  ! A 6 

7 ! A 6  —  

 —  3 ! A  A 8 

9 ?∨  8  ! A 10 

P wins (intuitionistic rules). 

 

In this play, P also uses his repetition rank of 2 (move 4 and move 8), but this time 

to challenge move 3 (instead of defending a move). As opposed to the previous examples, 

he does not need to defend a move preceeding the last unanswered challenge, so this play 

in winnable by P in the intuitionistic and in the classical contexts. 
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V. ADVANCED DIALOGUES:  STRATEGY LEVEL 

The strategy standpoint is but a generalisation of the procedure which is implemented 

at the play level; it is a systematic exposition of all the relevant variants of a game—the 

relevancy of the variants being determined from the viewpoint of one of the two players. 

For a more intuitive approach of strategies and a step-by-step introduction of strategies as 

branching tables, see section III.5, p. 59. Such trees with branching tables are a good 

didactic approach to strategies, for the rules in building the tree are the same as those for 

building the plays: we simply use an algorithm yielding all the relevant plays for a player, 

keeping the table presentation we use for plays. The link from plays to strategies is thus 

clearly apparent. This method however is rather cumbersome and becomes unmanageable 

as soon as we deal with games involving more than two choices, the generated trees 

taking too much space. We will here present strategies from another perspective, that of 

extensive forms of dialogical games (more precisely from their core; see below, 

section V.3) rather than the table presentation; the extensive form presentation has this 

advantage over the table presentation that strategies can be linked more straightforwardly 

to demonstrations, which will be useful in chapter IX. This link is crucial to the logical 

framework of dialogues, for the dialogical notion of validity is secured through the notion 

of a winning strategy for the Proponent. Many metalogical results in the dialogical 

framework are obtained by leaving the level of rules and plays to move to the level of 

strategies; winning strategies for a player are one of these metalogical results. 

 

We will here first (section V.1) provide some definitions pertaining to the strategy 

level along with three important results from existing litterature on this level; then 

(section V.2) we will introduce what the core of a strategy is and the assumptions on the 

plays we need in order to extract such a core from the extensive form of a strategy; we 

will then (section V.3) be able to provide the procedure for building a heuristical 

presentation of the core, that is a presentation of the strategy explicitly preserving the link 

with the play level; finally (section V.4) we will provide the procedure for building a 

tree-shaped presentation of the core, which takes up less space than the heuristical (table) 

presentation and makes it easier to establish links between the dialogical framework and 

other logical frameworks. 

V.1 Preliminary notions 

 Definitions V.1.1

Extensive form of a dialogical game:  

The extensive form E(ϕ) of the dialogical game D(𝜙) is simply its tree presentation, also 

called the game-tree. Nodes are labelled with moves so that the root is labelled with the 

thesis and paths in E(ϕ) are linear representations of plays and maximal paths represent 

terminal plays in D(ϕ). 

That is, the extensive form of a dialogical game is an infinitely generated tree in which 

each branch is of a finite length. 
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Strategy 

A strategy for player X in D(𝜙) is a function which assigns an X-move M to every 

non terminal play ζ having a Y-move as last member, such that extending ζ with M 

results in a play.  

X-winning strategy (or X-strategy) 
An X-strategy is winning if playing according to it leads to X-terminal plays no matter 

how Y moves. 

That is, a winning strategy for player X defines the situation in which, for any move 

choice made by player Y, X has at least one possible move at his disposal allowing him 

to win.  

Extensive form of an X-strategy 

Let sx be a strategy of player X in D(ϕ) of extensive form E(ϕ). The extensive form 

of sx is the fragment Sx of E(ϕ) such that: 

1. The root of E(ϕ) is the root of Sx,  

2. For any node t which is associated with an X-move in E(ϕ), any immediate 

successor of t in E(ϕ) is an immediate successor of t in Sx,  

3. For any node t which is associated with a Y-move in E(ϕ), if t has at least one 

immediate successor in E(ϕ) then t has exactly one immediate successor in Sx, 

namely the one labelled with the X-move prescribed by sx. 

Validity 

A proposition is valid in a certain dialogical system if and only if P has a winning 

strategy for it. 

 Some results from existing literature on the strategy level V.1.2

The following three results—extracted from existing literature on the subject—

establish the correspondance between the dialogical framework and other frameworks 

involving classical and intuitionistic logics. We will be using them in order to facilitate 

the building of dialogical demonstrations: the procedure presented in the next section 

(V.2) will use results justified in this literature: for details and the proofs, see in particular 

(Clerbout, 2014a; 2014b) and (Felscher, 1985). 

P-winning strategies and leaves 

Let 𝑤 be a P-winning strategy in D(𝜙). Then every leaf in the extensive form 𝑊𝜙 of 

𝑤 is labelled with an elementary P-sentence. 

Determinacy 

There is an X-winning strategy in D(𝜙) if and only if there is no Y-winning strategy 

in D(𝜙). 

Soundness and Completeness of Tableaux 

Consider first-order tableaux and first-order dialogical games. There is a tableau proof 

for  if and only if there is a P-winning strategy in D(𝜙). 
The fact that the existence of a P-winning strategy coincides with validity (there is 

a P-winning strategy in D(𝜙) if and only if  is valid) follows from the soundness and 

completeness of the tableau method with respect to model-theoretical semantics.  
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This third metalogical result for the standard dialogical framework will be taken 

here for granted (the proof is given for instance in (Clerbout, 2014a)), but we will provide 

in chapter IX the algorithm transforming a P-winning strategy in the framework for 

dialogues for immanent reasoning into CTT-demonstrations and reversewise. 

V.2 Developping a dialogical demonstration: reaching the core 
of a strategy 

Extensive forms of strategies have some redundant information—like the different 

order of moves—that can be set aside by extracting from the strategy its core.
59

  

The core of a strategy will allow us to build translation algorithms from the dialogical 

framework to other logical frameworks; chapter IX will thus use the core of strategies in 

dialogues for immanent reasoning (the dialogical framework incorporating CTT features 

presented in chapters VI-VII) in order to build a translation procedure from winning 

strategies to CTT-demonstrations. 

 

A dialogical game is the set of plays starting with the same thesis (see section IV.1, p. 

65). Bear in mind that the extensive form of a game is simply its tree presentation. Since 

a game takes into account every possible choice for each player, its extensive form has an 

infinite number of branches (each of a finite length, because of the repetition ranks): there 

will be a branch for each possible combination of repetition ranks (O choosing 1 and P 

choosing 1 to 𝑛 yields 𝑛 branches with each combination, then if O chooses 2, P will 

have again the choice from 1 to 𝑛, etc.), there will be a branch for each possible choice of 

instantiation of the quantifiers, there will be different branches for different orders of 

moves, etc. In all these branches, many are not relevant, either because they do not add 

any information, or because the players did not play optimally (one of the greatest 

strengths of the dialogical framework, at least for its philosophical value, is that it allows 

players to play in a non-optimal fashion).  

Extensive forms of strategies do not sift through these informations and thus keep a 

lot of pointless information. To obtain the core of the extensive form of a strategy, that is, 

to obtain only the relevant information for building a strategy for a player, we need some 

kind of heuristic procedure allowing us to deal with such bountiful arborescences. We 

will be using the three metalogical results provided in the previous section (V.1.2), 

pertaining to 1) P-winning strategies and leaves, 2) determinacy, and 3) the link with 

validity. 

 Features essential to the procedure yielding the core of a strategy V.2.1

Here are a series of assumptions, definitions, and rules, that will allow us to speak 

about the plays in the following procedures—the heuristical one (V.3), and the graphic 

tree-shaped one (V.4)—linking the play level and the strategy level of the dialogical 

framework. Since our goal is to build a procedure allowing us to arrive at the strategy 

level through an arborescence of plays, we need to be able to speak about the plays, for 

instance saying which player had which choices in a play, what other options were 

available, and so on. We will name these plays 1, , etc. in order to differenciate them 

from each other; we classify them with respect to the last decision taken (see p. 78). 

Our goal in this chapter is to find the games won by the Proponent; all the relevant 
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See (Rahman & Clerbout, 2015). 
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plays constituting the game therefore need to be P-terminal. But we are more specifically 

looking for a P-strategy, so only O-choices will matter: they are the ones that will show if 

P can win or not, whatever O chooses; that is, even if O plays optimally. Think for 

instance of chess-mate in x moves: what matters are the possible movements for O, and P 

adapts his moves according to the O-move actually played.  

Assumption on repetition ranks 

We assume that the number of repetition rank for O is 1.  

 

The point is that, since O is not restricted by the Copy-cat rule in any of its forms 

(including the Socratic rule), she can always choose the move that is the best for her own 

interests, and even if she makes a bad choice in a play, she can correct it in a new play. 

Thus, rank 1 is sufficient. 

 

We choose a repetition rank for P allowing him to win the first play (but not 

necessarily every possible play). Once the first play is won by P, the procedure will allow 

him to choose another repetition rank for a new play.  

 

Finding the right repetition rank for P that will always allow him to win is one of 

the objectives of developing demonstrations. 

Assumption on move preferences for O 

When O has to choose an individual constant she will always choose a new one.  

 

The reason is pretty straight-forward: it is the best possible choice for O. Since P is 

restricted by the Copy-cat rule, he needs to rely on O's choices in order to apply a Copy-

cat move. In such a context, the only way to (try to) block the use of the Copy-cat move is 

to always choose a new constant, whenever a choice is to be made. Thus, this assumption 

is in O’s best interest. 

 

When O can challenge a move where P has several defensive options, O will 

launch the challenge before carrying out other moves. 

 

The reason is similar to the previous one: it is better for O to force P to make his 

choice as soon as possible. 

O-Decisions 

We say that O makes a decision in n in the following cases: 

(i) When she challenges a conjunction or an existential: she must choose 

which side to ask for. 

(ii) When she defends a disjunction: she must choose one of the sides of the 

disjunction. 

(iii) When she has an implication to defend: she must choose either to defend it 

(state the consequent) or to counterattack, that is to launch a challenge on 

P’s attack of the implication (where he stated the antecedent of the initial 

implication). 

(iv) When she defends an existential: she chooses a (new) constant. 

(v) When she challenges a universal: she chooses a (new) constant. 
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Assumption on O-decisions 

The following procedure only takes into consideration decisions of type i) challenge a 

conjunction or existential, ii) defend a disjunction, and iii) defend an implication: 

decisions of type iv) defend an existential, and v) challenge a universal, are not really 

options since our assumptions stipulate that O will always choose a new constant and 

challenge if she can. 

 

Table 11: O-decisions in a play 

O has a choice and takes a decision when 

O challenges a… O defends a… 

Conjunction Disjunction 

Existential Implication 

Choices: using up the available options 

We say that a decision has used up the available options if and only if this decision 

chooses an option when the other option has previously been chosen.  

 

We say that a decision has not used up the available options when, because of O’s 

repetition rank 1, she chooses one of two available options, the other option not having 

been previously chosen: this second option, which remains unchosen, is said unused.  

Definition of dependent moves 

We say that a move M depends on the move M' if there is a chain of applications of 

(particle) rules leading from M' to M.
60

 

Left and right decisions 

We speak of a left-decision when O 

 decides to defend the left side of a disjunction, or 

 decides to challenge the left side of a conjunction, or 

 decides to counterattack instead of defending an implication. 

 

We speak of a right-decision when O 

 decides to defend the right side of a disjunction, or 

 decides to challenge the right side of a conjunction, or 

 decides to defend her implication (instead of counterattacking).  

Last unused decision 

The last decision is the last decision taken by O in a play 𝑚—proceeding bottom up in 

the order of the moves—such that this decision does not use up the available options.  

Labeling decisions: conjunctions and disjunctions 
We label the moves for which a decision has been taken. For a disjunction or a 

conjunction, we simply add a label on the right hand side of the move: 

                                                 
60

 Dependent moves are important for building subplays triggered by P challenging an O-

implication: the moves depending on O counterattacking must be separated from the moves depending on 

O defending her implication. 
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 [𝛿𝑛 , … ]  when the left decision has been taken but the the right option is still 

unused; or  

 [… , 𝛿𝑛] when the right decision has been taken but the left option is still unused. 

 [𝛿𝑚 , 𝛿𝑛]  when both options have been chosen (the decision is thus used up): 

the left decision has been taken in play 𝑚 and the right decision in play 𝑛.  

 

The label [𝛿3 , … ] for instance spells out that the left decision has been taken in 

play 3, but that the right option has not at that point been chosen before. The label 

[𝛿3 , 𝛿5] indicates that the left decision has been taken in play 3 and the right in play 5, so 

that from play 5 and on, this decision is considered used up.  

Labeling decisions: implications and subplays (branching rule) 

When O makes a decision for an implication in the play n, she opens two new 

subplays (and not plays) n.L and n.R, one after the other, such that  

 n.L indicates the subplay where O decides to counterattack (left decision), and 

 n.R indicates the subplay where O decides to defend (right decision). 

We say that the available choices for an implication have been used up if both of the 

subplays have been opened. 

 

The idea of dividing the play into two subplays is to avoid giving P an unfair 

advantage: he cannot use what is given in the development of the left subplay within the 

development of the right one; P must be able to win without using the information of the 

other subplay. These are not full plays—contrary to the plays opened by using up a 

decision-option concerning conjunction or disjunction—, but these subplays are only a 

division of the play: it is as if there were no splitting, but we do it in order to check the 

moves P uses.  

It must be noted that the procedure prescribes to start with the subplay involving the 

counterattack (see the second move preference for O, p. 77); but once the counterattack 

on the antecedent has been launched, the repetition rank 1 has been used up. Thus, in the 

second subplay involving the defence, a challenge to the antecedent of the implication is 

no longer available. This shows that the two subplays are only a graphical device to 

present both options within the same (main) play. This is possible because O is not 

restricted by the Copy-cat rule and so, contrary to P, never needs the information 

provided in the other subplay in order to win. This branching rule simply divides the two 

decision-options of O in two subplays. 

The opening of two subplays is called the Branching rule in (Rahman & Keiff, 

2005, pp. 273-275). This rule has a strategic motivation, not a play level one. The reason 

is that we are after the development of a demonstration (this is the point of this chapter 

and the procedure for obtaining the core of a strategy). It is also possible to develop a 

notation where both responses are in the same play, counterattack as well as defence, but 

this comes with a heavy notation. Moreover, in the present study we have repetition ranks 

and thus we can use them: the rank 1 of O blocks from the branch involving the defence 

of the implication the problematic second counterattack upon P's-challenge.
61

 This shows 

that the subplays are really two options in the same (main) play. 
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 For a discussion of this problem see section 1.6 in (Rahman, Clerbout, & Keiff, 2009). 
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Starting a subplay 

Each subplay starts with the O-move immediately succeeding the P-move 

challenging the O-implication. 

 

So if the implication was challenged in move n of play n, then both n.L and n.R 

start with move n+1. 

  

The first move of the play n.R is the defence of the challenge. Graphically, dots 

are inserted in the upperplay in the space of the defence, and in the subplay in the space 

of the challenge. 

Moving from subplays to upperplays 
O’s moves in a subplay may allow P to make a move in the upperplay. In such a 

case, the move in the upperplay depending on a move in a subplay will be indexed with 

its origin (e.g. 12 [n.R]). 

 

Play 9: Illustration of subplays and upperplays 

𝓟𝟏 O P 

     !((𝐴 ⊃ 𝐵) ⊃ 𝐴) ⊃ 𝐴 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 
3 ! (𝐴 ⊃ 𝐵) ⊃ 𝐴 0  

! 𝐴 6 [𝓟𝟏𝑳] 

! 𝐴 6 [𝓟𝟏𝑹] 

  …  3 ! 𝐴 ⊃ 𝐵 4 

 

𝓟𝟏𝑳 5 ! 𝐴 4    

P wins 

 

𝓟𝟏𝑹 5 ! 𝐴   …  

P wins 

P- and O-terminal plays 

The playn is P-terminal if and only if every path starting with the thesis, continuing 

with n.L, n.R and all further subplays, are P-terminal.  

 

The playn is O-terminal if and only if one of the paths is O-terminal. 

V.3 Heuristical presentation of the core (succession of plays) 

Assume we have a play n won by P where O played according to the 

assumptions mentioned above (pertaining to repetition ranks, move preferences and O-

decisions). The following procedure allows us to build a collection of the relevant plays 

for a P-strategy, taking into account all the O-decisions. The core of a P-winning strategy 

for the thesis is the collection of plays thus generated: 1, ….

 

Note: the final repetition rank for P is the highest repetition number chosen in i . 
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 Procedure V.3.1

Step 0: starting with P-terminal 1 

The process starts with a P-terminal play1 for which O’s repetition rank is 1, P’s 

rank is high enough to allow him to win the first play. If you cannot find one, then stop 

the process: P does not have a winning strategy. 

Step 1: unused decisions? 

If there is no (remaining) unused decision to be taken by O in n then go to step 4. 

Otherwise go to step 2. 

Step 2: using up decisions 

Proceeding bottom up in the flow of moves, take in n O’s last unused decision:
62

   

 if it concerns a conjunction or a disjunction and has not been labeled yet, label it 

[𝛿𝑛, … ] or [… , 𝛿𝑛] respectively for a left or right decision; 

 if it concerns a conjunction or disjunction which has already been labeled, open a 

new play by applying one of the following substeps 2.1 or 2.2, as the case may be; 

 if it concerns an implication, open two subplays following substep 2.3. 

 

Note: when a new play is opened P may change his repetition rank. 

Step 2.1: the decision concerns a challenge on a conjunction or an existential 

If n concerns the challenge of a conjunction or existential, then open a new play 

m=n+1 in which the move uses the other decision-option: 

 P may change his repetition rank; 

  if the decision in n was a right-decision, take now the left-decision and 

reversewise to end up with both sides of the conjunction being challenged in the 

two different plays, m and n.  

 Label the decision in m as [m, n] or [n, m], respectively, if it is a left decision 

or a right decision, to indicate that it used up both of the available decision-

options.  

 The new play then proceeds as if the n challenge of the conjunction or 

existential had not taken place.
63

 

 The n moves previous to 𝛿𝑛 are imported into the new play.  

 If the new play is O-terminal, go to step 3; otherwise, go to step 1. 
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 The bottom up procedure can be understood through two aspects:  

 from the viewpoint of O: she is trying to win a play but with the minimal cost; so if she can win by 

changing a minimum amount of moves, she will choose that option. The last decision reveals this 

economy: if O changed the first decision, then all of the play would have to be replayed; whereas 

simply changing the last decision allows to keep all the rest. If this last decision was not the faulty 

decision bringing her to lose, then she goes to the decision before last, etc. up to the very first 

decision. 

 From the viewpoint of the logician: the bottom up procedure allows us to build the core of the 

strategy: it reveals what is important in the strategies. 
63

 The idea is that O has just lost the previous play with the left- or right-decision she made; so she is now 

looking for what has gone wrong and tries to change her way of playing in order to win. Her last decision 

was the left- or right-decision for the conjunction; so a way of seeing if she can win is to start the game 

again with exactly the same moves up to this decision, choose the other decision this time, and play with 

that. This is the whole idea of the core: allowing O to go through all of her possible decisions, and if in this 

rational way of proceeding that takes all of her opportunities into account, P still wins, then P has a winning 

strategy. The core is all of these relevant plays, bringing the strategy to its minimal aspect. 
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Step 2.2: the decision concerns a defence of a disjunction 

If n concerns a defence of a disjunction, then open a new play m=n+1 in which the 

move uses the other decision-option: 

 P may change his repetition rank; 

 if the decision in n was a right decision, take now the left decision and 

reversewise to end up with both sides of the disjunction being defended in the two 

different plays, m and n.  

 Label the decision in m as [m, n] or [n, m], respectively, if it is a left decision 

or a right decision. 

 The new play then proceeds as if the n defence of the disjunction had not taken 

place. 

 The n moves previous to 𝛿𝑛 are imported into the new play.  

 If the new play is O-terminal, go to step 3; otherwise, go to step 1. 

Step 2.3: the decision concerns an implication 

Recall that the two decision-options for O when one of her implications is 

challenged is either to counterattack (challenging the antecedent posited by P), or to 

defend the implication (providing the consequent), and that the branching here is not the 

starting of two new plays, as for the conjunction, existential, and disjunction, but only 

two subplays. 

 

 If O counterattacks, start a new subplay n.L in which figure all the moves 

depending on O counterattacking (and not on O defending her implication). 

If the development of the subplay yields that n is O-terminal, go to step 3; 

otherwise go to step 1. 

 

 If O defends an implication, start a new subplay n.R in which figure all the 

moves depending on O defending her implication (and not on the counterattack). 

If the development of the subplay yields that n is O-terminal, go to step 3; 

otherwise go to step 1. 

Step 3: O-terminal plays 

If there is no (remaining) unused decision to be taken by O in play m and m is 

O-terminal, then stop the process and start again at Step 0 with another play '0 won 

by P—if you can find any; if you cannot find any other play won by P, it simply means 

he lost and O has a way of winning. 

Step 4: stopping the process 

If there is no (remaining) unused decision to be taken by O in play m and m is 

P-terminal, then stop the process.  P has a winning strategy. 

 

Two examples of the heuristical procedure 

To illustrate this procedure, let us take two examples:   

1. the first on the thesis ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 for which a strategy has already been 

provided in the solution of the exercise of section III.5, p. 61;  
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2. the second on the thesis (((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶)) ∧ ((𝐷 ∨ 𝐸) ⊃ (𝐷 ∨ 𝐸)), 64 

which has many O-decisions to be processed.  

 

Note: the labels are added after the play has been carried out, they do not belong to 

the play but are labels to navigate between the different plays. 

First example: ((𝑨 ∨ 𝑩) ∧ ¬𝑨) ⊃ 𝑩 

We start the procedure with step 0: we build a P-terminal play 𝓟𝟏  with O’s 

repetition rank being 1: 

 

𝓟𝟏 O P 

     ! ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ! (𝐴 ∨ 𝐵) ∧ ¬𝐴 0    

 5 ! A  3 ? 𝑅∧ 4 

 7 ! A  B  3 ? 𝐿∧ 6 

 9 ! 𝐴  7 ?∨ 8 

    5 ! 𝐴 10 

P wins (intuitionistic rules) 

 

Now that we have our P-terminal play 𝓟𝟏, we can proceed to step 1, finding unused 

O-decisions. Recall the O-decisions given in section  V.2.1  p. 78: 

 

O has a choice and takes a decision when 

O challenges a… O defends a… 

Conjunction Disjunction 

Existential Implication 

 

In 𝓟𝟏 O takes a decision move 9, when she defends a disjunction. So we proceed to 

step 2 of the procedure: going bottom up in the flow of the moves (from move 10 to 

move 0) we stop on the last unused decision—which, going bottom up is the first 

decision for which the two decision-options have not already been taken—, and so we 

stop move 9. This decision concerns a disjunction and has not been labelled yet, so we 

insert a label, that of the left-decision because O provided the left disjunct in her defence. 

 

𝓟𝟏 O P 

     ! ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ! (𝐴 ∨ 𝐵) ∧ ¬𝐴 0    

 5 ! A  3 ? 𝑅∧ 4 

                                                 
64

 Notice that the structure of this thesis is the following one, using schematic letters:  

(((𝑋 ∨ 𝑌) ∧ ¬𝑋) ⊃ 𝑌) ∧ (𝑍 ⊃ 𝑍). 
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 7 ! A  B  3 ? 𝐿∧ 6 

 9 ! 𝐴 [𝛿1, … ]  7 ?∨  8 

    5 ! 𝐴 10 

P wins (intuitionistic rules) 

 

We go to step 1: there is an unused decision, so we go to step 2: going bottom up, 

we stop again on move 9 since that decision has still not been used up (the right decision-

option has not been used). Since there is already a label on this decision, we open a new 

play 𝓟𝟐 by following step 2.2. Since we open a new play, P may choose to change his 

repetition rank. Let us assume he does not. In this play 𝓟𝟐, O will be taking the left 

decision-option, so every move up to move 9 remains identical, move 9 is the defence of 

the right disjunct, which we label [𝛿1, 𝛿2] to show both decision-options have been used, 

and we proceed with the play 𝓟𝟐 from there on. 

 

𝓟𝟐  O   P  

     ! ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ! (𝐴 ∨ 𝐵) ∧ ¬𝐴 0  ! 𝐵 10 

 5 ! A  3 ? 𝑅∧ 4 

 7 ! A  B  3 ? 𝐿∧ 6 

 9 ! 𝐵 [𝛿1, 𝛿2]  7 ?∨ 8 

P wins (intuitionistic rules) 

 

Since the play 𝓟𝟐 is not O-terminal, we do not go to step 3 but go to step 1 again, 

and then to step 2: we scan in 𝓟𝟐 bottom up for the last unused decision, and since there 

are none left, we proceed to step 4. There is no unused decision left in 𝓟𝟐 and the play is 

P-terminal, so we stop the process. P has a winning strategy. 

The core for the thesis ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 is the collection of plays 1 and2; 

this result demonstrates the validity of the thesis, based on the third melalogical result 

provided in section  V.1.2, p. 75 on the soundness and completeness of tableaux.  

Second example: (((𝑨 ∨ (𝑩 ∧ 𝑪)) ∧ ¬𝑨) ⊃ (𝑩 ∧ 𝑪)) ∧ ((𝑫 ∨ 𝑬) ⊃
(𝑫 ∨ 𝑬)) 

𝓟𝟏  O   P  

 
    

! (((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶))

∧ ((𝐷 ∨ 𝐸) ⊃ (𝐷 ∨ 𝐸)) 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∧ 0  !  ((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶) 4 

 
5 

! (𝐴 ∨ (𝐵 ∧ 𝐶))

∧ ¬𝐴 
4    

 7 ! 𝐴 ∨ (𝐵 ∧ 𝐶)  5 ? 𝐿∧ 6 

 9 ! 𝐴 [𝛅𝟏, … ]  7 ?∨  8 
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 11 ! ¬𝐴  5 ? 𝑅∧ 10 

    11 𝐴 12 

P wins. 

 

The last decision (move 9) has not been used up; it is a left-decision, so we label it 
[1, …].  

 

 

O can now open a new play 2 in which she defends the other available option: the 

right disjunct: 

 

𝓟𝟐  O   P  

 
    

! (((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶))

∧ ((𝐷 ∨ 𝐸) ⊃ (𝐷 ∨ 𝐸)) 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∧ 0  !  ((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶) 4 

 
5 

! (𝐴 ∨ (𝐵 ∧ 𝐶))

∧ ¬𝐴 
4    

 7 ! 𝐴 ∨ (𝐵 ∧ 𝐶)  5 ? 𝐿∧ 6 

 9 ! B ∧ C [δ1, 𝛅𝟐]  7 ?∨  8 

 11 ? L∧ [𝛅𝟐, … ] 10  ! 𝐵 14 

 13 ! 𝐵  9 ? 𝐿∧ 12 

P wins. 

 

The available decision-options in 2 pertaining to the disjunction have both been 

used up: we now have the label [1, 2] showing this fact.  

 

 

The last decision [2, …] (move 11) has not been used up so O can now open a new 

play 3 in which she challenges the right-hand side of the conjunction: at move 11 in 

3, O does not play ? 𝐿∧ but ? 𝑅∧. We therefore delete all the moves after move 11; we 

keep exactly the same moves up to move 11, and we change move 11 to the other 

decision-option: ? 𝑅∧. We then proceed as if the other play had not taken place: 

 

𝓟𝟑  O   P  

 
    

! (((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶))

∧ ((𝐷 ∨ 𝐸) ⊃ (𝐷 ∨ 𝐸)) 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∧ [𝜹𝟑, … ] 0  !  ((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶) 4 
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5 

! (𝐴 ∨ (𝐵 ∧ 𝐶))

∧ ¬𝐴 
4  ! 𝐵 ∧ 𝐶 10 

 7 ! 𝐴 ∨ (𝐵 ∧ 𝐶)  5 ? 𝐿∧ 6 

 9 ! B ∧ C [δ1, 𝛅𝟐]  7 ?∨  8 

 11 ? R∧ [δ2, 𝛅𝟑] 10  ! 𝐶 14 

 13 ! 𝐶  9 ? 𝑅∧ 12 

P wins. 

 

Both of the available challenges of the conjunction have been used up in 3: we 

label this move [2, 3] to show this fact.  

 

 

O has one more unused decision left, namely move 3. So we add the label [3, ] to 

that move and start a new play 4 with O choosing the other option, that is, attacking the 

left-hand side of the conjunction in the thesis:  

 

𝓟𝟒  O   P  

     ! (((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶)) ∧ ((𝐷 ∨ 𝐸) ⊃ (𝐷 ∨ 𝐸)) 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∧ [𝛿3, 𝜹𝟒] 0  ! (𝐷 ∨ 𝐸) ⊃ (𝐷 ∨ 𝐸)  4 

 5 ! 𝐷 ∨ 𝐸  4  ! 𝐷 ∨ 𝐸 6 

 7 ?∨ 6  ! 𝐷 10 

 9 ! 𝐷 [𝜹𝟒, … ]  5 ?∨  8 

P wins. 

The decision-options in move 3 have all been used up in 4. 

  

 

Repeating step 2, a new unused decision appears: move 9, which is labelled 

accordingly [4, …]; we start a new play 5 with O defending the right-hand side of the 

disjunction:
 

𝓟𝟓  O   P  

     ! (((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶)) ∧ ((𝐷 ∨ 𝐸) ⊃ (𝐷 ∨ 𝐸)) 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∧ [𝛿3, 𝛿4] 0  ! (𝐷 ∨ 𝐸) ⊃ (𝐷 ∨ 𝐸)  4 

 5 ! 𝐷 ∨ 𝐸  4  ! 𝐷 ∨ 𝐸 6 

 7 ?∨ 6  ! 𝐸 10 

 9 ! 𝐸 [𝛿4, 𝜹𝟓]  5 ?∨  8 
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P wins. 

 

Every possible option for O has now been tried out, we arrive at step 4, the 

procedure stops and defeat for O must be acknowledged: each of the plays are won by P.  

The core for the thesis (((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶)) ∧ ((𝐷 ∨ 𝐸) ⊃ (𝐷 ∨ 𝐸))  is the 

collection of plays  1, 2, 3, 4 and 5; this result demonstrates the validity of the 

thesis; to obtain a tree representation of it, see the next section. 

V.4 Graphic presentation of the core (tree-shaped) 

The heuristic procedure provided above shows plainly how the play level is linked 

to the strategy level; there is a continuity between the two. The downside of that method 

is that it becomes cumbersome as soon as there a more than a couple of O-choices to take 

into account; we rather use, for the strategy level, a tree presentation, which is much 

easier to manage and provides the added benefit that metalogical correspondences with 

sequent calculus and CTT-demonstrations are simplified, making the validity of 

dialogical demonstrations more straightforward to see (cf. chapter  IX). 

The graphic presentation without the heuristic procedure 

The graphic tree presentation of the core corresponds to a tree in which the nodes 

are the players’ moves displayed in vertical sequences of dialogical P-steps and O-steps;   

O-decisions trigger a branching in the tree yielding the different plays of the core. 

  

Here is a simple way to sketch the procedure for the development of such a tree: 

1. The root of the tree is the thesis. 

2. The next step is either O challenging the thesis or O positing the required initial 

concessions. 

3. The tree develops as a vertical sequence of dialogical P- and O-steps, until the 

first O-decision occurs.  

4. When the first O-decision occurs, split the tree in two branches and explore one of 

them. 

5. If the branch ends with an O-move, then O won and the procedure terminates. 

6. Otherwise, start exploring the second main branch and so on until the end. 

 

Note: As opposed to the heuristic method presented above, the graphic (tree-shaped) 

presentation of the core is built top to bottom, that is from the first decision of the first 

play and not from the last decision of the first play.  



Clearly, the whole demonstration—or P-winning strategy for the given thesis—

could be developped directly in such a tree from, without going through the table 

presentation of the heuristic procedure. But the table presentation highlights the 

dialogical background from which the strategy emerges, and shows the continuity 

between the two levels.  

It is important to stress this continuity because the play level is what differentiates 

the dialogical framework from proof-theory; but without the heuristic procedure, there 

seems to be a cleft in the framework between strategies and plays: there is one method for 

plays (table dialogues) and one method for strategies (trees), but nothing showing how 

the two levels unite. The two perspectives (plays and strategies) could thus be considered 

separate, and have often been, proof-theoricians feeling concerned only with the 
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dialogical demonstrations of the strategy level and not with the play level. We however 

believe the two levels are closely linked, and that the framework’s strength and 

fruitfulness stems from its capacity to move seamlessly from one perspective to another. 

The heuristic procedure is a way of showing this link, which will be further stressed in 

section VII.7 through the notion of strategic reasons, and in chapter X; harmony and 

symmetry mentionned above (IV.3, p. 67) is another one.  

We will therefore provide a procedure for building a graphic presentation of the 

core, but assuming that the heuristic procedure has been carried out and that the strategy 

is thus at hand. 

 Building the graphic (tree-shaped) presentation of the core V.4.1

We assume we actually have carried out the heuristic procedure for finding the core 

of a P-strategy, and have found one. We will thus be using the same assumptions as for 

the heuristic procedure concerning O’s repetition rank, her move preferences and 

decisions (see V.2.1 p. 76). Here are the instructions for transforming the core of a P-

strategy from the heuristic table presentation to the graphical tree presentation; thus 

simply providing a new exposition of the core. 

Dissociating the core from the plays it stems from 

Take the collection of plays constituting the core that the heuristic procedure has 

yielded; proceed in the following way, from the first play to the last, and in each play 

from top to bottom, in order to erase the table presentation of the plays but without 

deleting any information; this is simply a new exposition of the core, we need to be able 

to go back to the other exposition and not lose important information along the way. 

Repetition ranks are made implicit: they do not appear in the tree but still regulate the 

players’ moves. 

i. Start the tree with the number of the move for the thesis (that is 0); 

ii. Insert to the right of the number of the move the name of the player (P); 

iii. Insert to the right of the player: 

a.  “! proposition” if the move is a statement and the proposition 

stated, or 

b.  “? request” if the move is a request and the matter of the request; 

iv. Proceed from there on, following the order of the moves, by writing each 

player’s move one under the other according to the same notation as in 

steps i-iii: 
[number of move][P/O][! proposition/? request] 

 

v. Insert to the right of each proposition the following indication: 

a. If the move is a challenge, add [? 𝑛], where 𝑛 is the number of the 

move being challenged. 

b. If the move is a defence, add [! 𝑛], where 𝑛 is the number of the 

move launching the challenge to which this move is a response.  

Note: this is much like erasing the lines of the dialogue table and writing 

the moves one under the other. 

 

vi. When you come across an O-decision, insert between the move and the 

indication of it being a challenge or a defence the indication of the O-

decisions provided by the heuristic procedure, and branch the tree: 

a. In the left branch of the tree, continue down the play implementing 

O’s left decision-option; 
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b. in the right branch of the tree, continue down the play 

implementing O’s right decision-option. 

Two examples of the graphic presentation of the core 

In order to illustrate the procedure for building a graphic (tree-shaped) presentation 

of the core of the extensive form of a P-winning strategy, but also to show plainly the 

similarities with and the differences from the heuristic procedure, we will take the same 

two examples as in the previous section (V.3, see p. 83 for the first example and p. 84 for 

the second) and build a graphic presentation of their core. 

First example: ((𝑨 ∨ 𝑩) ∧ ¬𝑨) ⊃ 𝑩 

We start by writing the number of the move of the thesis (0), the name of the player 

(P), the force of the utterance (statement: !) and the proposition stated, that is ((𝐴 ∨ 𝐵) ∧

¬𝐴) ⊃ 𝐵). This is the root of the tree: 

0 𝑷! ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 

We then proceed down the first play of the core, 1, and write each move one 

under the other, recording the challenges and defences, until reaching an O-decision: 

 

0 𝑷! ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 

1 𝑶! 𝑚 ≔ 1 

2 𝑷! 𝑛 ≔ 2 

3 𝑶 ! (𝐴 ∨ 𝐵) ∧ ¬𝐴 [? 0] 
4 𝑷? 𝑅∧[? 3] 
5 𝑶 ! ¬𝐴 [! 4] 
6 𝑷 ? 𝐿∧[? 3] 
7 𝑶! 𝐴 ∨ 𝐵 [! 6] 
8 𝑷 ?∨ [? 7] 

 

We have reached the move 9 which requires O to make a decision. So we branch 

the tree and carry on each branch, with the left branch being 1 from move 9 down, and 

the right branch being 2 from move 9 down:  

 

0 𝑷! ((𝐴 ∨ 𝐵) ∧ ¬𝐴) ⊃ 𝐵 

1 𝑶! 𝑚 ≔ 1 

2 𝑷! 𝑛 ≔ 2 

3 𝑶 ! (𝐴 ∨ 𝐵) ∧ ¬𝐴 [? 0] 
4 𝑷? 𝑅∧[? 3] 
5 𝑶 ! ¬𝐴 [! 4] 
6 𝑷 ? 𝐿∧[? 3] 
7 𝑶! 𝐴 ∨ 𝐵 [! 6] 
8 𝑷 ?∨ [? 7] 

 

 

 

9 𝑶! 𝐴 [𝛿1, … ][! 8] 
10 𝑷 !  𝐴 [? 5] 

 9 𝑶 ! 𝐵 [𝛿1, 𝛿2][! 8] 
10 𝑷 ! 𝐵 [! 3] 
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P wins  P wins 

We have thus transformed the heuristic presentation of the core into its graphic tree 

presentation that keeps the information of the play level and yet provides a synoptic view 

of all the relevant plays for a P-winning strategy. 

Second example:(((𝑨 ∨ (𝑩 ∧ 𝑪)) ∧ ¬𝑨) ⊃ (𝑩 ∧ 𝑪)) ∧ ((𝑫 ∨ 𝑬) ⊃ (𝑫 ∨ 𝑬)) 

Applying the same procedure to the heuristic presentation of the core for this 

second thesis, we obtain the following tree presentation of the core. Since there are five 

plays in the core (1-5), there will be four branchings in the tree: 

 

0 𝑷 ! (((𝐴 ∨ (𝐵 ∧ 𝐶)) ∧ ¬𝐴) ⊃ (𝐵 ∧ 𝐶)) ∧ ((𝐷 ∨ 𝐸) ⊃ (𝐷 ∨ 𝐸)) 

 

 

 

 

 

1 O?𝐿∧ [3, …] [?, 0]     1 O ? 𝑅∧ [3, 4] [?0] 

2 P ! ((A  (B  C))  A) (B  C) [!, 1]  2 P !(D  E)  (D  E) [!, 1] 

3 O ! (A  (B  C))  A [?, 2]    3 O ! D  E [?, 2] 

4 P?𝐿∧
 [?, 3]     4 P ! D  E [!, 3] 

5 O !  A  (B  C) [!, 4]    5 O ?∨ [?, 4] 

6 P ?∨ [?, 5]      P ?∨ [?, 3] 





7 O ! A [1, …] [!, 6] 7 O ! (B  C) [1, 2] [!, 6]    

8 P ? 𝑅∧
 [?, 3]  8 P! (B  C) [!, 3]  7 O ! D [4, …] [!, 6]    7 O ! E [4, 5] [!, 6] 

9 O ! A[!, 8]     8 P ! D [!, 5]  8 P ! E [!, 5] 

10 P ! A [!, 9]     P WINS   P WINS 

P WINS    

  

9 O? 𝐿∧ [2, …] [?, 8] 9 O? 𝑅∧ [2, 3] [?, 8] 

 10 P ? 𝐿∧
 [?, 7]  10 P? 𝑅∧ [?, 7] 

 11 O ! B [!, 10]  11 O ! C [!, 10] 

 12 P ! B [!, 9]  12 P ! C [!, 9] 

P WINS  P WINS 
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VI. LOCAL REASONS AND DIALOGUES FOR IMMANENT 
REASONING 

In this chapter we will provide the logical framework of dialogues for immanent 

reasoning, the dialogical framework incorporating features of Constructive Type Theory 

and making explicit the players’ reasons for asserting a proposition. We will therefore be 

using the material provided in chapters II-V on CTT and on the standard dialogical 

framework and assume the reader is familiar enough with it. The framework of dialogues 

for immanent reasoning takes a further step in the task of making explicit the dynamic 

foundations of reasoning, based on equality in action: reasons adducing statements are 

introduced in the object-language, and the Proponent’s task in formal dialgoues is to 

force the Opponent to provide herself the reasons the Proponent needs in order to justify 

his thesis; once the Opponent has produced her reasons, the Proponent uses equality rules 

(the Socratic rule for instance) to copy these reasons and use them to his own ends. In this 

respect, CTT proof-objects are adapted to the dialogical framework, yielding two new 

elements in our framework: local reasons, the backbone of dialogues for immanent 

reasoning at the play level which will be introduced in this chapter and the next (VI-VII); 

and strategic reasons, justifications at the strategy level corresponding to proof-objects 

which will be the object of chapter IX. Having local reasons in the dialogical framework 

provides a structure in which the reasons given and asked for actually appear in the 

object-language, and the Proponent can then (locally) justify his statements by explicitly 

copying the Opponent’s reasons for his own statements. 

This chapter will first present the motivation behind dialogues for immanent 

reasoning (a dialogical framework) by providing some philosophical considerations in 

relation to the modern developments of logic (section VI.1), thus extending the enquiries 

initiated in the introduction. A second section (VI.2) will present a limit of the current 

study, that is the link between local reasons and material truth, in order to better grasp the 

potency of local reasons, but also to better understand the scope of formal plays through 

this insight into what they are not; more on material dialogues can be found in the last 

chapter (X). A third section (VI.3) will introduce progressively the rules defining local 

reasons in formal plays: formation rules (VI.3.1), the synthesis rules (VI.3.2), and the 

analysis rules (VI.3.3). A fourth section (VI.4) will expatiate on the link between local 

reasons and equality before providing an example with step-by-step explanations in order 

to grasp the meaning of the rules presented and how they intertwine in an actual play. 

This chapter is to be read in connection with the following two chapters (VII-

VII.7): chapter VII provides the rules for dialogues for immanent reasoning without much 

explanations, considering that this chapter VI is enough to follow on local reasons; it thus 

provides the local and global meanings for immanent reasoning, as well as the rules for 

the strategy level using local reasons; chapter VII.7 develops extensively the case of the 

Axiom of Choice and how the framework of dialogues for immanent reasoning is capable 

of dealing with it. The presentation of this framework will nonetheless be incomplete 

until strategic reasons are introduced in chapter IX, wrapping up in a notion the 

specificities of this framework, and yet still dovetailing other logical frameworks. 

VI.1 Introductory remarks on the choice of CTT 

Recent developments in dialogical logic show that the Constructive Type Theory 

approach to meaning is very natural to the game-theoretical approaches in which 
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(standard) metalogical features are explicitly displayed at the object language-level.
65

 

This vindicates, albeit in quite a different fashion, Hintikka’s plea for the fruitfulness of 

game-theoretical semantics in the context of epistemic approaches to logic, semantics, 

and the foundations of mathematics.
66

  

From the dialogical point of view, the actions—such as choices—that the particle 

rules associate with the use of logical constants are crucial elements of their full-fledged 

(local) meaning: if meaning is conceived as constituted during interaction, then all of the 

actions involved in the constitution of the meaning of an expression should be made 

explicit; that is, they should all be part of the object-language.  

This perspective roots itself in Wittgenstein’s remark according to which one 

cannot position oneself outside language in order to determine the meaning of something 

and how it is linked to syntax; in other words, language is unavoidable: this is his 

Unhintergehbarkeit der Sprache, one of Wittgenstein’s tenets that Hintikka explicitly 

rejects.
67

 According to this perspective of Wittgensteins, language-games are supposed to 

accomplish the task of studying language from a perspective that acknowledges its 

internalized feature. This is what underlies the approach to meaning and syntax of the 

dialogical framework in which all the speech-acts that are relevant for rendering the 

meaning and the "formation" of an expression are made explicit. In this respect, the 

metalogical perspective which is so crucial for model-theoretic conceptions of meaning 

does not provide a way out. It is in such a context that Lorenz writes:  
Also propositions of the metalanguage require the understanding of propositions, […] 

and thus cannot in a sensible way have this same understanding as their proper object. The 

thesis that a property of a propositional sentence must always be internal, therefore amounts 

to articulating the insight that in propositions about a propositional sentence this same 

propositional sentence does not express a meaningful proposition anymore, since in this case 

it is not the propositional sentence that is asserted but something about it. 

Thus, if the original assertion (i.e., the proposition of the ground-level) should not be 

abrogated, then this same proposition should not be the object of a metaproposition […].
68

 

While originally the semantics developed by the picture theory of language aimed at 

determining unambiguously the rules of “logical syntax” (i.e. the logical form of linguistic 

expressions) and thus to justify them […]—now language use itself, without the mediation of 

theoretic constructions, merely via “language games”, should be sufficient to introduce the 

talk about “meanings” in such a way that they supplement the syntactic rules for the use of 

ordinary language expressions (superficial grammar) with semantic rules that capture the 

understanding of these expressions (deep grammar).
69

 

Similar criticism to the metalogical approach to meaning has been raised by Göran 

Sundholm (1997; 2001) who points out that the standard model-theoretical semantic turns 

semantics into a meta-mathematical formal object in which syntax is linked to meaning 

by the assignation of truth values to uninterpreted strings of signs (formulae). Language 

does not express content anymore, but it is rather conceived as a system of signs that 

speak about the world—provided a suitable metalogical link between the signs and the 

world has been fixed. Moreover, Sundholm (2016) shows that the cases of quantifier-

dependences motivating Hintikka’s IF-logic can be rendered in the CTT framework. 

What we will here add to Sundholm’s observation is that even the interactive features of 
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 See for instance (Clerbout & Rahman, 2015) (Rahman & Clerbout, 2013; 2015), (Dango, 2014; 

2015; 2016), (Jovanovic, 2013; 2015), (Rahman, Clerbout, & McConaughey, 2014) (Rahman, Clerbout, & 

Jovanovic, 2015). 
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 Cf. (Hintikka, 1973; 1983; 1996b).  
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 Hintikka (1997) shares this rejection with all those who endorse model-theoretical approaches to 

meaning. 
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 (Lorenz, 1970, p. 75), translated from the German by Shahid Rahman. 
69

 (Lorenz, 1970, p. 109), translated from the German by Shahid Rahman.
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these dependences can be given a CTT formulation, provided the latter is developed 

within a dialogical setting.  

 

Ranta (1988) was the first to link game-theoretical approaches with CTT. Ranta 

took Hintikka's (1973) Game-Theoretical Semantics (GTS) as a case study, though his 

point does not depend on that particular framework: in game-based approaches, a 

proposition is a set of winning strategies for the player stating the proposition.
70

 In game-

based approaches, the notion of truth is at the level of such winning strategies. Ranta's 

idea should therefore in principle allow us to apply, safely and directly, instances of 

game-based methods taken from CTT to the pragmatist approach of the dialogical 

framework. 

From the perspective of a general game-theoretical approach to meaning however, 

reducing a proposition to a set of winning strategies is quite unsatisfactory. This is 

particularly clear in the dialogical approach in which different levels of meaning are 

carefully distinguished: there is indeed the level of strategies, but there is also the level of 

plays in the analysis of meaning which can be further analysed into local, global and 

material levels. The constitutive role of the play level for developing a meaning 

explanation has been stressed by Kuno Lorenz in his (2001) paper: 
Fully spelled out it means that for an entity to be a proposition there must exist a 

dialogue game associated with this entity, i.e., the proposition A, such that an individual play 

of the game where A occupies the initial position, i.e., a dialogue D(A) about A, reaches a 

final position with either win or loss after a finite number of moves according to definite 

rules: the dialogue game is defined as a finitary open two-person zero-sum game. Thus, 

propositions will in general be dialogue-definite, and only in special cases be either proof-

definite or refutation-definite or even both which implies their being value-definite.  

Within this game-theoretic framework […] truth of A is defined as existence of a 

winning strategy for A in a dialogue game about A; falsehood of A respectively as existence 

of a winning strategy against A.
71

 

Given the distinction between the play level and the strategy level, and deploying 

within the dialogical framework the CTT-explicitation program, it seems natural to 

distinguish between local reasons and strategic reasons: only the latter correspond to the 

notion of proof-object in CTT and to the notion of  strategic-object of Ranta. In order to 

develop such a project we enrich the language of the dialogical framework with 

statements of the form “𝑝 ∶ 𝐴”. In such expressions, what stands on the left-hand side of 

the colon (here 𝑝) is what we call a local reason; what stands on the right-hand side of 

the colon (here 𝐴) is a proposition (or set).
72

 Strategic reasons will be introduced in 

chapter IX. 

The local meaning of such statements results from the rules describing how to 

compose (synthesis) within a play the suitable local reasons for the proposition A and 

how to separate (analysis) a complex local reason into the elements required by the 

composition rules for A. The synthesis and analysis processes of A are built on the 

formation rules for A.  

VI.2 Local reasons and material truth 

The most basic contribution of a local reason is its contribution to a material 

dialogue involving an elementary proposition. Informally, we can say that if the 
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 That player can be called Player 1, Myself or Proponent. 
71

 (Lorenz, 2001, p. 258). 
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 See (Rahman, Redmond, & Clerbout, 2017), (Clerbout & Rahman, 2015) (Rahman & Clerbout, 

2013; 2015). 
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Proponent P states the elementary proposition 𝐴, it is because P claims that he can bring 

forward a reason in defence of his statement. It is the Socratic rule that determines the 

precise form of that local reason, specific to 𝐴 .
73

 Our study focuses on formal—not 

material—dialogues, but we will still provide some basic elements on material truth in 

regard to local reasons so as to render in a clearer fashion the limits of our study and its 

philosophical background, the meaning of formal plays by contrast with what they are 

not, and the further work that can be carried out from this presentation of dialogues for 

immanent reasoning. 

Approaching material truth 

Assume the Proponent states that 1 is an odd number: 

𝐏 ! 1 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 
the Opponent can then express the following demand, asking P for reasons for his 

statement:  

𝐎 ! 𝑓𝑖𝑛𝑑 𝑎 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 1 = 2. 𝑛 + 1 
Because of the restriction the Socratic rule imposes on P, he can defend his statement by 

choosing "0", provided that O has already endorsed the statement "0 is a natural number" 

(0: ℕ). This produces material truth.  

Material truth can then be described in the following way: the statement that a 

given proposition is materially true requires displaying a local reason specific to that very 

proposition. 

Material truth and local reasons 

A local reason adduced in defence of a proposition thus prefigures a material 

dialogue displaying the specific content of that proposition. This constitutes the bottom of 

the normative approach to meaning of the dialogical framework: use (dialogical 

interaction) is to be understood as use prescribed by a rule of dialogical interaction. This 

applies not only to the meaning of logical constants, but also to the meaning of 

elementary propositions. This is what Jaroslav Peregrin (2014, pp. 2-3) calls the role of a 

linguistic statement: according to this terminology, and if we place his suggestion in our 

dialogical setting, we can say that the meaning of an elementary proposition amounts to 

its role in that form of interaction that the Socratic rule for a material dialogue prescribes 

for that specific proposition.
74

 It follows from such a perspective that material dialogues 

are important not only for the general question of the normativity of logic, but also for the 

elaboration of a language with content.  

Material dialogues and formal dialogues 

Summing up, what distinguishes formal dialogues from material dialogues resides 

in the following: 

 The formulation of the Socratic rule of a formal dialogue prescribes a form of 

interaction based only on the meaning of the logical constant(s) involved, 

irrespective of the meaning of the elementary propositions in the scope of that 

constant.  
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 Recall that the Socratic rule does not prohibit the Opponent O from challenging an elementary 

proposition of P; the rule only restricts P’s authorized moves. 
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 In the last chapter ( 0) we come back to the relation between normativity and material dialogues.  
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 The choice of the local reason for the elementary propositions  involved is left to 

the authority of the Opponent.  

 

In other words, in a formal dialogue the Socratic rule is not specific to any 

elementary proposition in particular, but it is general; definitions that distinguish one 

proposition from another are introduced during the game according to the local meaning 

of the logical constant involved: formal dialogues are the purest kind of immanent 

reasoning. 

The synthesis and analysis of local reasons for a proposition A are determined by 

the actions prescribed by the Socratic rule specific to the kind of play in which A has been 

stated:  

 If the play is material, the Socratic rule will describe a kind of action specific 

to the formation of A.  

 If the play is formal, as assumed in the main body of our study, the Socratic 

rule will allow O to bring forward the relevant local reasons during the 

development of the play.  

The point is that in formal dialogues, when the Opponent challenges the thesis, the 

thesis is assumed to be well-formed up to the logical constants, so the formation of the 

elementary statements is displayed during the development of the dialogue and left to the 

authority of O. So the formation rule for elementary statements does not really take place 

at the level of local meaning but at level of global meaning.  

 

Our study here focuses on formal plays of immanent reasoning. A thorough 

development of material dialogues will be left for future work, though in the last chapter 

of the book (chapter X) we will provide some insights as to their structure and discuss 

how to "internalize" empirical content within a game.  

Since the local reasons for the elementary statements are left to O’s authority, what 

we now need is to describe the process of synthesis and analysis for local reasons of the 

logical constants. However, before starting to enrich the language of the standard 

dialogical framework with local reasons for logical constants let us discuss how to 

implement a dialogical notion of formation rules. The formation rules together with the 

synthesis and analysis rules settle the local meaning of dialogues for immanent reasoning. 

VI.3 The local meaning of local reasons 

Here is an introduction of the formation rules (section VI.3.1), the synthesis rules 

(section VI.3.2), and the analysis rules (section VI.3.3) for local reasons. But we first 

need to make a clarification on statements and add  a piece of notation to the framework: 

Statements in dialogues for immanent reasoning 

Dialogues are games of giving and asking for reasons; yet in the standard dialogical 

framework, the reasons for each statement are left implicit and do not appear in the 

notation of the stament: we have statements of the form 𝐗 ! 𝐴 for instance where 𝐴 is an 

elementary proposition. The framework of dialogues for immanent reasoning allows to 

have explicitly the reason for making a statement, statements then have the form 𝐗 𝑎 ∶ 𝐴 

for instance where 𝑎 is the (local) reason 𝐗 has for stating the proposition 𝐴. But even in 

dialogues for immanent reasoning, all reasons are not always provided, and sometimes 

statements have only implicit reasons for bringing the proposition forward, taking then 

the same form as in the standard dialogical framework: 𝐗 ! 𝐴.  Notice that when (local) 
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reasons are not explicit, an exclamation mark is added before the proposition: the 

statement then has an implicit reason for being made. 

A statement is thus both a proposition and its local reason, but this reason may be 

left implicit, requiring then the use of the exclamation mark. 

Adding concessions 

In the context of the dialogical conception of CTT we also have statements of the 

form 

X ! (x1, …, xn) [xi : Ai] 

 

where "" stands for some statement in which (x1, …, xn) ocurs, and where [xi : Ai] stands 

for some condition under which the statement (x1, …, xn) has been brought forward. 

Thus, the statement reads: 

X states that (x1, …, xn) under the condition that the antagonist concedes xi : Ai. 

 

We call required concessions the statements of the form [xi : Ai] that condition a 

claim. When the statement is challenged, the antagonist is accepting, through his own 

challenge, to bring such concessions forward. The concessions of the thesis, if any, are 

called initial concessions. Initial concessions can include formation statements such as A : 

prop, B : prop, for the thesis, AB : prop.  

 Formation rules for local reasons: an informal overview VI.3.1

 It is presupposed in standard dialogical systems that the players use well-formed 

formulas (wff). The well formation can be checked at will, but only with the usual meta 

reasoning by which one checks that the formula does indeed observe the definition of a 

wff. We want to enrich our CTT-based dialogical framework by allowing players 

themselves to first enquire on the formation of the components of a statement within a 

play. We thus start with dialogical rules explaining the formation of statements involving 

logical constants (the formation of elementary propositions is governed by the Socratic 

rule, see the discussion above on material truth). In this way, the well formation of the 

thesis can be examined by the Opponent before running the actual dialogue: as soon as 

she challenges it, she is de facto accepting the thesis to be well formed (the most obvious 

case being the challenge of the implication, where she has to state the antecedent and thus 

explicitly endorse it). The Opponent can ask for the formation of the thesis before 

launching her first challenge; defending the formation of his thesis might for instance 

bring the Proponent to state that the thesis is a proposition, provided, say, that A is a set is 

conceded; the Opponent might then concede that A is a set, but only after the constitution 

of A has been established, though if this were the case, we would be considering the 

constitution of an elementary statement, which is a material consideration, not a formal 

one. 

These rules for the formation of statements with logical constants are also particle 

rules which are added to the set of particle rules determining the local meaning of logical 

constants (called synthesis and analysis of local reasons in the framework of dialogues for 

immanent reasoning).  

 

These considerations yield the following condensed presentation of the logical 

constants (plus falsum), in which "K" in AKB"expresses a connective, and "Q" in "(Qx : 

A) B(x) " expresses a quantifier. 



IMMANENT REASONING OR EQUALITY IN ACTION 97 

 

 

Table 12: Formation rules, condensed presentation 

 Connective Quantifier Falsum 

Move X AKB : prop X (Qx : A) B(x) : prop X   : prop 

Challenge 
Y ?FK 1 

and/or 

Y ?FK 

Y ?FQ1 

and/or 

Y ?FQ 

— 

Defence 

X  A : prop
(resp.) 

 X  B : prop

X  A : set 

(resp.) 
X  B(x) : prop (x : A) 

— 

 

Because of the no entity without type principle, it seems at first glance that we 

should specify the type of these actions during a dialogue by adding the type “formation-

request”. But as it turns out, we should not: an expression such as “?F: formation-request” 

is a judgement that some action ?F is a formation-request, which should not be confused 

with the actual act of requesting. We also consider that the force symbol ?F makes the 

type explicit. 

 Synthesis of local reasons VI.3.2

The synthesis rules of local reasons determine how to produce a local reason for a 

statement; they include rules of interaction indicating how to produce the local reason 

that is required by the proposition (or set) in play, that is, they indicate what kind of 

dialogic action—what kind of move—must be carried out, by whom (challenger or 

defender), and what reason must be brought forward.  

Implication 

For instance, the synthesis rule of a local reason for the implication ABstated by 

player X indicates: 

i. that the challenger Y must state the antecedent (while providing a local 

reason for it): Y p1 : A
75

 

ii. that the defender X must respond to the challenge by stating the 

consequent (with its corresponding local reason):  X p2 : B. 

In other words, the rules for the synthesis of a local reason for implication are as follows: 

Table 13: Synthesis of a local reason for implication 

 Implication 

Move X ! AB 

Challenge Y p1 : A 

Defence X p2 : B 

 

Notice that the initial statement (X ! AB) does not display a local reason for the 

claim the the implication holds: player X simply states that he has some reason 

supporting the claim. We express such kind of move by adding an exclamation mark 
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 This notation is a variant of the one used by (Keiff, 2004).  
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before the proposition. The further dialogical actions indicate the moves required for 

producing a local reason in defence of the initial claim. 

Conjunction 

The synthesis rule for the conjunction is straightforward: 

Table 14: synthesis of a local reason for conjunction 

 Conjunction 

Move X ! 𝐴 ∧ 𝐵 

Challenge Y ? 𝐿∧ or Y ? 𝑅∧ 

Defence X 𝑝1: 𝐴 (resp.) X  𝑝2: 𝐵 

Disjunction 

For disjunction, as we know from the standard rules, it is the defender who will 

choose which side he wishes to defend: the challenge consists in requesting of the 

defender that he chooses which side he will be defending:  

Table 15: Synthesis of a local reason for disjunction 

 Disjunction 

Move X ! 𝐴 ∨ 𝐵 

Challenge Y ?∨ 

Defence X  𝑝1: 𝐴 or X 𝑝2: 𝐵 

The general structure for the synthesis of local reasons 

More generally, the rules for the synthesis of a local reason for a constant K is 

determined by the following triplet: 

Table 16: general structure for the synthesis of a local reason for a constant 

 A constant K  Implication Conjunction Disjunction 

Move 
X ! K

X claims that 𝜙 
X ! AB X ! 𝐴 ∧ 𝐵 X ! 𝐴 ∨ 𝐵 

Challenge 
Y asks for the reason  

backing such a claim 
Y  p1 : A Y ? 𝐿∧ or Y ? 𝑅∧ Y ?∨   

Defence 

X  𝑝 : K

X states the local reason 𝑝 for 

Kaccording to the rules 

for the synthesis of local 

reasons prescribed for K. 

X p2 : B 

X 𝑝1: 𝐴  
 

(resp.) 

 

 X  𝑝2: 𝐵 

X 𝑝1: 𝐴  
 

or  

 

X 𝑝2: 𝐵 
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 Analysis of local reasons VI.3.3

 Apart from the rules for the synthesis of local reasons, we need rules that indicate 

how to parse a complex local reason into its elements: this is the analysis of local reasons. 

In order to deal with the complexity of these local reasons and formulate general rules for 

the analysis of local reasons (at the play level), we introduce certain operators that we call 

instructions, such as 𝐿∨(𝑝) or 𝑅∧(𝑝).  

Approaching the analysis rules for local reasons 

Let us introduce these instructions and the analysis of local reasons with an 

example:  player X states the implication (A∧B)A. According to the rule for the 

synthesis of local reasons for an implication, we obtain the following: 

   

Move X ! (A∧B)B 

Challenge Y p1 : A∧B 

 

Recall that the synthesis rule prescribes that X must now provide a local reason for 

the consequent; but instead of defending his implication (with 𝐗 𝑝2: 𝐵 for instance), X 

can choose to parse the reason p1 provided by Y in order to force Y to provide a local 

reason for the right-hand side of the conjunction that X will then be able to copy; in other 

words, X can force Y to provide the local reason for B out of the local reason 𝑝1 for the 

antecedent 𝐴 ∧ 𝐵 of the initial implication. The analysis rules prescribe how to carry out 

such a parsing of the statement by using instructions. The rule for the analysis of a local 

reason for the conjunction 𝑝1: 𝐴 ∧ 𝐵 will thus indicate that its defence includes 

expressions such as  

 the left instruction for the conjunction, written 𝐿∧(𝑝1), and 

 the right instruction for the conjunction, written 𝑅∧(𝑝1). 

These instructions can be informally understood as carrying out the following step: for 

the defence of the conjunction 𝑝1: 𝐴 ∧ 𝐵 separate the local reason 𝑝1 in its left (or right) 

component so that this component can be adduced in defence of the left (or right) side of 

the conjunction. 

Here is a play with local reasons for the thesis (𝐴 ∧ 𝐵) ⊃ 𝐵 using instructions: 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ 𝐵 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 𝑝1 ∶ 𝐴 ∧ 𝐵 0  𝑅∧(𝑝1) ∶ 𝐵 6 

5 𝑅∧(𝑝1) ∶ 𝐵  3 ? 𝑅∧ 4 

P wins. 

In this play, P uses the analysis of local reasons for conjunction in order to force O 

to state 𝑅∧(𝑝1) ∶ 𝐵, that is to provide a local reason
76

 for the elementary statement 𝐵; P 

can then copy that local reason in order to back his statement 𝐵, the consequent of his 

initial implication. With these local reasons, we explicitly have in the object-language the 

reasons that are given and asked for and which constitute the essence of an argumentative 

dialogue. 
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 Speaking of local reasons is a little premature at this stage, since only instructions are provided 

and not actual local reasons; but the purpose is here to give the general idea of local reasons, and 

instructions are meant to be resolved into proper local reasons, which requires only an extra step. 
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The general structure for the analysis rules of local reasons 

 Move Challenge Defence 

Conjunction 𝐗 𝑝: 𝐴 ∧ 𝐵 
𝐘 ? 𝐿∧ 

or 

𝐘 ? 𝑅∧ 

𝐗 𝐿∧(𝑝)𝑋: 𝐴
(resp.) 

𝐗 𝑅∧(𝑝)𝑋: 𝐵 

Disjunction 𝐗 𝑝: 𝐴 ∨ 𝐵 𝐘 ?∨  
𝐗 𝐿∨(𝑝)𝑋: 𝐴

or 
𝐗 𝑅∨(𝑝)𝑋: 𝐵 

Implication 𝐗 𝑝: 𝐴 ⊃ 𝐵 𝐘 𝐿⊃(𝑝)𝑌: 𝐴 𝐗 𝑅⊃(𝑝)𝑋: 𝐵 

The superscripts with the player label indicate which player is entitled to decide 

how to resolve the instruction, that is, to decide which local reason to bring forward when 

carrying out the instruction. 

Interaction procedures embedded in instructions 
 Carrying out the prescriptions indicated by instructions require the following three 

interaction-procedures: 

1. Resolution of instructions: this procedure determines how to carry out the 

instructions prescribed by the rules of analysis and thus provide an actual 

local reason.  

2. Substitution of instructions: this procedure ensures the following; once a 

given instruction has been carried out through the choice of a local reason, say 

b, then every time the same instruction occurs, it will always be substituted by 

the same local reason b. 

3. Application of the Socratic rule: the Socratic rule prescribes how to constitute 

equalities out of the resolution and substitution of instructions, linking 

synthesis and analysis together. 

 

Let us discuss how these rules interact and how they lead to the main thesis of this 

study, namely that immanent reasoning is equality in action. 

VI.4 From Reasons to Equality 

As we have already discussed to some extent one of the most salient features of 

dialogical logic is the so-called, Socratic rule (or Copy-cat rule in the standard—that is, 

non-CTT—context), establishing that the Proponent can play an elementary proposition 

only if the Opponent has played it previously.  

The Socratic rule is a characteristic feature of the dialogical approach: other game-

based approaches do not have it. With this rule the dialogical framework comes with an 

internal account of elementary propositions: an account in terms of interaction only, 

without depending on metalogical meaning explanations for the non-logical vocabulary. 

More prominently, this means that the dialogical account does not rely—contrary to 

Hintikka's GTS games—on the model-theoretical approach to meaning for elementary 

propositions. 

The rule has a clear Platonist and Aristotelian origin and sets the terms for what it is 

to carry out a formal argument: see for instance Plato’s Gorgias (472b-c). We can sum up 

the underlying idea with the following statement: 
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there is no better grounding of an assertion within an argument than indicating that it 

has been already conceded by the Opponent or that it follows from these concessions.
77

 

 

What should be stressed here are the following two points: 

1. formality is understood as a kind of interaction; and 

2. formal reasoning should not be understood here as devoid of content and 

reduced to purely syntactic moves.  

Both points are important in order to understand the criticism often raised against 

formal reasoning in general, and in logic in particular. It is only quite late in the history of 

philosophy that formal reasoning has been reduced to syntactic manipulation— 

presumably the first explicit occurrence of the syntactic view of logic is Leibniz’s 

“pensée aveugle” (though Leibniz’s notion was not a reductive one). Plato and Aristotle’s 

notion of formal reasoning is neither “static” nor “empty of meaning”.
78

 In the Ancient 

Greek tradition logic emerged from an approach of assertions in which meaning and 

justification result from what has been brought forward during argumentative interaction. 

According to this view, dialogical interaction is constitutive of meaning.  

 

Some former interpretations of standard dialogical logic did understand formal 

plays in a purely syntactic manner. The reason for this is that the standard version of the 

framework is not equipped to express meaning at the object-language level: there is no 

way of asking and giving reasons for elementary propositions. As a consequence, the 

standard formulation simply relies on a syntactic understanding of Copy-cat moves, that 

is, moves entitling P to copy the elementary propositions brought forward by O, 

regardless of its content.  

The dialogical approach to CTT (dialogues for immanent reasoning) however 

provides a fine-grain study of the contentual aspects involved in formal plays, much finer 

than the one provided by the standard dialogical framework. In dialogues for immanent 

reasoning which we are now presenting, a statement is constituted both by a proposition 

and by the (local) reason brought forward in defence of the claim that the proposition 

holds. In formal plays not only is the Proponent allowed to copy an elementary 

proposition stated by the Opponent, as in the standard framework, but he is also allowed 

to adduce in defence of that proposition the same local reason brought forward by the 

Opponent when she defended that same proposition. Thus immanent reasoning and 

equality in action are intimately linked. In other words, a formal play displays the roots of 

the content of an elementary proposition, and not a syntactic manipulation of that 

proposition. 

Statements of definitional equality emerge precisely at this point. In particular 

reflexivity statements such as  

p = p : A 

express from the dialogical point of view the fact that if O states the elementary 

proposition A, then P can do the same, that is, play the same move and do it on the same 

grounds which provide the meaning and justification of A, namely p.  
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 Recent work (Crubellier, 2014, pp. 11-40) and (Crubellier, Marion, McConaughey, & Rahman, 

2018) claim that this rule is central to the interpretation of dialectic as the core of Aristotle's logic. Neither 

Ian Lukasiewicz’s (1957) famous reconstruction of Aristotle’s syllogistic, nor the Natural deduction 

approach of Kurt Ebbinghaus (1964) and John Corcoran (1974) deploy this rule, but Marion and Rückert 

(2015) showed that this rule displays Aristotle's view on universal quantification. 
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 (Smith R. , 1982; Smith R. , 1989), (Crubellier, 2014). 
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These remarks provide an insight only on simple forms of equality and barely touch 

upon the finer-grain distinctions discussed above; we will be moving to these by means 

of a concrete example in which we show, rather informally, how the combination of the 

processes of analysis, synthesis, and resolution of instructions lead to equality statements.   

Example 

Assume that the Proponent brings forward the thesis (𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴): 

 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) 0 

      

 

Both players then choose their repetition ranks: 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

      

 

O must now challenge the implication if she accepts to enter into the discussion. The rule 

for the synthesis of a local reason for implication (provided above) stipulates that in order 

to challenge the thesis, O must state the antecedent and provide a local reason for it: 

 O P 

     ! (𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 
Synthesis of a local 

reason for conjunction 3 𝑝 ∶ 𝐴 ∧ 𝐵 0    

       

 

According to the same synthesis-rule P must now state the consequent, which he is 

allowed to do because the consequent is not elementary: 

O P 

    ! (𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 𝑝 ∶ 𝐴 ∧ 𝐵 0  𝑞 ∶ 𝐵 ∧ 𝐴 4 

      

 

The Opponent launches her challenge asking for the left component of the local reason 𝑞 

provided by P, an application of the rule for the analysis of a local reason for a 

conjunction described above. 

 O P 

     ! (𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 𝑝 ∶ 𝐴 ∧ 𝐵 0  𝑞 ∶ 𝐵 ∧ 𝐴 4 
Analysis of a local 

reason for conjunction 5 ? 𝐿∧ 4    

       

 

Assume that P responds immediately to this challenge:  

O P 
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    ! (𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 𝑝 ∶ 𝐴 ∧ 𝐵 0  𝑞 ∶ 𝐵 ∧ 𝐴 4 

5 ? 𝐿∧ 4  𝐿∧(𝑞): 𝐵 6 

      

 

 O will now ask for the resolution of the instruction:  

 O P 

     ! (𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 𝑝 ∶ 𝐴 ∧ 𝐵 0  𝑞 ∶ 𝐵 ∧ 𝐴 4 

 5 ? 𝐿∧ 4  𝐿∧(𝑞): 𝐵 6 
Resolution of an 

instruction 7 ? …/𝐿∧(𝑞) 6    

       

 

In this move 7, O is asking P to carry out the instruction 𝐿∧(𝑞) by bringing forward 

the local reason of his choice. The act of choosing such a reason and replacing the 

instruction for it is called resolving the instruction.   

In this case, resolving the instruction will lead P to bring forward an elementary 

statement—that is, a statement in which both the local reason and the proposition are 

elementary, which falls under the restriction of the Socratic rule. The idea for P then is to 

postpone his answer to the challenge launched with move 7 and to force O to choose a 

local reason first so as to copy it in his answer to the challenge. This yields a further 

application of the analysis rule for the conjunction: 

 

 O P  

     ! (𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) 0  

 1 𝑚 ≔ 1   𝑛 ≔ 2 2  

 3 𝑝 ∶ 𝐴 ∧ 𝐵 0  𝑞 ∶ 𝐵 ∧ 𝐴 4  

 5 ? 𝐿∧ 4  𝐿∧(𝑞): 𝐵 6  

 7 ? …/𝐿∧(𝑞) 6  𝑏 ∶ 𝐵 12  
O responds 

according to the 

analysis rule 
9 𝑅∧(𝑝): 𝐵  3 ? 𝑅∧ 8 

P launches his challenge 

asking for the right side of the 

concession move 3 

O responds to the 

challenge by 

choosing the local 

reason b 

11 𝑏 ∶ 𝐵  9 ? …/ 𝑅∧(𝑝) 10 

P asks O to resolve the 

instruction by providing a 

local reason 

P wins. 

 

Move 11 thus provides P with  the information he needed: he can then copy O’s 

choice to answer the challenge she launched at move 7. 

 

Note: It should be clear that a similar end will come about if O starts by challenging the 

right component of the conjunction statement, instead of challenging the left component. 

Analysis of the example 

Let us now go deeper in the analysis of the example and make explicit what 

happened during the play:  
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When O resolves R


(p) with the local reason b (for instance) and P resolves the 

instruction L


(q) with the same local reason, then P is not only stating b : B but he is 

doing this by choosing 𝑏 as local reason for B, that is, by choosing exactly the same local 

reason as O for the resolution of R


(p).  

Let us assume that O can ask P to make his choice for a given local reason explicit. 

P would then answer that his choice for his local reason depends on O’s own choice: he 

simply copied what O considered to be a local reason for 𝐵, that is 𝑅∧(𝑝)𝑂 = 𝑏: 𝐵. The 

application of the Socratic rule yields in this respect definitional equality. This rule 

prescribes the following response to a challenge on an elementary local reason:  

When O challenges an elementary statement of P such as b : B, P must be 

able to bring forward a  definitional equality such as P R


(p) = b : B.  

Which reads: 

P grounds his choice of the local reason b for the proposition B in O's 

resolution of the instruction R


(p). At the very end P's choice is the same 

local reason brought forward by O for the same proposition B.  

In other words, the definitional equality 𝑅∧(𝑝)𝑂 = 𝑏: 𝐵 that provides content to B 

makes it explicit at the object-language level that an application of the Socratic rule has 

been initiated and achieved by means of dialogical interaction. 

 

The development of a dialogue determined by immanent reasoning thus includes 

four distinct stages: 

1. applying the rules of synthesis to the thesis; 

2. applying the rules of analysis; 

3. launching the Resolution and Substitution of instructions; 

4. applying the Socratic rule. 

We can then add a fifth stage, which will be presented in chapter IX: 

5. Producing the strategic reason. 

 

While the first two steps involve local meaning, step 3 concerns global meaning 

and step 4 requires describing how to produce a winning strategy. Now that the general 

idea of local reasons has been provided, we will present in the next chapter all the rules 

together, according to their level of meaning.  
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VII. THE DIALOGICAL ROOTS OF EQUALITY: DIALOGUES 
FOR IMMANENT REASONING 

 In this chapter we will spell out all the relevant rules of dialogues for immanent 

reasoning, that is, the dialogical framework incorporating features of Constructive Type 

Theory—a dialogical framework making the players’ reasons for asserting a proposition 

explicit. The rules can be divided, just as in the standard framework, into rules 

determining local meaning and rules determining global meaning. These include: 

1. Concerning local meaning (section VII.1): 

a. formation rules (p. 105); 

b. rules for the synthesis of local reasons (p. 108); and 

c. rules for the analysis of local reasons (p. 109). 

2. Concerning global meaning, we have the following (structural) rules 

(section VII.2): 

a. rules for the resolution of instructions (p. 112); 

b. rules for the substitution of instructions (p. 113); 

c. equality rules determined by the application of the Socratic rules (p. 113); 

and 

d. rules for the transmission of equality (p. 115). 

We will be presenting these rules in this order in the next two sections, along with 

the adaptation of the other structural rules to dialogues for immanent reasoning in the 

second section. The following section (VII.4) provides a series of exercises for the play 

level. 

A fourth section (VII.5) will deal with the strategic level of dialogues for immanent 

reasoning, and will be followed with solved exercises (VII.6). 

A final section (VII.7) will introduce strategic reasons, a fundamental notion for 

dialogues for immanent reasoning, and will be accompanied with two examples showing 

how to build these reasons of a special kind. 

VII.1 Local meaning in dialogues for immanent reasoning 

 The formation rules VII.1.1

Formation rules for logical constants and falsum 
The formation rules for logical constants and for falsum are given in the following 

table. Notice that a statement ‘ : prop’ cannot be challenged; this is the dialogical 

account for falsum ‘⊥’ being by definition a proposition. 
 

Table 17: Formation rules 

 Move Challenge Defence 

Conjunction X  𝐴 ∧ 𝐵: 𝒑𝒓𝒐𝒑 
Y ? 𝐹∧1 

or 

Y ? 𝐹∧2 

X 𝐴: 𝒑𝒓𝒐𝒑
(resp.) 

 X 𝐵: 𝒑𝒓𝒐𝒑 

Disjunction X  𝐴 ∨ 𝐵: 𝒑𝒓𝒐𝒑 
Y ? 𝐹∨1 

or 

Y ? 𝐹∨2 

X 𝐴: 𝒑𝒓𝒐𝒑
(resp.) 

 X 𝐵: 𝒑𝒓𝒐𝒑 
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Implication X  𝐴 ⊃ 𝐵: 𝒑𝒓𝒐𝒑 

Y ? 𝐹⊃1 

or 

Y ? 𝐹⊃2 

X 𝐴: 𝒑𝒓𝒐𝒑
(resp.) 

 X 𝐵: 𝒑𝒓𝒐𝒑 

Universal quantification X (∀𝑥: 𝐴)𝐵(𝑥): 𝒑𝒓𝒐𝒑 
Y ? 𝐹∀1 

or 

Y ? 𝐹∀2 

X 𝐴: 𝒔𝒆𝒕
(resp.) 

 X 𝐵(𝑥): 𝒑𝒓𝒐𝒑[𝑥: 𝐴] 

Existential quantification X (∃𝑥: 𝐴)𝐵(𝑥): 𝒑𝒓𝒐𝒑 

Y ? 𝐹∃1 

or 

Y ? 𝐹∃2 

X 𝐴: 𝒔𝒆𝒕
(resp.) 

 X 𝐵(𝑥): 𝒑𝒓𝒐𝒑[𝑥: 𝐴]

Subset separation 𝐗 {𝑥 ∶ 𝐴 |𝐵(𝑥)}: 𝒑𝒓𝒐𝒑 

Y ? 𝐹1 

or 

Y ? 𝐹2 

X 𝐴: 𝒔𝒆𝒕
(resp.) 

 X 𝐵(𝑥): 𝒑𝒓𝒐𝒑[𝑥: 𝐴]

Falsum X ⊥: 𝒑𝒓𝒐𝒑 — — 

 

The substitution rule within dependent statements 

The following rule is not really a formation-rule but is very useful while applying 

formation rules where one statement is dependent upon the other such as  

𝐵(𝑥): 𝒑𝒓𝒐𝒑[𝑥: 𝐴].79
 

Table 18: Substitution rule within dependent statements (subst-D) 

 Move Challenge Defence 

Subst-D 𝐗 𝜋(𝑥1, … , 𝑥𝑛)[𝑥𝑖: 𝐴𝑖] 𝐘 𝜏1: 𝐴1, … , 𝜏𝑛: 𝐴𝑛 𝐗 𝜋(𝜏1, … , 𝜏𝑛) 

 

In the formulation of this rule, “𝜋” is a statement and “𝜏𝑖” is a local reason of the 

form either 𝑎𝑖: 𝐴𝑖 or 𝑥𝑖 ∶ 𝐴𝑖. 

 

A particular case of the application of Subst-D is when the challenger simply 

chooses the same local reasons as those occurring in the concession of the initial 

statement. This is particularly useful in the case of formation plays: 

Example of a formation-play 

Here is an example of a formation play with some explanation. The standard 

development rules are enough to understand the following plays (see the rules provided in 

chapter III or IV). 

 

In this example, the Opponent provides initial concession before the Proponent 

states his thesis. Thus the Proponent’s thesis is 

(x : A)(B(x)C(x)) : prop  

given these three provisos that appear as initial concessions by the Opponent: 

A : set,  

B(x) : prop [x : A] 

and C(x) : prop [x : A],  

                                                 
79

 This rule is an expression at the level of plays of the rule for the substitution of variables in a 

hypothetical judgement. See (Martin-Löf, 1984, pp. 9-11). 
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This yields the following play: 
 

Play 10: formation-play with initial concessions: first decision-option of O 

O P 

0.1 A : set     

0.2 B(x) : prop [x : A]     

0.3 C(x) : prop [x : A]   (x : A) B(x)C(x) : prop 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ? 𝐹∀1 0  A : set 4 

P wins. 

Explanation: 

 0.1 to 0.3: O concedes that A is a set and that B(x) and C(x) are propositions 

provided x is an element of A. 

 Move 0: P states that the main sentence, universally quantified, is a proposition 

(under the concessions made by O). 

 Moves 1 and 2: the players choose their repetition ranks.   

 Move 3: O challenges the thesis by asking the left-hand part as specified by the 

formation rule for universal quantification. 

 Move 4: P responds by stating that A is a set. This has already been granted with 

the concession 0.1 so even if O were to challenge this statement the Proponent 

could refer to her initial concession. 

 

This dialogue obviously does not cover all the aspects related to the formation of  

(x : A) B(x)C(x) : prop. 

Notice however that the formation rules allow an alternative move for the Opponent's 

move 3,
80

 so that P has another possible course of action, dealt with in the following play. 
 

Play 11: formation-play with initial concessions: second decision-option of O 

 O   P  

0.1 A : set     

0.2 B(x) : prop [x : A]     

0.3 C(x) : prop [x : A]   (x : A) B(x)  C(x) : prop 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

3 ? 𝐹∀2 0  B(x)  C(x) : prop [x : A] 4 

5 x : A 4  B(x)  C(x) : prop 6 

7 ? 𝐹⊃1 6  B(x) : prop 10 

                                                 
80

 As a matter of fact, increasing her repetition rank would allow O to play the two alternatives for 

move 3 within a single play. But increasing the Opponent's rank usually yields redundancies (Clerbout, 

2014a; 2014b) making things harder to understand for readers not familiar with the dialogical approach; 

hence our choice to divide the example into different simple plays. 
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9 B(x) : prop  0.2 x : A 8 

P wins. 

Explanation: 

The second play starts like the first one until move 2. Then: 

 Move 3: this time O challenges the thesis by asking for the right-hand part. 

 Move 4: P responds, stating that B(x)C(x) is a proposition, provided that x : 

A. 

 Move 5: O challenges the preceding move by granting the proviso and asking 

P to respond (this kind of move is governed by a Subst-D rule). 

 Move 6: P responds by stating that B(x)C(x) is a proposition. 

 Move 7: O challenges move 6 by asking the left-hand part, as specified by the 

formation rule for material implication. 

To defend against this challenge, P needs to make an elementary move. But 

since O has not played it yet, P cannot defend it at this point. Thus: 

 Move 8: P launches a counterattack against initial concession 0.2 by granting 

the proviso x : A (that has already been conceded by O in move 5), making 

use of the same kind of statement-substitution (Subst-D) rule deployed in 

move 5. 

 Move 9: O answers to move 8 and states that B(x) is a proposition. 

 Move 10: P can now defend the challenge initiated with move 7 and win this 

dialogue. 

 

Once again, there is another possible choice for the Opponent because of her move 

7: she could ask the right-hand part. This would yield a dialogue similar to the one above 

except that the last moves would be about C(x) instead of B(x). 

Concluding on the formation-play example: 

By displaying these various possibilities for the Opponent, we have entered the 

strategic level. This is the level at which the question of the good formation of the thesis 

gets a definitive answer, depending on whether the Proponent can always win—that is, 

whether he has a winning strategy. The basic notions related to this level of strategies are 

to be found in our presentation of standard dialogical logic (see section III.5 or 

chapter V.1); section VII.5 below will deal with local reasons in this strategy level in the 

framework of dialogues for immanent reasoning and section VII.7 will introduce strategic 

reasons. 

 The rules for local reasons: synthesis and analysis VII.1.2

Now that the dialogical account of formation rules has been clarified, we may 

further develop our analysis of plays by introducing local reasons. Let us do so by 

providing the rules that prescribe the synthesis and analysis of local reasons. For more 

details on each rule, see section VI.3. 
 

Table 19: synthesis rules for local reasons 

 Move Challenge Defence 
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Conjunction  𝐗 !  𝐴 ∧ 𝐵 
𝐘 ? 𝐿∧ 

or 

𝐘 ? 𝑅∧ 

𝐗 𝑝1: 𝐴
(resp.) 
𝐗 𝑝2: 𝐵 

Existential quantifiation  𝐗 ! (∃𝑥 ∶ 𝐴)𝐵(𝑥) 
𝐘 ? 𝐿∃ 

or 

𝐘 ? 𝑅∃ 

𝐗 𝑝1: 𝐴
(resp.) 

𝐗 𝑝2: 𝐵(𝑝1) 

Subset separation  𝐗 ! {𝑥 ∶ 𝐴 |𝐵(𝑥)} 
𝐘 ? 𝐿  

or 

𝐘 ? 𝑅  

𝐗 𝑝1: 𝐴
(resp.) 

𝐗 𝑝2: 𝐵(𝑝1) 

Disjunction 𝐗 ! 𝐴 ∨ 𝐵 𝐘 ?∨ 
𝐗 𝑝1: 

or 
𝐗 𝑝2: 𝐵 

Implication  𝐗 !  𝐴 ⊃ 𝐵  𝐘 𝑝1: 𝐴 𝐗 𝑝2: 𝐵 

Universal quantification 𝐗 ! (∀𝑥: 𝐴)𝐵(𝑥)  𝐘 𝑝1: 𝐴 𝐗 𝑝2: 𝐵(𝑝1) 

Negation 
𝐗 ! ¬𝐴 

Also expressed as 

𝐗 !  𝐴 ⊃⊥ 

𝐘 𝑝1: 𝐴 𝐗 ! ⊥ 
(X gives up81) 

 

Table 20: analysis rules for local reasons 

 Move Challenge Defence 

Conjunction  𝐗 𝑝: 𝐴 ∧ 𝐵 
𝐘 ? 𝐿∧ 

or 

𝐘 ? 𝑅∧  

𝐗 𝐿∧(𝑝)𝑋: 𝐴
(resp.) 

𝐗 𝑅∧(𝑝)𝑋: 𝐵 

Existential quantifiation  𝐗 𝑝: (∃𝑥: 𝐴)𝐵(𝑥) 
𝐘 ? 𝐿∃ 

or 

𝐘 ? 𝑅∃ 

𝐗 𝐿∃(𝑝)𝑋: 𝐴
(resp.) 

𝐗 𝑅∃(𝑝)𝑋: 𝐵(𝐿∃(𝑝)𝑋) 

Subset separation  𝐗 𝑝: {𝑥 ∶ 𝐴 |𝐵(𝑥)} 
𝐘 ? 𝐿  

or 

𝐘 ? 𝑅  

𝐗 𝐿{… }(𝑝)𝑋: 𝐴
(resp.) 

𝐗 𝑅∧(𝑝)𝑋: 𝐵(𝐿{… }(𝑝)𝑋) 

Disjunction 𝐗 𝑝: 𝐴 ∨ 𝐵 𝐘 ?∨ 
𝐗 𝐿∨(𝑝)𝑋: 𝐴

or 
𝐗 𝑅∨(𝑝)𝑋: 𝐵 

Implication  𝐗 𝑝: 𝐴 ⊃ 𝐵  𝐘 𝐿⊃(𝑝)𝑌: 𝐴 𝐗 𝑅⊃(𝑝)𝑋: 𝐵 

Universal quantification 𝐗 𝑝: (∀𝑥: 𝐴)𝐵(𝑥)  𝐘 𝐿∀(𝑝)𝑌: 𝐴 𝐗 𝑅∀(𝑝)𝑋: 𝐵(𝐿∀(𝑝)𝑌) 

Negation 
𝐗 𝑝: ¬𝐴 

Also expressed as 

𝐗  𝑝: 𝐴 ⊃⊥ 

𝐘 𝐿¬(𝑝)𝑌: 𝐴 
 

𝐘 𝐿⊃(𝑝)𝑌: 𝐴 

𝐗 𝑅¬(𝑝)𝑋: ⊥ 
 

𝐗 𝑅⊃(𝑝)𝑋: ⊥ 

 

                                                 
81

 The reading of stating bottom as giving up stems from (Keiff, 2007). 
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Anaphoric instructions: dealing with cases of anaphora 

One of the most salient features of the CTT framework is that it contains the means 

to deal with cases of anaphora,
82

 and some of the demonstrations for the exercises of 

chapter II required them, as in exercise 4 formalizing Barbara in CTT (p. 44).  

Recall the formalization of exercise 4, where the projection fst(z) can be seen as the 

tail of the anaphora whose head is 𝑧: 

 

(z : (x : D)A)B[fst(z)] true  premise 1 

(z : (x : D)B)C[fst(z)] true  premise 2 

——————————————    

(z : (x : D)A)C[fst(z)] true  conclusion 

 

In dialogues for immanent reasoning, when a local reason has been made explicit, 

this kind of anaphoric expression is formalized through instructions, which provides a 

further reason for introducing them. For example if a is the local reason for the first 

premise we have  

P p : (z : (x : D)A(x))B(L

(L


(p)

O
)) 

 

However, since the thesis of a play does not bear an explicit local reason (we use 

the exclamation mark to indicate there is an implicit one), it is possible for a statement to 

be bereft of an explicit local reason. When there is no explicit local reason for a statement 

using anaphora, we cannot bind the instruction L

(p)

O
 to a local reason 𝑝. We thus have 

something like this, with a blank space instead of the anaphoric local reason: 

 

P ! (z : (x : D)A(x))B(L

(L


(  )

O
)) 

 

But this blank stage can be circumvented: the challenge on the universal quantifier 

will yield the required local reason: O will provide 𝑎: (∃𝑥: 𝐷)𝐴(𝑥), which is the local 

reason for 𝑧. We can therefore bind the instruction on the missing local reason with the 

corresponding variable—𝑧 in this case—and write 

 

P! (z : (x : D)A(x))B(L

(L


(z)

O
)) 

 

We call this kind of instruction, Anaphoric instructions. For the substitution of 

Anaphoric instructions the following two cases are to be distinguished:  

Substitution of Anaphoric Instructions 1 

Given some Anaphoric instruction such as L

(z)

Y
, once the quantifier (∀𝑧: 𝐴)𝐵(… ) 

has been challenged by the statement a :  the occurrence of L

(z)

Y
 can be substituted 

by a. The same applies to other instructions.  

In our example we obtain: 

P! (z : (x : D)A(x))B(L

(L


(z)

O
)) 

O a : (x : D)A(x)

P b : B(L

(L


(z)

O
)) 

O ? a / L

(z)

O
 

P b : B(L

(a)) 

… 

                                                 
82

 See (Sundholm, 1986, pp. 501-503) and (Ranta, 1994, pp. 77-99). 
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Substitution of Anaphoric Instructions 2 

Given some Anaphoric instruction such as L

(z)

Y
, once the instruction L


(c)—

resulting from an attack on the universal z : —has been resolved with a : then any 

occurrence of L

(z)

Y
 can be substituted by a. The same applies to other instructions.  

VII.2 Global Meaning in dialogues for immanent 
reasoning 

We here provide the structural rules for dialogues for immanent reasoning, which 

determine the global meaning in such a framework. They are for the most part similar in 

principle to the precedent logical framework for dialogues; the rules concerning 

instructions are an addition for dialogues for immanent reasoning.  

The structural rules for formal dialogues (as opposed to material dialogues; see 

chapter X) are of three kinds: starting rules (SR0 and SR2i), the Socratic rules that are 

player dependent rules for elementary statements (SR5), and global rules that are player 

independent procedural rules (SR1, 2ii, 3-4 and 6-7). 

  Structural Rules VII.2.1

SR0: Starting rule 
The start of a formal dialogue of immanent reasoning is a move where P states the 

thesis. The thesis can be stated under the condition that O commits herself to certain 

other statements called initial concessions; in this case the thesis has the form ! [, …, 

n], where 𝐴 is a statement with implicit local reason and 𝐵1, … , 𝐵𝑛 are statements with 

or without implicit local reasons. 

A dialogue with a thesis proposed under some conditions starts if and only if O 

accepts these conditions. O accepts the conditions by stating the initial concessions in 

moves numbered 0.1, …, 0.n before choosing the repetition ranks. 

After having stated the thesis (and the initial concessions, if any), each player 

chooses in turn a positive integer called the repetition rank which determines the upper 

boundary for the number of attacks and of defences each player can make in reaction to 

each move during the play. 

SR1: Development rule 

The Development rule depends on what kind of logic is chosen: if the game uses 

intuitionistic logic, then it is SR1i that should be used; but if classical logic is used, then 

SR1c must be used. 

SR1i: Intuitionistic Development rule, or Last Duty First 

Players play one move alternately. Any move after the choice of repetition ranks is 

either an attack or a defence according to the rules of formation, of synthesis, and of 

analysis, and in accordance with the rest of the structural rules.  

If the logical constant occurring in the thesis is not recorded by the table for local 

meaning, then either it must be introduced by a nominal definition, or the table for local 

meaning needs to be enriched with the new expression.
83

 

Players can answer only against the last non-answered challenge by the adversary. 

 

                                                 
83

 If the logical constant occurring in the thesis is not recorded by the table for local meaning, then either it 

must be introduced by a nominal definition based on some logical constant already present in the particle rules, or the 

table for local meaning needs to be enriched with the new expression. 
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Note: This structural rule is known as the Last Duty First condition, and makes 

dialogical games suitable for intuitionistic logic, hence the name of this rule. 

SR1c: Classical Development rule 

Players play one move alternately. Any move after the choice of repetition ranks is 

either an attack or a defence according to the rules of formation, of synthesis, and of 

analysis, and in accordance with the rest of the structural rules.  

If the logical constant occurring in the thesis is not recorded by the table for local 

meaning, then either it must be introduced by a nominal definition, or the table for local 

meaning needs to be enriched with the new expression. 

 

Note: The structural rules with SR1c (and not SR1i) produce strategies for classical 

logic. The point is that since players can answer to a list of challenges in any order 

(which is not the case with the intuitionistic rule), it might happen that the two options of 

a P-defence occur in the same play—this is closely related to the classical development 

rule in sequent calculus allowing more than one formula at the right of the sequent. 

SR2: Formation rules for formal dialogues  

SR2i: Starting a formation dialogue 
A formation-play starts by challenging the thesis with the formation request O ?prop; 

P must answer by stating that his thesis is a proposition.  

SR2ii: Developping a formation dialogue 

The game then proceeds by applying the formation rules up to the elementary 

constituents of prop/set.  

After that O is free to use the other particle rules insofar as the other structural rules 

allow it. 

 

Note: The constituents of the thesis will therefore not be specified before the play 

but as a result of the structure of the moves (according to the rules recorded by the rules 

for local meaning).  

SR3: Resolution of instructions 

1. A player may ask his adversary to carry out the prescribed instruction and thus bring 

forward a suitable local reason in defence of the proposition at stake. Once the 

defender has replaced the instruction with the required local reason we say that the 

instruction has been resolved. 

2. The player index of an instruction determines which of the two players has the right 

to choose the local reason that will resolve the instruction. 

a. If the instruction I for the logical constant K has the form IK(p)
X
 and it is Y 

who requests the resolution, then the request has the form Y ?…/ IK(p)
X
, and 

it is X who chooses the local reason. 

b. If the instruction I for the logic constant K has the form IK(p)
Y
 and it is player 

Y who requests the resolution, then the request has the form Y pi / I
K(p)

Y
, and 

it is Y who chooses the local reason. 

3. In the case of a sequence of instructions of the form Ii(...(Ik(p))...)], the instructions 

are resolved from the inside (Ik(p)) to the outside (Ii). 

This rule also applies to functions. 
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SR4: Substitution of instructions 

Once the local reason b has been used to resolve the instruction IK(p)
X
, and if the 

same instruction occurs again, players have the right to require that the instruction be 

resolved with 𝑏. The substitution request has the form ?𝑏/Ik(p)
X
. Players cannot choose a 

different substitution term (in our example, not even X, once the instruction has been 

resolved). 

This rule also applies to functions. 

SR5: Socratic rule and definitional equality 

The following points are all parts of the Socratic rule, they all apply. 

SR5.1: Restriction of P statements 
P cannot make an elementary statement if O has not stated it before

84
, except in the 

thesis.  

An elementary statement is either an elementary proposition with implicit local 

reason, or an elementary proposition and its local reason (not an instruction). 

SR5.2: Challenging elementary statements in formal dialogues 

Challenges of elementary statements with implicit local reasons take the form: 

𝑿 ! 𝐴 

𝒀 ?𝑟𝑒𝑎𝑠𝑜𝑛 

𝑿 𝑎 ∶ 𝐴 

Where 𝐴 is an elementary proposition and 𝑎 is a local reason.
85

 

P cannot challenge O’s elementary statements, except if O provides an elementary 

initial concession with implicit local reason, in which case P can ask for a local reason, or 

in the context of transmission of equality. 

SR5.3: Definitional equality 

O may challenge elementary P-statements; P then answers by stating a definitional 

equality expressing the equality between a local reason and an instruction both introduced 

by O (for non-reflexive cases, that is when O provided the local reason as a resolution of 

an instruction), or a reflexive equality of the local reason introduced by O (when the local 

reason was not introduced by the resolution of an instruction, that is either as such in the 

initial concessions or as the result of a synthesis of a local reason). We thus distinguish 

two cases of the Socratic rule: 

1. non-reflexive cases;
86

 

2. reflexive cases.
87

 

 

These rules do not cover cases of transmission of equality. The Socratic rule also 

applies to the resolution or substitution of functions, even if the formulation mentions 

only instructions. 

                                                 
84

 This yields an asymmetry in the structural rules. For a discussion on the consequences of this 

feature and how it is closely linked to the symmetry of the particle rules, see section  IV.3, p. 67, and 

section  XI.3. 
85

 Note that P is allowed to make an elementary statement only as a thesis (Socratic rule); he will be 

able to respond to the challenge on an elementary statement only if O has provided the required local 

reason in her initial concessions. 
86

 See below, section  VII.3, for an illustration. 
87

 See for instance 𝒫1in  VII.6.10 for an illustration. 
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SR5.3.1: Non-reflexive cases of the Socratic rule 

We are in the presence of a non-reflexive case of the Socratic rule when P responds 

to the challenge with the indication that O gave the same local reason for the same 

proposition when she had to resolve or substitute instruction I. 

 

Here are the different challenges and defences determining the meaning of the three 

following moves: 

Table 21: Non-reflexive cases of the Socratic rule 

 Move Challenge Defence 

SR5.3.1a 𝐏 𝑎 ∶ 𝐴 𝐎 ? = 𝑎 P I = a : A 

SR5.3.1b 𝐏 𝑎 ∶ 𝐴(𝑏) 𝐎 ? = 𝑏𝐴(𝑏) P I = b : D 

SR5.3.1c 
P I = b : D 

(this statement stems from SR5.3.1b) 
 

𝐎 ? = 𝐴(𝑏) P A(I) = A(b) : prop 

Presuppositions: 
(i) The response prescribed by SR5.3.1a presupposes that O has stated A or a = b : A 

as the result of the resolution or substitution of instruction I occurring in I : A or 

in I = b : A. 

(ii) The response prescribed by SR5.3.1b presupposes that O has stated A and b : D as 

the result of the resolution or substitution of instruction I occurring in a : A(I). 

(iii) SR5.3.1c assumes that P I = b : D is the result of the application of SR5.3.1b. The 

further challenge seeks to verify that the replacement of the instruction produces 

an equality in prop, that is, that the replacement of the instruction with a local 

reason yields an equal proposition to the one in which the instruction was not yet 

replaced. The answer prescribed by this rule presupposes that O has already 

stated A(b) : prop (or more trivially A(I) = A(b) : prop).  

 

The P-statements obtained after defending elementary P-statements cannot be 

attacked again with the Socratic rule (with the exception of SR5.3.1c), nor with a rule of 

resolution or substitution of instructions. 

SR5.3.2: Reflexive cases of the Socratic rule 
We are in the presence of a reflexive case of the Socratic rule when P responds to 

the challenge with the indication that O adduced the same local reason for the same 

proposition, though that local reason in the statement of O is not the result of any 

resolution or substitution. 

The attacks have the same form as those prescribed by SR5.3.1 (see Table 21). 

Responses that yield reflexivity presuppose that O has previously stated the same 

statement or even the same equality. 

The response obtained cannot be attacked again with the Socratic rule. 

SR6: Transmission of definitional equality 

Transmission of definitional equality I: Substitution within dependent or 

independent statements. The expression “type” refers to either prop or set. For more 

explanations on this structural rule, see below, section VII.2.2. 
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Table 22: Transmission of definitional equality I: Substitution within dependent or 
independent statements 

Move Challenge Defence 

X  b(x) : B(x) [x : A] Y a = c : A X  b(a) = b(c) : B(a) 

X  b(x) = d(x) : B(x) [x : A] Y a : A X  b(a) = d(a) : B(a) 

X  B(x) : type [x : A] Y a = c : A X  B(a)=B(c) : type 

 

X  B(x)=D(x) : type [x : A] 

 

Y ?B(x)=D(x)  a : A 

or 

Y ? B(x)=D(x)  a = c : A 

X  B(a)=D(a) : type 

or 

X  B(a)=D(c) : type 

X  A = B : type 

Y ? A=D a : A 

or 

𝐘 ?𝐴=𝐷 𝑎 = 𝑐: 𝐴 

X  a : B 

or 

X  a = c : B 

 

Table 23: Transmission of definitional equality II 

 Move Challenge Defence 

Type-reflexivity X  A : type Y ?type- refl X  A = A : type 

Type-symmetry X  A = B : type Y ?B-symm X  B = A : type 

Type-transitivity 
X  A = B : type 

X  B = C : type 
Y ?A-trans X A = C : type 

Reflexivity X  a : A Y ?a-refl X  a = a : A 

Symmetry X  a = b : A Y ?b-symm X  b = a : A 

Transitivity 
X  a = b : A 

X b = c : A 
Y ?a-trans X  a = c : A 

 

SR7: Winning rule for plays 

The player who makes the last move wins. If the last O-move in the play is ⊥ then 

P can bring forward the local reason 𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(𝑛) in support for any statement that he 

has not defended before O stated ⊥  at move 𝑛  (even if that statement is ⊥ , see for 

instance VII.6.2 for an illustration). 

 Rules for the transmission of definitional equality VII.2.2

As can be expected, definitional equality is transmitted by reflexivity, symmetry
88

, 

and transitivity. Definitional equalities however can also be used in order to carry out a 

substitution within dependent statements—they can in fact be seen as a special form of 

application of the substitution rule for dependent statement Subst-D presented in the first 

section for local meaning, with the formation rules (VII.1.1, p. 106). We use the 

expression "type" as encompassing prop and set. 

                                                 
88

 Symmetry used here is not the same notion as the symmetry of section  IV.3. 
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Reading adjuvant for the fourth rule (dependent statements) in Table 22: 

If X stated that 𝐵(𝑥) and 𝐷(𝑥) are equal propositional functions, provided that 𝑥 is 

an element of the set 𝐴—that is, X B(x)=D(x) : prop [x : A]—, then Y can carry out two 

kinds of attacks: 

1. Stating himself that some local reason, say a, can be adduced for A—𝒀 𝑎: 𝐴—, 

and request at the same time of X that he replaces 𝑥 with 𝑎 in B(x)=D(x), that 

is stating B(a)=D(a) : prop. 

2. Stating himself an equality such as a = c: A, and request at the same time X to 

carry out the corresponding substitutions in B(x)=D(x), that is to state X 

B(a)=D(c) : prop. 

Reading adjuvant for Table 23: 
In order to trigger reflexivity, transitivity, and symmetry from some equality 

statements the challenger can attack an equality by asking for each of these properties. 

For example, if X stated A = B : prop/set, Y can ask X to state the commutated equality 

B = A : prop/set by calling on symmetry. The notation of such an attack is as follows: 

Y ?B-symm. Similarly, Y ?A-refl and Y ?A-trans respectively request reflexivity and transitivity. 

VII.3 Example: (∀𝒙: 𝑫)(𝑸(𝒙) ⊃ 𝑸(𝒙)) 

𝓟1  O  P  

     ! (∀𝑥: 𝐷)(𝑄(𝑥) ⊃ 𝑄(𝑥)) 0  

 1 𝑚 ≔ 1   𝑛 ≔ 2 2  

synthesis of  

local reason 
3 𝑑1: 𝐷 0  𝑑2: 𝑄(𝑑1) ⊃ 𝑄(𝑑1) 4 

 

Analysis of 

local reason 
5 𝐿⊃(𝑑2): 𝑄(𝑑1) 4  𝑅⊃(𝑑2): 𝑄(𝑑1) 8 Before answering, request 

the resolution of the 

instruction. 
7 𝑑2.1: 𝑄(𝑑1)  5 ? …/𝐿⊃(𝑑2) 6 

 
9 ? …/𝑅⊃(𝑑2) 8  𝑑2.1: 𝑄(𝑑1) 10 

Statement allowed by 

move 7 

SR5.3 11 ? = 𝑑2.1 10  𝐿⊃(𝑑2) = 𝑑2.1: 𝑄(𝑑1) 12 

SR5.3.1: non-reflexive 

case between instruction 

and local reason 

P wins 

VII.4 Solved exercises for the play level in dialogues for 
immanent reasoning 

Build a play for the following theses in dialogues for immanent reasoning.  

1. 𝐵 ∨ 𝐴 [𝑐: 𝐴 ∨ 𝐵] 
That is, build a play for 𝐵 ∨ 𝐴 with the initial concession 𝑐: 𝐴 ∨ 𝐵. 

2. ((𝐴 ∨ (𝐴 ⊃⊥)) ⊃⊥) ⊃⊥ 

Alternative notation: ¬¬(𝐴 ∨ ¬𝐴) ; for a play of this game in the standard 

framework, see section IV.5. For all the plays in immanent reasoning, see 

section VII.6. 

3. (𝐴 ∧ (𝐴 ⊃⊥)) ⊃⊥ 

Alternative notation: ¬(𝐴 ∧ ¬𝐴); for all the plays, see section VII.6. 

4. ((𝐴 ⊃ 𝐵) ⊃ 𝐴) ⊃ 𝐴 

5. (𝐴 ∧ (𝐵 ⊃⊥)) ⊃ ((𝐴 ⊃ 𝐵) ⊃⊥) 
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6. *(𝐴 ∧ 𝐵) ∧ 𝐶 [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 
7. *(𝐵 ∧ 𝐴) ⊃ 𝐶 [𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶] 

As for the other cases, section VII.6 provides all the plays through the heuristical 

procedure for building a winning strategy; but the theses 5 and 6 will also have 

their strategic reason built in section VII.7.4, with an exposition of the tree-shaped 

core and the core turned into a natural deduction style demonstration in 

section IX.5. 

8. (∀𝑥: 𝐷)𝐴(𝑥) ⊃ ⊥ [(∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)] 

9. (∃𝑥: 𝐷)𝐴(𝑥) ∧ (∃𝑥: 𝐷)𝐵(𝑥) [(∃𝑥: 𝐷)(𝐴(𝑥) ∧ 𝐵(𝑥))] 

10. (∃𝑥: 𝐷)(∃𝑦: 𝐷)(𝐴(𝑥) ⊃ 𝐵(𝑦)) [𝐴(𝑎) ⊃ 𝐵(𝑏); 𝑎: 𝐷 ; 𝑏: 𝐷] 

11. (∃𝑥: 𝐷)𝐵(𝑥) ∧ (∃𝑥: 𝐷)𝑃(𝑥) [𝐵(𝑎) ∧ 𝑃(𝑏); 𝑎: 𝐷 ; 𝑏: 𝐷]  
12. (∃𝑥: 𝐷)(∃𝑦: 𝐷)𝐴(𝑥, 𝑦)[(∃𝑥: 𝐷)𝐴(𝑥, 𝑥)] 
13. (∀𝑥: 𝐷)(∀𝑦: 𝐷)(𝐴(𝑥, 𝑦) ∧ 𝐴(𝑦, 𝑥))[(∀𝑥: 𝐷)(∀𝑦: 𝐷)𝐴(𝑥, 𝑦)] 

14. *(∃𝑥: 𝐷)(𝐴(𝑥) ⊃ (∀𝑥: 𝐷)𝐴(𝑥)) [((∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)) ∨ ((∀𝑥: 𝐷)𝐴(𝑥)); 𝑎: 𝐷] 
The graphic (tree) presentation of the strategy is also provided for this thesis. 
 

In general, the solutions will be found in section (VII.6) which provides the P-

winning strategies through the heuristical procedure, thus providing all the relevant plays 

for each thesis.  

 

VII.5 The strategy level in dialogues for immanent 
reasoning 

The strategy level in dialogues for immanent reasoning is analogous to that of the 

standard framework: the core of a P-strategy can be built by means of the heuristical 

procedure which allows to find all of the relevant plays for a given thesis. However, since 

the local and structural rules have been modified in the framework for dialogues for 

immanent reasoning in order to incorporate features of CTT, the plays from which the 

strategy emerges will be modified in consequence. The procedure and the assumptions 

are thus the same as in chapter V—to which we refer the reader—but the result of their 

application will differ, especially because of local reasons and instructions, absent of the 

standard dialogical framework. A few remarks are due before proceeding to the exercises. 

Adding to the assumptions on O’s move preferences: 

1. When O has to choose a local reason she will always choose a new one.
89

  

2. O will challenge instructions (if there are any) before carrying out other moves.
90

 

A direct consequence of this—added to the assumption that O will always 

challenge first, if she can (see p. 77)—is that in the case that P challenges a 

material implication or a universal, O will first counterattack the instructions L


or 

L

 before responding to the challenge. 

                                                 
89

 This assumption is analogous to the assumption in section V.2 that O chooses a new constant 

when she can. The reason is the same: it is the best possible choice for O. Indeed, here also P is restricted 

by the Socratic rule, so he needs to rely on O's choices in order to copy a move. In such a context, the only 

way to (try to) block the use of this kind of equality is to always choose, whenever possible, a new local 

reason. 
90

 The reason is similar to the previous one: it is better for O to force P to makes his choice as soon 

as possible. 



118  VII. The dialogical roots of equality: dialogues for immanent reasoning 

 

Recalling the O-decisions: 

O has a choice and takes a decision when 

O challenges a… O defends a… 

Conjunction Disjunction 

Existential Implication 

Recalling left and right decisions: 

We speak of a left-decision when:  

 O defends the left side of a disjunction; 

 O challenges the left side of a conjunction or existential; 

 O counterattacks instead of defending an implication. 

 

We speak of a right decision when:  

 O defends the right side of a disjunction; 

 O challenges the right side of a conjunction or existential; 

 O defends an implication. 

Getting rid of infinite ramifications in a strategy: 

When the Opponent has to choose a local reason for a previously unresolved 

instruction, it will be a member of some set which, unless otherwise specified, may be 

infinite. The Opponent can then choose among an infinite number of members when 

asked to replace the instruction with a local reason,
91

 though once she has chosen one she 

must keep it for the rest of the play (recall the statement-substitution rule). 

Repetition ranks ensure that plays are finite (they fix an upper boundary to the 

number of challenges and defences each player can play in reaction to a move). But 

strategies take all the possible plays for a thesis into account, which easily yields infinite 

strategies. These are reduced down to a finite length (the core) by disregarding redundant 

variants.  

Local reasons and proof-objects: 

Local reasons are not the dialogical counterparts of CTT proof-objects—strategic 

reasons are, which will be presented in section  VII.7—, and thus are not enough to 

establish the connection between the dialogical and the CTT approaches. 

The connection between our dialogical games and CTT is not to be found at the 

level of plays, but at the level of strategies where the CTT notion of proof and the 

dialogical notion of P-winning strategies come together. More precisely, demonstrations 

in Natural deduction in general, and in CTT in particular, correspond within the 

dialogical framework to P-winning strategies (see chapter IX for how this 

correspondence is built).  

                                                 
91

 See (Clerbout, 2014a; 2014c): if there is a move by which the Opponent can force her victory, 

then nothing prevents her from playing it as soon as she has a chance to. Whether this move is a challenge 

or a defence, the repetition rank 1 is enough to allow her to play it in accordance with SR1i. 
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Disregarding formation rules for formal plays 

The dialogical rules allow the players to enquire about the type of expressions used 

in a dialogue; in particular they allow to ask whether an expression is a proposition or 

not. This leads to plays that use formation rules (see  VII.1.1).  

The scope of the present study only covers the fragment of CTT involving logically 

valid propositions and formal plays (see chapter  IX); so generally in the formal enquiries 

which we are dealing with here, we presuppose that the logical structure of the 

expressions whose validity must be demonstrated have been well typed. We will 

therefore set aside the formation rules in considering the strategic level for formal plays.  

Disregarding irrelevant variations in the order of O-moves.  

A P-strategy must account for every possible way for O to play, and in particular 

it must deal with any order in which O might play her moves. Since we look for a 

winning P-strategy, we can select any particular order of O-moves without losing 

anything in terms of P’s victory: the very definition of a winning strategy states that P 

must win in every play proceeding from an O-choice, so the order of O-moves does not 

influence the result. 

Special care must nevertheless be taken, especially in an intuitionistic framework 

(because of the restrictions of SR1i (‘last duty first’), O can only answer to P’s last non-

answered challenge): we do not want a play in which O loses because she played poorly. 

Since the extensive form of the strategy will contain all of the possible plays—the ones in 

which O played well and those in which she did not—, if we select some plays and 

discard the others we should take care not to retain one of those plays in which O did not 

play well. When extracting a particular order of O’s moves in all the possible order of 

moves, we shall select a play such that every P-challenge is immediately followed by the 

O-defence, for it tends to be strategically safer for O to defend immediately (and be sure 

not to lose the chance of making that move later on) and delay possible moves involving 

counterattacks. By doing so we explicitly get rid of the cases in which O loses only 

because she poorly chose the order of her moves.  

Once we have removed all the redundant information for developing a 

demonstration, what remains is the core C of the strategy. 

Example: obtaining the core for (∀𝒙: 𝑫)𝑸(𝒙) ⊃ 𝑸(𝒙) 

From the play in section VII.3, one can build a graphic (tree) presentation of the 

core, provided infinite ramifications are reduced to a finite number, which can be carried 

out in two steps: getting rid of ramifications first from repetition ranks, then from choice 

of names. 

Step 1: getting rid of ramifications from repetition ranks 
Here we present the core of the strategy where we delete all the branches where O 

chooses a repetition rank bigger than 1 

 

 0.  𝐏 ! (∀𝑥: 𝐷)(𝑄(𝑥) ⊃ 𝑄(𝑥))   

    

   1.  𝐎 𝑚 ∶= 1 

 2. 𝐏 𝑛 ∶= 2 

   

      

  3. 𝐎 𝑑1: 𝐷 [? , 0] 3. 𝐎 𝑑2: 𝐷 [? , 0]   … 3. 𝐎 𝑑𝑛: 𝐷 [? , 0] 
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 4. 𝐏 𝑑2: 𝑄(𝑝1) ⊃ 𝑄(𝑝1) [!, 3] 
 5. 𝐎 𝐿⊃(𝑑2): 𝑄(𝑑1)[? , 4] 
 6. 𝐏 ? …/𝐿⊃(𝑑2)  [? , 5] 

4. 𝐏𝑑2: 𝑄(𝑝1) ⊃ 𝑄(𝑝1) [!, 3]  

5. 𝐎 𝐿⊃(𝑑2): 𝑄(𝑑1) [? , 4] 
 6. … 
 

4. …  

       

 7. 𝐎 𝑑2.1: 𝑄(𝑑1)[!, 6] 
 8. 𝐏 𝑅⊃(𝑑2): 𝑄(𝑑1)[!, 5] 
 9. 𝐎 ? …/𝑅⊃(𝑑2)[? , 8] 
 10. 𝐏 𝑑2.1: 𝑄(𝑑1)[!, 9] 
 11. 𝐎 ? = 𝑑2.1 [? , 10] 
 12. 𝐏 𝐿⊃(𝑑2) =
𝑑2.1: 𝑄(𝑑1)[!, 11] 
P wins 

 7. 𝐎 𝑑2.1: 𝑄(𝑑1)[!, 6] 
 8. … 

…  7. 𝐎 𝑑2.1: 𝑄(𝑑1)[!, 6] 
 8. … 

Step 2: getting rid of choices of names 

Delete all but one of the branches of the previous tree triggered by O's choices of a 

local reason. 

 0.  𝐏 ! (∀𝑥: 𝐷)(𝑄(𝑥) ⊃ 𝑄(𝑥)) 

  

   1.  𝐎 𝑚 ∶= 1 

 2. 𝐏 𝑛 ∶= 2 

 

    

  3. 𝐎 𝑑1: 𝐷 [? , 0] 
 4. 𝐏 𝑑2: 𝑄(𝑝1) ⊃ 𝑄(𝑝1) [!, 3] 
 5. 𝐎 𝐿⊃(𝑑2): 𝑄(𝑑1)[? , 4] 
 6. 𝐏 ? …/𝐿⊃(𝑑2)  [? , 5] 

 

     

 7. 𝐎 𝑑2.1: 𝑄(𝑑1)[!, 6] 
 8. 𝐏 𝑅⊃(𝑑2): 𝑄(𝑑1)[!, 5] 
 9. 𝐎 ? …/𝑅⊃(𝑑2)[? , 8] 
 10. 𝐏 𝑑2.1: 𝑄(𝑑1)[!, 9] 
 11. 𝐎 ? = 𝑑2.1 [? , 10] 
 12. 𝐏 𝐿⊃(𝑑2) = 𝑑2.1: 𝑄(𝑑1)[!, 11] 
P wins 

  

 

 

Litterature on the link between CTT and the dialogical 
framework: 

Nicolas Clerbout (2014a; 2014b; 2014c) showed how to extract winning 

strategies for P out of the extensive form of strategies, and he developed the 

corresponding proof. Clerbout & Rahman (2015) extended the result to the CTT-

demonstrations. 

For other publications on the development of such algorithms see (Felscher, 

1985), (Keiff, 2007), (Rahman & Tulenheimo, 2009), (Rahman, Clerbout, & Keiff, 2009) 

and (Cardascia, 2016). Laurent Keiff (2007) was the first to have developped this kind of 

method for standard dialogical logic. 
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VII.6 Exercises and solutions
92

 

Build a demonstration for the theses provided in section VII.4 using the heuristic 

procedure.  

Provide also the graphic (tree) presentation for the theses marked with an asterisk *. 

Solutions 

The exercises have been developed considering the following elements:  

 the assumptions for the procedure of building a winning strategy (see 

sections  V.2.1 and  VII.5). We thus assume that O's repetition rank is 1. 

 As much as possible, local reasons will follow the notation 𝑑1, 𝑑1.2, etc., in order 

to keep track of the complex local reason from which they originate.  

For example 𝑑1  indicates that the local reason is the first component of the 

complex local reason 𝑑. We will use this notation as long as it does not hinder the 

choices of the players. 

 In order to shorten the length of the plays we will not deploy challenges of the 

form ? … = 𝐴(𝑏): 𝑡𝑦𝑝𝑒.  

 In order to implement more clearly the Intuitionistic Development rule SR1i 

(section  VII.2.1) we present the negation in its implication form—instead of 

writing 𝑝 ∶ ¬𝐴 we write 𝑝: 𝐴 ⊃⊥ 

 𝑩 ∨ 𝑨 [𝒄: 𝑨 ∨ 𝑩] VII.6.1

𝓟1  O  P 

 0.1 𝑐: 𝐴 ∨ 𝐵   ! 𝐵 ∨ 𝐴 [𝑐: 𝐴 ∨ 𝐵] 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ?∨ 0  𝑐1: 𝐴 8 

 5 𝐿∨(𝑐): 𝐴 [𝛿1, … ]  0.1 ?∨ 4 

 7 𝑐1: 𝐴  5 ? …/𝐿∨(𝑐) 6 

 9 ? = 𝑐1 8  𝐿∨(𝑐) = 𝑐1: 𝐴 10 

P wins 

 

𝓟2  O  P 

 0.1 𝑐: 𝐴 ∨ 𝐵   ! 𝐵 ∨ 𝐴 [𝑐: 𝐴 ∨ 𝐵] 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ?∨ 0  𝑐2: 𝐵 8 

 5 𝑅∨(𝑐): 𝐴 [𝛿1, 𝛿2]  0.1 ?∨ 4 

 7 𝑐2: 𝐵  5 ? …/𝑅∨(𝑐) 6 

 9 ? = 𝑐2 8  𝑅∨(𝑐) = 𝑐2: 𝐵  

P wins 

 ((𝑨 ∨ (𝑨 ⊃⊥)) ⊃⊥) ⊃⊥ VII.6.2

𝓟1  O  P 

                                                 
92

 This section has been developped by Steephen Eckoubili. 
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     ! ((𝐴 ∨ (𝐴 ⊃⊥)) ⊃⊥) ⊃⊥ 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 𝑑1: (𝐴 ∨ (𝐴 ⊃⊥)) ⊃⊥ 0  𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(7 [𝒫1𝑅]): ⊥ 8 [𝒫1𝑅] 

  …   𝐿⊃(𝑑1): 𝐴 ∨ (𝐴 ⊃⊥) 4 

 5 ? …/𝐿⊃(𝑑1) 4  𝑑1.1: 𝐴 ∨ (𝐴 ⊃⊥) 6 

 

𝒫1𝐿 7 ?∨ 6  𝑅∨(𝑑1.1): 𝐴 ⊃⊥ 8 

 9 ? …/𝑅∨(𝑑1.1) 8  𝑑1.1.2: 𝐴 ⊃⊥ 10 

 11 𝐿⊃(𝑑1.1.2): 𝐴 10    

 13 𝑑1.1.2.1: 𝐴  11 ? … /𝐿⊃(𝑑1.1.2) 12 

 [7] [?∨ ] [6]  𝐿∨(𝑑1.1): 𝐴 14 

 15 ? …/𝐿∨(𝑑1.1) 14  𝑑1.1.2.1: 𝐴 16 

 17 ? = 𝑑1.1.2.1 16  𝐿⊃(𝑑1.1.2) = 𝑑1.1.2.1: 𝐴 18 

P wins 

 

𝒫1𝑅 7 𝑅⊃(𝑑1): ⊥    …  

P wins 

 (𝑨 ∧ (𝑨 ⊃⊥)) ⊃⊥ VII.6.3

𝓟1  O  P 

     ! (𝐴 ∧ (𝐴 ⊃⊥)) ⊃⊥ 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 𝑑1: 𝐴 ∧ (𝐴 ⊃⊥) 0  𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(15 [𝒫1𝑅]): ⊥ 16 [𝒫1𝑅] 

 5 𝐿∧(𝑑1): 𝐴  3 ? 𝐿∧ 4 

 7 𝑑1.1: 𝐴  5 ? …/𝐿∧(𝑑1) 6 

 9 𝑅∧(𝑑1): 𝐴 ⊃⊥  3 ? 𝑅∧ 8 

 11 𝑑1.2: 𝐴 ⊃⊥  7 ? …/𝑅∧(𝑑1) 10 

  …  11 𝐿⊃(𝑑1.2): 𝐴 12 

 13 ? …/𝐿⊃(𝑑1.2) 12  𝑑1.1: 𝐴 14 

 

𝒫1𝐿 15 ? = 𝑑1.1 14  𝐿∧(𝑑1) = 𝑑1.1: 𝐴 16 

P wins 

 

𝒫1𝑅 15 𝑅⊃(𝑑1.2): ⊥   …  

P wins 

 ((𝑨 ⊃ 𝑩) ⊃ 𝑨) ⊃ 𝑨 VII.6.4

𝓟1  O  P 

     ! ((𝐴 ⊃ 𝐵) ⊃ 𝐴) ⊃ 𝐴 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 
3 𝑑1: (𝐴 ⊃ 𝐵) ⊃ 𝐴 0  

𝑑1.1.1: 𝐴 

𝑑1.2: 𝐴 

10 [𝒫1𝐿] 
10 [𝒫1𝑅] 
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  …   𝐿⊃(𝑑1): 𝐴 ⊃ 𝐵 4 

 5 ? …/𝐿⊃(𝑑1) 4  𝑑1.1: 𝐴 ⊃ 𝐵 6 

 

𝒫1𝐿 7 𝐿⊃(𝑑1.1): 𝐴 6    

 9 𝑑1.1.1: 𝐴  7 ? …/𝐿⊃(𝑑1.1) 8 

 11 ? = 𝑑1.1.1 10  𝐿⊃(𝑑1.1) = 𝑑1.1.1: 𝐴 12 

P wins 

 

𝒫1𝑅 7 𝑅⊃(𝑑1): 𝐴   …  

 9 𝑑1.2: 𝐴  7 ? …/𝑅⊃(𝑑1) 8 

 11 ? = 𝑑1.2 10  𝑅⊃(𝑑1) = 𝑑1.2: 𝐴 12 

P wins 

 (𝑨 ∧ (𝑩 ⊃⊥)) ⊃ ((𝑨 ⊃ 𝑩) ⊃⊥) VII.6.5

𝓟1  O  P 

     ! (𝐴 ∧ (𝐵 ⊃⊥)) ⊃ ((𝐴 ⊃ 𝐵) ⊃⊥) 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 𝑑1: 𝐴 ∧ (𝐵 ⊃⊥) 0  𝑑2: (𝐴 ⊃ 𝐵) ⊃⊥ 4 

 5 𝐿⊃(𝑑2): 𝐴 ⊃ 𝐵 4  𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(21 [𝒫1𝑅𝑅]): ⊥ 22 [𝒫1𝑅𝑅] 
 7 𝑑2.1: 𝐴 ⊃ 𝐵  5 ? …/𝐿⊃(𝑑2) 6 

 9 𝐿∧(𝑑1): 𝐴  3 ? 𝐿∧ 8 

 11 𝑑1.1: 𝐴  9 ? …/𝐿∧(𝑑1) 10 

 13 𝑅∧(𝑑1): 𝐵 ⊃⊥  3 ? 𝑅∧ 12 

 15 𝑑1.2: 𝐵 ⊃⊥  13 ? …/𝑅∧(𝑑1) 14 

  …  7 𝑑1.1: 𝐴 16 

 

𝒫1𝐿 17 ? = 𝑑1.1  16  𝐿∧(𝑑1) = 𝑑1.1: 𝐴 18 

P wins 

 

𝒫1𝑅 17 𝑅⊃(𝑑2.1): 𝐵    …  

 19 𝑑2.1.2: 𝐵  17 ? …/𝑅⊃(𝑑2.1) 18 

  …  15 𝑑2.1.2: 𝐵 20 

 

𝒫1𝑅𝐿 21 ? = 𝑑2.1.2 20  𝑅⊃(𝑑2.1) = 𝑑2.1.2: 𝐵 22 

P wins 

 

𝒫1𝑅𝑅 21 𝑅⊃(𝑑1.2): ⊥   …  

P wins 

 *(𝑨 ∧ 𝑩) ∧ 𝑪 [𝒄: 𝑨 ∧ (𝑩 ∧ 𝑪)] VII.6.6

𝓟1  O  P 

 0.1 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)   ! (𝐴 ∧ 𝐵) ∧ 𝐶 [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 
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 3 ? 𝐿∧ 0  𝑑1: 𝐴 ∧ 𝐵 4 

 5 ? 𝐿∧ [𝛿1, … ] 4  𝐿∧(𝑑1): 𝐴 6 

 7 ? …/𝐿∧(𝑑1)   𝑐1: 𝐴 12 

 9 𝐿∧(𝑐): 𝐴  0.1 ? 𝐿∧ 8 

 11 𝑐1: 𝐴  9 ? …/𝐿∧(𝑐) 10 

 13 ? = 𝑐1 12  𝐿∧(𝑐) = 𝑐1: 𝐴 14 

P wins 

 

𝓟2  O  P 

 0.1 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)   ! (𝐴 ∧ 𝐵) ∧ 𝐶 [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∧ [𝛿2, … ] 0  𝑑1: 𝐴 ∧ 𝐵 4 

 5 ? 𝑅∧ [𝛿1, 𝛿2] 4  𝑅∧(𝑑1): 𝐵 6 

 7 ? …/𝑅∧(𝑑1)   𝑐2.1: 𝐵 16 

 9 𝑅∧(𝑐): 𝐵 ∧ 𝐶  0.1 ? 𝑅∧ 8 

 11 𝑐2: 𝐵 ∧ 𝐶  9 ? …/𝑅∧(𝑐) 10 

 13 𝐿∧(𝑐2): 𝐵  11 ? 𝐿∧ 12 

 15 𝑐2.1: 𝐵  13 ? …/𝐿∧(𝑐2) 14 

 17 ? = 𝑐2.1 16  𝐿∧(𝑐2) = 𝑐2.1: 𝐵 18 

P wins 

 

𝓟3  O  P 

 0.1 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)   ! (𝐴 ∧ 𝐵) ∧ 𝐶 [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∧ [𝛿2, 𝛿3] 0  𝑐2.2: 𝐶 12 

 5 𝑅∧(𝑐): 𝐵 ∧ 𝐶  0.1 ? 𝑅∧ 4 

 7 𝑐2: 𝐵 ∧ 𝐶  5 ? …/𝑅∧(𝑐) 6 

 9 𝑅∧(𝑐2): 𝐶  7 ? 𝑅∧ 8 

 11 𝑐2.2: 𝐶  9 ? …/𝑅∧(𝑐2) 10 

 13 ? = 𝑐2.2 12  𝑅∧(𝑐2) = 𝑐2.2: 𝐶 14 

P wins 

 

The core of the strategy can be found section VII.7.4. 

 *(𝑩 ∧ 𝑨) ⊃ 𝑪 [𝒄: (𝑨 ∧ 𝑩) ⊃ 𝑪] VII.6.7

𝓟1  O  P 

 0.1 𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶   ! (𝐵 ∧ 𝐴) ⊃ 𝐶 [𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶] 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 𝑑1: 𝐵 ∧ 𝐴 0  𝑐2: 𝐶 18 [𝒫1𝑅] 

 5 𝐿∧(𝑑1): 𝐵  3 ? 𝐿∧ 4 

 7 𝑑1.1: 𝐵  5 ? …/𝐿∧(𝑑1) 6 

 9 𝑅∧(𝑑1): 𝐴  3 ? 𝑅∧ 8 

 11 𝑑1.2: 𝐴  7 ? …/𝑅∧(𝑑1) 10 



IMMANENT REASONING OR EQUALITY IN ACTION 125 

 

 

  …  0.1 𝐿⊃(𝑐): 𝐴 ∧ 𝐵 12 

 13 ? …/𝐿⊃(𝑐) 12  𝑐1: 𝐴 ∧ 𝐵 14 

 

𝒫1𝐿 15 ? 𝐿∧ [𝜹𝟏, … ] 14  𝐿∧(𝑐1): 𝐴 16 

 17 ? …/𝐿∧(𝑐1) 16  𝑑1.2: 𝐴 18 

 19 ? = 𝑑1.2 18  𝑅∧(𝑑1) = 𝑑1.2: 𝐴 20 

P wins 

 

𝒫1𝑅 15 𝑅⊃(𝑐): 𝐶    …  

 17 𝑐2: 𝐶  15 ? …/𝑅⊃(𝑐) 16 

 19 ? = 𝑐2 18  𝑅⊃(𝑐) = 𝑐2: 𝐶 20 

P wins 

 

 

𝓟𝟐  O  P 

 0.1 𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶   ! (𝐵 ∧ 𝐴) ⊃ 𝐶 [𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶] 0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 𝑑1: 𝐵 ∧ 𝐴 0  𝑐2: 𝐶 18 [𝒫1𝑅] 

 5 𝐿∧(𝑑1): 𝐵  3 ? 𝐿∧ 4 

 7 𝑑1.1: 𝐵  5 ? …/𝐿∧(𝑑1) 6 

 9 𝑅∧(𝑑1): 𝐴  3 ? 𝑅∧ 8 

 11 𝑑1.2: 𝐴  7 ? …/𝑅∧(𝑑1) 10 

  …  0.1 𝐿⊃(𝑐): 𝐴 ∧ 𝐵 12 

 13 ? …/𝐿⊃(𝑐) 12  𝑐1: 𝐴 ∧ 𝐵 14 

 

𝒫2𝐿 15 ? 𝑅∧ [𝛿1, 𝛿2] 14  𝑅∧(𝑐1): 𝐵 16 

 17 ? …/𝑅∧(𝑐1) 16  𝑑1.1: 𝐵 18 

 19 ? = 𝑑1.1 18  𝐿∧(𝑑1) = 𝑑1.1: 𝐵 20 

P wins 

 

𝒫2𝑅 15 𝑅⊃(𝑐): 𝐶    …  

 17 𝑐2: 𝐶  15 ? …/𝑅⊃(𝑐) 16 

 19 ? = 𝑐2 18  𝑅⊃(𝑐) = 𝑐2: 𝐶 20 

P wins 

 

The core of the strategy can be found section VII.7.4. 

 ((∀𝒙: 𝑫)𝑨(𝒙)) ⊃⊥ [(∃𝒙: 𝑫)(𝑨(𝒙) ⊃⊥)] VII.6.8

𝓟1 𝓟1  O  P 

  
0.1 !(∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)   

!((∀𝑥: 𝐷)𝐴(𝑥)) ⊃⊥  

[(∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)] 
0 

  1 𝑚 ≔ 1   𝑛 ≔ 2 2 

  3 𝑑1: (∀𝑥: 𝐷)𝐴(𝑥) 0  𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(19 [𝒫1𝑅]): ⊥ 20[𝒫1𝑅] 
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  5 𝑐1: 𝑑  0.1 ? 𝐿∃ 4 

  7 𝑐2: 𝐴(𝑐1) ⊃⊥  0.1 ? 𝑅∃ 6 

  13 𝑅∀(𝑑1): 𝐴(𝑐1)  3 𝐿∀(𝑑1): 𝐷 8 

  9 ? …/𝐿∀(𝑑1) 8  𝑐1: 𝐷 10 

  11 ? = 𝑐1 10  𝑐1 = 𝑐1: 𝐷 12 

  15 𝑑1.2: 𝐴(𝑐1)  13 ? …/𝑅∀(𝑑1) 14 

   …  7 𝐿⊃(𝑐2): 𝐴(𝑐1) 16 

  17 ? …/𝐿⊃(𝑐2) 16  𝑑1.2: 𝐴(𝑐1) 18 

 

𝒫1𝐿 19 ? = 𝑑1.2 18  𝑅∀(𝑑1) = 𝑑1.2: 𝐴(𝑐1) 20 

P wins 

 

𝒫1𝑅 19 𝑅⊃(𝑐2): ⊥   …   

P wins 

 (∃𝒙: 𝑫)𝑨(𝒙) ∧ (∃𝒙: 𝑫)𝑩(𝒙)[(∃𝒙: 𝑫)(𝑨(𝒙) ∧ 𝑩(𝒙))] VII.6.9

𝓟1  O  P 

 
0.1 ! (∃𝑥: 𝐷)(𝐴(𝑥) ∧ 𝐵(𝑥))   

! (∃𝑥: 𝐷)𝐴(𝑥) ∧ (∃𝑥: 𝐷)𝐵(𝑥) 

[(∃𝑥: 𝐷)(𝐴(𝑥) ∧ 𝐵(𝑥))] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∧ 0  𝑑1: (∃𝑥: 𝐷)𝐴(𝑥) 4 

 5 ? 𝐿∃ [𝛿1, … ] 4  𝐿∃(𝑑1): 𝐷 6 

 7 ? …/𝐿∃(𝑑1) 6  𝑐1: 𝐷 10 

 9 𝑐1: 𝐷  0.1 ? 𝐿∃ 8 

 11 ? = 𝑐1 10  𝑐1 = 𝑐1: 𝐷 12 

P wins 



𝓟2  O  P 

 
0.1 ! (∃𝑥: 𝐷)(𝐴(𝑥) ∧ 𝐵(𝑥))   

! (∃𝑥: 𝐷)𝐴(𝑥) ∧ (∃𝑥: 𝐷)𝐵(𝑥) 

[(∃𝑥: 𝐷)(𝐴(𝑥) ∧ 𝐵(𝑥))] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∧ [𝛿2, … ] 0  𝑑1: (∃𝑥: 𝐷)𝐴(𝑥) 4 

 5 ? 𝑅∃ [𝛿1, 𝛿2] 4  𝑅∃(𝑑1): 𝐴(𝑐1) 14 

 7 𝑐1: 𝐷  0.1 ? 𝐿∃ 6 

 9 𝑐2: 𝐴(𝑐1) ∧ 𝐵(𝑐1)  0.1 ? 𝑅∃ 8 

 11 𝐿∧(𝑐2): 𝐴(𝑐1)  9 ? 𝐿∃ 10 

 13 𝑐2.1: 𝐴(𝑐1)  11 ? …/𝐿∧(𝑐2) 12 

 15 ? …/𝑅∃(𝑑1) 14  𝑐2.1: 𝐴(𝑐1) 16 

 17 ? = 𝑐2.1 16  𝐿∧(𝑐2) = 𝑐2.1: 𝐴(𝑐1) 18 

P wins 

 

𝓟3  O  P 
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0.1 ! (∃𝑥: 𝐷)(𝐴(𝑥) ∧ 𝐵(𝑥))   

! (∃𝑥: 𝐷)𝐴(𝑥) ∧ (∃𝑥: 𝐷)𝐵(𝑥) 

[(∃𝑥: 𝐷)(𝐴(𝑥) ∧ 𝐵(𝑥))] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∧ [𝛿2, 𝛿3] 0  𝑑2: (∃𝑥: 𝐷)𝐵(𝑥) 4 

 5 ? 𝐿∃ [𝛿3, … ] 4  𝐿∃(𝑑2): 𝐷 6 

 7 ? …/𝐿∃(𝑑2) 6  𝑐1: 𝐷 10 

 9 𝑐1: 𝐷  0.1 ? 𝐿∃ 8 

 11 ? = 𝑐1 10  𝑐1 = 𝑐1: 𝐷 12 

P wins 



𝓟4  O  P 

 
0.1 ! (∃𝑥: 𝐷)(𝐴(𝑥) ∧ 𝐵(𝑥))   

! (∃𝑥: 𝐷)𝐴(𝑥) ∧ (∃𝑥: 𝐷)𝐵(𝑥) 

[(∃𝑥: 𝐷)(𝐴(𝑥) ∧ 𝐵(𝑥))] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∧ [𝛿2, 𝛿3] 0  𝑑2: (∃𝑥: 𝐷)𝐵(𝑥) 4 

 5 ? 𝐿∃ [𝛿3, 𝛿4] 4  𝑅∃(𝑑2): 𝐵(𝑐1) 14 

 8 𝑐1: 𝐷  0.1 ? 𝐿∃ 6 

 9 𝑐2: 𝐴(𝑐1) ∧ 𝐵(𝑐1)  0.1 ? 𝑅∃ 8 

 11 𝑅∧(𝑐2): 𝐵(𝑐1)  9 ? 𝑅∃ 10 

 13 𝑐2.2: 𝐵(𝑐1)  11 ? …/𝑅∧(𝑐2) 12 

 15 ? …/𝑅∃(𝑑2) 14  𝑐2.2: 𝐵(𝑐1) 16 

 17 ? = 𝑐2.2 16  𝑅∧(𝑐2) = 𝑐2.2: 𝐵(𝑐1) 18 

P wins 

 (∃𝒙: 𝑫)(∃𝒚: 𝑫)(𝑨(𝒙) ⊃ 𝑩(𝒚))[𝑨(𝒂) ⊃ 𝑩(𝒃); 𝒂: 𝑫 ; 𝒃: 𝑫]VII.6.10

𝓟1  O  P 

 0.1 

0.2 

0.3 

!𝐴(𝑎) ⊃ 𝐵(𝑏) 

𝑎: 𝐷 

𝑏: 𝐷 

  
! (∃𝑥: 𝐷)(∃𝑦: 𝐷)(𝐴(𝑥) ⊃ 𝐵(𝑦)) 

[𝐴(𝑎) ⊃ 𝐵(𝑏); 𝑎: 𝐷 ; 𝑏: 𝐷] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∃ [𝛿1, … ] 0  𝑎: 𝐷 4 

 5 ? = 𝑎 4  𝑎 = 𝑎: 𝐷 6 

P wins 

 

𝓟2  O  P 

 0.1 

0.2 

0.3 

!𝐴(𝑎) ⊃ 𝐵(𝑏) 

𝑎: 𝐷 

𝑏: 𝐷 

  
! (∃𝑥: 𝐷)(∃𝑦: 𝐷)(𝐴(𝑥) ⊃ 𝐵(𝑦)) 

[𝐴(𝑎) ⊃ 𝐵(𝑏); 𝑎: 𝐷 ; 𝑏: 𝐷] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∃ [𝛿1, 𝛿2] 0  𝑑2: (∃𝑦: 𝐷)(𝐴(𝑎) ⊃ 𝐵(𝑦)) 4 

 5 ? 𝐿∃ [𝛿2, … ] 4  𝑏: 𝐷 6 

 7 ? = 𝑏 6  𝑏 = 𝑏: 𝐷 8 

P wins 
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𝓟3  O  P 

 0.1 

0.2 

0.3 

!𝐴(𝑎) ⊃ 𝐵(𝑏) 

𝑎: 𝐷 

𝑏: 𝐷 

  
! (∃𝑥: 𝐷)(∃𝑦: 𝐷)(𝐴(𝑥) ⊃ 𝐵(𝑦)) 

[𝐴(𝑎) ⊃ 𝐵(𝑏); 𝑎: 𝐷 ; 𝑏: 𝐷] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∃ [𝛿1, 𝛿2] 0  𝑑2: (∃𝑦: 𝐷)(𝐴(𝑎) ⊃ 𝐵(𝑦)) 4 

 5 ? 𝑅∃ [𝛿2, 𝛿3] 4  𝑅∃(𝑑2): 𝐴(𝑎) ⊃ 𝐵(𝑏) 6 

 7 ? …/𝑅∃(𝑑2) 6  𝑑2.2: 𝐴(𝑎) ⊃ 𝐵(𝑏) 8 

 9 𝐿⊃(𝑑2.2): 𝐴(𝑎) 8  𝑅⊃(𝑑2.2): 𝐵(𝑏) 12  

 11 𝑑2.2.1: 𝐴(𝑎)  9 ? …/𝐿⊃(𝑑2.2) 10 

 13 ? …/𝑅⊃(𝑑2.2) 12  𝑑2.2.2: 𝐵(𝑏) 16 [𝒫3𝑅] 
  …  0.1 𝑑2.2.1: 𝐴(𝑎) 14 

 

𝒫3𝐿 15 ? = 𝑑2.2.1 14  𝐿⊃(𝑑2.2) = 𝑑2.2.1: 𝐴(𝑎) 16 

P wins 

 

𝒫3𝑅 15 𝑑2.2.2: 𝐵(𝑏) 6  …   

 17 ? = 𝑑2.2.2: 𝐵(𝑏) 16  𝑑2.2.2 = 𝑑2.2.2: 𝐵(𝑏) 18 

P wins 

 (∃𝒙: 𝑫)𝑩(𝒙) ∧ (∃𝒙: 𝑫)𝑷(𝒙)[𝑩(𝒂) ∧ 𝑷(𝒃); 𝒂: 𝑫 ; 𝒃: 𝑫] VII.6.11

𝓟1  O  P 

 0.1 

0.2 

0.3 

!𝐵(𝑎) ∧ 𝑃(𝑏) 

𝑎: 𝐷 

𝑏: 𝐷 

  
! (∃𝑥: 𝐷)𝐵(𝑥) ∧ (∃𝑥: 𝐷)𝑃(𝑥) 

[𝐵(𝑎) ∧ 𝑃(𝑏); 𝑎: 𝐷 ; 𝑏: 𝐷] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∧ 0  𝑑1: (∃𝑥: 𝐷)𝐵(𝑥) 4 

 5 ? 𝐿∃ [𝛿1, … ] 4  𝐿∃(𝑑1): 𝐷 6 

 7 ? …/𝐿∃(𝑑1) 6  𝑎: 𝐷 8 

 9 ? = 𝑎 8  𝑎 = 𝑎: 𝐷 10 

P wins 

 

𝓟2  O  P 

 0.1 

0.2 

0.3 

!𝐵(𝑎) ∧ 𝑃(𝑏) 

𝑎: 𝐷 

𝑏: 𝐷 

  
! (∃𝑥: 𝐷)𝐵(𝑥) ∧ (∃𝑥: 𝐷)𝑃(𝑥) 

[𝐵(𝑎) ∧ 𝑃(𝑏); 𝑎: 𝐷 ; 𝑏: 𝐷] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∧ [𝛿2, … ] 0  𝑑1: (∃𝑥: 𝐷)𝐵(𝑥) 4 

 5 ? 𝑅∃ [𝛿1, 𝛿2] 4  𝑅∃(𝑑1): 𝐵(𝑎) 6 

 7 ? …/𝑅∃(𝑑1) 6  𝑐1: 𝐵(𝑎) 10 

 9 𝑐1: 𝐵(𝑎)  0.1 ? 𝐿∃ 8 

 11 ? = 𝑐1 10  𝑐1 = 𝑐1: 𝐵(𝑎) 12 

P wins 
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𝓟3  O  P 

 0.1 

0.2 

0.3 

!𝐵(𝑎) ∧ 𝑃(𝑏) 

𝑎: 𝐷 

𝑏: 𝐷 

  
! (∃𝑥: 𝐷)𝐵(𝑥) ∧ (∃𝑥: 𝐷)𝑃(𝑥) 

[𝐵(𝑎) ∧ 𝑃(𝑏); 𝑎: 𝐷 ; 𝑏: 𝐷] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∧ [𝛿2, 𝛿3] 0  𝑑2: (∃𝑥: 𝐷)𝑃(𝑥) 4 

 5 ? 𝐿∃ [𝛿3, … ] 4  𝐿∃(𝑑2): 𝐷 6 

 7 ? …/𝐿∃(𝑑2) 6  𝑏: 𝐷 8 

 9 ? = 𝑏 8  𝑏 = 𝑏: 𝐷 10 

P wins 

 

𝓟4  O  P 

 0.1 

0.2 

0.3 

! 𝐵(𝑎) ∧ 𝑃(𝑏) 

𝑎: 𝐷 

𝑏: 𝐷 

  
! (∃𝑥: 𝐷)𝐵(𝑥) ∧ (∃𝑥: 𝐷)𝑃(𝑥) 

[𝐵(𝑎) ∧ 𝑃(𝑏); 𝑎: 𝐷 ; 𝑏: 𝐷] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∧ [𝛿2, 𝛿3] 0  𝑑2: (∃𝑥: 𝐷)𝑃(𝑥) 4 

 5 ? 𝑅∃ [𝛿3, 𝛿4] 4  𝑅∃(𝑑2): 𝑃(𝑏) 6 

 7 ? …/𝑅∃(𝑑2) 6  𝑐2: 𝑃(𝑏) 10 

 9 𝑐2: 𝑃(𝑏)  0.1 ? 𝑅∧ 8 

 11 ? = 𝑐2 10  𝑐2 = 𝑐2: 𝑃(𝑏) 12 

P wins 

 (∃𝒙: 𝑫)(∃𝒚: 𝑫)𝑨(𝒙, 𝒚)[(∃𝒙: 𝑫)𝑨(𝒙, 𝒙)]VII.6.12

𝓟1  O  P 

 
0.1 ! (∃𝑥: 𝐷)𝐴(𝑥, 𝑥)   

!(∃𝑥: 𝐷)(∃𝑦: 𝐷)𝐴(𝑥, 𝑦) 

[(∃𝑥: 𝐷)𝐴(𝑥, 𝑥)]
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∃ [𝛿1, … ] 0  𝑑1: 𝐷 6 

 5 𝑑1: 𝐷  0.1 ? 𝐿∃ 4 

 7 ? = 𝑎 6  𝑑1 = 𝑑1: 𝐷 8 

P wins 

 

𝓟2  O  P 

 0.1 ! (∃𝑥: 𝐷)𝐴(𝑥, 𝑥)   
!(∃𝑥: 𝐷)(∃𝑦: 𝐷)𝐴(𝑥, 𝑦) 

[(∃𝑥: 𝐷)𝐴(𝑥, 𝑥)]
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∃[𝛿1, 𝛿2] 0  𝑑3: (∃𝑦: 𝐷)𝐴(𝑑1, 𝑦) 8 

 5 𝑑1: 𝐷  0.1 ? 𝐿∃ 4 

 7 𝑑2: 𝐴(𝑑1, 𝑑1)  0.1 ? 𝑅∃ 6 

 9 ? 𝐿∃ [𝛿2, … ] 8  𝐿∃(𝑑3): 𝐷 10 

 11 ? …/𝐿∃(𝑑3) 10  𝑑1: 𝐷 12 

 13 ? = 𝑑1 12  𝑑1 = 𝑑1: 𝐷 14 
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P wins 

 

𝓟3  O  P 

 0.1 ! (∃𝑥: 𝐷)𝐴(𝑥, 𝑥)   
!(∃𝑥: 𝐷)(∃𝑦: 𝐷)𝐴(𝑥, 𝑦) 

[(∃𝑥: 𝐷)𝐴(𝑥, 𝑥)]
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∃[𝛿1, 𝛿2] 0  𝑑3: (∃𝑦: 𝐷)𝐴(𝑑1, 𝑦) 8 

 5 𝑑1: 𝐷  0.1 ? 𝐿∃ 4 

 7 𝑑2: 𝐴(𝑑1, 𝑑1)  0.1 ? 𝑅∃ 6 

 9 ? 𝑅∃ [𝛿2, 𝛿3] 8  𝑅∃(𝑑3): 𝐴(𝑑1, 𝑑1)  10 

 11 ? …/𝑅∃(𝑑3) 10  𝑑2: 𝐴(𝑑1, 𝑑1) 12 

 13 ? = 𝑑2 12  𝑑2 = 𝑑2: 𝐴(𝑑1, 𝑑1) 14 

P wins 

  (∀𝒙: 𝑫)(∀𝒚: 𝑫)(𝑨(𝒙, 𝒚) ∧ 𝑨(𝒚, 𝒙))[(∀𝒙: 𝑫)(∀𝒚: 𝑫)𝑨(𝒙, 𝒚)] VII.6.13

𝓟1  O  P 

 
0.1 !(∀𝑥: 𝐷)(∀𝑦: 𝐷)𝐴(𝑥, 𝑦)   

! (∀𝑥: 𝐷)(∀𝑦: 𝐷)(𝐴(𝑥, 𝑦) ∧ 𝐴(𝑦, 𝑥)) 

[(∀𝑥: 𝐷)(∀𝑦: 𝐷)𝐴(𝑥, 𝑦)] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 𝑑1: 𝐷 0  𝑑2: (∀𝑦: 𝐷)(𝐴(𝑑1, 𝑦) ∧ 𝐴(𝑦, 𝑑1)) 4 

 5 𝐿∀(𝑑2): 𝐷 4  𝑅∀(𝑑2): 𝐴(𝑑1, 𝑑2.1) ∧ 𝐴(𝑑2.1, 𝑑1) 8 

 7 𝑑2.1: 𝐷  5 ? …/𝐿⊃(𝑑2) 6 

 9 ? …/𝑅∀(𝑑2) 8  𝑑2.2: 𝐴(𝑑1, 𝑑2.1) ∧ 𝐴(𝑑2.1, 𝑑1) 10 

 11 ? 𝐿∧ [𝛿1, … ] 10  𝐿∧(𝑑2.2): 𝐴(𝑑1, 𝑑2.1)  12 

 13 ? …/𝐿∧(𝑑2.2) 12  𝑐2.2: 𝐴(𝑑1, 𝑑2.1) 26 

 17 𝑐2: (∀𝑦: 𝐷)𝐴(𝑑1, 𝑦)  0.1 𝑑1: 𝐷 14 

 15 ? = 𝑑1 14  𝑑1 = 𝑑1: 𝐷 16 

 23 𝑅∀(𝑐2): 𝐴(𝑑1, 𝑑2.1)  17 𝐿∀(𝑐2): 𝐷 18 

 19 ? …/𝐿∀(𝑐2) 18  𝑑2.1: 𝐷 20 

 21 ? = 𝑑2.1 20  𝐿∀(𝑑2) = 𝑑2.1: 𝐷 22 

 25 𝑐2.2: 𝐴(𝑑1, 𝑑2.1)  23 ? …/𝑅∀(𝑐2) 24 

 27 ? = 𝑐2.2 26  𝑅∀(𝑐2) = 𝑐2.2: 𝐴(𝑑1, 𝑑2.1) 28 

P wins 

 

𝓟2  O  P 

 
0.1 !(∀𝑥: 𝐷)(∀𝑦: 𝐷)𝐴(𝑥, 𝑦)   

! (∀𝑥: 𝐷)(∀𝑦: 𝐷)(𝐴(𝑥, 𝑦) ∧ 𝐴(𝑦, 𝑥)) 

[(∀𝑥: 𝐷)(∀𝑦: 𝐷)𝐴(𝑥, 𝑦)] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 𝑑1: 𝐷 0  𝑑2: (∀𝑦: 𝐷)(𝐴(𝑑1, 𝑦) ∧ 𝐴(𝑦, 𝑑1)) 4 

 5 𝐿∀(𝑑2): 𝐷 4  𝑅∀(𝑑2): 𝐴(𝑑1, 𝑑2.1) ∧ 𝐴(𝑑2.1, 𝑑1) 8 

 7 𝑑2.1: 𝐷  5 ? …/𝐿⊃(𝑑2) 6 

 9 ? …/𝑅∀(𝑑2) 8  𝑑2.2: 𝐴(𝑑1, 𝑑2.1) ∧ 𝐴(𝑑2.1, 𝑑1) 10 

 11 ? 𝑅∧ [𝛿1, 𝛿2] 10  𝑅∧(𝑑2.2): 𝐴(𝑑2.1, 𝑑1)  12 
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 13 ? …/𝑅∧(𝑑2.2) 12  𝑐2.2: 𝐴(𝑑2.1, 𝑑1)  26 

 17 𝑐2: (∀𝑦: 𝐷)𝐴(𝑑2.1, 𝑦)  0.1 𝑑2.1: 𝐷 14 

 15 ? = 𝑑2.1 14  𝐿∀(𝑑2) = 𝑑2.1: 𝐷 16 

 23 𝑅∀(𝑐2): 𝐴(𝑑2.1, 𝑑1)  17 𝐿∀(𝑐2): 𝐷 18 

 19 ? …/𝐿∀(𝑐2) 18  𝑑1: 𝐷 20 

 21 ? = 𝑑1 20  𝑑1 = 𝑑1: 𝐷 22 

 25 𝑐2.2: 𝐴(𝑑2.1, 𝑑1)  23 ? …/𝑅∀(𝑐2) 24 

 27 ? = 𝑐2.2 26  𝑅∀(𝑐2) = 𝑐2.2: 𝐴(𝑑2.1, 𝑑1) 28 

P wins 

 (∃𝒙: 𝑫)(𝑨(𝒙) ⊃ (∀𝒙: 𝑫)𝑨(𝒙))  [((∃𝒙: 𝑫)(𝑨(𝒙) ⊃⊥)) ∨VII.6.14
((∀𝒙: 𝑫)𝑨(𝒙)); 𝒂: 𝑫] 

𝓟1  O  P 

 
0.1 

0.2 

! ((∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)) ∨ ((∀𝑥: 𝐷)𝐴(𝑥)) 

𝑎: 𝐷 
  

! (∃𝑥: 𝐷)(𝐴(𝑥) ⊃ (∀𝑥: 𝐷)𝐴(𝑥)) 

[((∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥))

∨ ((∀𝑥: 𝐷)𝐴(𝑥)); 𝑎: 𝐷] 

0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝐿∃ [𝛿1, … ] 0  𝑎: 𝐷 4 

 5 ? = 𝑎  4  𝑎 = 𝑎: 𝐷 6 

P wins 

 

𝓟2  O  P 

 0.1 

0.2 

! ((∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)) ∨ ((∀𝑥: 𝐷)𝐴(𝑥)) 

𝑎: 𝐷 
  

! (∃𝑥: 𝐷)(𝐴(𝑥) ⊃ (∀𝑥: 𝐷)𝐴(𝑥)) 

[((∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)) ∨ ((∀𝑥: 𝐷)𝐴(𝑥))] 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∃ [𝛿1, 𝛿2] 0  𝑑2: 𝐴(𝑐1.1) ⊃ (∀𝑥: 𝐷)𝐴(𝑥) 14 

 5 𝑐1: (∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥) [𝛿2, … ]  0.1 ?∨ 4 

 7 𝐿∃(𝑐1): 𝐷  5 ? 𝐿∃ 6 

 9 𝑐1.1: 𝐷  7 ? …/𝐿∃(𝑐1) 8 

 11 𝑅∃(𝑐1): 𝐴(𝑐1.1) ⊃⊥  5 ? 𝑅∃ 10 

 13 𝑐1.2: 𝐴(𝑐1.1) ⊃⊥  11 ? …/𝑅∃(𝑐1) 12 

 15 𝐿⊃(𝑑2): 𝐴(𝑐1.1) 14  𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(21[𝒫2𝑅]): (∀𝑥: 𝐷)𝐴(𝑥) 22 [𝒫2𝑅] 
 17 𝑑2.1: 𝐴(𝑐1.1)  15 ? …/𝐿⊃(𝑑2) 16 

  …  13 𝐿⊃(𝑐1.2): 𝐴(𝑐1.1) 18 

 19 ? … /𝐿⊃(𝑐1.2)  18  𝑑2.1: 𝐴(𝑐1.1) 20 



𝒫2𝐿 21 ? = 𝑑1.2 20  𝐿⊃(𝑑2) = 𝑑2.1: 𝐴(𝑐1.1) 22 

P wins 

 

𝒫2𝑅 21 𝑅⊃(𝑐2): ⊥   …   

P wins 



𝓟3  O  P 
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0.1 

0.2 

! ((∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)) ∨ ((∀𝑥: 𝐷)𝐴(𝑥)) 

𝑎: 𝐷 
  

!(∃𝑥: 𝐷)(𝐴(𝑥) ⊃ (∀𝑥: 𝐷)𝐴(𝑥)) 

[((∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥))

∨ ((∀𝑥: 𝐷)𝐴(𝑥))] 

0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 ? 𝑅∃ [𝛿1, 𝛿2] 0  𝑑2: 𝐴(𝑎) ⊃ (∀𝑥: 𝐷)𝐴(𝑥) 6 

 5 𝑐2: (∀𝑥: 𝐷)𝐴(𝑥) [𝛿2, 𝛿3]  0.1 ?∨ 4 

 7 𝐿⊃(𝑑2): 𝐴(𝑎) 6  𝑅⊃(𝑑2): (∀𝑥: 𝐷)𝐴(𝑥) 10 

 9 𝑑2.1: 𝐴(𝑎)  7 ? …/𝐿⊃(𝑑2) 8 

 11 ? …/𝑅⊃(𝑑2) 10  𝑑2.2: (∀𝑥: 𝐷)𝐴(𝑥) 12 

 13 𝐿⊃(𝑑2.2): 𝐷 12  𝑅⊃(𝑑2.2): 𝐴(𝑑2.2.1) 16 

 15 𝑑2.2.1: 𝐷  13 ? …/𝐿⊃(𝑑2.2) 14 

 17 ? …/𝑅⊃(𝑑2.2) 16  𝑐2.1: 𝐴(𝑑2.2.1) 26 

 23 𝑅∀(𝑐2): 𝐴(𝑑2.2.1)  5 𝐿∀(𝑐2): 𝐷 18 

 19 ? …/𝐿∀(𝑐2) 18  𝑑2.2.1: 𝐷 20 

 21 ? = 𝑑2.2.1 20  𝐿⊃(𝑑2.2) = 𝑑2.2.1: 𝐷 22 

 25 𝑐2.1: 𝐴(𝑑2.2.1)  23 ? …/𝑅∀(𝑐2) 24 

 27 ? = 𝑐2.1 26  𝑅∀(𝑐2) = 𝑐2.1: 𝐴(𝑑2.2.1) 28 

P wins 

 

The graphic (tree) presentation of the core yields the following: 

 
 

 
 0.  𝐏 ! (∃𝑥: 𝐷)(𝐴(𝑥) ⊃ (∀𝑥: 𝐷)𝐴(𝑥)) [((∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)) ∨ ((∀𝑥: 𝐷)𝐴(𝑥))] 

 0.1.  𝐎 ((∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)) ∨ ((∀𝑥: 𝐷)𝐴(𝑥)) 

 0.2.  𝐎 𝑎: 𝐷 

 1. 𝐎 𝑚 ≔ 1 

 2.  𝐏 𝑛 ≔ 2 

 

 

  

 3. 𝐎 ? 𝐿∃ [? , 0] 
 4. 𝐏 𝑎: 𝐷 [!, 3] 
 5. 𝐎 ? = 𝑎 [? , 4] 
 6. 𝐏 𝑎 = 𝑎: 𝐷 [!, 5] 
P wins 

 3. 𝐎 ? 𝑅∃[? , 0] 
 4. 𝐏  ?∨ [? , 0.1] 
 

 

 

 

  

  5. 𝐎 𝑐1: (∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)[!, 4] 
 6. 𝐏 ? 𝐿∃[? , 5] 
 7. 𝐎 𝐿∃(𝑐1): 𝐷[!, 6] 
 8. 𝐏 ? …/𝐿∃(𝑐1) [? , 7] 
 9. 𝐎 𝑐1.1: 𝐷 [!, 8] 
 10. 𝐏 ? 𝑅∃ [? , 5] 
 11. 𝐎 𝑅∃(𝑐1): 𝐴(𝑐1.1) ⊃⊥  [!, 10] 
 12. 𝐏 ? …/𝑅∃(𝑐1) [? , 11] 
 13.  𝐎 𝑐1.2: 𝐴(𝑐1.1) ⊃⊥ [!, 12] 
 14. 𝐏 𝑑2: 𝐴(𝑐1.1) ⊃ (∀𝑥: 𝐷)𝐴(𝑥)[!, 3] 
 15. 𝐎 𝐿⊃(𝑑2): 𝐴(𝑐1.1)[? , 14] 
 16. 𝐏 ? …/𝐿⊃(𝑑2)[? , 15] 
 17. 𝐎  𝑑2.1: 𝐴(𝑐1.1)[!, 16] 
 18. 𝐏 𝐿⊃(𝑐1.2): 𝐴(𝑐1.1)[? , 13] 
 19. 𝐎 ? … /𝐿⊃(𝑐1.2)[? , 18]  
 20. 𝐏 𝑑2.1: 𝐴(𝑐1.1) [!, 19] 

 5. 𝐎  𝑐2: (∀𝑥: 𝐷)𝐴(𝑥) 6. 𝐏 𝑑2: 𝐴(𝑎) ⊃
(∀𝑥: 𝐷)𝐴(𝑥)[!, 3] 
 7. 𝐎 𝐿⊃(𝑑2): 𝐴(𝑎)[? ,6] 
 8. 𝐏 ? …/𝐿⊃(𝑑2)[? , 7] 
 9. 𝐎 𝑑2.1: 𝐴(𝑎)[!, 8] 
 10. 𝐏 𝑅⊃(𝑑2): (∀𝑥: 𝐷)𝐴(𝑥)[!, 7] 
 11. 𝐎 ? …/𝑅⊃(𝑑2)[? , 10] 
 12. 𝐏 𝑑2.2: (∀𝑥: 𝐷)𝐴(𝑥) [!, 11] 
 13. 𝐎 𝐿⊃(𝑑2.2): 𝐷 [? , 12] 
 14. 𝐏 ? …/𝐿⊃(𝑑2.2)[? , 13] 
 15. 𝐎 𝑑2.2.1: 𝐷 [!, 14] 
 16. 𝐏 𝑅⊃(𝑑2.2): 𝐴(𝑑2.2.1)[!, 13] 
 17. 𝐎 ? …/𝑅⊃(𝑑2.2)[? , 16] 
 18. 𝐏 𝐿∀(𝑐2): 𝐷 [?, 5] 

 19. 𝐎 ? …/𝐿∀(𝑐2)[? , 18] 
 20. 𝐏 𝑑2.2.1: 𝐷 [!, 19] 
 21. 𝐎 ? = 𝑑2.2.1 [? , 20]   
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 21.  𝐎 ? = 𝑑1.2 [? , 20] 
22. 𝐏 𝐿⊃(𝑑2) = 𝑑2.1: 𝐴(𝑐1.1) [!, 21] 

P wins 

 21. 𝐎 𝑅⊃(𝑐2): ⊥ [!, 20] 
22. 𝐏 𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(21[𝒫2𝑅]): 

(∀𝑥: 𝐷)𝐴(𝑥) [!, 15] 
P wins 

 22. 𝐏 𝐿⊃(𝑑2.2) = 𝑑2.2.1: 𝐷[!, 21] 
 23. 𝐎 𝑅∀(𝑐2): 𝐴(𝑑2.2.1)[!, 18] 
 24. 𝐏 ? …/𝑅∀(𝑐2)[? , 23] 
 25. 𝐎  𝑐2.1: 𝐴(𝑑2.2.1) [!, 24] 

 26. 𝐏 𝑐2.1: 𝐴(𝑑2.2.1)[!, 17] 
 27.  𝐎? = 𝑐2.1 [? , 26] 
 28. 𝐏 𝑅∀(𝑐2) = 𝑐2.1: 𝐴(𝑑2.2.1)[! 28] 
P wins 

VII.7 Strategic reasons in dialogues for immanent 
reasoning 

The philosophical backbone on which rests the proof of admissibility provided in 

chapter IX,
93

 and which is one of the dialogical framework’s greatest strengths, is 

probably the notion of strategic reason which allows to adopt a global view on all the 

possible plays that constitute a strategy; but this global view should not be identified with 

the perspective common in proof theory: strategic reasons are a kind of recapitulation of 

what can happen for a given thesis and show the entire history of the play by means of 

the instructions. Strategic reasons thus yield an overview of the possibilities enclosed in a 

thesis—what plays can be carried out from it—, but without ever being carried out in an 

actual play: they are only a perspective on all the possible variants of plays for a thesis 

and not an actual play. In this way the rules of synthesis and analysis of strategic reasons 

provided below are not of the same nature as the analysis and synthesis of local reasons, 

they are not produced through challenges and their defence, but are a recapitulation of the 

plays that can actually be carried out. 

The notion of strategic reasons enables us to link dialogical strategies with CTT-

demonstrations, since strategic reasons (and not local reasons) are the dialogical 

counterpart of CTT proof-objects; but it also shows clearly that the strategy level by 

itself—the only level that proof theory considers—is not enough: a deeper insight is 

gained when considering, together with the strategy level, the fundamental level of plays; 

strategic reasons thus bridge these two perspectives, the global view of strategies and the 

more in-depth and down-to-earth view of actual plays with all the possible variations in 

logic they allow,
94

 without sacrificing the one for the other.  

 

This vindication of the play level is a key aspect of the dialogical framework and 

one of the purposes of the present study: other logical frameworks lack this dimension, 

which besides is not an extra dimension appended to the concern for demonstrations, but 

actually constitutes it, the heuristical procedure for building strategies out of plays 

showing the gapless link there is between the play level and the strategy level: strategies 

(and so demonstrations) stem from plays. Thus the dialogical framework can say at least 

as much as other logical frameworks, and, additionally, reveals limitations of other 

frameworks through this level of plays.  

This final section presenting dialogues for immanent reasoning will be devoted first 

to a rather informal presentation of strategic reasons, stressing out the philosophical 

                                                 
93

 Chapter  IX will focus on proving that dialogues for immanent reasoning is an admissible logical 

framework; it will therefore be rather technical and will address problems that mainly concern logicians, 

though we will here take care to outline the main philosophical aspects involved. 
94

 Among these variations can be counted cooperative games, non-monotony, the possibility of 

player errors or of limited knowledge or ressources, to cite but a few options the play level offers, making 

the dialogical framework very well adapted for history and philosophy of logic. 
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aspects underlying this key notion; then to the synthesis of strategic reasons and showing 

the link with the introduction rules for CTT; and finally to the analysis of strategic 

reasons. Once the rules have been provided, two examples will illustrate them and show 

how to produce a strategic reason for the thesis out of the core of a strategy. 

 Introducing strategic reasons VII.7.1

Strategic reasons belong to the strategy level, but are elements of the object-

language of the play level: they are the reasons brought forward by a player entitling him 

to his statement. Strategic reasons are a perspective on plays that take into account all the 

possible variations in the play for a given thesis; they are never actually carried out, since 

any play is but the actualization of only one of all the possible plays for the thesis: each 

individual play can be actualized but will be separate from the other individual plays that 

can be carried out if other choices are made; strategic reasons allow to see together all 

these possible plays that in fact are always separate. There will never be in any of the 

plays the complex strategic reason for the thesis as a result of the application of the 

particle rules, only the local reason for each of the subformulas involved; the strategic 

reason will put all these separate reasons together as a recapitulation of what can be said 

from the given thesis. 

Consider for instance a conjunction: the Proponent claims to have a strategic reason 

for this conjunction. This means that he claims that whatever the Opponent might play, 

be it a challenge of the left or of the right conjunct, the Proponent will be able to win the 

play. But in a single play with repetition rank 1 for the Opponent, there is no way to 

check if a conjunction is justified, that is if both of the conjuncts can be defended, since a 

play is precisely the carrying out of only one of the possible O-choices (challenging the 

left or the right conjunct): to check both sides of a conjunction, two plays are required, 

one in which the Opponent challenges the left side of the conjunction and another one for 

the right side. So a strategic reason is never a single play, but refers to the strategy level 

where all the possible outcomes are taken into account; the winning strategy can then be 

displayed as a tree showing that both plays (respectively challenging and defending the 

left conjunct and right conjunct) are won by the Proponent, thus justifying the 

conjunction.  

Let us now study what strategic reasons look like, how they are generated and how 

they are analyzed.  

A strategic perspective on a statement 

In the standard framework of dialogues, where we do not explicitly have the 

reasons for the statements in the object-language, the particle rules simply determine the 

local meaning of the expressions. In dialogues for immanent reasoning, the reasons 

entitling one to a statement are explicitely introduced; the particle rules (synthesis and 

analysis of local reasons) govern both the local reasons and the local meaning of 

expressions. But when building the core of a winning P-strategy, local reasons are also 

linked to the justification of the statements—which is not the case if considering single 

plays or non-winning strategies, for then only one aspect of the statement may be taken 

into account during the play, the play providing thus only a partial justification. 

Take again the example of a P-conjunction, say  

P 𝑤 ∶ 𝐴 ∧ 𝐵. 

In providing a strategic reason 𝑤  for the conjunction 𝐴 ∧ 𝐵 , P is claiming to have a 

winning strategy for this conjunction, that is, he is claiming that the conjunction is 

absolutely justified, that he has a proper reason for asserting it and not simply a local 
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reason for stating it. Assuming that O has a repetition rank of 1 and has stated both 𝐴 and 

𝐵 prior to move 𝑖 , two different plays can be carried out from this point, which we 

provide without the strategic reason: 

Play 12: introducing strategic reasons: stating a conjunction 

O P 

 Concessions   Thesis 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

… …   … … 

… …   ! 𝐴 ∧ 𝐵 𝑖 
      

 

Play 13: introducing strategic reasons: left decision option on conjunction 

O P 

 Concessions   Thesis 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

… …   … … 

… …   ! 𝐴 ∧ 𝐵 𝑖 
𝑖 + 1  ? ∧1 𝑖  ! 𝐴 𝑖 + 2 

      

 

Play 14: introducing strategic reasons: right decision option on conjunction 

O P 

 Concessions   Thesis 0 

1 𝑚 ≔ 1   𝑛 ≔ 2 2 

… …   … … 

… …   ! 𝐴 ∧ 𝐵 𝑖 
𝑖 + 1  ? ∧2 𝑖  ! 𝐵 𝑖 + 2 

      

 

So if P brings forward the strategic reason 𝑤 to support his conjunction at move 𝑖, he is 

claiming to be able to win both Play 13 and Play 14, and yet the actual play will follow 

into only one of the two plays. Strategic reasons are thus a strategic perspective on a 

statement that is brought forward during actual plays.  

An anticipation of the play and a recapitulation of the strategy 

Since a strategic reason (𝑤 for instance) is brought forward during a play (say at 

move 𝑖), it is clear that the play has not yet been carried out fully when the player claims 

to be able to defend his statement against whatever challenge his opponent might launch: 

bringing forward a strategic reason is thus an anticipation on the outcome of the play.  

But strategic reasons are not a simple claim to have a winning strategy, they also 

have a complex internal structure: they can thus be considered as recapitulations of the 

plays of the winning strategy produced by the heuristic procedure, that is the winning 

strategy obtained only after running all the relevant plays; this strategy-building process 

specific to the dialogical framework is a richer process than the one yielding CTT 

demonstrations—or proof theory in general—, since the strategic reasons will contain 

traces of choice dependences, which constitute their complexity. 
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Choice dependences link possible moves of a player to the choices made by the 

other player: a player will play this move if his opponent used this decision-option, that 

move if the opponent used that decision-option. In the previous example, the Proponent 

will play move 𝑖 + 2  depending on the Opponent’s decision at move 𝑖 + 1 , so the 

strategic object 𝑤 played at move 𝑖 will contain these two possible scenarios with the 

𝑖 + 2  P-move depending of the 𝑖 + 1  O-decision. The strategic reason 𝑤  is thus a 

recapitulation of what would happen if each relevant play was carried out. When the 

strategic reason makes clearly explicit this choice-dependence of P’s moves on those of 

O, we say that it is in a canonical argumentation form and is a recapitulation of the 

statement.  

The rules for strategic reasons do not provide the rules on how to play but rather 

rules that indicate how a winning strategy has been achieved while applying the relevant 

rules at the play level. Strategic reasons emerge as the result of considering the optimal 

moves for a winning strategy: this is what a recapitulation is about. 

The canonical argumentation form of strategic reasons is closely linked to the 

synthesis and analysis of local reasons: they provide the recapitulation of all the relevant 

local reasons that could be generated from a statement. In this respect following the rules 

for the synthesis and analysis of local reasons (see section  VII.1.2), the rules for strategic 

reasons are divided into synthesis and analysis of strategic reasons, to which we will now 

turn.  

In a nutshell, the synthesis of strategic reasons provides a guide for what P needs to 

be able to defend in order to justify his claim; the analysis of strategic reasons provides a 

guide for the local reasons P needs to make O state in order to copy these reasons and 

thus defend his statement. 

Assertions and statements 

The difference between local reasons and strategic reasons should now be clear: 

while local reasons provide a local justification entitling one to his statement, strategic 

reasons provide an absolute justification of the statement, which thus becomes an 

assertion. 

The equalities provided in each of the plays constituting a P-winning strategy, and found 

in the analysis of strategic objects, convey the information required for P to play in the 

best possible way by specifying those O-moves necessary for P’s victory. This 

information however is not available at the very beginning of the first play, it is not made 

explicit at the root of the tree containing all the plays relevant for the P-winning strategy: 

the root of the tree will not explicitly display the information gathered while developing 

the plays; this information will be available only once the whole strategy has been 

developped, and each possible play considered. So when a play starts, the thesis is a 

simple statement; it is only at the end of the construction process of the strategic reason 

that P will be able to have the knowledge required to assert the thesis, and thus provide in 

any new play a strategic reason for backing his thesis. 

The assertion of the thesis, making explicit the strategic reason resulting from the 

plays, is in this respect a recapitulation of the result achieved after running the relevant 

plays, after P's initial simple statement of that thesis. This is what the canonical 

argumentation form of a strategic object is, and what renders the dialogical formulation 

of a CTT canonical proof-object.  

 

It is in this fashion that dialogical reasons correspond to CTT proof-objects: 

introduction rules are usually characterized as the right to assert the conclusion from the 

premises of the inference, that is, as defining what one needs in order to be entitled to 
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assert the conclusion; and the elimination rules are what can be infered from a given 

statement. Thus, in the dialogical perspective of P-winning strategies, since we are 

looking at P’s entitlements and duties, what corresponds to proof-object introduction 

rules would define what P is required to justify in order to assert his statement, which is 

the synthesis of a P-strategic reason; and what corresponds to proof-object elimination 

rules would define what P is entitled to ask of O from her previous statements and thus 

say it himself by copying her statements, which is the analysis of P-strategic reasons. We 

will thus provide the rules for the synthesis and analysis of strategic reasons (always in 

the perspective of a P-winning strategy), followed by their corresponding CTT rule. We 

have in this regard a good justification of Sundholm’s idea that inferences can be 

considered as involving an implicit interlocutor, but here at the strategy level. 

 Rules for the synthesis of P-strategic reasons: Strategic VII.7.2
reasons as recapitulations of the local reasons required for a P-
winning strategy 

P-strategic reasons must be built (synthesis of P-strategic reasons); they constitute 

the justification of a statement by providing certain information—choice-dependences—

that are essential to the relevant plays issuing from the statement: strategic reasons are a 

recapitulation of the building of a winning strategy, directly inserted into a play. Thus a 

strategic reason for a P-statement can have the form p2
P

 ⟦ p1
O⟧ and indicates that P’s 

choice of 𝑝2  is dependent upon O’s choice of 𝑝1 . In this respect the synthesis of P-

strategic reasons differ from the analysis of P-strategic reasons—dealt with in the 

following section (VII.7.3)—which provide a guide for all the local reasons P needs to 

ask O to provide in order for P to justify his statement through the equality rules. 

Strategic reasons for P are the dialogical formulation of CTT proof-objects, and the 

canonical argumentation form of strategic reasons correspond to canonical proof-objects. 

Since in this chapter we are seeking a notion of winning strategy that corresponds to that 

of a CTT-demonstration, and since these strategies have being identified to be those 

where P wins, we will only provide the synthesis of strategic reasons for P.
95

 

 

The rules for the synthesis of P-strategic reasons provide the strategic reasons in 

their canonical argumentation form, that is they make explicit the choice-dependences 

for P-moves based on O-decisions; the range of possibilities to take into account is 

dictated by the rules for the synthesis of local reasons, the synthesis of strategic reasons 

recapitulating what P needs to provide in order to have a winning strategy (or 

demonstration, that is, for his statement to be justified). 

Thus for a conjunction, the rules for the synthesis of local reasons stipulates that P 

does not have the choice and must provide the local reason required by O. So in order to 

justify a conjunction, P must be able to provide a local reason for both of the conjuncts: 

the strategic reason for a conjunction will thus have the form < 𝑝1, 𝑝2 >, where 𝑝1 and 𝑝2 

are the local reasons for each conjunct. 

The defence of a disjunction on the other hand gives the choice to P, so the 

strategic reason for a disjunction requires only one local reason. 

The defence of an implication can use what O had to concede in order to challenge 

the implication, so the local reason 𝑝2 for the consequent depends on the local reason 𝑝1 

                                                 
95

 The table which follows is in fact the dialogical analogue to the introduction rules in CTT: 

dialogically speaking, these rules display the duties required by P’s assertions—we will come back to this 

issue in section  IX.1. 



138  VII. The dialogical roots of equality: dialogues for immanent reasoning 

 

for the antecedent provided by O; the strategic reason for the implication thus has the 

form  𝑝2
𝐏⟦𝑝1

𝐎⟧. 

 

Table 24: Synthesis of strategic reasons for P: 

 Move 
Synthesis of local reasons Synthesis of 

strategic reasons Challenge Defence 

Conjunction  𝐏 !  𝐴 ∧ 𝐵 
𝐎 ? 𝐿∧ 

or 

𝐎 ? 𝑅∧ 

𝐏 𝑝1: 𝐴
(resp.) 
𝐏 𝑝2: 𝐵 

P < 𝑝1, 𝑝2 >∶ 𝐴 ∧ 𝐵 

Existential 

quantifiation 
 𝐏! (∃𝑥 ∶ 𝐴)𝐵(𝑥) 

𝐎 ? 𝐿∃ 
or 

𝐎 ? 𝑅∃ 

𝐏 𝑝1: 𝐴
(resp.) 

𝐏 𝑝2: 𝐵(𝑝1) 

P < 𝑝1, 𝑝2 >: (∃𝑥: 𝐴)𝐵(𝑥) 

Subset separation  𝐏 ! {𝑥 ∶ 𝐴 |𝐵(𝑥)} 
𝐎 ? 𝐿  

or 

𝐎 ? 𝑅  

𝐏 𝑝1: 𝐴
(resp.) 

𝐏 𝑝2: 𝐵(𝑝1) 
P < 𝑝1 , 𝑝2 >∶ {𝑥: 𝐴|𝐵(𝑥)}  

Disjunction 𝐏 ! 𝐴 ∨ 𝐵 𝐎 ?∨ 
𝐏 𝑝1: 

or 
𝐏 𝑝2: 𝐵 

P 𝑝1: 𝐴 ∨ 𝐵 

or 

P 𝑝2: 𝐴 ∨ 𝐵 

Implication  𝐏 !  𝐴 ⊃ 𝐵  𝐎 𝑝1: 𝐴 𝐏 𝑝2: 𝐵 P 𝑝2
𝐏⟦𝑝1

𝐎⟧: 𝐴 ⊃ 𝐵 

Universal 

quantification 
𝐏 ! (∀𝑥: 𝐴)𝐵(𝑥)  𝐎 𝑝1: 𝐴 𝐏 𝑝2: 𝐵(𝑝1) P 𝑝2

𝐏⟦𝑝1
𝐎⟧: (∀𝑥: 𝐴)𝐵(𝑥) 

 

For negation, we must bear in mind that we are considering P-strategies, that is, 

plays in which P wins, and we are not providing particle rules with a proper challenge 

and defence, but we are adopting a strategic perspective on the reason to provide backing 

a statement; thus the response to an O-challenge on a negation cannot be 𝐏 ! ⊥, which 

would amount to P losing; this  statement “P n
O⟦p1

O⟧ : A” indicates that P’s strategic 

reason for the negation is based on O’s move n (where O is forced to state move 𝑛 

which is dependent upon O’s choice p1 as local reason for the antecedent of the negation. 

This yields the following rule for the synthesis of the strategic reason for negation: 

Table 25: synthesis of the strategic reason for negation 

 Move Challenge Defence 
Strategic reason 

(synthesis) 

Negation 

𝐏 ! ¬𝐴 

Also 

expressed 

as 

𝐏 !  𝐴 ⊃⊥ 

𝐎 𝑝1: 𝐴 

𝐎 ! ⊥ 

P’s successful defence of the negation 

amounts to a switch such that O must 

now state that she has a local reason 

for 𝐴. However this move leads her to  

give up by bringing forward ⊥ (𝑛) 

 

P n
O⟦p1

O⟧ : A 

 

The move O p1 : A, allows P 

to force her to give up in 

move n, which leads to P's 

victory. 
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Correspondence between the synthesis of strategic reasons and CTT introduction 
rules 

Since we are considering a P-winning strategy, we are searching what P needs to 

justify in order to justify his thesis, which is the point of the synthesis rules for strategic 

reasons. This search corresponds to the CTT introduction rules, since these determine 

what one needs in order to carry out an inference. The following table displays the 

correspondence between the procedures of synthesis of a strategic reason and an 

introduction rule, though in a notation closer to the original one of Martin-Löf for the 

logical interpretation of the - and -operators than to the more modern general notation 

used in chapter II.  

Table 26: correspondence between synthesis of strategic reasons and introduction 
rules 

 
Synthesis of P-strategic 

reasons: 
CTT-introduction rule: 

Existential 

quantification 

𝑷 ! (∃𝑥 ∶  𝐴)𝐵(𝑥) (∃𝑥 ∶  𝐴)𝐵(𝑥) 𝒕𝒓𝒖𝒆 
 

𝑝1 ∶  𝐴              𝑝2 ∶ 𝐵(𝑝1) 

〈𝑝1, 𝑝2〉 ∶ (∃𝑥 ∶  𝐴)𝐵(𝑥) 

𝑶 ? 𝐿∃ 

𝑷 𝑝1 ∶  𝐴 

𝑶 ? 𝑅∃
 

𝑷 𝑝2 ∶  𝐵(𝑝1) 

𝑷 〈𝑝1, 𝑝2〉 ∶  (∃𝑥 ∶  𝐴)𝐵(𝑥) 

Conjunction 

𝑷 !  𝐴 ∧ 𝐵 𝐴 ∧ 𝐵 𝒕𝒓𝒖𝒆 
 

𝑝1: 𝐴               𝑝2: 𝐵 

〈 𝑝1, 𝑝2〉: 𝐴 ∧ 𝐵 

𝑶 ? 𝐿∧  

𝑷 𝑝1 ∶  𝐴 

𝑶 ? 𝑅∧ 

𝑷 𝑝2 ∶  𝐵 

𝑷 〈𝑝1, 𝑝2〉: 𝐴 ∧ 𝐵 

Disjunction 

𝑷 ! 𝐴 ∨ 𝐵 
 

𝑶 ?∨ 
𝐴 ∨ 𝐵 𝒕𝒓𝒖𝒆 

𝑷 ! 𝑝1: 𝐴  𝑷 ! 𝑝2 ∶ 𝐵 
𝑝1: 𝐴  

_________ 
𝑝2: 𝐵  

___________ 

𝑷 𝑝1: 𝐴 ∨ 𝐵  𝑷 𝑝2: 𝐴 ∨ 𝐵  𝒊(𝑝1): 𝐴 ∨ 𝐵  𝒋(𝑝2): 𝐴 ∨ 𝐵  

Implication 

𝑷 ! 𝐴 ⊃ 𝐵 
 

𝑶 𝑝1: 𝐴 
𝑷 𝑝2: 𝐵 

 

𝑷 ! 𝑝2
𝑷⟦𝑝1

𝑶⟧: 𝐴 ⊃ 𝐵

𝐴 ⊃ 𝐵 𝒕𝒓𝒖𝒆 
 

(𝑥: 𝐴) 
𝑝2(𝑥): 𝐵  

 (𝜆𝑥)𝑝2(𝑥): 𝐴 ⊃ 𝐵 

Universal 

quantification 

𝑷! (∀𝑥: 𝐴)𝐵(𝑥) 
 

𝑶 𝑝1: 𝐴
𝑷 𝑝2: 𝐵(𝑝1)



𝑷 𝑝2
𝑷⟦𝑝1

𝑶⟧ ∶ (∀𝑥: 𝐴)𝐵(𝑥) 

(∀𝑥: 𝐴)𝐵(𝑥) 𝒕𝒓𝒖𝒆 
 

(𝑥: 𝐴) 

𝑝2(𝑥): 𝐵(𝑥) 
(𝜆𝑥)𝑝2(𝑥): (∀𝑥: 𝐴)𝐵(𝑥) 

Negation 

𝑷 !¬𝐴 
 

𝑶  𝑝1: 𝐴 
⋮ 

𝑶 ! ⊥ (𝑛) 

¬𝐴 𝒕𝒓𝒖𝒆 
 

(𝑥: 𝐴) 

⋮ 
𝑝2: ⊥ 
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𝑷 𝑛𝑶⟦𝑝1
𝑶⟧: ¬𝐴 

 (𝜆𝑥)𝑝2(𝑥): ¬𝐴 

Dependences 

In the case of material implication and universal quantification, a winning P-

strategy literally displays the procedure by which the Proponent chooses the local reason 

for the consequent depending on the local reason chosen by the Opponent for the 

antecedent. What the canonical argumentation form of a strategic object does is to make 

explicit the relevant choice-dependence by means of a recapitulation of the plays 

stemming from the thesis.  

This corresponds to the general description of proof-objects for material 

implications and universally quantified formulas in CTT: a method which, given a proof-

object for the antecedent, yields a proof-object for the consequent.  

 Rules for the analysis of P-strategic reasons: Strategic VII.7.3
reasons as recapitulations of procedures of analysis and record of 
instructions 

The analysis of P-strategic reasons focuses on this other essential aspect of P’s 

activity while playing: not determining what he needs in order to justify his statement—

that aspect is dealt with by the synthesis of P-strategic reasons—, but determining how he 

will be able to defend his statement through O’s statement and through those alone; that 

is, the analysis of P-strategic reasons are a direct consequence of the Socratic rule: since 

P must defend his thesis using only the elements provided by O, P must be able to 

analyze O’s statements and find the elements he needs for the justification of his own 

statements, so as to force O to bring these elements forward during the play. 

In this regard, the analysis of strategic reasons constitute both the analogue of the 

elimination rules in CTT and the equality rules of a type, to which we now turn. 

Analysis of strategic reasons providing the equalities that will guide P’s choices 

As explained in chapter II, the equality rules for a type A determine the equalities 

between its elements which are introduced by the evaluation rules for the selector for A 

(the non-canonical operators that render the proof-objects of elimination rules for that 

type). Thus in the CTT-setting, the equality rules serve to justify the elimination rules by 

showing how the evaluation of the selectors (their computation) yield canonical elements 

of 𝐴.  

In the dialogical framework, the analysis of strategic reasons renders the 

instructions (the analogue of selectors) and the equality rules for the resolutions of those 

instructions in such a way that in a winning strategy the result of the resolution of an 

instruction for an elementary 𝐴 (challenged by the Opponent) is a local reason stated by 

the Opponent.  

The strategic reason for the thesis then recapitulates not only the relevant processes 

of synthesis and analysis but it also includes a record of the resolution of the instructions 

manifesting how the process of analysis and synthesis intertwine. Accordingly, 

“recording resolutions” amounts to making explicit the equalities between instructions  

and the local reasons required by the justification of the thesis. 

Since the winning strategies corresponding to CTT-demonstrations are P-winning 

strategies, the rules for the recapitulation of the procedures of analysis are fixed for O. 

From the dialogical point of view, the rules corresponding to CTT elimination rules 

display what P is entitled to state on the basis of O’s statements: a P-winning strategy 
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includes all the O-statements brought forward while challenging the thesis. The 

procedures of analysis leading to a P-winning strategy thus prescribe how to analyze the 

O-statements into reasons that can be copied by P and that contribute to the justification 

of P’s thesis.  

The case of the strategic reason for disjunction 

The most striking example for the analysis of P-strategic reasons is probably the 

case of a P-winning strategy based on a disjunction stated by O: let us take the case of a 

P-winning strategy for some thesis π such that O has to defend at some point the 

disjunction 𝑑: 𝐵 ∨ 𝐴, and such that P needs O to defend this disjunction in order to win; 

in this context P has a winning strategy for his thesis because he is entitled to defend his 

own commitments—undertaken while stating the thesis—by analyzing precisely those 

statements that O is forced to concede while defending either side of B  A.  

The rule for the analysis of local reasons for a disjunction states that the defender 

may choose which local reason to provide supporting the disjunct he chose. Thus if O 

states the disjunction 𝑑: 𝐵 ∨ 𝐴, and P challenges this disjunction, then O can choose to 

defend it by stating either 𝐿∨(𝑑)𝑶: 𝐵 or 𝑅∨(𝑑)𝑶: 𝐴. So when P analyzes O’s statement 

during the play, he must take O’s choice into account and track how O will resolve the 

instruction so that P can copy that resolution and not the corresponding instruction. The 

analysis of the P-strategic reason for a disjunction has thus the following form: 

𝐿∨(𝑑)𝑶 = 𝑑1
𝑷,𝑶|𝑅∨(𝑑)𝑶 = 𝑑2

𝑷,𝑶
 

This strategic reason is constituted of two equalities, the left one being 𝐿∨(𝑑)𝑶 =

𝑑1
𝑷,𝑶

 and the right one being 𝑅∨(𝑑)𝑶 = 𝑑2
𝑷,𝑶

, separated by a bar | which indicates that it 

is O, not P, who has the choice between the two instructions. The equalities state that the 

instruction used by O to defend her disjunction (left or right side) will be resolved into a 

local reason chosen by O (𝑑1 and 𝑑2 respectively), local reason that will be copied by P 

in order to support a later claim—𝐶 for instance—, the superscripts 𝑷 and 𝑶 indicating 

that the labelled player brings the local reason (𝑑1
𝑷

 for instance) or the instruction 

(𝐿∨(𝑑)𝑶 for instance) forward in the play. The strategic reason for the thesis will in this 

respect not only display the instructions resulting from the analysis of 𝑑, but it will also 

record the resolution of those instructions that yield the reasons for the elementary 

propositions that justify the thesis.  

That is, statements of the form 𝐏 𝐿∨(𝑑)𝑶 = 𝑑1
𝑷,𝑶|𝑅∨(𝑑)𝑶 = 𝑑2

𝑷,𝑶: 𝐶 indicate that 

the strategic reason for 𝐶 is the outcome of a disjunction stated by O such that whatever 

be the local reason she decides to defend her disjunction with, this reason will provide the 

strategic reason for P to state 𝐶: if the local reason adduced by O in defence of the 

disjunction is the one that is resolved by the left instruction, and if O uses 𝑑1 to resolve 

the left instruction, then P will copy that local reason and use 𝑑1 in order to defend 𝐶. 

The same holds for the right side, mutatis mutandis. 

It is once again clear that a strategic reason is only a perspective on a statement 

which is not actually carried out in a play: both sides of the disjunction are taken into 

account without determining which one will be taken, thus allowing for the 

indetermination of O’s choice. 

The rules of analysis of strategic reasons 
Here is the table providing the rules for the analysis of P-strategic reasons, in which 

we also recall the analysis rules for local reasons, so as to make the link between the two 

as clear as possible. Since the rules for the analysis of strategic reasons will display 

equalities, we assume that the instructions are resolved into its elementary constituents. 
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Table 27: analysis rules for P-strategic reasons 

 Move 
Analysis of local reasons Analysis of P-strategic reasons 

Challenge Defence 

Conjunction  O 𝑝: 𝐴 ∧ 𝐵 
𝐏 ? 𝐿∧ 

or 

𝐏 ? 𝑅∧ 

𝐎 𝐿∧(𝑝)𝑂: 𝐴
(resp.) 

𝐎 𝑅∧(𝑝)𝑂: 𝐵 

𝐏 𝐿∧(𝑝)𝑶 = 𝑝1
𝑷,𝑶: 𝐴 

(resp.) 
𝐏 𝑅∧(𝑝)𝑶 = 𝑝2

𝑷,𝑶: 𝐵 

Existential 

quantifiation 
 𝐎 𝑝: (∃𝑥: 𝐴)𝐵(𝑥) 

𝐏 ? 𝐿∃ 
or 

𝐏 ? 𝑅∃ 

𝐎 𝐿∃(𝑝)𝑂: 𝐴
(resp.) 

𝐎 𝑅∃(𝑝)𝑂: 𝐵(𝐿∃(𝑝)𝑂) 

𝐏 𝐿∃(𝑝)𝑶 = 𝑝1
𝑷,𝑶: 𝐴

(resp.) 
𝐏 𝑅∃(𝑝)𝑶 = 𝑝2

𝑷,𝑶: 𝐵(𝑝1
𝑷,𝑶) 

Subset 

separation 
 𝐎 𝑝: {𝑥 ∶ 𝐴 |𝐵(𝑥)} 

𝐏 ? 𝐿  
or 

𝐏 ? 𝑅  

𝐎 𝐿{… }(𝑝)𝑂: 𝐴
(resp.) 

𝐎 𝑅∧(𝑝)𝑂: 𝐵(𝐿{… }(𝑝)𝑂) 

𝐏 𝐿{… }(𝑝)𝑶 = 𝑝1
𝑷,𝑶: 𝐴

(resp.) 

𝐏 𝑅∧(𝑝)𝑶 = 𝑝2
𝑷,𝑶: 𝐵(𝑝1

𝑷,𝑶) 

Disjunction 𝐎 𝑝: 𝐴 ∨ 𝐵 𝐏 ?∨ 
𝐎 𝐿∨(𝑝)𝑂: 𝐴

or 
𝐎 𝑅∨(𝑝)𝑂: 𝐵 

𝐏 𝐿∨(𝑑)𝑶 = 𝑑1
𝑷,𝑶|𝑅∨(𝑑)𝑶 = 𝑑2

𝑷,𝑶: 𝐶 

Implication  𝐎 𝑝: 𝐴 ⊃ 𝐵  𝐏 𝐿⊃(𝑝)𝑃: 𝐴 𝐎 𝑅⊃(𝑝)𝑂: 𝐵 𝑷 𝑅⊃(𝑝)𝑶 = 𝑝2
𝑷,𝑶 ⟦𝐿⊃(𝑝)𝑃 =  𝑝1

𝑷,𝑶
⟧ : 𝐵 

Universal 

quantification 
𝐎 𝑝: (∀𝑥: 𝐴)𝐵(𝑥)  𝐏 𝐿∀(𝑝)𝑃: 𝐴 𝐎 𝑅∀(𝑝)𝑂: 𝐵(𝐿∀(𝑝)𝑃) 𝑷 𝑅∀(𝑝)𝑶 = 𝑝2

𝑷,𝑶⟦𝐿∀(𝑝)𝑷 = 𝑝1
𝑷,𝑶⟧: 𝐵(𝑝1

𝑷,𝑶) 

Negation 
𝐎 𝑝: ¬𝐴 

Also expressed as 

𝐎  𝑝: 𝐴 ⊃⊥ 

𝐏 𝐿¬(𝑝)𝑃: 𝐴 𝐎 𝑅¬(𝑝)𝑂: ⊥ 𝑷 𝐿¬(𝑝)𝑷 = 𝑝1
𝑷,𝑶: 𝐴

𝐏 𝐿⊃(𝑝)𝑃: 𝐴 𝐎 𝑅⊃(𝑝)𝑂: ⊥ P 𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(𝑛)⟦𝐿
⊃

(𝑝)
𝑃

=  𝑝
1

𝑷,𝑶
⟧ : C 

 

Note that the analysis of strategic reasons for negation is divided into two 

presentations of negation, 𝐎 𝑝: ¬𝐴 and 𝐎  𝑝: 𝐴 ⊃⊥, which, at the play level, are governed 

by SR7 (see p. 115). The first presentation yields O stating ⊥, that is giving up, and 

therefore the play ends with P winning without further ado. Thus the strategic reason is 

constituted by the resolution of the instruction for 𝐴 with the means provided by O 

(𝐿¬(𝑝) =  𝑝1

𝑶
). 

The second presentation on the other hand, allows P to back any proposition 𝐶 with 

the local reason ‘𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(𝑛)’ once O has stated ⊥ at move 𝑛 . Thus the strategic 

reason for any proposition 𝐶  is constituted by ‘𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(𝑛)’, provided that O has 

provided P with the means for resolving the instruction 𝐿⊃(𝑝). 

Correspondence between the analysis of strategic reasons and CTT equality and 
elimination rules 

We will not present here the table of correspondences since they can be 

reconstructed by the reader emulating the table of correspondence for procedures of 

synthesis. Let us only indicated that: 

P 𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(𝑛) ⟦𝐿⊃(𝑝)𝑃 =  𝑝1
 𝑷,𝑶

⟧ : C 

corresponds to the CTT-elimination-rule for absurdity, that is: 

⊥true 
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𝐶 true 

interpreted as the fact that we shall never get an element of ⊥ defined as the empty ℕ0 

More precisely, if 𝑐 ∶  ℕ0 , then the proof-object of 𝐶 is “𝑅0” understood as an “aborted 

programme”
96

  

𝑐 ∶  ℕ0 

𝑅0(𝑐) ∶  𝐶(𝑐). 
 

In this respect the dialogical reading of the abort-operator is that a player gives up, 

and the reason for the other player to state C is that the antagonist gave up.  

 Examples for building a strategic reason VII.7.4

First example: 𝒅: (𝑨 ∧ 𝑩) ∧ 𝑪 [𝒄: 𝑨 ∧ (𝑩 ∧ 𝑪)] 
How to build the strategic reason for the thesis (𝐴 ∧ 𝐵) ∧ 𝐶 [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)], that is 

for (𝐴 ∧ 𝐵) ∧ 𝐶 provided the initial concessions 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)? 

Building the strategic reason for the thesis: 

The thesis is a conjunction. In order to have a strategic reason for the thesis, P must 

have a winning strategy: in this case he must win whether the left conjunct or the right is 

requested when O challenges the thesis; in other words, P must be able to defend both: 

the form of the strategic reason will be an ordered pair 〈… , … 〉 (see the synthesis of a 

strategic reason for a conjunction above). 

We know P has a winning strategy (see the heuristic procedure section VII.6.6); the 

core can thus be represented in a tree: 

 
  0. 𝐏 ! (𝐴 ∧ 𝐵) ∧ 𝐶 [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 

 0.1. 𝐎 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 

 1. 𝐎 𝑚 ∶= 1 

 2. 𝐏 𝑛 ∶= 2 

   

  3. 𝐎 ? 𝐿∧ [? , 0] 
 4. 𝐏 𝑑1: 𝐴 ∧ 𝐵 [!, 3] 

 3. 𝐎 ? 𝑅∧ [? , 0] 
 4. 𝐏 ? 𝑅∧ [? , 0.1] 
 5. 𝐎 𝑅∧(𝑐): 𝐵 ∧ 𝐶[!, 4] 
 6. 𝐏 ? …/𝑅∧(𝑐) [? , 5] 
 7. 𝐎 𝑐2: 𝐵 ∧ 𝐶 [!, 6] 
 8. 𝐏 ? 𝑅∧ [? , 7] 
 9. 𝐎 𝑅∧(𝑐2): 𝐶 [! ,8] 
 10. 𝐏 ? …/𝑅∧(𝑐2) [? , 9] 
 11. 𝐎 𝑐2.2: 𝐶 [!, 10] 
 12. 𝐏 𝑐2.2: 𝐶 [!, 3] 
 13. 𝐎 ? = 𝑐2.2 [? , 12] 
 14. 𝐏 𝑅∧(𝑐2) = 𝑐2.2: 𝐶 [!, 13] 
P wins 

  

 5. 𝐎 ? 𝐿∧ [? , 4] 
 6.  𝐏 𝐿∧(𝑑1): 𝐴 [!, 5] 
 7. 𝐎 ? …/𝐿∧(𝑑1)[? , 6] 
 8. 𝐏 ? 𝐿∧ [? , 0.1] 
 9. 𝐎 𝐿∧(𝑐): 𝐴 [!, 8] 
 10. 𝐏 ? …/𝐿∧(𝑐) [? , 9] 
 11. 𝐎 𝑐1: 𝐴 [!, 10] 
 12. 𝐏 𝑐1: 𝐴 [!, 7] 
 13. 𝐎 ? = 𝑐1 [? , 12] 
 14. 𝐏 𝐿∧(𝑐) = 𝑐1: 𝐴 [!, 13] 
P wins 

 5. 𝐎 ? 𝑅∧ [? , 4] 
 6. 𝐏 𝑅∧(𝑑1): 𝐵 [!, 5] 
 7. 𝐎 ? …/𝑅∧(𝑑1)[? , 6] 
 8. 𝐏 ? 𝑅∧ [? , 0.1] 
 9. 𝐎 𝑅∧(𝑐): 𝐵 ∧ 𝐶 [!, 8] 
 10. 𝐏 ? …/𝑅∧(𝑐) [? , 9] 
 11. 𝐎 𝑐2: 𝐵 ∧ 𝐶 [!, 10] 
 12. 𝐏 ? 𝐿∧ [? , 11] 
 13. 𝐎 𝐿∧(𝑐2): 𝐵 [!, 12] 
 14. 𝐏 ? …/𝐿∧(𝑐2)[? , 13] 
 15. 𝐎 𝑐2.1: 𝐵 [!, 14] 
 16. 𝐏 𝑐2.1: 𝐵 [!, 7] 
 17. 𝐎 ? = 𝑐2.1 [? , 16] 
 18. 𝐏 𝐿∧(𝑐2) = 𝑐2.1: 𝐵 [!, 17] 
P wins 
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To build the strategic reason for the thesis, let us start with the right conjunct, 𝐶. 

We must look at the end of a branch in the winning strategy where 𝐶 is the last P-move: 

this is move 14 at the outmost right branch; but move 14 defends against O’s challenge in 

move 13 on the local reason chosen by P for his elementary move 12, which synthesizes 

the local reason for the right-hand side of the thesis (challenged move 3). P chose this 

local reason because that is the one O herself chose (move 11); this choice dependence is 

what the equality move 14 expresses. The strategic reason for the thesis can have this 

form (leaving the left-hand side of the conjunction for later): 

〈… , 𝑅∧(𝑐2) = 𝑐2.2〉: (𝐴 ∧  𝐵) ∧  𝐶[𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 
The explicit rendering of the embeddings encoded by 𝑅∧(𝑐2) yields:  

〈… , 𝑅∧(𝑅∧(𝑐)) = 𝑐2.2〉: (𝐴 ∧ 𝐵) ∧ 𝐶  [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 
 

Let us now explicit the left-hand side of the strategic reason for the conjunction: 

since the left side of the thesis is also a conjunction (𝐴 ∧ 𝐵), the argumentative canonical 

form of the strategic reason will also be a pair: 

〈〈… , … 〉, 𝑅∧(𝑅∧(𝑐)) = 𝑐2.2〉 : (𝐴 ∧ 𝐵) ∧ 𝐶 [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 
This pair will be made of the left and the right of 𝑑1, the local reason synthesized by P 

move 3 for the complex statement 𝐴 ∧ 𝐵. Thus the strategic reason will be: 

〈〈𝐿∧(𝑑1), 𝑅∧(𝑑1)〉, 𝑅∧(𝑅∧(𝑐)) = 𝑐2.2〉 : (𝐴 ∧ 𝐵) ∧ 𝐶 [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 
The outmost left branch of the tree tells us that 

  𝐿∧(𝑐) = 𝑐1/𝐿∧(𝑑1): 𝐴, 

and the middle branch tells us that 

𝐿∧(𝑐2) = 𝑐2.1/ 𝑅∧(𝑑1): 𝐵  
and the explicit rendering of the embeddings encoded by 𝐿∧(𝑐2) yields: 

𝐿∧(𝑅∧(𝑐)) = 𝑐2.1/ 𝑅∧(𝑑1): 𝐵  
 

So putting it now all together and implementing the substitution of 𝐿∧(𝑑1) and 𝑅∧(𝑑1) we 

obtain: 

〈〈𝐿∧(𝑐) = 𝑐1, 𝐿∧(𝑅∧(𝑐)) = 𝑐2.1〉, 𝑅∧(𝑅∧(𝑐)) = 𝑐2.2〉 : (𝐴 ∧  𝐵) ∧ 𝐶[𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)]  
 

If we do not take into consideration the equalities we obtain the following strategic 

reason for the thesis: 

〈〈𝐿∧(𝑐), 𝐿∧(𝑅∧(𝑐))〉, 𝑅∧(𝑅∧(𝑐))〉: (𝐴 ∧ 𝐵) ∧ 𝐶 [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 

Second example: (𝑩 ∧ 𝑨) ⊃ 𝑪 [𝒄: (𝑨 ∧ 𝑩) ⊃ 𝑪] 
Develop a demonstration of  (𝐵 ∧  𝐴)  𝐶 , given the global assumption 𝑐 ∶  (𝐴 ∧

 𝐵)  𝐶, out of the strategic core.  

 

Resolution: first, we start by displaying the core in the tree presentation (see 

section  VII.6.7 for the heuristical procedure): 
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  0. 𝐏 ! (𝐵 ∧ 𝐴) ⊃ 𝐶 [𝑐 : (𝐴 ∧ 𝐵) ⊃ 𝐶] 

 0.1 𝐎 𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶 

 1. 𝐎 𝑚 ≔ 1 

 2. 𝐏 𝑛 ≔ 2 

 3. 𝐎 𝑑1: 𝐵 ∧ 𝐴 [? ,0] 
 4. 𝐏 ? 𝐿∧ [? , 3] 
 5. 𝐎 𝐿∧(𝑑1): 𝐵 [!, 4] 
 6. 𝐏 ? …/𝐿∧(𝑑1)[? , 5] 
 7. 𝐎 𝑑1.1: 𝐵 [!, 6] 
 8. 𝐏 ? 𝑅∧ [? , 3] 
 9. 𝐎 𝑅∧(𝑑1): 𝐴 [!, 8] 
 10. 𝐏 ? …/𝑅∧(𝑑1)  [? , 9] 
 11. 𝐎 𝑑1.2: 𝐴 [!, 10] 
 12. 𝐏 𝐿⊃(𝑐): 𝐴 ∧ 𝐵 [? , 0.1] 
 13. 𝐎 ? …/𝐿⊃(𝑐) [? , 12] 
 14. 𝐏 𝑐1: 𝐴 ∧ 𝐵 [!, 13] 

 

   

 15. 𝐎 ? 𝐿∧ [? , 14]  
 16. 𝐏 𝐿∧(𝑐1): 𝐴 [!, 15] 
 17. 𝐎 ? …/𝐿∧(𝑐1) [? , 16] 
 18. 𝐏 𝑑1.2: 𝐴 [!, 17] 
 19. 𝐎 ? = 𝑑1.2 [? , 18] 
 20. 𝐏 𝑅∧(𝑑1) = 𝑑1.2: 𝐴 [!, 19] 
P wins 

 15.  𝐎? 𝑅∧ [? , 14]  
 16. 𝐏 𝑅∧(𝑐1): 𝐵 [!, 15] 
 17. 𝐎 ? …/𝑅∧(𝑐1) [? , 16] 
 18. 𝐏 𝑑1.1: 𝐵 [!, 17] 
 19. 𝐎 ? = 𝑑1.1 [? , 18] 
 20. 𝐏 𝐿∧(𝑑1) = 𝑑1.1: 𝐵 [!, 19] 
P wins 

 15. 𝐎 𝑅⊃(𝑐): 𝐶 [!, 12] 
 16. 𝐏 ? …/𝑅⊃(𝑐)[? , 15] 
 17. 𝐎 𝑐2: 𝐶 [!, 16] 
 18. 𝐏 𝑐2: 𝐶 [!, 3] 
 19. 𝐎 ? = 𝑐2 [? , 18] 
 20. 𝐏 𝑅⊃(𝑐) = 𝑐2: 𝐶 [!, 19] 
P wins 

 

Recapitulation: building the strategic reason for the thesis. The thesis is an 

implication, so the form of the strategic reason will be 

…𝐏 ⟦…𝐎 ⟧ 

The right-hand side of the strategic reason is what O brings forward to back her stating 

the antecedent of the implication: this is the synthesis of the local reason she has to carry 

out in order to challenge the thesis, move 3: 

…𝐏 ⟦𝑑1
𝐎⟧ 

But the antecedent for the implication (the thesis) is a conjunction (𝐵 ∧ 𝐴), so 𝑑1 is a 

reason for a conjunction, that is, 𝑑1 is a pair: 

〈𝐿∧(𝑑1), 𝑅∧(𝑑1)〉: 𝐵 ∧ 𝐴 

With the equalities (moves 5-7 and 9-11) we obtain the analysis of a strategic reason for 

conjunction: 

〈𝐿∧(𝑑1) = 𝑑1.1, 𝑅∧(𝑑1) = 𝑑1.2〉: 𝐵 ∧ 𝐴 
This is therefore what O entitles P to state by challenging his implication (the thesis). 

 

The left-hand side of the strategic reason for the thesis backs the consequent of the 

implication: P has here to play an elementary statement which therefore needs to be 

grounded in O-moves; this is the purpose of the equality move 20. So the form of the 

strategic reason will be: 

(𝑅⊃(𝑐) = 𝑐2 )
𝐏

⟦〈𝐿∧(𝑑1) = 𝑑1.1, 𝑅∧(𝑑1) = 𝑑1.2〉⟧𝐎: (𝐵 ∧ 𝐴) ⊃ 𝐶 [𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶] 
 

But 𝑅⊃(𝑐) depends on P stating 𝐿⊃(𝑐): 𝐴 ∧ 𝐵 move 12, a conjunction; the strategic 

reason for it is a pair, and move 14 shows that 𝐿⊃(𝑐) = 𝑐1 and the two left branches 

provide the internal structure of 𝑐1: 

〈𝐿∧(𝑐1), 𝑅∧(𝑐1)〉: 𝐴 ∧ 𝐵 
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The resolution of the instructions and the final equalities provide the structure of 

𝐿⊃(𝑐) = 𝑐1: 

〈𝐿∧(𝐿⊃(𝑐))
𝐏

= 𝑅∧(𝑑1)𝐏,𝐎, 𝑅∧(𝐿⊃(𝑐))
𝐏

= 𝐿∧(𝑑1)𝐏,𝐎〉 : 𝐴 ∧ 𝐵 

So the analysis of the initial concession 𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶 yields: 

(𝑅⊃(𝑐) = 𝑐2)𝐎  ⟦〈𝐿∧(𝐿⊃(𝑐))
𝐏

= 𝑅∧(𝑑1)𝐏,𝐎, 𝑅∧(𝐿⊃(𝑐))
𝐏

= 𝐿∧(𝑑1)𝐏,𝐎〉⟧  

 

So the strategic reason for the thesis (𝑩 ∧ 𝑨) ⊃ 𝑪 [𝒄: (𝑨 ∧ 𝑩) ⊃ 𝑪] becomes: 

(𝑅⊃(𝑐)𝐎 ⟦〈𝐿∧(𝐿⊃(𝑐))
𝐏

= 𝑅∧(𝑑1)𝐏,𝐎, 𝑅∧(𝐿⊃(𝑐))
𝐏

= 𝐿∧(𝑑1)𝐏,𝐎〉⟧)
𝐏

⟦〈𝐿∧(𝑑1), 𝑅∧(𝑑1)〉⟧𝐎 
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VIII. THE REMARKABLE CASE OF THE AXIOM OF CHOICE
97

 

It is rightly said that the principle of set theory known as the Axiom of Choice is 

“probably the most interesting and in spite of its late appearance, the most discussed 

axiom of mathematics, second only to Euclid’s Axiom of Parallels which was introduced 

more than two thousand years ago” (Fraenkel, Bar-Hillel, & Levy, 1973).
98

 

According to Ernst Zermelo’s formulation of 1904, the Axiom of Choice amounts 

to the claim that, given any family A of non-empty sets, it is possible to select a single 

element from each member of A. The selection process is carried out by a function f with 

domain in M, such that for any non-empty set M in A, f(M) is an element of M. The 

axiom encountered resistance from its very beginnings, and has triggered heated 

foundational discussions concerning, among others, mathematical existence and the 

notion of mathematical objects, in particular of mathematical functions. With time 

however, the foundational and philosophical reluctances faded and were replaced with a 

kind of praxis-driven view accepting the Axiom of Choice as a kind of postulate—rather 

than as an axiom whose truth is manifest—necessary for the practice and development of 

mathematics.  

 

The foundational discussions around the Axiom of Choice (AC) found an 

unexpected revival around 1980 when Per Martin-Löf showed that in constructive 

logic—a logic that does not presuppose the Excluded Middle—the AC in its intensional 

version is logically valid, and that this logical truth follows naturally (almost trivially) 

from the constructive meaning of the quantifiers involved. More than being a simple 

postulate, this form of constructive “evidence” is what makes it a proper axiom. As for 

the extensional version, it can also be proved, though either the Excluded Middle or the 

unicity of the function must be assumed. Martin-Löf’s proof, for which he was awarded 

the prestigious Kolmogorov prize, showed that the old discussions were rooted in an even 

older conceptual problem: the tension there is between intension and extension.  

Jaako Hintikka has in turn tackled the AC with a game-theoretical 

interpretation
99

—though he did not take Martin-Löf’s proof into account, presumably 

because he was not in favour of the constructivist approaches. As opposed to Hintikka’s 

game-theoretical approach, the dialogical take on the AC does not require an 

unaxiomatizable language such as the one underlying Independent Friendly logic (IF-

logic). Hintikka is certainly right in stressing the aptness of the game-theoretical 

interpretation of the AC, yet we contend that he is mistaken in what concerns the theory 

of meaning such an interpretation requires. As pointed out by Jovanovic (2013), 

Hintikka’s claim, that a game-theoretical perspective on Zermelo’s AC in a first-order 

logic was perfectly acceptable for Constructivists, has found sound confirmation in the 

dialogical approach to Constructive Type Theory, albeit no underlying IF-semantics is 

required in this framework. Ironically, Hintikka’s formulation of the AC, fully spelled 

out, yields Martin-Löf’s own CTT-formulation, making it constructivist-friendly after all.  
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 This section is based on (Clerbout & Rahman, 2015) and (Rahman, Clerbout, & Jovanovic, 2015), 

where we developed a complete demonstation of AC but with a slighlty different dialogical setting. 
98

 See also (Bell, 2009). 
99 

See for example (Hintikka, 1996b; 2001).  
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By dealing with the case of the AC in dialogues for immanent reasoning, we intend 

to exhibit the expressive power of this constructivist game-theoretical framework based 

on equality in action.  

Our point in bringing up this case study is thus to show two perks of our 

framework, dialogues for immanent reasoning:  

 first, that it is possible, through the CTT approach, to distinguish at the 

object-language level the intensional formulation of the AC—demonstrable in 

CTT—and its extensional formulation—demonstrable only if it is assumed 

there is only one choice function. This will be expounded on in a first section 

( VIII.1). 

 Second, that the dialogical formulation of the intensional version of the AC—

also called the Principle of Dependent Choices—plainly shows how the 

evidence of its logical truth amounts to developing a winning strategy in 

which the consequent of the relevant main implication follows from an 

interactive take on the meaning of the antecedent. This will be in a following 

section ( VIII.2). 

The construction of this meaning is relevant to immanent reasoning or 

equality in action, since it is built out of the interaction of the two players 

generating dependences between moves according to the choices attached 

with the embedding of an existential quantifier—defender’s choice—within a 

universal quantifier—challenger’s choice. In such a perspective, the logical 

truth of the Principle of Dependent Choices is rooted in the equality between 

the reasons grounding the antecedent on the one hand and the reasons 

grounding the consequent on the other.  

VIII.1 The intensional and extensional versions of the 
Axiom of Choice 

In order to show the expressive power of CTT, and in particular how it allows to 

exhibit quantifier interdependence at the object-language level, we will present the CTT 

proof of the Axiom of Choice.  

Zermelo’s formulation 

The Axiom of Choice (AC) was first introduced by Zermelo (1904) in order to 

prove Cantor's theorem: every set can be rendered in such a way as to be well ordered. 

Zermelo gave two formulations of this axiom: one in 1904, and a second one in 1908. 

The second formulation is relevant for our discussion, since it relates to both Martin-

Löf’s and the game-theoretical formalization, and is spelled out in the following fashion: 

 
A set 𝑆 that can be decomposed into a set of disjoint parts 𝐴, 𝐵, 𝐶, …, each containing at 

least one element, possesses at least one subset 𝑆1  having exactly one element with each of the 

parts 𝐴, 𝐵, 𝐶, …, considered.
100

 (Zermelo, 1908b) 

 

The AC immediately attracted a lot of attention and both of its formulations were 

criticized by constructivists such as René-Louis Baire, Émile Borel, Henri-Léon 

Lebesgue and Luitzen Egbertus Jan Brouwer. The first objections were related to the non-

predicative character of the axiom, for a certain choice function was supposed to exist 
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 Cited from the English translation (van Heijenoort, 1967, p. 186). The original is in (Zermelo, 

1908a, p. 110) 
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without constructively showing that it does. The axiom however found its way into the 

ZFC set theory and was finally accepted by the majority of mathematicians because of its 

usefulness in different branches of mathematics.  

Martin-Löf’s proof: separating an extensional and an intensional 
version 

Martin-Löf’s proof of the AC (provided below, p. 150) is produced in a 

constructive setting (CTT) and brings together two seemingly incompatible perspectives 

on this axiom, namely 

1. Bishop's surprising observation from (1967): A choice function exists in 

constructive mathematics, because a choice is implied by the very meaning of 

existence; and 

2. the proofs by Diaconescu (1975) and by Goodman and Myhill (1978) that the 

AC implies the Excluded Middle. 

These two perspectives seem incompatible because Constructivists do not presuppose the 

Excluded Middle: Bishop’s observation would thus seem to entail the Excluded Middle 

in a constructive setting if we also accept the second perspective. The solution resides in 

distinguishing two versions of the AC: an intensional and an extensional version. 

In his (2006) paper, Martin-Löf thus shows that there are versions of the AC that 

are perfectly acceptable for Constructivists, namely those in which the choice function is 

defined intensionally. But in order to be able to formulate the intensional version of the 

AC, the axiom must be expressed within a CTT-framework.  Such a setting allows the 

extensional and the intensional formulations of the axiom to be compared:  we find that it 

is in fact the extensional version of the AC that implies the Excluded Middle, and that 

Bishop’s remark is compatible with the intensional version of the AC.
101

 

Bishop and choice in the meaning of existence 
In harmony with Bishop’s remark that the meaning of existence entails a choice, the 

truth of the AC follows rather naturally in CTT from the meaning of the quantifiers: take 

for instance the proposition (∀𝑥 ∶  𝐴) 𝑃(𝑥) where 𝑃(𝑥) is of the type proposition (prop), 

provided that 𝑥 is an element of the set 𝐴. If the proposition is true in a constructive 

setting, then there is a proof for it. Such a proof is a function that renders a proof of 𝑃(𝑥) 

for every element 𝑥 of 𝐴. Thus Bishop’s remark should be understood as follows:  

1. since in a constructive setting the truth of a universal quantification amounts 

to the existence of a proof, and  

2. since this proof is a function,  

3. then the truth of a universal quantification amounts in a constructive setting to 

the existence of such a function.  

From this CTT characteristic the proof of the AC can be developed quite 

straightforwardly. If we recall that in the CTT-setting 

 the existence of a function from 𝐴 to 𝐵 amounts to the existence of a proof-

object for the universal every 𝐴 is 𝐵; and that  

 the proof of the proposition 𝐵(𝑥), existentially quantified over the set 𝐴 , 

amounts to a pair such that the first element of the pair is an element of 𝐴 and 

the second element of the pair is a proof of 𝐵(𝑥);  
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 See for instance this observation of (Martin-Löf, 2006, p. 349): “[…] this is not visible within an 

extensional framework, like Zermelo-Fraenkel set theory, where all functions are by definition 

extensional.“ 



150  VIII. The remarkable case of the Axiom of Choice 

 

then a full-fledged formulation of the AC—more precisely, of the Principle of Dependent 

Choices (PDC)—follows, in which we explicit the set over which the existential 

quantifiers are defined: 

Figure 1: the intensional formulation of the Axiom of Choice: 

(∀𝑥: 𝐴)(∃𝑦 ∶ 𝐵(𝑥))𝐶(𝑥, 𝑦) ⊃ (∃𝑓 ∶ (∀𝑥 ∶ 𝐴)𝐵(𝑥))(∀𝑥 ∶ 𝐴)𝐶(𝑥, 𝑓(𝑥)) 

Martin-Löf’s proof of the intensional version of the Axiom of Choice:
 102

 
The usual argument in intuitionistic mathematics, based on the intuitionistic 

interpretation of the logical constants, is roughly as follows: to prove  (∀𝑥)(∃𝑦)𝐶(𝑥, 𝑦) ⊃
(∃𝑓)(∀𝑥)𝐶(𝑥, 𝑓(𝑥)), assume that we have a proof of the antecedent. This means we have a 

method which, applied to an arbitrary 𝑥, yields a proof of (∃𝑦)𝐶(𝑥, 𝑦). Let 𝑓 be the method 

which, to an arbitrarily given 𝑥, assigns the first component of this pair. Then 𝐶(𝑥, 𝑓(𝑥)) 

holds for an arbitrary 𝑥, and hence, so does the consequent. The same idea can be put into 

symbols getting a formal proof in intuitionistic type theory. Let 𝐴: 𝑠𝑒𝑡, 𝐵(𝑥): 𝑠𝑒𝑡 (𝑥: 𝐴), 

𝐶(𝑥, 𝑦): 𝑠𝑒𝑡 (𝑥: 𝐴, 𝑦: 𝐵(𝑥)), and assume  𝑧: (𝛱𝑥: 𝐴)(𝛴𝑦: 𝐵(𝑥))𝐶(𝑥, 𝑦). If 𝑥 is an arbitrary 

element of 𝐴, i.e. 𝑥: 𝐴, then by 𝛱- elimination we obtain 

𝐴𝑝(𝑧, 𝑥): (𝛴𝑦: 𝐵(𝑥))𝐶(𝑥, 𝑦)  

We now apply left projection to obtain 

𝑝(𝐴𝑝(𝑧, 𝑥)): 𝐵(𝑥)  

and right projection to obtain 

𝑞(𝐴𝑝(𝑧, 𝑥)): 𝐶 (𝑥, 𝑝(𝐴𝑝(𝑧, 𝑥))) . 

By 𝜆-abstraction on x (or 𝛱-introduction), discharging 𝑥: 𝐴, we have 

(𝜆𝑥)𝑝(𝐴𝑝(𝑧, 𝑥)): (𝛱𝑥: 𝐴)𝐵(𝑥) 

and by 𝛱- equality 

𝐴𝑝 ((𝜆𝑥)𝑝(𝐴𝑝(𝑧, 𝑥)), 𝑥) =  𝑝(𝐴𝑝(𝑧, 𝑥)): 𝐵𝑥 

By substitution
103

 we get 

𝐶 (𝑥, 𝐴𝑝 ((𝜆𝑥)𝑝(𝐴𝑝(𝑧, 𝑥)), 𝑥)) = 𝐶(𝑥, 𝑝(𝐴𝑝(𝑧, 𝑥)))104 

and hence by equality of sets  

𝑞(𝐴𝑝(𝑧, 𝑥)): 𝐶 (𝑥, 𝐴𝑝 ((𝜆𝑥)𝑝(𝐴𝑝(𝑧, 𝑥)), 𝑥)) 

where (𝜆𝑥)𝑝(𝐴𝑝(𝑧, 𝑥)) is independent of 𝑥. By abstraction on 𝑥 

(𝜆𝑥)𝑝(𝐴𝑝(𝑧, 𝑥)): (𝛱𝑥: 𝐴)𝐶 (𝑥, 𝐴𝑝 ((𝜆𝑥)𝑝 (𝐴𝑝(𝑧, 𝑥)), 𝑥)) 

We now use the rule of pairing (that is 𝛴-introduction) to get 

((𝜆𝑥)𝑝(𝐴𝑝(𝑧, 𝑥)), (𝜆𝑥)𝑞(𝐴𝑝(𝑧, 𝑥))): (𝛴𝑓: (𝛱𝑥: 𝐴)𝐵(𝑥))( 𝛱𝑥: 𝐴)𝐶(𝑥, 𝐴𝑝(𝑓, 𝑥)) 

(note that in the last step, the new variable 𝑓 is introduced and substituted for 

(𝜆𝑥)𝑝(𝐴𝑝(𝑧, 𝑥)) in the right member). Finally by abstraction on 𝑧, we obtain 
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 For the formal demonstration spelled out as a Natural deduction tree, see (Clerbout & Rahman, 

2015, p. 78) and (Rahman, Clerbout, & Jovanovic, 2015, p. 204). 
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 making use of 𝐶(𝑥, 𝑦): 𝑠𝑒𝑡 (𝑥: 𝐴, 𝑦: 𝐵(𝑥)). 
104

 That is, 𝐶(𝑥, 𝐴𝑝((𝜆𝑥) 𝑝 (𝐴𝑝(𝑧, 𝑥), 𝑥)  =  𝐶 (𝑥, 𝑝(𝐴𝑝(𝑧, 𝑥))) : 𝑠𝑒𝑡. 
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(𝜆𝑧) ((𝜆𝑥)𝑝(𝐴𝑝(𝑧, 𝑥)), (𝜆𝑥)𝑞(𝐴𝑝(𝑧, 𝑥))) : (𝛱𝑥: 𝐴)(𝛴𝑦: 𝐵(𝑥))𝐶(𝑥, 𝑦)  

⊃ (𝛴𝑓: (𝛱𝑥: 𝐴)𝐵(𝑥))(𝛱𝑥: 𝐴)𝐶(𝑥, 𝐴𝑝(𝑓, 𝑥))105 

Martin-Löf (2006) further shows that—from a constructive point of view—what is 

wrong with the AC is the extensional formulation of it, formulation that Hintikka seems 

to assume and that can be expressed in the following way:  

Figure 2: the extensional version of the Axiom of Choice: 

(∀𝑥: 𝐴)(∃𝑦 ∶ 𝐵(𝑥))𝐶(𝑥, 𝑦) ⊃ (∃𝑓: (∀𝑥: 𝐴)𝐵(𝑥)) (𝐸𝑥𝑡(𝑓) ∧ (∀𝑥: 𝐴)𝐶(𝑥, 𝑓(𝑥))) 

Where 𝐸𝑥𝑡(𝑓) is defined as (∀𝑖, 𝑗: 𝐴)( 𝑖 =𝐴 𝑗 → 𝑓(𝑖) = 𝑓(𝑗)). 

 

Thus, from the constructive point of view, what is really wrong with the classical 

formulation of the AC is the assumption that from the truth that all of the 𝐴s are 𝐵s we 

can obtain a function that satisfies extensionality. In fact, as shown by Martin-Löf (2006), 

the classical version holds, even constructively, if we assume that there is only one such 

choice function in the set at stake: 

Figure 3: the constructive extensional formulation of the AC: 

(∀𝑥: 𝐴)(∃! 𝑦: 𝐵(𝑥))𝐶(𝑥, 𝑦) ⊃ (∃𝑓: (∀𝑥: 𝐴)𝐵(𝑥)) (𝐸𝑥𝑡(𝑓) ∧ (∀𝑥: 𝐴)𝐶(𝑥, 𝑓(𝑥))) 

Conclusion on the two formulations of the AC 

Let us retain that if we take 

(∀𝑥 ∶  𝐴) (∃𝑦 ∶ 𝐵(𝑥)𝐶(𝑥, 𝑦)(𝑓: (∀𝑥: 𝐴)𝐵(𝑥))(∀𝑥: 𝐴)𝐶(𝑥, 𝑓(𝑥))) 

to be the formalization of the AC, or more precisely of the PDC, then that axiom is not 

only unproblematic for Constructivists but it is also a theorem. In fact, it is the explicit 

language of CTT that allows a fine-grained distinction between the two formulations of 

the AC, equivalent only from the outside. This is due to the expressive power of CTT that 

allows expressing at the object-language level quantifier interdependence.  

What is more, Hintikka's insight that the validity of the AC results from the fact 

that a winning strategy for the antecedent amounts to the existence of a suitable function, 

which seems to sum up the idea behind the demonstration of Martin-Löf
106

, is that what 

makes apparent the truth of the PDC is the game-theoretical approach to the meaning of 

the quantifiers. However, despite Hintikka's own developments, it is the dialogical 

approach to CTT that actually does the job. So now that the usefulness of CTT has been 

illustrated and the two versions of the AC defined, let us proceed to our second point: 

showing how the PDC in the framework of dialogues for immanent reasoning explicit the 

interdependency of the quantifiers through equality in action. 

VIII.2 The Principle of Dependent Choices within 
dialogues for immanent reasoning

107 

Since dialogues for immanent reasoning is a dialogical framework that incorporates 

the features of CTT, it is at least as expressive as CTT, and can thus also differentiate 

between an extensional version of the AC and an intensional version (the PDC). The 
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 (Martin-Löf, 1984, pp. 50-51) 
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 See (Jovanovic, 2013). 
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The proof stems from (Clerbout & Rahman, 2015). 
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particle rules provide the meaning of the logical constants; the existential and the 

universal quantifiers have their meaning determined notably by which player has the 

choice—the challenger for the universal quantification, the defender for the existential 

quantification. What is more, the whole structure of dialogues for immanent reasoning 

rests on this fundamental rule, SR4 or Socratic rule (see section VII.2.1, p. 113), that 

explicits the dynamics of the choices of the players in interaction: the Proponent will 

copy the Opponent’s choices and reasons in order to provide local reasons for his own 

statements. 

The PDC embeds existential quantification within universal quantification in the 

antecedent of the implication, and universal quantification within existential 

quantification in the consequent. In dialogues for immanent reasoning, just like in the 

standard dialogical framework, demonstrations are obtained by providing a P-strategy 

(see III.5 and in chapter V.1), that is P must be able to win whatever be O’s choices.  

Figure 4: the thesis for the PDC in dialogues for immanent reasoning: 

𝐏 ! (∀𝑥: 𝐴)(∃𝑦 ∶ 𝐵(𝑥))𝐶(𝑥, 𝑦) ⊃ (∃𝑓 ∶ (∀𝑥 ∶ 𝐴)𝐵(𝑥))(∀𝑥 ∶ 𝐴)𝐶(𝑥, 𝑓(𝑥)) 

Since the thesis is stated by P and is an implication, O will challenge it by stating 

the antecedent, P will be defending it by stating the consequent: 

𝐎 ! (∀𝑥: 𝐴)(∃𝑦 ∶ 𝐵(𝑥))𝐶(𝑥, 𝑦) 

𝐏 !  (∃𝑓 ∶ (∀𝑥 ∶ 𝐴)𝐵(𝑥))(∀𝑥 ∶ 𝐴)𝐶(𝑥, 𝑓(𝑥)) 

In this fashion, O will have to defend the embedding of the existential within the 

universal, and P will have to defend the embedding of the universal within the existential.  

In other words, O will have to defend the embedding of her choice (defence of the 

existential) within a P-choice (defence of a universal): 

𝐎 ! (∀𝑥: 𝐴)𝐏 𝑐ℎ𝑜𝑖𝑐𝑒(∃𝑦 ∶ 𝐵(𝑥))
𝐎 𝑐ℎ𝑜𝑖𝑐𝑒

𝐶(𝑥, 𝑦) 

and P will have to defend the embedding of an O-choice (defence of a universal) within 

her choice (defence of an existential): 

𝐏 ! (∃𝑓 ∶ (∀𝑥 ∶ 𝐴)𝐎 𝑐ℎ𝑜𝑖𝑐𝑒𝐵(𝑥))
𝐏 𝑐ℎ𝑜𝑖𝑐𝑒

(∀𝑥 ∶ 𝐴)𝐶(𝑥, 𝑓(𝑥)) 

 Playing his moves in an optimal fashion will thus allow P to ask O to choose first and 

then copy her choices in order to build an equality through interaction and be able to win. 

The basic idea is that P can copy O’s choice for 𝑦 in the antecedent for his defence of 

𝑓(𝑥) in the consequent since both are equal objects of type 𝐵(𝑥), for any 𝑥 ∶  𝐴. Thus a 

winning strategy for the implication follows simply from the meaning of the antecedent: 

this meaning is defined by the dependences generated by the interaction of choices 

involved in the embedding of an existential quantifier within a universal quantifier.  

 

The following two dialogue tables display the relevant plays for building a winning 

strategy. These two plays are triggered by O’s decision-options concerning the existential 

in the consequent (stated by P): she can ask for the left or for the right (move 5), P must 

be able to win in both cases if he is to have a winning strategy. 

Here is a reminder of some particle rules of dialogues for immanent reasoning: 

Table 28: recalling the synthesis of local reasons 

 Move Challenge Defence 

Implication 𝐗 !  𝐴 ⊃ 𝐵 𝐘 𝑝1: 𝐴 𝐗 𝑝2: 𝐵 
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Existential quantifiation 𝐗 ! (∃𝑥 ∶ 𝐴)𝐵(𝑥) 
𝐘 ? 𝐿∃ 

or 

𝐘 ? 𝑅∃ 

𝐗 𝑝1: 𝐴
(resp.) 

𝐗 𝑝2: 𝐵(𝑝1) 

Universal quantification 𝐗 ! (∀𝑥: 𝐴)𝐵(𝑥) 𝐘 𝑝1: 𝐴 𝐗 𝑝2: 𝐵(𝑝1) 

 

We assume by now that the reader is familiar enough with the dialogical framework 

and with this kind of table presentation; the comments will therefore be more to the point 

in explaining what is specific to the PDC. Are highlighted the moves where P defends his 

choice of a local reason by stating an equality, the crucial move defining immanent 

reasoning where P says “my reason is the same as yours”.   

 

Play 15: the PDC (left decision-option) 

O P 

0.1 C(x, y) : set [x : A, y : B(x)] 
  

! (x : A) (y : B(x)) C(x,y) 

f : (x : A) B(x)) (x : A) 

C(x, f(x)) 

0 
0.2 B(x) : set [x : A] 

1 m:= 1   n:= 2 2 

3 
d1 : (x : A) (y : B(x)) C(x, 

y) 
0  

d2 :f : (x : A) B(x)) (x : A) 

C(x,f(x)) 
4 

5 ?L 4  L

(d2) : (x : A) B(x) 6 

7 ? --- / L

(d2) 6  g1 : (x : A) B(x) 8 

9 L

(g1) : A 8  R


(g1) : B(a) 24 

11 a : A  13 ? --- / L

(g1) 10 

17 R

(d1) : (y : B(a)) C(a, y)  3 L


(d1) : A 12 

13 ? --- / L

(d1) 12  a : A 14 

15 ? = a 14  L

(g1) = a : A 16 

19 v : (y : B(a)) C(a, y)  17 ? --- / R

(d1) 18 

21 L

(v) : B(a)  19 ?L 20 

23 v1 : B(a)  21 ? --- / L

(v) 22 

25 ? --- / R

(g1) 24  v1 : B(a) 26 

27 ? =v1 26  L

(v) = v1 : B(a) 28 

29 ? = a
B(a)

 28  L

(g1) = a : A 30 

31 ? = B(a) 30  ! B(L

(g1)) = B(a) : set 34 

33 ! B(a) : set  
0.2 

Subst-D 
a : A 32 

Commentary: 

 Move 3: Once the thesis has been stated and the repetition ranks established, O 

challenges the material implication by stating the left component. 

 Move 4: P states the right component of the material implication. 

 Moves 5 and 6: O has here the choice between asking for the left or for the right 

component of the existential. The present play describes the development of the play 

triggered by the left choice. 

 Moves 7-13 follow from a straightforward application of the dialogical rules.  

 Move 15: O asks for the local reason that corresponds to the instruction stated by P at 

move 14. 
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 Move 16: P answers by recalling that O used the same reason, namely 𝑎, in defence 

of the claim that 𝐴 holds (that it is not empty). And indeed this is what O did when 

she resolved L(g1) with a. This led P to implement the Socratic rule and state the 

equality L

(g1) = a : A .  

 Moves 27-28 and 29-30: deal with the same kind of situation. 

 Moves 30-31: Once move 30 has established that a—occurring in B(a)—constitutes a 

local reason for holding A, according to the Socratic rule S4.1c, O can launch an 

attack requesting P to show that B(a) and B(L

(g1)) are equal propositions.  

 Moves 32-34: P applies the rule for substitution within dependent statements (Subst-

D) on the first concession, forcing O to state the condition that allows P to answer to 

the attack of move 31 and win the play by applying the Socratic rule to O’s move 25.  

 

Notice that when P attacks O’s initial concession 0.2 he has to state a : A (move 

32); according to the provisos of the Socratic rule however (see SR4.1, p. 114), O cannot 

attack this statement again: move 16 establishes P’s right to state this equality. 

  

Let us now develop the second play, in which O went for the right decision-option 

at move 5. 

Play 16: the PDC (right decision-option) 

O P 

0.1 

 

0.2 

C(x, y) : set [x : A, y : 

B(x)] 

B(x) : set [x : A] 
  

! (x : A) (y : B(x)) C(x,y) f : 

(x : A) B(x)) (x : A) C(x, f(x)) 
0 

1 m:= 1   n:= 2 2 

3 
d1 : (x : A) (y : B(x)) 

C(x, y) 
0  

d2 :f : (x : A) B(x)) (x : A) 

C(x,f(x)) 
4 

5 ?R 4  R

(d2) : (x : A) C(x, L


d2)(x) 6 

7 ? --- / R

d2) 6  g2 : (x : A) C(x, g1(x)) 8 

9 L

(g2) : A 8  R


(g2) : C(x, g1(a)) 30 

11 a : A  11 ? --- / L

(g2) 10 

17 
R

(d1) : (y : B(a)) C(a, 

y) 
 3 L


(d1) : A 12 

13 ? --- / L

(d1) 12  a : A 14 

15 ? = a 16  ! L

(g2) = a : A 16 

19 v : (y : B(a)) C(a ,y)  17 ? --- / R

(d1) 18 

21 L

(v) : B(a)  19 ?L 20 

23 t1 : B(a)  21 ? --- / L

(v) 22 

25 R

(v) : C(a, L


(v))  19 ?R 24 

27 R

(v) : C(a, t1)  25 ? t1 / L


(v) 26 

29 t2 : C(a, t1)  27 ? --- / R

(v2) 28 

31 ? --- / R

(g2) 30  t2 : C(a, g1(a)) 32 

33 ? --- / g1(a) 32  t2 : C(a, t1) 34 

35 ? = t2 34  R

(v) = t2 : C(a, t1) 36 

37 ? = a
C(a, t1)

 36  L

(v) = t1 : B(a) 38 

39 ? = C(a, t1) 38  C(a, L

(v)) = C(a, t1) : set 44 

41 C(a, y) : set [y : B(x)]  
0.1 

Subst-D 
a : A 40 
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43 C(a, t1) : set  
41 

Subst-D 
 42 

 

Remark: This procedure differs from the one in the previous play only with moves 

40 and 44: since C(x, y) is a dyadic predicate, P must apply substitution twice before 

obtaining of O the right to state the winning equality at move 44.  

 

Since P has a way of winning regardless of O’s choices, that is he can win in any 

case, P has a winning strategy for the PDC. 

Conclusion on the Axiom of Choice 

From the constructive point of view, functions are rules of correspondence. Rules 

of correspondence only make sense if we know how the correspondences are to be 

carried out. From the dialogical (and more generally from the game theoretical) point of 

view a function is the result of a player choosing an object of the domain and the 

defender choosing the suitable match, which can be seen as carrying out a rule of 

correspondence. Intensional functions however cannot be directly produced from these 

interactions, though extensionality is also brought forward by interaction. Moreover, the 

dialogical take on constructivism is strongly linked to the view that in order to understand 

a play, and a winning strategy constituted by the relevant plays, it is not enough to know 

the rules of the game; it is not even enough to believe that there is a winning strategy 

behind the moves: what we need is to be able to describe the moves in such a way that it 

makes their contribution to the winning strategy understandable, that is, how the content 

involved in each move constitutes that strategy; in other words, a proof which would be 

beyond our description capacities would not produce knowledge at all. This is what 

Hintikka’s use of Wittgenstein’s notion of human-playable games amounts to in his 

(2001) work; it is what the dialogical demonstration of the PDC amounts to.
108

 

Let us conclude by quoting some beautiful lines of Poincaré, his response to what 

he considered a purely "formalistic" approach to mathematics: 
Si vous assistez à un partie d’échecs, il ne vous suffira pas, pour comprendre la partie, 

de savoir les règles de la marche des pièces. Cela vous permettrait seulement de reconnaître 

que chaque coup a été joué conformément à ces règles et cet avantage aurait vraiment bien 

peu de prix. C’est pourtant ce que ferait le lecteur d’un livre de Mathématiques, s’il n’était 

que logicien. Comprendre la partie, c’est tout autre chose ; c’est savoir pourquoi le joueur 

avance telle pièce plutôt que telle autre qu’il aurait pu faire mouvoir sans violer les règles du 

jeu. C’est apercevoir la raison intime qui fait de cette série de coups successifs une sorte de 

tout organisé. À plus forte raison, cette faculté est-elle nécessaire au joueur lui-même, c’est-

à-dire à l’inventeur. (Poincaré, La valeur de la science, 1905, p. 27).
109
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 See section  XI.1 for further details on game definiteness and its crucial role in the dialogical 

framework. 
109 

“If you are present at a game af chess, it will not suffice, for the understanding of the game, to 

know the rules for moving the pieces. That will only enable you to recognize that each move has been made 

conformably to these rules, and this knowledge will truly have very little value. Yet this is what the reader 

of a book on mathematics would do if he were a logician only. To understand the game is wholly another 

matter; it is to know why the player moves this piece rather than that otber which he could have moved 

without breaking the rules of the game. It is to perceive the inward reason which makes of this series of 

successive moves a sort of organized whole. This faculty is still more necessary for the player himself, that 

is, for the inventor.” (Poincaré, 1907, p. 22). 
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IX. FROM DIALOGICAL STRATEGIES TO CTT-
DEMONSTRATIONS AND BACK 

IX.1 General transformation principles between CTT and 
immanent reasoning 

In a nutshell, we take from (Rahman, Clerbout, & Keiff, 2009) the following two 

correspondences within a P-winning strategy, provided some exceptions to be discussed 

below: 

1. The result of applying a particle rule to a P-move corresponds to the application 

of an introduction rule of a CTT-demonstration rule (provided we read the P-

moves “bottom-up”). 

Table 29: correspondence between dialogical rules on P-moves and introduction 
rules 

APPLICATION OF A DIALOGICAL 

RULE TO A P- 

CORRESPONDS IN CTT TO THE 

INTRODUCTION RULE FOR 

disjunction disjunction 

conjunction conjunction 

existential existential 

subset separation subset separation 

implication implication 

universal universal 

 

2. The result of applying a particle-rule to an O-move corresponds to the application 

of an elimination rule of a CTT-demonstration. 

Table 30: correspondence between dialogical rules on O-moves and elimination 
rules 

APPLICATION OF A DIALOGICAL 

RULE TO AN O- 

CORRESPONDS IN CTT TO THE 

ELIMINATION RULE FOR 

disjunction 
(may be related to a case-dependent P-statement) 

disjunction 

conjunction conjunction 

existential existential 

subset separation subset separation 

implication implication 

universal universal 

 

Notice that from the perspective of a P-winning strategy, challenges and defences 

of P-statements on the one hand are duties, which can be understood as what P must 

bring forward in order to develop a dialogical demonstration for a given particle rule; but 

challenges and defences on O-statements, on the other hand, can be understood as what P 

is entitled to.
110

 If duties (or commitments) are understood as the normative force 

involved by the deployment of introduction rules of a CTT-framework, and entitlements 

as the normative force involved by the deployment of elimination rules of a CTT-

                                                 
110 

See the introduction, section I.2.3.  
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framework, then the correspondence between CTT rules and dialogical rules follows 

naturally. 

Exceptions to the general correspondence 

The exceptions to the general principle that P-statements correspond to introduction 

rules and O-statements to elimination rules are the following: 

P-statements depending upon O ⊥ moves correspond to ⊥-eliminations 

 When P makes a statement (elementary or not) adducing the local reason 𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(𝑛) 

after O has previously stated ⊥—the P-statement results of applying the elimination rule 

for ⊥.  

P-elementary statements defended with 𝑰 = 𝒑𝒊: 𝒕𝒚𝒑𝒆  correspond to definitional 
equalities  

If an elementary P-statement has been challenged and defended with a statement of 

the form 𝐼 = 𝑝𝑖: 𝑡𝑦𝑝𝑒—“𝐼” standing for an instruction and “𝑝𝑖” for a local reason—the 

algorithm presented in this chapter which transforms dialogical strategies into CTT 

demonstrations (and reversewise), will first introduce in the demonstration tree this 

equality as the application of a definitional equality, and will remove the P-elementary 

statement that triggered the defence. So the algorithm first inserts the equality then 

eliminates it.  

Dialogical plays use profusely definitional equalities. In fact, in the context of 

immanent reasoning every use of a move based on the Socratic rule is based on such form 

of equality. Yet, the natural deduction demonstrations that are not in normal form do not 

in general require coming back to the equality backing the coordination of introduction 

and elimination rules.  

Within the standard Natural deduction setting Π- and Σ-equalities are made explicit 

when eliminations introduce non-canonical proof-objects. In the dialogical setting this 

corresponds to the cases in which P chooses a resolution of an instruction (or function) 

that mirrors the resolution of an embedded instruction (or function) occurring already 

either in the initial concession or in the main thesis.  

Let us call the resulting equalities anaphoric-based equalities (for short A-

equalities). Thus, we will only retain in the tree A-equalities. Strictly speaking, plays 

within the core are carried out in “normal form”. 

P-statements which are case-dependent of O-statements set the conditions that allow 
drawing the conclusion of a disjunction elimination rule  

In fact, case-dependent P-statements correspond to either one of the disjunction 

eliminations achieved by introductions that follow from stating each of the components 

of the disjunction.
111

  

Applications of the Statement-Substitution rule 
They correspond to substitutions on hypotheticals occurring as global assumptions 

(initial concessions by O). 

                                                 
111

 See section  VII.7.3 on the argumentation form of a strategic object, in which we 

explicitly discuss the case of the disjunction (p. 141).   
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Transmission of Equality 

The transmission rules for definitional equality will be introduced unmodified in 

the demonstration tree with their direct CTT counterpart no matter whether they have 

been applied to P-moves or to O-moves. 

IX.2 Terminology 

Let recall some terminology from previous sections and introduce some new ones. 

Concessions 

A concession is either: 

(a) a move that O conceded as conditioning the claim of the thesis. We call this 

also initial concession. It corresponds to the notion of global assumption of 

proof-theory including epistemic assumptions and premises. 

(b) any other O-move brought forward during the development of a play, while 

challenging a P-implication or a P-universal, or while defending an O-

disjunction or subset separation. We call this also local concession. It 

corresponds to the notion of local assumption of proof-theory. 

Nodes 

Nodes descending from a statement: for a statement π occurring in the dialogical 

core C, the nodes descending from π are all the nodes which are related to π by a chain of 

applications of dialogical rules. 

Branches 
Left and right branches: when the dialogical core (or the demonstration) we are 

building splits, we speak of the left and right branches of the core (or demonstration).We 

may sometimes assign an order on the branches from left to right and speak of the first 

branch, second branch, etc. 

Dependent moves 

Dependent moves: a move 𝑀  depends on the move 𝑀′  if there is a chain of 

applications of game rules that leads from 𝑀′ to 𝑀. 

 

Case-dependent move  

Let 𝜋 be some statement and 𝑝 some local reason. We say that in the core C the 

move 𝑀𝑗  𝐏!  𝜋  is case-dependent upon move 𝑀𝑖<𝑗 𝐎!  𝑝 ∶ 𝜙  if 𝜙  is a disjunction and 

move 𝑀𝑗 depends upon move 𝑀𝑖<𝑗.  

More precisely the move 𝐏! 𝜋 is case-dependent upon O's disjunction 𝜙 iff the local 

reason(s) that occur in the defence of P's move 𝜋 is definitionally equal to one of the 

instructions for 𝜙 or if P is dispensed to defend 𝜋 by O’s move⊥ which results from the 

defence of 𝜙.  

As we will discuss below, the point in distinguishing case-dependent moves is that 

these moves set—from the strategic point of view—the conditions for the conclusion of a 

disjunction elimination rule.  

A-equalities 

A-equalities are anaphoric-based equalities, which are built when P chooses a 

resolution of an instruction (or function) that mirrors the resolution of an embedded 
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instruction (or function) occurring already either in the initial concession or in the main 

thesis. See above, section  IX.1. 

IX.3 Part 1: from strategies to CTT demonstrations 

 Extracting the core IX.3.1

 We start by a method for extracting the parts of a winning strategy relevant for 

making it correspond to a demonstration in natural deduction; we call it the core of a 

winning strategy—or, simply, the core (see sections V.2 and VII.5).  

In order to extract the core, we develop a method in order to 

1. extract the finite part of a winning strategy;  

2. disregard the formation rules involving the non-logical constants (since 

we are dealing with logical inferences); 

3. disregard different orders of moves of the Opponent. 

 

Once this has been achieved, we will describe the algorithm allowing us to 

transform the core into a CTT-demonstration. And finally we will prove the adequacy of 

the algorithm. 

 

The rationale behind the operation of extracting the core is the following: because 

S⋆ is the extensive form of a P-winning strategy, we know that P wins in every branch, so 

that to some extent which local reasons O chooses for the instructions does not matter. 

Let us take as example the case of a universal quantification stated by P. 

Since we assume that P has a winning strategy, he has a method to successfully 

defend his statement no matter which local reason O chooses for 𝐿∀(𝑝) ∶  𝐴 (where 

𝐴 is a set). This yields a natural deduction description of the Introduction rule for 

universal quantification with an implicit interlocutor: whatever O brings forward as 

proof-object for the antecedent P has a method to transform it into a proof-object of 

the consequent. Hence, it is harmless to keep only one representative of the 

possible choices by O because the existence of a winning P-strategy ensures that 

there is indeed a successful method for every possible O-choice. 

 General procedure and EPI IX.3.2

The next step is to apply transformations to this core until we obtain a CTT 

demonstration.
112 

 

The transformation algorithm will re-write the tree that represents the core C of the 

strategy by means of a step-by-step procedure specified below. One important issue is 

that the re-writing procedure will ignore the following: 

 The players’ identities. 

 The moves where the choices of the repetition ranks are made explicit. 

 Questions. Strictly speaking, only statements will be incorporated in the 

demonstration resulting from the translation algorithm. Thus, questions will not 

be re-written as separate step; they however have an important role in the 

transformation-procedure, which will be described below. 

                                                 
112 

 The section strongly relies on (Clerbout & Rahman, 2015), implementing in the CTT-

framework the ideas developed in (Rahman, Clerbout, & Keiff, 2009) and (Clerbout, 2014a; 2014b) in the 

standard framework for FOL.  
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Thus, important information will appear to be lost during the transformation 

procedure, though actually the procedure is only making it implicit : the other direction of 

the transformation (from CTT demonstrations to strategies) will show how to bring this 

information back, showing that dialogues for immanent reasoning make explicit what is 

implicit in a CTT demonstration. 

Remarks: 

1. We adopt here the natural deduction style of demonstrations used by 

Martin-Löf rather than the turnstile notation deployed in the 

introductory chapter on CTT.  

2. The dialogical demonstrations will assume that if there are initial 

concessions, they have already been granted by the Opponent.  

EPI: Resolution and Substitution of Instructions (SR3-4) 

The operation we describe hereafter consists in replacing the challenged instruction 

with the local reason (chosen as response to the challenge) while placing move 𝑛 in the 

demonstration under way, and ignoring those equalities that are not A-equalities.
113

  

One of the cases for which it is important that the algorithm does not ignore the 

question mark ‘?’ is the application of the structural rules SR3-4 (see section  VII.2.1) 

allowing the resolution and substitution of instructions by local reasons. The algorithm 

described below takes them into account through the following operation which we shall 

refer as Endowing local reasons to Instructions (EPI): 

EPI operation: Endowing local reasons to Intructions  

Assume that some instruction occurs in move number 𝑛.  

1. Scan the core C: if move 𝑛 is challenged by a question of the form “? --- /”, or “? -

𝜋-/” or “?𝐼/𝑝” for some instruction 𝐼 and some local reason 𝑝, then scan C in 

search for the defence.  

2. Write the replacement-process in the following way (only once): the instruction at 

the bottom and the resolution on the top, without the request. 

3. Once such a replacement has been carried out it will be systematically 

implemented in every further stage of the construction of the demonstration. 

 

The EPI operation ensures that equalities which stem from the resolution of non-

embedded instructions will be taken into account during the procedure. Recall that the 

operation is not necessary for the so-called A-equalities—which correspond to resolutions 

of embedded instructions—because the algorithm already accounts for them as 

definitional equalities (as explained above, section IX.1, and described in details in step 

B.2.b of the algorithm). 

Remark 
The distinction between resolutions of non-embedded instructions and A-equalities 

is a technical by-product of the conceptual work on equalities and on immanent reasoning 

carried out in the present study, and which was not fully grasped in (Clerbout & Rahman, 

2015); one consequence of this distinction is that the EPI operation will not, in general, 

                                                 
113 

 However, as specified below, the equalities that are not deployed in the demonstration 

tree are nevertheless useful at the strategic level in order to find out the justification of elementary P-

statements. 
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need to be applied as much as it was in (Clerbout & Rahman, 2015). Thus the present 

version of the algorithm is more precise when it comes to account for definitional 

equalities when building CTT demonstrations out of dialogical winning strategies. 

 The algorithm IX.3.3

The procedure we describe hereafter is a kind of rearrangement of (some of) the 

nodes in C which eventually produces a CTT demonstration. For convenience we assume 

that we have an unmodified “copy” of C to which we can refer to while the procedure 

goes on. The last stage (D) of the procedure requires some explanation: we provide it 

after the procedure. 

Step A. Initial stage: placing the conclusion and premises. 

 Let 𝜋 be the thesis stated by P and 𝛾1, . . . , 𝛾𝑛 be the initial concessions by O, if any. 

Place 𝜋 as the conclusion of the demonstration under construction and𝛾1, . . . , 𝛾𝑛  as its 

upmost premisses:
114

  

𝛾1, . . . , 𝛾𝑛 

⋮
𝜋

Then go to step B. 

Step B.  

Consider the lowest expression 𝜋𝑖  just added in the branch of the demonstration 

tree under construction (in the first stage it will be the thesis).  

Find the move in the core C that responds to it (in the first stage of the procedure it 

will be a challenge of the thesis).  

Scan C in order to identify the challenge and the defence resulting from the 

application of the particle rule relevant to this expression. Then: 

B.0. EPI-operation 

If applicable, implement the EPI-operation to the expressions present in what we 

have so far in the branch of the demonstration; that is, replace instructions by local 

reasons, place within the demonstration the equalities used either for statement-

substitutions or substitutions involving instructions.
115

 Recall that the EPI does not need 

to be applied to A-equalities (these are dealt with in step B.2.b). 

B.1. Moving to step C  
If the relevant challenge and defence have already been accounted for in the branch 

being constructed, then go to C. Otherwise go to B.2. 

B.2. Accounting for the relevant challenge and defence 

If the defence is a P-elementary expression, apply stage B.2.a. Otherwise, 

implement step B.2.b. 

                                                 
114 

 According to the above Remark 2, we ignore the first steps of a dialogue where the 

initial assumptions (if any) of the thesis are written to the right of the thesis, and start the algorithm 

assuming straightaway that the initial concessions have already been settled and the thesis displays the local 

reason that resulted after O stated the initial concessions. 
 
115 

 Ramifications will be dealt with further on in the algorithm. 
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B.2.a. P-elementary expressions 

 The present step concerns occurrences of P-elementary expressions  𝜋𝑖 in the core 

that are not dependent upon an O -move.  

Place 𝜋𝑖 in the demonstration, draw an inference line above it and label it SR (short 

for the application of some form of the Socratic rule, as defined in rule SR5).  

If the corresponding O-move (that allowed P to state 𝜋𝑖 ) has already been 

accounted for in the branch, then rearrange it so that it is placed as the premiss of the 

application of the rule. Find the O-move by searching for the relevant equality. All of the 

equalities in the core will indicate precisely the O-move relevant for the elementary 

expression at stake. 

Go back to B. 

B.2.b. Other expressions 

The present step concerns non P-elementary expressions 𝜋𝑖.  

Draw an inference line above 𝜋𝑖 and label it with the relevant name of the rule.  

Place the defence—and the challenge, if relevant
116

—as the premiss (or premisses) 

for the application of the rule, according to the following conventions: 

1) In the cases of the Introduction rule for implication, negation, or 

universal quantification, the defence is the immediate premiss and the 

challenge is placed upwards as an assumption such that:  

i. the defence depends on that assumption,  

ii. the assumption is numbered and marked as discharged at the 

inference step, and  

iii. the assumption is still in the scope of previously placed 

assumptions such as the premisses of the demonstration placed 

in stage A. 

 

2)  Here we apply the correspondences (given above) between player-

moves and natural deduction steps in the following way:
117

 

i. If 𝜋𝑖 is an O-implication move, we are facing an elimination 

rule: the premiss is constituted by that move and its challenge. 

The conclusion is the defence. Similarly for negations and 

universals. 

ii. If 𝜋𝑖  is a P-conjunction or a P-existential move, we are dealing 

with an introduction rule: each premiss is constituted by one of 

the defences. The conclusion is the challenged conjunction or 

existential.  

Dually, if 𝜋𝑖 is an O-conjunction or an O-existential move, we 

are in presence of an elimination-rule, so that 𝜋𝑖 is the premiss 

of each of the inferences with each of the defences as 

conclusion.  

iii. If 𝜋𝑖 is a case-dependent P-statement, then rewrite each of the 

O-defences of the relevant disjunction as a local assumption 

upon which a copy of 𝜋𝑖  will be made dependent. Draw an 

inference line and copy below a third copy of the case-

dependent statement 𝜋𝑖.  

                                                 
116 

That is, when the particle rule applied is a challenge to an implication, a negation, or a 

universal.  
117 

 Recall that those moves in C have the form of defences and challenges established by the 

particle rules or structural rules.  
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iv. If 𝜋𝑖  is an O-elementary statement, it is either initial 

concessions or the result of an elimination rule, in which case 

draw an inference line above 𝜋1 and place the relevant move as 

premiss (see Table 29 and Table 30 above). 

v. If 𝜋𝑖 is a P-statement (elementary or not) that does not need to 

be defended because O stated⊥  (allowing P to adduce the 

local reason 𝑦𝑜𝑢𝑔𝑎𝑣𝑒 𝑢𝑝(𝑛) for 𝜋𝑖), then it corresponds to the 

application of an elimination rule for ⊥. In such a case, scan 

for the move ⊥, place it in the demonstration as a premiss of a 

⊥-elimination, draw an inference line and write 𝜋𝑖 below it. If 

𝜋𝑖 is either an implication or a universal delete the O-challenge 

to it.  

vi. If 𝜋𝑖 is a P-statement that displays an A-equality, place it in the 

demonstration as the conclusion of a -(-)equality-rule with 

the moves that lead to that equality as a premiss.
118

  

vii. If 𝜋𝑖 is a substitution-move based on an A-equality, place that 

equality and the expression in which the substitution has been 

carried out as premiss of the application of a substitution rule. 

Similarly for statement-substitution moves.  

viii. Apply the EPI operation to the newly added expressions (if 

applicable). Move to the first (starting from the left) newly 

opened branch if relevant and go back to B.  

 

At this stage multiple premises can occur. Those premises are not dependent upon 

one another (with the exception of the premises of the elimination of a disjunction) and 

are placed on the same level: each one opening a new branch in the demonstration. In 

such cases all the premisses that were placed at some previous step in the translation must 

be copied and pasted for each newly opened branch. 

Step C.  

If the situation is the one of B.1 and no new expression has been added to the 

branch under construction, then: 

C.1. Rearrangements 
Perform any rearrangement required to match the notational convention of natural 

deduction trees and go to C.2.  

C.2. Dealing with SR  

If the branch does not feature applications of SR then go to C.3. Otherwise for each 

application of SR in the branch, remove its conclusion and the associated inference 

line.
119

 Go to C.3. 

                                                 
118 

 Recall the remarks above (section  IX.1, ‘Exceptions’) concerning P-elementary 

statements defended with 𝐼 = 𝑝𝑖 ∶ 𝑡𝑦𝑝𝑒. 
119 

 SR-rules display two copies of the same elementary expression, one as premise and one 

as conclusion. In the standard presentation of natural deduction (used in the present text) this is not 

necessary, unless we make use of some other recent presentations of natural deductions that introduce 

explicitly axioms of the form A ├ A. 
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C.3. Moving in the algorithm 

Move to the next branch to which stages C.1 and C.2 has not yet been applied and 

go back to B.  

If there are no such branches left, go to D. 

Step D. Inserting proof-objects and stopping the procedure. 
Going from top to bottom, replace in the demonstration at hand the dialogical local 

reasons with CTT proof-objects in accordance with the CTT rules. The point is that once 

the demonstration has been built we do not have local reasons any more but strategic 

objects—the latter but not the former correspond to proof-objects. 

Then stop the procedure. 

Checking method 

The table of correspondences between strategic objects and proof-objects 

(section IX.1) can be used as checking method using the following steps:  

Extract the strategic object of the thesis from the core. Use the correspondences of 

the table and provide the proof-object for it. Compare with the result of the procedure. 

Remarks:  

We have designed the algorithm so that the branches in the demonstration under 

construction are dealt with sequentially. However, it is possible to process them all at the 

same time in parallel. 

The concluding stage D is necessary because, as discussed all over our study (see 

for instance section VII.5), dialogical local reasons differ from CTT proof-objects, which 

correspond to strategic reasons. 

 Adequacy of the translation algorithm IX.3.4

We must ensure that the algorithm is adequate: given the core of a winning P- 

strategy it must always yield a CTT demonstration. Let us first describe the general idea 

behind the demonstration, that in fact is an almost literal reproduction of the one 

developed in (Clerbout & Rahman, 2015, pp. 49-52), with small changes due to the 

present take on equalities. 

The translation procedure ultimately consists in rearranging the nodes of the original 

dialogical core C. We must ensure that the reordering results in a derivation which 

complies with the CTT rules. We noticed that during this reordering, the procedure 

introduces what we may call “gaps” which we have marked with vertical dots. Take for 

example the first step of such a transformation procedure. In this step the thesis of the core 

provides the conclusion of the demonstration and the concessions provide the 

assumptions, though we still do not know at this point of the process what corresponds to 

the steps between the assumptions and the conclusion. Accordingly, we start by simply 

linking the assumptions and the conclusion with vertical dots. The idea behind the 

adequacy of the algorithm is that all these gaps will eventually be filled and that it will be 

done in a way which observes the CTT rules. 

The last part of this statement is easily checked. Let us assume that all the gaps are 

indeed removed. Then we can easily see that the resulting derivation is such that every rule 

applied in it is a CTT rule. We have indeed associated every application of a dialogical rule 

to a CTT rule, with the following exceptions: the rules involving elementary statements 

by P (the SR-rules) and the rules for Resolution and Substitution for Instructions that do 

not involve A-equalities. But applications of these three rules will also eventually be 

removed. Indeed the last stage of the algorithm replaces local reasons with proof-objects, 
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so applications of the SR-rules regarding instructions will eventually be removed. Recall 

also that P-statements (elementary or not) that are dependent upon ⊥ -eliminations 

correspond to those eliminations. 

 

So far so good—though the critical task of checking that the CTT rules are properly 

applied still remains. This process must show the important fact that following the 

algorithm will eventually remove the gaps, as it was assumed above. In order to ground 

this assumption let us temporarily consider an extension of the CTT calculus which 

includes the rules SR-rules as well as a new rule called Gap. In relation to the the SR-

rules, recall that in the so-called full-presentation of CTT, every leaf of a demonstration 

starts with an axiom of the form 𝐴├ 𝐴; thus, the introduction of SR is not at all foreign to 

the framework of a CTT-demonstration. In relation to Gap, it either allows to link (with 

the help of vertical dots) two nodes of the demonstration without a dialogical rule 

explaining such a link, or to introduce an expression as the last step of a sequence of 

vertical dots. We will show that when following the algorithm, each of the applications of 

the rule Gap will be replaced by applications of a suitable CTT rule or by applications of 

a SR-rule. We will then simply need to show that when no dialogical rule is applied to the 

corresponding node from C, the expression will not introduce additional gaps: the 

rearranging in the stage C.1 of the algorithm is harmless. Once we have reached this 

point, and after all the applications of a SR-rule have been removed, we are assured to 

have a proper CTT demonstration.  

 

Accordingly, let us show first that the gaps introduced during the process of 

building the CTT demonstration are temporary and will be progressively removed 

bottom-up: 

Algorithm-Lemma (AL) 
For any stage of the translation procedure, there is a corresponding node in the 

original dialogical core C for every expression resulting from a gap. 

Proof 

This proof is a straightforward induction which also establishes that newly 

introduced gaps at a given stage of the translation have the “right shape”, so that they will 

be filled by a proper application of a rule later on. 

 

The base case is trivial: the initial stage 𝐴 of the algorithm stipulates that the first 

expression resulting from an application of the rule Gap is the thesis, which is obviously 

a node in C to which a dialogical rule is applied. 

 

Inductive Hypothesis. Assume that AL holds for every application of the rule Gap 

up to this step in the translation procedure, say after 𝑛  steps. We show that the 

Proposition holds for the gaps introduced at step 𝑛 + 1 and that they have the correct 

“shape” in relation to the development of a CTT demonstration. This is done by cases, 

depending on the form of the last expression introduced at this point. For simplicity and 

brevity we only spell out two cases: 

 

Case 1: The associated node in C is a P-disjunction 𝑝 ∶ 𝐴 ∨ 𝐵 which is not case- 

dependent, and the fragment of the derivation at stake at step 𝑛 is: 

⋮ 
𝑝: 𝐴 ∨ 𝐵 
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Then, according to the algorithm, the result at step 𝑛 + 1 is: 

⋮  

𝐿∨(𝑝): 𝐴 
I∨ 

𝑝: 𝐴 ∨ 𝐵 
We next recall that we must have O challenging the disjunction at some place in the 

core: if there is a P-move in C which O does not challenge—though she could—then the 

core contains branches which do not represent terminal plays. However this is not 

possible since we have assumed C to be the core of a P-winning strategy. For the same 

reason, the core must feature the successful defence by P of one of the disjuncts, say 𝐴. 

Thus, the newly added expression filling up the dots introduced by Gap does indeed 

correspond to a node in C. 

 

Case 2: The associated node in C is a P-conjunction 𝑝: 𝐴 ∧ 𝐵 which is not case- 

dependent. After step 𝑛 we then have: 

⋮ 
𝑝: 𝐴 ∧ 𝐵 

so that according to the algorithm the result at step 𝑛 + 1 is: 

 

⋮ ⋮  

𝐿(𝑝): 𝐴 𝑅(𝑝): 𝐵 
I∧ 

𝑝: 𝐴 ∧ 𝐵 
 

Just like in the previous case, we must have O challenging the P conjunction at 

some place in the core—otherwise C would contain non-terminal plays and we would 

have a contradiction—resulting in a ramification in which each branch contains the 

statements by P of one of the conjuncts. The demonstration underway thus follows the 

CTT rule and the new expressions filling up the dots introduced by Gap correspond to 

these nodes in C. 

 

The construction of the demonstration thus proceeds by progressively filling up the 

temporary gaps until it reaches a stage at which no further gap is introduced. Except for 

the initial assumptions of the demonstration, the cases in which no gaps are introduced 

are reduced to cases of atomic expressions. But these come either from an Elimination 

rule for ⊥ or from the application of some SR-rule, that is, precisely the cases for which 

the premisses must already have been processed. 

Summing up, the demonstration by induction of AL shows that the algorithm builds 

a derivation by introducing temporary gaps and then progressively filling them up until 

no further gap occurs. Moreover, this construction has been developed in such a way that 

the derivation complies with the proceedings of what we have called the extended CTT 

calculus (which includes the SR-rules). 

Finally, as we have pointed out at the beginning of this section, the applications of 

the rules that do not strictly pertain to CTT are removed to guarantee that only CTT rules 

are applied in the resulting derivation. From all this together we have the following 

corollary: 

Algorithm-Corollary 

Let C be the core of a winning P-strategy in the game for 𝑝 ∶ 𝜙  under initial 

concessions 𝛾1, … , 𝛾𝑛 The result of applying the translation algorithm to C is a CTT 

demonstration of 𝜙 under the hypotheses 𝛾1, … , 𝛾𝑛. 
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This concludes the study of the process by the means of which dialogical strategies 

lead to CTT-demonstrations. For the demonstration of the equivalence between dialogical 

games and CTT, we need to consider the converse direction, namely from a CTT 

demonstration to a P-winning strategy. We tackle this issue in the next sections. 

IX.4 Part 2: from CTT demonstrations to strategies 

In this chapter we will consider the other direction of the equivalence between the 

valid fragments of the CTT framework and the dialogical framework. That is, we will 

show that if there is a CTT demonstration for 𝜙,  then there is a winning P-strategy in 

the dialogical game for 𝜙. 

The demonstration, quite unsurprisingly, rests on developing a translation 

procedure which is the converse of the previous one. That is, we will present a procedure 

transforming a given CTT demonstration and we will show that the result is the core of a 

winning P-strategy—which is then expanded to a full-fledged winning strategy. 

A core is expanded to a full strategy by adding branches accounting for variations in 

the order of the moves of the other player and in the local reasons he chooses. We will not 

give the specifics of that particular operation because it does not present any difficulty, 

and they have already been given in details in (Clerbout, 2014a; 2014c). We would rather 

focus on the way the initial CTT demonstration is transformed and on the proof that the 

result is the core of a winning P-strategy. 

For the latter, we need to prove that the transformation results in a tree in which 

each branch represents a play won by P. In other words, we need to show that in the 

resulting tree each branch represents a legal sequence of moves ending with a P-move, or 

with O stating ⊥. We also need to check that the tree has all the necessary information to 

be a core which can be expanded to a full strategy. That is to say, we must make sure that 

no possible play for O is ignored, excepting those varying in the order of the moves or 

the names of the local reasons. 

 

The development of the next sections follows the proof by (Clerbout & Rahman, 

2015) with the sole exception of the last step in which the equalities are introduced in the 

core for every P-move that is not a result of a SR4-rule (that is those elementary 

statements of P that do not involve resolution of instructions).  

 Transformation procedure IX.4.1

As in the first part, we first need here to design a transformation procedure. We 

will start with an informal description of the task and of the ideas underlying the 

procedure. Then we will provide the detailed algorithm. 

Guidelines 

In general there are two main obstacles such a procedure must overcome: 

1. CTT is not an interactive-based framework. In particular the notions of players, 

challenges and defences are not present in CTT. 

2. The progression of a CTT demonstration differs quite greatly from the 

progression of a dialogical core. Most notably, the production of 

ramifications on the one hand and the order of expressions on the other hand 

do not match in the two approaches. 
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These are just descriptions of the fundamental differences between a CTT 

demonstration and a dialogical core. There obviously are many other aspects which our 

translation method must take into account. Let us give further explanations on the topics 

on which the desired transformation procedure must operate. 

From CTT judgements to dialogical statements 

To begin with we need to enrich the CTT demonstration with the players’ identities. 

We need for that a way to figure out which expressions are stated by which player. In fact, 

there is a subtlety in this process because some steps in a CTT demonstration may be 

associated with either players, P or O; see below, “Identical statements by the two 

players”, for more details on this issue. But the general idea underlying the process is 

otherwise quite simple. The starting point is that the conclusion of the CTT 

demonstration is to be stated by P because it is the expression at stake: in a dialogue, that 

is the thesis. Moreover, the hypotheses of the demonstration, that is, the undischarged 

assumptions that may occur at the leaves of the CTT demonstration, correspond to initial 

concessions made by O. 

From there, it is quite straightforward to associate the other steps in the CTT 

demonstration with players by using the correspondences between the CTT and the 

dialogical rules used in the precedent sections. By means of illustration, suppose some 

step in the CTT demonstration has been associated to player X and suppose that the 

expression results from an application of the -Introduction rule. Then the assumption 

discharged by applying the Introduction rule is to be associated to player Y (it will occur 

in the core as the challenge by Y), and the expression immediately preceding the 

inference line is to be associated to player X (it will occur in the core as the defence by 

X). 

Identical statements by the two players 

Because the CTT framework is not based on interaction, it does not distinguish 

between the two players. The point is that a CTT demonstration may very well feature 

expressions occurring only once, while two instances (or more) would be needed for a 

dialogical demonstration, that is, for the construction of a dialogical core. Elementary 

expressions associated to P, and which do not result from the application of the 

Elimination rule, are one example. More generally, an expression may be used in a 

demonstration when applying the two kinds of rules: for example it can be used first when 

applying an Elimination rule and later on when applying an Introduction rule. In such 

cases, this expression is likely to occur as stated by the two players in a dialogical 

core (intuitively, this is because of the correspondence between Elimination rules and O-

applications of rules on the one hand, and Introduction rules and P-applications of rules on 

the other hand). These consideration show the need of adding occurrences of expressions, 

but as stated by a different player. 

Dialogical instructions and local reasons 

Next we need to account for the difference between CTT proof-objects on the one 

hand, and dialogical local reasons and instructions on the other hand. More precisely, we 

need to go from the CTT perspective on applications of rules to the dialogical 

perspective. In the CTT framework, applications of rules manifest themselves by specific 

operations defining the way proof-objects are obtained from other proof-objects. In the 

dialogical approach, meaning explanations are given in terms of local reasons and 

instructions at the other (prior) level of plays in which interaction prevails over the set-

theoretic operations. 
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To perform this change of perspective, we start by substituting an arbitrary local 

reason 𝑝 for the proof-object in the conclusion of the demonstration (and for that one 

only); in other words, we choose an arbitrary local reason for the thesis of the dialogical 

core we are building. Also, if relevant, we substitute local reasons for proof-objects in the 

expressions corresponding to initial concessions by O.  

From there, it is a trivial matter to replace the other proof-objects occurring in the 

demonstration with the appropriate dialogical instructions. We simply look which 

analysis rule (section VII.1.2, Table 20) is applied to know which subscript must be 

associated to the letters 𝐿 and 𝑅 which will result in a proper dialogical instruction. For 

example, an instruction of the form 𝐿∧(… )—or 𝑅∧(… )—is substitued for the proof-

object of the conclusion resulting from an application of the ∧-Elimination rule in the 

initial CTT demonstration.  

Once we have a way to replace proof-objects with dialogical instructions, we are 

able to introduce local reasons as well. To do so we introduce the moves involving 

resolutions of instructions. We do so as we replace CTT proof-objects with dialogical 

instructions: every time we determine the dialogical instruction replacing the CTT proof-

object, we also choose a local reason resolving the instruction. As a result, an expression 

“𝛼 ∶ 𝜙”, where 𝛼 is a proof-object, will be replaced by an instruction of the form “𝐼 ∶ 𝜙 ” 

where 𝐼 is an instruction. Immediately after that, another version of the same move is 

added in the structure, but with a local reason instead of the instruction 𝐼. By doing this 

immediately we can progressively replace proof-objects with simple instructions relative 

to local reasons, instead of having embedded instructions getting more and more 

(unnecessarily) complex.
120 

Adding questions 

At this point we have obtained a tree-like structure featuring a substantial number 

of expressions which differ only by the player identity, or maybe by the instruction and 

local reason.  

Still, some aspects are missing to read the structure at hand in terms of interaction. 

To put it simply, the structure lacks challenges consisting in questions. For example, that 

two expressions 𝐗 !  𝐼 ∶ 𝜙  (for some instruction 𝐼) and 𝐗 !  𝑝 ∶ 𝜙 (for some local reason 𝑝) 

following each other in the structure does not make dialogical sense until the question 

𝐘 𝐼/? is placed between them; only then can we speak of an interaction in which Y asks 

X for the resolution of the instruction 𝐼 and X chooses 𝑝 for the resolution. Similarly 

with other questions such as ?∨, ? 𝐿 , ? 𝑅 , etc., depending on the rule at stake. 

The next step in the translation procedure is therefore to include questions in the 

relevant way so that one can accurately speak of interaction through the application of 

dialogical rules. However, the result still cannot be called a dialogical core. For that we 

need to overcome the difference in the production of ramifications between the CTT 

framework and dialogical strategies. 

Rearranging the branches and order of the moves 

Recall that we are dealing with a tree-like structure written “upside-down”, that is, 

where the root of the tree (the conclusion of the demonstration we started with) is at the 

bottom and the leaves are at the top. 

The most important transformation that remains is reorganising the tree at hand so 

that we obtain a good candidate for a core of a P-winning strategy. This means we aim 

                                                 
120  Suppose for example that we have introduced an instruction 𝐿∨(𝑝). If we do not immediately 

decide for a local reason, say 𝑞, resolving this instruction, then the next instruction will be of the form 

𝐼(𝐿∨(𝑝)) instead of the simpler 𝐼(𝑞)—for some 𝐼. 
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for a tree in which branches are linear representations of plays in such a way that 

ramifications represent choices of O between different moves (since we are interested in 

P-strategies). The CTT framework distinguishes between rules applied to one or more 

expressions. In the latter case, a ramification is produced but not in the former case. But 

since there is no explicit notion of interaction and strategy (in the game-theoretical sense) 

in CTT, it is obvious that ramifications may not correspond to differences due to possible 

choices by a player, that are taken into account in a strategy for his adversary.  

 

A typical example are the differences between the CTT Elimination rules for material 

implication and universal quantification on the one hand, and their dialogical counterpart 

on the other hand. In CTT these rules have (at least) two premisses: first, the complex 

expression, and, second, a judgement of the form 𝑎 ∶  𝐴 when 𝐴 is the antecedent or the 

set which is quantified over. Each of these two premisses opens a branch in the 

demonstration. But in a dialogical game, one is the statement, the other is the challenge 

against it; consequently they occur in the same play and hence, in the same branch of a 

strategy. Notice that this will also happen with other rules including those equality 

assertions that in the CTT-demonstration result from the application of equality rules.  

The goal in this step of the transformation is thus to reorganise the tree in order to 

overcome this discrepancy. We must also take some additional precautions (such as adding 

the choices of repetition ranks) so that the branches in the new tree do indeed represent 

plays. 

Once this has been accomplished we reintroduce applications of the Socratic Rule 

(SR) to the P-elementary statements resulting from the resolution of some instruction. In 

other words, once all the previous steps have been carried out we reintroduce those 

equalities arising from O's-choices while resolving instructions that have not been already 

implemented in the CTT demonstration. Recall that the standard CTT demonstrations 

deploy - and -equalities only when the Elimination rules might produce a non-

canoncial proof-object.  

 

We shall stop the general explanations here. All the details are given in the full 

description of the translation algorithm given below. Let us simply mention here that the 

procedure is meant to obtain the core of a P-winning strategy after all these modifications. 

This is something that must be proved, which we do afterwards. 

 The algorithm IX.4.2

Let us precise now the details of the procedure: we start with a CTT 

demonstration D of an expression E under a set H of global hypotheses or 

epistemic assumptions (that is, assertions that may include "given" proof-

objects). 

Step A. From judgements to moves 
 First we enrich the initial demonstration with player identities and the sign ! 

A1. Adding the players’ identities  

Rewrite the conclusion E as P ! E . Then, for every h  H occurring as a leaf of D, 

rewrite h as O ! h. Go to A2. 
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A2. Using-up expressions 

Scan D bottom-up. When there is no unused expression left, go to A3. Otherwise, 

let 𝐸1 be the (left-most
121

) unused expression 𝐗 !  𝐸1. Then, 

 

(1) If X is O and 𝐸1 results in D from applying an Introduction rule, then 

insert 𝐏 ! 𝐸1 as the conclusion of the rule preceding 𝐎! 𝐸1. Consider 

the latter as used and go back to A2. 

(2) If X is P and 𝐸1 results in D from applying an Elimination rule other 

than for ∨  or Σ, then insert 𝐎 !  𝐸1  as the conclusion of the rule 

preceding 𝐏 !  𝐸1. Consider the latter as used and go back to A2. 

(3) Otherwise use the correspondences between CTT and dialogical rules 

given in section IX.1  to rewrite the expressions allowing the 

application of the rule with the adequate player.
122

 

In doing so, observe the following constraints:  

1. an expression can be labelled as a P-move and an O-move, 

 each player can be assigned at most once to an expression.  

After this, consider the expression as used and go back to A2.  

A3. Corresponding O-moves 

Scan the demonstration at hand. For each elementary statement by P which has no 

counterpart by O apply one of the following,  

1. if it is the result of an application of the -Elimination rule, then leave it as it 

is.  

2. If there is no corresponding O-move, then insert one immediately below  the 

P-move, and insert the expression P Socratic Rule at the leaf of the current 

branch.  

Then go to A4.  

A4. Separating double labels 

If there are leaves with the double label O ! / P !, separate them into two 

expressions such that the P-move is placed as the leaf. Go to step B.  

Step B. Instructions and local reasons 

Next we introduce local reasons in place of proof-objects. This is done in the 

following way.  

B1. Introducing arbitrary local reasons 

In the conclusion 𝐏! 𝐸, replace the proof-object with an arbitrary local reason 𝑝. 

Then, for each initial concession 𝐎 ! ℎ occurring at a leaf of the demonstration, substitute, 

if relevant, an arbitrary local reason for the proof-object. Consider these expressions as 

processed and go to B2.  

                                                 
121 

 This accounts for the fact that D may have several branches. 
122 

 For example, given the situation 

𝛼: (Π𝑥: 𝐴)           𝑎: 𝐴 
EΠ 

𝐎! … 
 

The deployment of the procedure described by A3 yields:  

𝐎! 𝛼: (Π𝑥: 𝐴)     𝐏! 𝑎: 𝐴 
EΠ 

𝐎! … 
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B2. Processing all the expressions 

Scan the demonstration bottom-up. If there is no expression left unprocessed, go to 

C. Otherwise take the leftmost expression 𝐗 !  𝐸2 with a local reason which has not been 

processed so far, and 

 

 Use the correspondences between the CTT and the dialogical rules given in 

the previous sections to substitute the adequate instructions for the proof-

object (or proof-objects) in the premiss (premisses) of the rule whose 

application results in 𝐗 !  𝐸2. 

 For each instruction introduced in that way, copy the expression at stake, 

replacing the instruction by an arbitrary local reason. Place the version with 

the local reason immediately above the expression with the instruction. 

 Consider 𝐗 !  𝐸2 as processed and go back to B2. 

Step C. Adding questions 

Scan the demonstration and identify the applications of rules for which the 

dialogical counterpart features a question. For each expression understood as a defence 

according to such a rule, add the corresponding challenge performed by the adversary 

immediately below the expression. 

 

Go to D. 

Step D. Moving the Opponent’s initial concessions 

Consider each leaf of the demonstration at hand which is an initial concession by 

O—that is, an undischarged assumption of the initial demonstration D which has been 

identified as an O-move. Remove it and place it below the conclusion 𝐏 !  𝐸. In case of 

multiple occurrences, keep only one occurrence. 

 

Go to E. 

Step E. Removing non-dialogical splits 
Scan the demonstration top-down. Going from the left to the right, check each point 

where two different branches join. Depending on the case, apply one of the following, 

1. If the ramification is such that the two branches are opened by two O-

moves relevant for a rule dealing with a logical constant, then ignore them 

and proceed downwards. 

2. Otherwise, “cut” one and “paste” it above the other one, according to the 

following convention: 

 If both branches have a P-move as the leaf, or if both have an O-move 

as the leaf, then pick any one of the branch to be cut and pasted; 

 Otherwise pick the one with a P-move at the leaf to be cut and pasted.  

 

Go to F. 

Step F. Reordering the nodes.  

Scan the tree structure at hand bottom-up. Starting from the thesis 𝐏 !  𝐸, change the 

order of the expressions according to the following conditions, 

 each O-move is a reaction—as specified by the dialogical rules—to the P- 

move placed immediately below; 
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 a question or a statement which is a challenge always occurs before (i.e. closer 

to the root) a defence reacting to it. 

 Ramifications are preserved so that each branch is opened with an O-move as 

a reaction to a P-move which is immediately below. 

 

Go to G. 

Step G. Introducing equalities by means of the Socratic rule 
Search for nodes labelled SR (Socratic Rule). Depending on the case, apply one of 

the following: 

 If the O-expression copied by P is the result of applying a CTT equality 

rule, apply the relevant case defined in SR5.3.1: Non-reflexive cases of the 

Socratic rule (see section VII.2.1). 

 If the O-expression copied by P is not the result of applying a CTT equality 

rule, apply the relevant case defined in SR5.3.2: Reflexive cases of the 

Socratic rule (section VII.2.1). 

Explanation 
The first case occurs when the O-expression is the result of a two step process in 

the CTT demonstration: the first step being an application of an elimination rule, and the 

second an application of an equality rule computing the proof-object to a given value. In 

the context of a dialogical play, this corresponds to O resolving or substituting an 

instruction. As explained in the description of the Socratic rule, this corresponds to a non 

reflexive case. 

The second case occurs when the O-expression is an assumption, when a value for 

the proof-object is directly introduced without being computed by means of a CTT 

equality rule. In the context of a dialogical play, this corresponds to O conceding an 

elementary expression directly, without going through the resolution of substitution of an 

instruction. In this context, the Socratic rule specifies that P will apply the reflexive case 

of the rule. 

 

Go to H. 

Step H. Adding ranks  

Insert an expression 𝐎 𝑛 ∶= 1 immediately above the thesis 𝐏 ! 𝐸. Then insert an 

expression 𝐏 𝑚 ∶=  𝑘 above the one just inserted. Choose 𝑘 to be the highest number of 

times a given rule is applied by P to the same expression in the tree. 

The procedure stops. 

 Adequacy of the algorithm IX.4.3

We have developed the algorithm transforming a CTT demonstration into a 

winning strategy. It remains to show that the algorithm indeed does so, in other words 

that applying the algorithm to a given a CTT demonstration results in the core of a P-

winning strategy. 

To be more specific, the point is to show that the result of applying the algorithm to 

a CTT demonstration is a tree in which, 

1. each branch represents a play: the sequence of moves in each branch complies 

with the game rules, 

2. each play in the tree is won by P, 
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3. the tree describes all the relevant alternatives for a core. In other words: there 

is no significantly different course of action for O that would be disregarded 

in the resulting tree.
123

 

Proposition 1 

Each branch in the resulting tree represents a play. 

 

We need to show that in each branch the sequence of moves complies with the rules 

of dialogical games. 

 

Proof 

Because the translation observes a correspondence between CTT rules and 

dialogical particle rules (recall that step C of the algorithm is used to insert questions), we 

simply need to check that the dialogical structural rules are observed. We leave the 

Winning Rule aside for now since it is the topic we address in the next Proposition. 

 

So for the Starting Rule SR0, steps D and H of the algorithm ensure that every 

sequence of moves in the tree starts with the initial concessions of O, which are followed 

by the thesis stated by P, and then by the choices of repetition ranks. 

 

As for the Intuitionistic Development Rule, step F of the algorithm guarantees that 

each move following the repetition ranks in a sequence is played in reaction to a previous 

move. The condition in step F according to which O-moves immediately follow the P-

move to which they react ensures that the intuitionistic restriction of the Last Duty First is 

observed.
124 Moreover the choice of the repetition ranks prescribed by step H ensures that 

the players do not perform unauthorised repetitions. 

 

As for the Socratic rule, no challenge against an elementary O-statement is added 

when applying the algorithm. Moreover, in the case of elementary statements made by P, 

step A3 and G of the procedure ensure that, if needed, a corresponding move by O and 

the adequate challenges and defences are added. 

 

As for the rules related to the Resolution of Instructions, step B of the algorithm (in 

combination with step C introducing questions) guarantees that instructions are resolved 

according to the structural rules SR3 and SR4—recall that we ignore the formation 

dialogues since we are focusing on that fragment of CTT in which verifying the well 

formation is assumed successful. 

 

Now that we have established that the branches represent plays because they 

comply with the dialogical rules, we must assess the situation in relation to victory and 

show that: 

Proposition 2 
 Each branch of the resulting tree represents a play won by P.  

                                                 
123 

 By significantly different we mean other than relative to the order of O’s moves, or the 

choice of local reasons to replace instructions. 
124 

 This is known since (Felscher, 1985). See also more details in (Clerbout, 2014c). 
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Proof 

We must check that the leaf of each branch is either: 

1. an elementary statement by P preceded by a O-statement of ⊥, 

2. an elementary statement by P (different to the previous case), 
3. a P-equality that results from applying the Socratic Rule. 

 

But all this is guaranteed by steps A3, E, F and G of the algorithm. 

 

Finally, it remains to show that the tree describes all the relevant courses of actions 

for the Opponent underlying the core of a P-strategy: 

Proposition 3  

There is no P-move in the tree remaining unanswered by O and there is no rule 

that would allow leaving such a P-move without a response. 

Proof 
We know from the initial demonstration D and steps A1-A4 of the algorithm that 

every statement made by P in the resulting tree occurs as the result of an Introduction 

rule, of the Elimination rule for the Σ operator or of the Elimination rule for disjunction. In 

the case of complex statements, the correspondence with dialogical particle rules, together 

with the addition of questions via step C of the algorithm, ensure that they are challenged 

and that when they are themselves played as challenges they are answered. In the case of 

elementary statements, we know from the proof of the preceeding Proposition (2) that 

they are challenged if O may challenge them. 

Moreover, all the possible challenges allowed by the particle rules are covered by 

the CTT rules they correspond to. For this reason, the only remaining possible variations 

left to O are the order of her moves and the choice of local reasons for the Resolution of 

Instructions. But these variations are the ones which are not relevant to build the core of a 

P-strategy. In other words the correspondence between CTT rules and the particle rules 

ensure that the starting demonstration D already contains the variations which are 

relevant to the core of a P-strategy. 

 

The adequacy of our translation procedure, which amounts to the second direction 

of the equivalence between CTT demonstrations and dialogical strategies, is then a direct 

consequence of these three Propositions. 

Corollary 

The result of applying the algorithm that transcribes a CTT demonstration into a 

tree of P-terminal plays constitutes the core of a winning P-strategy. 

IX.5 Exercices 

Transform the core of the winning strategy for the following theses into a natural-

deduction demonstrations by deploying the procedure described in the preceding sections. 

1. (𝐴 ∧ 𝐵) ∧ 𝐶  [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 
2. (𝐵 ∧ 𝐴) ⊃ 𝐶 [𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶] 

Solution to exercise 1: demonstration of (𝑨 ∧ 𝑩) ∧ 𝑪 [𝒄: 𝑨 ∧ (𝑩 ∧ 𝑪)] 

Recall from section VII.7.4 the core of the winning strategy for the thesis. 
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Figure 5: Exercise 1 - the core 

  0. 𝐏 ! (𝐴 ∧ 𝐵) ∧ 𝐶 [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] 
 0.1. 𝐎 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 

 1. 𝐎 𝑚 ∶= 1 

 2. 𝐏 𝑛 ∶= 2 

   

  3. 𝐎 ? 𝐿∧ [? , 0] 
 4. 𝐏 𝑑1: 𝐴 ∧ 𝐵 [!, 3] 

 3. 𝐎 ? 𝑅∧ [? , 0] 
 4. 𝐏 ? 𝑅∧ [? , 0.1] 
 5. 𝐎 𝑅∧(𝑐): 𝐵 ∧ 𝐶[!, 4] 
 6. 𝐏 ? …/𝑅∧(𝑐) [? , 5] 
 7. 𝐎 𝑐2: 𝐵 ∧ 𝐶 [!, 6] 
 8. 𝐏 ? 𝑅∧ [? , 7] 
 9. 𝐎 𝑅∧(𝑐2): 𝐶 [! ,8] 
 10. 𝐏 ? …/𝑅∧(𝑐2) [? , 9] 
 11. 𝐎 𝑐2.2: 𝐶 [!, 10] 
 12. 𝐏 𝑐2.2: 𝐶 [!, 3] 
 13. 𝐎 ? = 𝑐2.2 [? , 12] 
 14. 𝐏 𝑅∧(𝑐2) = 𝑐2.2: 𝐶 [!, 13] 
P wins 

  

 5. 𝐎 ? 𝐿∧ [? , 4] 
 6.  𝐏 𝐿∧(𝑑1): 𝐴 [!, 5] 
 7. 𝐎 ? …/𝐿∧(𝑑1)[? , 6] 
 8. 𝐏 ? 𝐿∧ [? , 0.1] 
 9. 𝐎 𝐿∧(𝑐): 𝐴 [!, 8] 
 10. 𝐏 ? …/𝐿∧(𝑐) [? , 9] 
 11. 𝐎 𝑐1: 𝐴 [!, 10] 
 12. 𝐏 𝑐1: 𝐴 [!, 7] 
 13. 𝐎 ? = 𝑐1 [? , 12] 
 14. 𝐏 𝐿∧(𝑐) = 𝑐1: 𝐴 [!, 13] 
P wins 

 5. 𝐎 ? 𝑅∧ [? , 4] 
 6. 𝐏 𝑅∧(𝑑1): 𝐵 [!, 5] 
 7. 𝐎 ? …/𝑅∧(𝑑1)[? , 6] 
 8. 𝐏 ? 𝑅∧ [? , 0.1] 
 9. 𝐎 𝑅∧(𝑐): 𝐵 ∧ 𝐶 [!, 8] 
 10. 𝐏 ? …/𝑅∧(𝑐) [? , 9] 
 11. 𝐎 𝑐2: 𝐵 ∧ 𝐶 [!, 10] 
 12. 𝐏 ? 𝐿∧ [? , 11] 
 13. 𝐎 𝐿∧(𝑐2): 𝐵 [!, 12] 
 14. 𝐏 ? …/𝐿∧(𝑐2)[? , 13] 
 15. 𝐎 𝑐2.1: 𝐵 [!, 14] 
 16. 𝐏 𝑐2.1: 𝐵 [!, 7] 
 17. 𝐎 ? = 𝑐2.1 [? , 16] 
 18. 𝐏 𝐿∧(𝑐2) = 𝑐2.1: 𝐵 [!, 17] 
P wins 

 

Let us now launch the procedure for transforming the tree for the winning strategy 

into a natural deduction tree. 

Steps A-B on the thesis 

We place the thesis as conclusion and the initial concession as global assumption. 

Since in the tree the initial concessions occur before a branching, we need to introduce 

two branches in the demonstration starting both by the same initial concession:  

 

Figure 6: Exercise 1 - Step A 

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 

⋮  ⋮ 
𝐴 ∧ (𝐵 ∧ 𝐶) 

 

We now scan for the lowest expression in the demonstration tree—at this time it is 

the thesis—and find in the core the responses to it—the responses here are the challenges 

on the conjunctions; in order to help the reading of the process, we highlight in bold the 

last challenge-defence pair: 

 

Figure 7: Exercise 1 - Step B on the thesis
125

 

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)   

                                                 
125

 To help the reader we add this step with the challenges in request form on the conjunction, 

though the algorithm does not include the questions in the demonstration tree. We will not put them further 

on. 
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⋮  ⋮   

?𝑳 [? ; 𝟎]  ?𝑹 [? ; 𝟎]   

⋮  ⋮   

𝒅𝟏: 𝑨 ∧ 𝑩  𝒄𝟐.𝟐: 𝑪 
I∧ 

 

𝐴 ∧ (𝐵 ∧ 𝐶)  

 

 

Whereas the left of the two expressions added in this step is a conjunction, the right 

is an elementary expression: steps B.2.b and B.2.a apply respectively. Let us start with 

the latter, and therefore begin with the right branch. 

Building the right branch: steps B-C 

Since 𝑐2.2: 𝐶 is a P-elementary expression we know that it must be the result of 

Socratic rule (here noted SR).  

 

Figure 8: Exercise 1 - Step B.2.a 

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 
 

 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 
 

 

⋮  ⋮  

 
 

  
SR 

 

𝑑1: 𝐴 ∧ 𝐵  𝒄𝟐.𝟐: 𝑪 
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  
 

We now look in the core for the O-move that allowed P to state 𝑐2.2: 𝐶. In order to 

do so, we search for the equality move that defended the challenge upon 𝑐2.2: 𝐶—it is the 

equality move 14, and it provides the information that this statements uses move 11.  

 

Figure 9: Exercise 1 - Step B.2.a 

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 
 

 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 
 

 

⋮ 
 ⋮  

  𝒄𝟐.𝟐: 𝑪 
SR 

 

𝑑1: 𝐴 ∧ 𝐵   𝒄𝟐.𝟐: 𝑪 
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  
 

We know that O’s elementary moves are either initial concessions or the result of 

an elimination rule: here move 11 is an answer to P’s challenge on the conjunction 𝐵 ∧ 𝐶 

stated move 7; so O’s move 𝑐2.2: 𝐶 is the result of an elimination rule on the conjunction.  

 

Figure 10: Exercise 1 – Step B.2.b (iv) 

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 
 

 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 
 

 

⋮ 
 ⋮  

  𝒄𝟐: 𝑩 ∧ 𝑪 E∧  

  𝒄𝟐.𝟐: 𝑪 
SR 

 

𝑑1: 𝐴 ∧ 𝐵   𝑐2.2: 𝐶 
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  
 



178  IX. From dialogical strategies to CTT-demonstrations and back 

 

The move 𝑐2: 𝐵 ∧ 𝐶 is the lowest of the expressions just added, so we apply once 

more step B and search in the core for the moves that triggered it: a defence to P’s 

challenge on the initial concession 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)—a conjunction again: the rule allowing 

for the statement 𝑐2: 𝐵 ∧ 𝐶 is therefore a conjunction elimination rule (we skip here the 

instructions and replace them straight). 

 

Figure 11: Exercise 1 - Step B.2.b 

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)   𝒄: 𝑨 ∧ (𝑩 ∧ 𝑪) E∧  

⋮ 
  𝒄𝟐: 𝑩 ∧ 𝑪 E∧  

  𝑐2.2: 𝐶 
SR 

 

𝑑1: 𝐴 ∧ 𝐵   𝑐2.2: 𝐶 
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  
 

Step C to the right branch. The premiss for infering 𝑐2: 𝐵 ∧ 𝐶 being already in the 

tree, we move to step C for this branch: we now delete the SR and leave only one copy of 

the elementary expression.  

 

Figure 12: Exercise 1 - Step C to the right 

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)   𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧  

⋮   𝑐2: 𝐵 ∧ 𝐶 E∧  

𝑑1: 𝐴 ∧ 𝐵   𝑐2.2: 𝐶  
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  
 

Building the left branches: steps B-C 

We now turn our attention to the left branch and take the lowest expression last 

added in the branch of the demonstration: it is a conjunction stated by P, so it is the result 

of a conjunction introduction rule. Since it is an introduction rule, the premisses must be 

constituted by the members of the conjunction stated by P, which opens two different 

branches, one for each side of the conjunction:   

 

Figure 13: Exercise 1 - step B to the left 

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)      

⋮  ⋮   𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧  

𝑳∧(𝒅𝟏): 𝑨  𝑹∧(𝒅𝟏): 𝑩 
𝐼 ∧ 

 𝑐2: 𝐵 ∧ 𝐶 E∧  

𝒅𝟏: 𝑨 ∧ 𝑩  𝑐2.2: 𝐶  
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  
 

With the resolution of the instructions we obtain: 

 

Figure 14: Exercise 1 - step B to the left with instructions 

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)      

⋮  ⋮      

𝒄𝟏: 𝑨 
EPI 

𝒄𝟐.𝟏: 𝑩 EPI  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧  

𝑳∧(𝒅𝟏): 𝑨 𝑹∧(𝒅𝟏): 𝑩 𝐼 ∧  𝑐2: 𝐵 ∧ 𝐶 E∧  
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𝑑1: 𝐴 ∧ 𝐵  𝑐2.2: 𝐶  
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  
 

Since they are elementary expressions, they result from a Socratic rule (we also apply the 

EPI operation): 

 

Figure 15: Exercise 1 - step B2a on the left 

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)      

⋮  ⋮      

𝒄𝟏: 𝑨 
SR 

𝒄𝟐.𝟏: 𝑩 SR  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧  

𝒄𝟏: 𝑨 𝒄𝟐.𝟏: 𝑩 
𝐼 ∧ 

 𝑐2: 𝐵 ∧ 𝐶 E∧  

𝑑1: 𝐴 ∧ 𝐵  𝑐2.2: 𝐶  
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  
 

O’s move 𝑐1: 𝐴  is a response to P's challenge ?𝐿  on the initial concession  
𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶), and O's move 𝑐2.1: 𝐵 is a response to P’s challenge on the left side of O's 

conjunction 𝑐2: (𝐵 ∧ 𝐶)—so in the demonstration tree they respectively correspond to the 

left and right eliminations of the conjunctions 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) and 𝑐2: 𝐵 ∧ 𝐶. 

 

Figure 16: Exercise 1 - step B2b (iv) on the left 

  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)      

  ⋮      

𝒄: 𝑨 ∧ (𝑩 ∧ 𝑪) E∧  𝒄𝟐: 𝑩 ∧ 𝑪 E∧     

𝒄𝟏: 𝑨 
SR 

𝒄𝟐.𝟏: 𝑩 SR  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧  

𝑐1: 𝐴 𝑐2.1: 𝐵 
I∧ 

 𝑐2: 𝐵 ∧ 𝐶 E∧  

𝑑1: 𝐴 ∧ 𝐵  𝑐2.2: 𝐶  
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  
 

Implementing step B on the last unaccounted for expression inserted in the tree, 

𝑐2: 𝐵 ∧ 𝐶, yields the information that 𝑐2 is a response to P’s challenge ?𝑅 on the initial 

concession 𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶).  

 

Figure 17: Exercise 1 - Finishing step B to the left 

  𝒄: 𝑨 ∧ (𝑩 ∧ 𝑪) E∧     

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧  𝒄𝟐: 𝑩 ∧ 𝑪 E∧     

𝑐1: 𝐴 
SR 

𝑐2.1: 𝐵 SR  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧  

𝑐1: 𝐴 𝑐2.1: 𝐵 
I∧ 

 𝑐2: 𝐵 ∧ 𝐶 E∧  

𝑑1: 𝐴 ∧ 𝐵  𝑐2.2: 𝐶  
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  
 

Step C to the left branch. Every expression in the branch has been accounted for, so 

we now move on to step C: we delete the SR inferences and leave only one copy of the 

elementary expression. 

 



180  IX. From dialogical strategies to CTT-demonstrations and back 

 

Figure 18: Exercise 1 - Step C to the left 

  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧     

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 
E∧ 

𝑐2: 𝐵 ∧ 𝐶 E∧  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧  

𝑐1: 𝐴 𝑐2.1: 𝐵 
I∧ 

 𝑐2: 𝐵 ∧ 𝐶 E∧  

𝑑1: 𝐴 ∧ 𝐵  𝑐2.2: 𝐶  
I∧ 

𝐴 ∧ (𝐵 ∧ 𝐶)  

Step D: inserting proof-objects 

We’ve reached the final step, and now replace the local reasons with proof-objects 

and obtain the CTT-demonstration in the style of natural deduction tree.  

 

Figure 19: Exercise 1 - step D 

  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧     

𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) 
E∧ 

𝐬𝐧𝐝(𝑐): 𝐵 ∧ 𝐶 E∧  𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶) E∧  

𝐟𝐬𝐭(𝑐): 𝐴 𝐟𝐬𝐭(𝐬𝐧𝐝(𝑐)): 𝐵 
I∧ 

 𝐬𝐧𝐝(𝑐): 𝐵 ∧ 𝐶 E∧  

〈𝐟𝐬𝐭(𝑐), 𝐟𝐬𝐭(𝐬𝐧𝐝(𝑐))〉 ∶ 𝐴 ∧ 𝐵  𝐬𝐧𝐝(𝐬𝐧𝐝((𝑐)): 𝐶  
I∧ 

〈〈𝐟𝐬𝐭(𝑐), 𝐟𝐬𝐭(𝐬𝐧𝐝(𝑐))〉, 𝐬𝐧𝐝(𝐬𝐧𝐝(𝑐))〉 : 𝐴 ∧ (𝐵 ∧ 𝐶)  

 

Recall from section VII.7.4 that the strategic reason for the thesis 𝑑: (𝐴 ∧ 𝐵) ∧

𝐶  [𝑐: 𝐴 ∧ (𝐵 ∧ 𝐶)] is 〈〈𝐿∧(𝑅∧(𝑐), 𝐿∧(𝑐)〉, 𝑅∧(𝑅∧(𝑐))〉 ∶ (𝐴 ∧ 𝐵) ∧ 𝐶 , which is the 

dialogical counterpart to the proof-object in the demonstration tree. 

Solution to exercise 2: (𝑩 ∧ 𝑨) ⊃ 𝑪 [𝒄: (𝑨 ∧ 𝑩) ⊃ 𝑪]  

We start by displaying the core. As in section VII.7.4 we repeated move 16: 

 

Figure 20: Exercise 2 - the core 

  0. 𝐏 ! (𝐵 ∧ 𝐴) ⊃ 𝐶 [𝑐 : (𝐴 ∧ 𝐵) ⊃ 𝐶] 

 0.1 𝐎 𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶 

 1. 𝐎 𝑚 ≔ 1 

 2. 𝐏 𝑛 ≔ 2 

 3. 𝐎 𝑑1: 𝐵 ∧ 𝐴 [? ,0] 
 4. 𝐏 ? 𝐿∧ [? , 3] 
 5. 𝐎 𝐿∧(𝑑1): 𝐵 [!, 4] 
 6. 𝐏 ? …/𝐿∧(𝑑1)[? , 5] 
 7. 𝐎 𝑑1.1: 𝐵 [!, 6] 
 8. 𝐏 ? 𝑅∧ [? , 3] 
 9. 𝐎 𝑅∧(𝑑1): 𝐴 [!, 8] 
 10. 𝐏 ? …/𝑅∧(𝑑1)  [? , 9] 
 11. 𝐎 𝑑1.2: 𝐴 [!, 10] 
 12. 𝐏 𝐿⊃(𝑐): 𝐴 ∧ 𝐵 [? , 0.1] 
 13. 𝐎 ? …/𝐿⊃(𝑐) [? , 12] 
 14. 𝐏 𝑐1: 𝐴 ∧ 𝐵 [!, 13] 

 

   

 15. 𝐎 ? 𝐿∧ [? , 14]  
 16. 𝐏 𝐿∧(𝑐1): 𝐴 [!, 15] 
 17. 𝐎 ? …/𝐿∧(𝑐1) [? , 16] 
 18. 𝐏 𝑑1.2: 𝐴 [!, 17] 

 15.  𝐎? 𝑅∧ [? , 14]  
 16. 𝐏 𝑅∧(𝑐1): 𝐵 [!, 15] 
 17. 𝐎 ? …/𝑅∧(𝑐1) [? , 16] 
 18. 𝐏 𝑑1.1: 𝐵 [!, 17] 

 15. 𝐎 𝑅⊃(𝑐): 𝐶 [!, 12] 
 16. 𝐏 ? …/𝑅⊃(𝑐)[? , 15] 
 17. 𝐎 𝑐2: 𝐶 [!, 16] 
 18. 𝐏 𝑐2: 𝐶 [!, 3] 
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 19. 𝐎 ? = 𝑑1.2 [? , 18] 
 20. 𝐏 𝑅∧(𝑑1) = 𝑑1.2: 𝐴 [!, 19] 
P wins 

 19. 𝐎 ? = 𝑑1.1 [? , 18] 
 20. 𝐏 𝐿∧(𝑑1) = 𝑑1.1: 𝐵 [!, 19] 
P wins 

 19. 𝐎 ? = 𝑐2 [? , 18] 
 20. 𝐏 𝑅⊃(𝑐) = 𝑐2: 𝐶 [!, 19] 
P wins 

Step A-B on the thesis 

Step A. We place the thesis (𝐵 ∧ 𝐴) ⊃ 𝐶  as conclusion and the initial concession 

𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶 as global assumption: 

 

Figure 21: Exercise 2 - Step A 

𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶   

⋮   

(𝐵 ∧ 𝐴) ⊃ 𝐶  
 

Step B. We scan now for the lowest expression in demonstration tree—the thesis at 

this stage—and find in the core the response to it—a challenge on the implication. The 

challenge on the P-implication is the local assumption 𝑑1: 𝐵 ∧ 𝐴  (after resolution of 

instructions), which is one of the premisses of the implication introduction rule; the 

second premiss is the P-move 𝑐2: 𝐶 occurring move 18 on the outmost right branch of the 

core. 

Figure 22: Exercise 2 - step B on the thesis 

𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶 
 

 𝒅𝟏: 𝑩 ∧ 𝑨 
 

 

⋮ 
 ⋮  

 𝒄𝟐: 𝑪  
I⊃ 

(𝐵 ∧ 𝐴) ⊃ 𝐶  

Step B: building the branches 

Since the defence 𝑐2: 𝐶 of the implication is a P-elementary expression, it must be a 

copy of a move made by O; move 18 is a copy of move 17, as recorded by the equality of 

move 20. This yields the following SR indication:  

 

Figure 23: Exercise 2 - step B.2.a 

𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶 

 

 𝑑1: 𝐵 ∧ 𝐴  

 

 

  ⋮   

⋮  𝒄𝟐: 𝑪 
SR 

 

   𝒄𝟐: 𝑪 
I⊃ 

 (𝐵 ∧ 𝐴) ⊃ 𝐶  
 

Now, the core informs us move 17 results from the resolution of the right part of 

the initial concession 𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶, an implication: it thus results from the implication 

elimination applied to the concession; since the concession is an implication, P must state 

the antecedent in order to challenge it, which yields the P-move 14 𝑐1: 𝐴 ∧ 𝐵. 

 

Figure 24: Exercise 2 - Step B.2.b 

 𝑑1: 𝐵 ∧ 𝐴  

  ⋮  

𝒄: (𝑨 ∧ 𝑩) ⊃ 𝑪 𝒄𝟏: 𝑨 ∧ 𝑩 E⊃ 
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 𝒄𝟐: 𝑪 SR 

 𝑐2: 𝐶  I⊃ 

 (𝐵 ∧ 𝐴) ⊃ 𝐶 
 

We know that O has two options to respond to a challenge on an implication, 

namely, stating the consequent, or launching a counterattack on the challenge. The 

defensive move has been implemented in the previous step, so we must now deal with the 

counterattack. Since the P-challenge is a conjunction, there are two possible challenges, 

namely, left, or right, each of them opening a new branch. The branches of the core 

trigger two branches in the demonstration tree by applying twice the conjunction 

introduction rule, corresponding to move 18 in the outmost left branch and move 18 in 

the middle branch respectively.   

 

Figure 25: Exercise 2 - step B.2.b 

 𝑑1: 𝐵 ∧ 𝐴 𝑑1: 𝐵 ∧ 𝐴  

 
 ⋮ ⋮  

 𝒅𝟏.𝟐: 𝑨 𝒅𝟏.𝟏: 𝑩 I∧ 

𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶 𝒄𝟏: 𝑨 ∧ 𝑩 E⊃ 

 𝑐2: 𝐶 SR  

 𝑐2: 𝐶  I⊃ 

  (𝐵 ∧ 𝐴) ⊃ 𝐶 
 

Since P-moves 𝑑1.2: 𝐴  and 𝑑1.1: 𝐵  are elementary, they are the result of the 

application of the Socratic Rule.  

 

Figure 26: Exercise 2 - step B.2.a 

 𝑑1: 𝐵 ∧ 𝐴  𝑑1: 𝐵 ∧ 𝐴  

 

 ⋮  ⋮  

 𝒅𝟏.𝟐: 𝑨 SR 𝒅𝟏.𝟏: 𝑩 SR 

 𝒅𝟏.𝟐: 𝑨  𝒅𝟏.𝟏: 𝑩 I∧ 

𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶  𝑐1: 𝐴 ∧ 𝐵 E⊃ 

  𝑐2: 𝐶 SR  

  𝑐2: 𝐶  I⊃ 

(𝐵 ∧ 𝐴) ⊃ 𝐶 
 

In the core, move 5 𝐎 ! 𝐿∧(𝑑1): 𝐵  and move 9 𝐎 ! 𝑅∧(𝑑1): 𝐴  convey the 

information that the O-moves result from applying the conjunction elimination rule to the 

local assumption 𝑑1: 𝐵 ∧ 𝐴. 

 

Figure 27: Exercise 2 - final step B 

 𝒅𝟏: 𝑩 ∧ 𝑨 E∧ 𝒅𝟏: 𝑩 ∧ 𝑨 E∧ 

 
 𝒅𝟏.𝟐: 𝑨 SR 𝒅𝟏.𝟏: 𝑩 SR 

 𝑑1.2: 𝐴  𝑑1.1: 𝐵 I∧ 

𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶  𝑐1: 𝐴 ∧ 𝐵 E⊃ 

  𝑐2: 𝐶 SR  

  𝑐2: 𝐶  I⊃ 
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(𝐵 ∧ 𝐴) ⊃ 𝐶 

Step C: eliminating SR 
We follow now the step C and delete the SR to leave only one copy of the 

elementary expression.  

 

Figure 28: Exercise 2 - Step C 

 𝑑1: 𝐵 ∧ 𝐴 E∧ 𝑑1: 𝐵 ∧ 𝐴 E∧ 

  𝑑1.2: 𝐴  𝑑1.1: 𝐵 I∧ 

𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶  𝑐1: 𝐴 ∧ 𝐵 E⊃ 

  𝑐2: 𝐶  I⊃ 

 (𝐵 ∧ 𝐴) ⊃ 𝐶 

Step D: inserting proof-objects 
We have reached the final step: we replace the local reasons with proof-objects and 

obtain the CTT-demonstration in the style of natural deduction tree.  

 

Figure 29: Exercise 2 - Step D 

 𝑑1: 𝐵 ∧ 𝐴 E∧ 𝑑1: 𝐵 ∧ 𝐴 E∧ 

  𝐬𝐧𝐝(𝑑1): 𝐴  𝐟𝐬𝐭(𝑑1): 𝐵 I∧ 

𝑐: (𝐴 ∧ 𝐵) ⊃ 𝐶  〈𝐬𝐧𝐝(𝑑1), 𝐟𝐬𝐭(𝑑1)〉: 𝐴 ∧ 𝐵 E⊃ 

  𝐚𝐩(𝑐, 〈𝐬𝐧𝐝(𝑑1), 𝐟𝐬𝐭(𝑑1)〉): 𝐶  I⊃ 

 λ𝑑1. [𝐚𝐩(𝑐, 〈𝐬𝐧𝐝(𝑑1), 𝐟𝐬𝐭(𝑑1)〉)]: (𝐵 ∧ 𝐴) ⊃ 𝐶 

 

Although inserting proof-objects can be done without using the strategic reason by 

refering to the CTT rules presented in chapter II, one might want to delve into the 

relationship between strategic reasons for a dialogical thesis and proof-objects for a CTT 

conclusion. We shall thus illustrate this relationship in the context of this exercise.  

Recall from section VII.7.4 the strategic reason for the thesis: 

(𝑅⊃(𝑐)𝐎 ⟦〈𝐿∧(𝐿⊃(𝑐))
𝐏

= 𝑅∧(𝑑1)𝐏,𝐎, 𝑅∧(𝐿⊃(𝑐))
𝐏

= 𝐿∧(𝑑1)𝐏,𝐎〉⟧)
𝐏

⟦〈𝐿∧(𝑑1), 𝑅∧(𝑑1)〉⟧𝐎 

 

First, it is important to notice that dialogical strategic reasons and CTT proof-

objects, despite having a close relationship warranted by the translation procedure, are at 

the same time two quite different kinds of objects. The main difference is that the 

strategic reason keeps track of the interactive process involved in the context of a 

dialogical game. In particular, it keeps track of which player is responsible for which 

strategic reason: in this case, P is responsible for the strategic reason of the consequent as 

it stems from the strategic reason for the antecedent endorsed by O. This is the basic idea 

underlying the general form …𝐏 ⟦…𝐎 ⟧ of the strategic reason. Such aspects are not to be 

found in proof-objects, since CTT is not a framework based on (strategic) interaction 

between two players. 

Now as we have noticed, this is not to say that one cannot find any kind of 

relationship between the two objects. As we shall see hereafter, one finds common 

elements in a strategic reason and the corresponding proof-object through a dialogical 

reading of CTT proof-objects (or equivalently through a CTT reading of strategic 

reasons). In a nutshell, strategic reasons give a dialogical, interaction-based reading of the 
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corresponding proof-objects, or, analogously, proof-objects are a kind of linear, 

interaction-free reading of the corresponding strategic reasons.  

In the case in point, the general structure of the strategic reason shows the 

(strategic) dependence of P’s reason for the consequent upon O’s reason for the 

antecendent in a way similar to how the proof-object of the conclusion shows how the 

proof-object for the consequent results from applying a certain function to the proof-

object for the antecedent. Notice how the interactive aspects in the strategic reason are 

accounted for by means of the players’ identities and the equalities. 

 

More precisely on the concrete example at hand, the most obvious connection 

between the strategic reason for the thesis and the proof-object for the conclusion lies 

between the dialogical instructions 𝐿∧(𝑑1)  and 𝑅∧(𝑑1)  in the strategic reason, and 

𝐟𝐬𝐭(𝑑1) and 𝐬𝐧𝐝(𝑑1) in the proof-object.  

Once we have noticed this, it is straightforward to read the left-hand part of the 

strategic reason 

 (𝑅⊃(𝑐)𝐎 ⟦〈𝐿∧(𝐿⊃(𝑐))
𝐏

= 𝑅∧(𝑑1)𝐏,𝐎, 𝑅∧(𝐿⊃(𝑐))
𝐏

= 𝐿∧(𝑑1)𝐏,𝐎〉⟧)
𝐏

  

as saying that the reason 𝑅⊃(𝑐) for 𝐶 is obtained from the pair 〈𝑅∧(𝑑1), 𝐿∧(𝑑1)〉 (read as 
〈𝐬𝐧𝐝(𝑑1), 𝐟𝐬𝐭(𝑑1)〉) given O’s reason 〈𝐿∧(𝑑1), 𝑅∧(𝑑1)〉 in the right-hand part, read as 
〈𝐟𝐬𝐭(𝑑1), 𝐬𝐧𝐝(𝑑1)〉.  
The strategic dependence of P’s reason upon O’s reason is then to be read from the CTT 

point of view as the existence of a function between the two parts, that is, as a lambda 

abstraction, which gives us the proof-object λ𝑑1. [𝐚𝐩(𝑐, 〈𝐬𝐧𝐝(𝑑1), 𝐟𝐬𝐭(𝑑1)〉)] for the CTT 

conclusion. 
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X. MATERIAL DIALOGUES 

As pointed out by Krabbe (1985, p. 297), material dialogues—that is, dialogues in 

which propositions have content—receive in the writings of Paul Lorenzen and Kuno 

Lorenz priority over formal dialogues: material dialogues constitute the locus where the 

logical constants are introduced. However in the standard dialogical framework, since 

both material and formal dialogues marshal a purely syntactic notion of the formal rule—

through which logical validity is defined—, this contentual feature is bypassed,
126

 with 

this consequence that Krabbe and others after him considered that, after all, formal 

dialogues had priority over material ones. 

As can be gathered from the above discussion, we believe that this conclusion 

stems from shortcomings of the standard framework, in which local reasons are not 

expressed at the object-language level. We thus explicitly introduced these local reasons 

in order to undercut this apparent precedence of a formalistic approach that makes away 

with the contentual origins of the dialogical project.  

And yet the Socratic Rule, as defined in the main chapters of our study (VI-IX), 

entirely leaves the introduction of local reasons to the Opponent (the Proponent only 

being allowed to copy what the Opponent introduced). This rule applying to any 

proposition (or set), it can be considered as a formal rule; so if we are to specify the rules 

for material reasoning—to use Peregrin’s (2014, p. 228) apt terminology—, the rules 

specifying the elementary propositions involved in a dialogue must also be defined: 

whereas in the structural rules for formal dialogues of immanent reasoning (see 

section VII.2), only the Socratic rules dealt with elementary statements, and without 

providing any specification on that statement beside the simple fact that it must be the 

Opponent who introduces them in the dialogue, the structural rules for material dialogues 

of immanent reasoning will have Socratic rules that are player dependent rules for 

elementary statements specific to that very statement, but the global rules (player 

independent) also include rules for elementary statements, specific to those statements 

(thus providing the material level). These Global rules establish how to synthesize and 

analyze local reasons during the development of play, once the role of the players have 

been fixed; they are thus at the structural level and not at the local level, though we still 

speak of local reasons (and not of global reasons).  

Thus, as mentioned in section VI.2, a local reason prefigures a material dialogue 

displaying the content of the proposition stated. This aspect makes up the ground level of 

the normative approach to meaning of the dialogical framework, in which use—or 

dialogical interaction—is to be understood as use prescibed by a rule; such a use is what 

Peregrin (2014, pp. 2-3) calls the role of a linguistic expression. Dialogical interaction is 

this use, entirely determined by rules that give it meaning: the linguistic expression of 

every statement determines this statement by the role it plays, that is by the way it is used, 

and this use is governed by rules of interaction. The meaning of elementary propositions 

in dialogical interaction thus amounts to their role in the kind of interaction that is 

governed by the Socratic and Global rules for material dialogues, that is by the specific 

formulations of the Socratic and Global rules for precisely those very propositions. 

It follows that material dialogues are important not only for the general issue on the 

normativity of logic but also for rendering a language with content. 
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 (Krabbe, 1985, p. 297) 
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A thorough study on material dialogues is still work in progress and it seems to be 

related to recent researches by Piecha & Schröder-Heister (2011) and Piecha (2012) on 

dialogues with definitions. A study devoted to material dialogues as applied to natural 

language will require a text of a similar length as the one of the present book; however 

we can already sketch the main features of material dialogues that include sets of natural 

numbers and the set 𝐁𝐨𝐨𝐥 . The latter allows for expressing classical truth-functions 

within the dialogical framework, and it has an important role in the CTT-approach to 

empirical propositions.
127

 Accordingly, this chapter is structured as follows: 

(1) A first section (X.1) will introduce material dialogues through one of its 

cases, 𝐁𝐨𝐨𝐥, which is central for material dialogues as it provides the means 

for dealing with empirical quantities (the canonical elements of 𝐁𝐨𝐨𝐥 being 

the answers to yes or no questions); this will also enable us to provide the 

truth-functional operators within a dialogical framework. 

(2) We will then (section X.2) provide further rules on material dialogues, 

dealing more generally with identity and equality, and provide an application 

of these rules by demonstrating within the system—that is, without 

presupposing a metalanguage—that every element of the set 𝐁𝐨𝐨𝐥 is equal to 

yes or to no, which has many consequences in the foundations of 

mathematics, discussed in the following section. 

(3) A further section (X.3) will deal more precisely with issues concerning 

mathematics and logic, where we will introduce natural numbers and broaden 

the perspective on 𝐁𝐨𝐨𝐥. We will then test the approach by discussing some 

case-studies in the domains of the foundations of mathematics and non-

classical truth-functional operators. 

a. Developping the consequences of the demonstration of section  X.2.3 

on 𝐁𝐨𝐨𝐥, we shall first demonstrate that the two canonical elements 

𝒚𝒆𝒔 , 𝒏𝒐  of the set 𝐁𝐨𝐨𝐥  are different; we shall then approach the 

fourth axiom of Peano’s arithmetic ("0 is identical to no successor of a 

natural number": (∀𝑥 ∶ ℕ)¬𝑰𝒅(ℕ, 0, 𝒔(𝑥)) ). Moreover, such a 

demonstration gives us the chance to delve into the notion of a 

universe 𝓤  constituted by sets dependent upon the Boolean set 

{𝒚𝒆𝒔, 𝒏𝒐}. In other words, while 𝓤 is constituted by codes of sets, 

there is no code for 𝓤 itself. Universes constitute the constructivist 

formulation of the mathematical notion of sets of sets.  

b. In relation to the introduction of non-classical truth-functional 

operators, we will generalize Boolean operators to operators within 

finite sets and we will put this dialogical framework into work by 

integrating logics tolerant to some contradictions. 

(4) Empirical quantities will then (section  X.4) be inserted within material 

dialogues. Empirical content can thus be inserted within the framework of 

immanent reasoning: it comes from using “empirical quantities” as the 

outcome of procedures triggered by questions pertaining specifically to that 

quantity. 

(5) The final section ( X.5) will make explicit the epistemological background 

underlying the dialogical framework, by stressing the notion of 
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internalization.
128

 In this respect, the dialogical framework can be considered 

as a formal approach to reasoning rooted in the dialogical constitution and 

"internalization" of content—including empirical content—rather than in the 

syntactic manipulation of un-interpreted signs. This discussion on material 

dialogues will provide a new perspective on Willfried Sellars' (1991, pp. 129-

194) notion of Space of Reasons: the dialogical framework of immanent 

reasoning enriched with the material level should show how to integrate 

world-directed thoughts (displaying empirical content) into an inferentialist 

approach, thereby suggesting that immanent reasoning can integrate within 

the same epistemological framework the two conflicting readings of the 

Space of Reasons brought forward by John McDowell (2009, pp. 221-238) on 

the one hand, who insists in distinguishing world-direct thought and 

knowledge gathered by inference, and Robert Brandom (1997) on the other 

hand, who interprets Sellars’ work in a more radical anti-empiricist manner. 

The point is not only that we can deploy the CTT-distinction between reason 

as a premise and reason as a piece of evidence justifying a proposition, but 

also that the dialogical framework allows for distinguishing between the 

objective justification level targeted by Brandom (1997, p. 129) and the 

subjective justification level stressed by McDowell. According to our 

approach the sujective feature corresponds to the play level, where a concrete 

player brings forward the statement It looks red to me, rather than It is red. 

The general epistemological upshot from these initial reflections is that, on 

our view, many of the worries on the interpretation of the Space of Reasons 

and on the shortcomings of the standard dialogical approach to meaning 

(beyond the one of logical constants) have their origin in the neglect of the 

play level.
129

  

X.1 Material dialogues for Bool 

Most of the literature differentiating the philosophical perspective underlying the 

work of Boole and the one of Frege focused on discussing either the different ways both 

authors understood the relation between logic and psychology or the links between 

mathematics and logic, or both. According to these studies, Boole's framework has been 

mainly conceived as a kind of psychologism and a programme for the mathematization of 

logic, contrasting as well with Frege's radical anti-psychologism as with his logicist 

project for the foundations of mathematics. These comparative studies have also been 

combined with the contrast between model-theoretical approaches to meaning, with their 

associated notion of varying domains of discourse, versus inferentialist approaches to 

meaning, with a fixed universe of discourse. It might be argued that while the first 

approach could be more naturally understood as an offspring of the algebraic tradition of 

Boole-Schröder, the second approach could be seen as influenced by Frege's 

Begriffsschrift.
130
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 By "internalization" we mean that the relevant content is made part of the setting of the game of 

giving and asking for reasons: any relevant content is the content displayed during the interaction. For a 

discussion on this conception of internalization see (Peregrin, 2014, pp. 36-42). 
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 For some recent literature on those kind of objections to the approach to meaning of the 

dialogical conception of logic of (Lorenzen & Lorenz, 1978) see (Duthil Novaes, 2015) and (Trafford, 

2017), chapter 4, section 2. Our concluding chapter ( XI) will deal with this neglect of the play level at 

length. 
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  Recall the distinction of language as the universal medium and as a calculus (van Heijenoort, 

1967). 
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However, from the point of view of contemporary classical logic, and after the 

meta-mathematical perspective of Gödel, Bernays, and Tarski, both Boole's and Frege's 

view on semantics are subsumed under the same formalization, according to which 

classical semantics amount to a function of interpretation between the sentences S of a 

given language L and the set of truth values {0, 1}—let us call such a set the set 𝐁𝐨𝐨𝐥.  

This function assumes that the well-formed formulae of S are made dependent upon a 

domain—either a local domain of discourse (in the case of Tarski's-style approach to 

Boolean-algebra),
 
or a universal domain (in the case of Frege). More precisely, this 

functional approach is based on a separation of cases that simply assumes that the 

quantifiers and connectives take propositional functions into classical propositions—for a 

lucid insight on this perspective’s limitations see (Sundholm, 2006). In fact, the 

integration of both views within the same formal semantic closes a gap in Boole's 

framework, which was already pointed out by Frege: the links between the semantics of 

propositional and first-order logic.
131

  

 

Constructive Type Theory includes a third (epistemic) paradigm in the framework 

allowing for a new way of dividing the waters between Boolean operators and logical 

connectives, and, at the same time, integrating them in a common inferential system in 

which each of them has a specific role to play. The overall paradigm at stake is the 

Brouwer–Heyting–Kolmogorov conception of propositions as sets of proofs embedded in 

the framework in which, thanks to the insight brought forward by the Curry–Howard 

isomorphism (Howard, 1980), propositions are read as sets and as types.  

In a nutshell: the CTT framework takes judgements, not propositions, to yield the 

minimal unity of knowledge and meaning—as the old philosophical tradition did before 

the spreading of the metalogical view of Gödel, Tarski and Bernays; see (Sundholm, 

1997; 1998; 2001; 2009) (2012; 2013b; 2013a). Within CTT the simplest form of a 

judgement (the categorical) is an expression of the form 

𝑎 ∶  𝐵  

where " 𝐵 " is a proposition and " 𝑎 " a proof-object on the grounds of which the 

proposition 𝐵 is asserted to be true, standing as shorthand for 

 

"𝑎 provides evidence for 𝐵". 

 

In other words, the expression "𝑎 ∶  𝐵", is the formal notation of the categorical 

judgment  

"The proposition 𝐵 is true",  

which is shorthand for  

"There is evidence for 𝐵". 

 

According to this view, a proposition is a set of elements, called proof-objects, that 

make the proposition 𝐵  true. Furthermore, we distinguish between canonical proof-

objects on the one hand, those entities providing a direct evidence for the truth the 

proposition 𝐵, and on the other hand non-canonical proof-objects, the entities providing 

indirect pieces of evidence for 𝐵. 
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 Frege points out that within Boole's approach there is no organic link between propositional and 

first-order logic : “ In Boole the two parts run alongside one another ; so that one is like the mirror image 

of the other, but for that very reason stands in no organic relation to it” (Frege G. , Boole's Logical 

Calculus and the Concept Script [1880/81], 1979). 



IMMANENT REASONING OR EQUALITY IN ACTION 189 

 

 

This generalization also allows another third reading: a proposition is a type and its 

elements are instances of this type. If we follow this reading proof-objects are conceived 

as instantiations of the type. This type-reading naturally leads to Brouwer–Heyting–

Kolmogorov's constructivism mentioned above: if a proposition is understood as the set 

of its proofs, it might be the case that we do not have any proof for that proposition at our 

disposal, but that we neither have a proof for its negation (thus, in such a framework, 

third excluded fails). Notice that the constructivist interpretation requires the intensional 

rather than the extensional constitution of sets—recall the Aristotelian view that no 

"form" ("type") can be conceived independently of its instances and reversewise.  

 

Moreover CTT provides a novel way to render the meaning of the set {0, 1} as the 

type Bool. More precisely, the type Bool is characterized as the set of the canonical 

elements 0 and 1. Thus, each non-canonical element is equal to one of them. But what 

kind of entities are those (non-canonical) elements that might be equal to 1 or 0? Since in 

such a setting 1, 0 and those equal to them are elements, they are not considered to be of 

the type proposition; they are rather providers of truth or falsity of a proposition (or a set, 

according to the Curry–Howard isomorphism between propositions, sets, and types): they 

are proof-objects that provide evidence for the assertion Bool true.  

 

In order to illustrate our point here and to explicit the link with material dialogues, 

let us take an example outside of mathematics, for instance this sentence:  

 

Bachir Diagne is from Senegal.  

 

This sentence differs from the proposition, that is, what Frege called the sense or 

thought expressed by that sentence, which would be 

 

that Bachir Diagne is from Senegal 

 

So if we take the sentence as expressing the proposition, then we might be able to bring 

forward some proof-object—some piece of evidence 𝑎 , his passport or his birth 

certificate for instance—that renders the proposition that Bachir Diagne is from Senegal 

true. In such a case we have the assertion that the proposition is true on the grounds of the 

piece of evidence 𝑎 (the passport), which we can write: 

 

passport : Bachir Diagne is from Senegal  

 

or, in a more general assertion: 

 

That Bachir Diagne is from Senegal true 

(there is some piece of evidence that Bachir Diagne is from Senegal) 

 

 In this fashion, if we take the sentence Bachir Diagne is from Senegal as related to 

a Boolean object, then this sentence triggers a procedure yielding a non-canonical 

element, say X  (the proposition), of the set Bool. In such a case the sentence would not 

express a proposition, but it could be understood as an answer to the question: 

 

Is Bachir Diagne from Senegal ? 

the answer being: 
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yes, Bachir Diagne is from Senegal 

 

which would thus yield the outcome 1. In other words, determining to which of the 

canonical elements, 1 or 0, the non-canonical element X  is equal, would require 

answering to the question Is Bachir Diagne from Senegal ?
 
Thus, in our case, we take it 

to be equal to 1.
132

 The procedure would amount to the following steps: 

 

    Is Bachir Diagne from Senegal ? 

      

 

yes, Bachir Diagne is from Senegal  

 

      

 

𝐗 =  𝟏 ∶  𝐁𝐨𝐨𝐥 
 

The arrows indicate that determining to which of the elements X  is equal actually is the 

result of an enquiry (in this case an empirical one). 

This is not only different from: 

 

passport : Bachir Diagne is from Senegal 

 

but it is also different from: 

 

    Bool true 
 

Indeed, while 𝐗 =  𝟏 ∶  𝐁𝐨𝐨𝐥  expresses one of the possible outcomes the non-

canonical element 𝐗 can take in Bool, 𝐁𝐨𝐨𝐥 𝐭𝐫𝐮𝐞 expresses the fact that at least one 

element of the set Bool can be brought forward.  

Thus, a distinction is drawn between the Boolean object 1 (one of the canonical 

elements of Bool) and the predicate true that applies to Bool. 

Moreover, operations between elements of Bool would then not be the logical 

connectives introduced by natural deduction rules at the right hand side of the colon, but 

they would be operations between objects occurring at the left hand side of the colon. For 

example the disjunction "+ " at left of the colon in  

 

𝐴 + 𝐵 =  𝟏 ∶  𝐁𝐨𝐨𝐥 (𝑔𝑖𝑣𝑒𝑛 𝐴 =  𝟏 ∶  𝐁𝐨𝐨𝐥) 
 

stands for an operation between the non-canonical Boolean objects 𝐴 and 𝐵; whereas the 

disjunction occurring at right of the colon in the assertion  

 

𝑏 ∶  𝐴 ∨ 𝐵 (𝑔𝑖𝑣𝑒𝑛 𝑏 ∶  𝐴) 

 

expresses the familiar logical connective of disjunction, that is here true since a piece of 

evidence for one of the disjuncts is provided: the piece of evidence 𝑏 for 𝐴.  
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Since Bool is a type, and since according to the Curry–Howard isomorphism, it is 

itself a proposition, we can certainly have both, propositional connectives as sets of 

proof-objects, and have them combined with Boolean operations. This allows us, for 

example, to demonstrate that each canonical element in Bool is identical either to 1 or 0: 

 

(∀𝑥: 𝐁𝐨𝐨𝐥)𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝟏) ∨  𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝟎) 𝒕𝒓𝒖𝒆 

 

This will however require first a presentation of the dialogical rules for 𝐁𝐨𝐨𝐥 and 

the Boolean operators, which will enable us to introduce dialogical rules for material 

meaning (Specific Socratic rules) through the case of 𝐁𝐨𝐨𝐥, before providing the general 

notions of material dialogues with the rules for identity and equality (section  X.2). We 

will then have all the elements for dealing with the demonstration of the above 

proposition, which we shall carry out (see section  X.2.3) in the dialogical framework of 

immanent reasoning. 

Dialogical Rules for Boolean Operators  

In the dialogical framework, the elements of 𝐁𝐨𝐨𝐥  are responses to yes-no 

questions, so that each element of 𝐁𝐨𝐨𝐥  is equal to 𝒚𝒆𝒔  or 𝒏𝒐 .  Responses such as 

𝑏 =  𝒚𝒆𝒔 or 𝑏 =  𝒏𝒐 make explicit one of the possible origins of the answer 𝒚𝒆𝒔 (or 

𝒏𝒐), namely whether 𝑏 is or not the case. Here are the Global (player independent) rules 

for synthesis, analysis, and equalities of the Boolean operators. 

Table 31: Global rules for 𝐁𝐨𝐨𝐥 and Boolean operators in immanent reasoning 

 Move Challenge Defence 

Synthesis 𝐗 ! 𝐁𝐨𝐨𝐥 𝐘 ? 𝑩𝒐𝒐𝒍 

𝐗 𝒚𝒆𝒔 ∶ 𝐁𝐨𝐨𝐥 

𝐗 𝒏𝒐 ∶ 𝐁𝐨𝐨𝐥 

Analysis  

 
𝐗 𝑝 ∶ 𝐶(𝑐)[𝑐 ∶ 𝐁𝐨𝐨𝐥] 𝐘 ? = 𝑐𝐁𝐨𝐨𝐥  

𝐗 c = 𝒚𝒆𝒔 ∶ 𝐁𝐨𝐨𝐥 

𝐗 c = 𝒏𝒐 ∶ 𝐁𝐨𝐨𝐥 

Equalities 

𝒚𝒆𝒔 
𝐗 𝑐 =  𝒚𝒆𝒔 ∶ 𝐁𝐨𝐨𝐥 

… 

𝐗 𝑝 ∶ 𝐶(𝑐)[𝑐 ∶ 𝐁𝐨𝐨𝐥] 
𝐘 ? =𝑟𝑒𝑎𝑠𝑜𝑛 𝒚𝒆𝒔 𝐗 𝑝1: 𝐶(𝒚𝒆𝒔) 

𝒏𝒐 
𝐗 𝑐 =  𝒏𝒐 ∶ 𝐁𝐨𝐨𝐥 

… 

𝐗 𝑝 ∶ 𝐶(𝑐)[𝑐 ∶ 𝐁𝐨𝐨𝐥] 
𝐘 ? =𝑟𝑒𝑎𝑠𝑜𝑛 𝒏𝒐 𝐗 𝑝1: 𝐶(𝒏𝒐) 

Note: 

In a play, given the statements 𝐏 𝑝1: 𝐶(𝒚𝒆𝒔) or 𝐏𝑝2 ∶ 𝐶(𝒏𝒐) (P-defences in the 

equality rules), the play would continue with O challenging the elementary statement 

according to the attack prescribed by the general Socratic rule (see SR5: Socratic rule and 

definitional equality in section VII.2.1). 

Specific Socratic rule for Bool and Boolean operators  

When O states 𝑎: 𝐁𝐨𝐨𝐥, she is stating that 𝑎 is an element of 𝐁𝐨𝐨𝐥, that is, she is 

committing to 𝑎 being either 𝒚𝒆𝒔 or 𝒏𝒐; P may challenge this O-statement by requesting 

that she makes her commitment explicit and provides the equality 𝑎 = 𝒚𝒆𝒔 ∶ 𝐁𝐨𝐨𝐥 or 

𝑎 = 𝒏𝒐 ∶ 𝐁𝐨𝐨𝐥. The following table provides the dialogical rule for this interaction; this 
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rule is part of the Socratic rules because it is player dependent,
133

 but it is a rule specific 

to 𝐁𝐨𝐨𝐥 and the Boolean operators thus providing their specific meaning: this specific 

Socratic rule for 𝐁𝐨𝐨𝐥 and the Boolean operators provides their material meaning. 

Table 32: Specific Socratic rule for 𝐁𝐨𝐨𝐥 

 Move Challenge Defence 

Specific Socratic rule 

for 𝐁𝐨𝐨𝐥 
𝐎 𝑎: 𝐁𝐨𝐨𝐥  𝐏 ? = 𝑎𝐁𝐨𝐨𝐥  

𝐎 𝑎 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 

𝐎 𝑎 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 

 

We can now introduce quite smoothly the rules for the classical truth-functional 

connectives as operations between elements of 𝐁𝐨𝐨𝐥 (left-hand side of the colon), which 

are distinct from the usual propositional connectives (right-hand side of the colon). We 

leave the description for quantifiers to the diligence of the reader, whereby the universal 

quantifier is understood as a finite sequence of products, and, dually, the existential as a 

finite sequence of additions. 

The dialogical interpretation of the rules below is very close to the  usual one: it 

amounts to the commitments and entitlements specified by the rules of the dialogue: if for 

instance the response is 𝒚𝒆𝒔  to a (left-hand side) product, then the speaker is also 

committed to answer 𝒚𝒆𝒔 to further questions on both of the components of that product. 

Here again, the meaning of the connectives is provided by interaction, where choice is a 

fundamental feature. 

Table 33: Global rules for classical truth-functional operators 

 Move 
Synthesis of local reasons Synthesis of 

strategic reasons Challenge Defence 

Product 𝐗 𝑎 × 𝑏: 𝐁𝐨𝐨𝐥 𝐘 ? = 𝑎 × 𝑏 

𝐗 (𝑎 × 𝑏) = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 
𝐏 𝒚𝒆𝒔 ⟦〈𝑎 = 𝒚𝒆𝒔,
𝑏 = 𝒚𝒆𝒔〉⟧𝐎 

 ∶ 𝐁𝐨𝐨𝐥 

𝐗 (𝑎 × 𝑏) = 𝒏𝒐: 𝐁𝐨𝐨𝐥 
𝐏 𝒏𝒐 ⟦𝑎 = 𝒏𝒐 | 𝑏
= 𝒏𝒐⟧𝐎 ∶ 𝐁𝐨𝐨𝐥 

Yes-equality 

(product) 
𝐗 (𝑎 × 𝑏) = 𝒚𝒆𝒔 ∶  𝐁𝐨𝐨𝐥 

𝐘 ? 𝐿×𝒚𝒆𝒔 𝐗  𝑎 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 

 

𝐘 ? 𝑅×𝒚𝒆𝒔 𝐗  𝑏 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 

No-equality 

(product) 
𝐗 (𝑎 × 𝑏) = 𝒏𝒐 ∶  𝐁𝐨𝐨𝐥 𝐘 ?× 𝒏𝒐 

𝐗  𝑎 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 
 

𝐗  𝑏 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 

Addition 𝐗 𝑎 + 𝑏: 𝐁𝐨𝐨𝐥 𝐘 ? = 𝑎 + 𝑏 

𝐗  𝑎 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 
𝐏 𝒚𝒆𝒔 ⟦𝑎 = 𝒚𝒆𝒔 | 𝑏
= 𝒚𝒆𝒔⟧𝐎 ∶ 𝐁𝐨𝐨𝐥 

𝐗  𝑏 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 
𝐏 𝒏𝒐 ⟦〈𝑎 = 𝒏𝒐,
𝑏 = 𝒏𝒐〉⟧𝐎 ∶ 𝐁𝐨𝐨𝐥 
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 For a discussion on player dependence and the way this feature divides the Structural rules and 

the Particle rules, see section  XI.3. 
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Yes-equality 

(addition) 
𝐗 (𝑎 + 𝑏) = 𝒚𝒆𝒔 ∶  𝐁𝐨𝐨𝐥 𝐘 ?+ 𝒚𝒆𝒔 

 

𝐗  𝑎 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 
 

𝐗  𝑏 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 

No-equality 

(addition) 
𝐗 (𝑎 + 𝑏) = 𝒏𝒐 ∶  𝐁𝐨𝐨𝐥 

 

𝐘 ? 𝐿+𝒏𝒐 

 

𝐗  𝑎 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 

 

𝐘 ? 𝑅+𝒏𝒐 

 
𝐗  𝑏 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 

Implication 
 

𝐗 𝑎 → 𝑏: 𝐁𝐨𝐨𝐥 
 

𝐘 ?  =  𝑎 → 𝑏 

𝐗(𝑎 → 𝑏) = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 
𝐏 𝒚𝒆𝒔 ⟦〈𝑎 = 𝒚𝒆𝒔,
𝑏 = 𝒚𝒆𝒔〉 | 〈𝑏 = 𝒏𝒐,
𝑎 = 𝒏𝒐〉⟧𝐎: 𝐁𝐨𝐨𝐥 

𝐗(𝑎 → 𝑏) = 𝒏𝒐: 𝐁𝐨𝐨𝐥 
𝐏 𝒏𝒐 ⟦〈𝑎 = 𝒚𝒆𝒔,
𝑏 = 𝒏𝒐〉⟧𝐎: 𝐁𝐨𝐨𝐥 

Yes-equality 

(implication) 
𝐗  (𝑎 → 𝑏) = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 

𝐘 𝑎 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 𝐗 𝑏 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 

 

𝐘 𝑏 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 𝐗 𝑎 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 

No-equality 

(implication) 
𝐗  (𝑎 → 𝑏) = 𝒏𝒐: 𝐁𝐨𝐨𝐥 

𝐘 ? 𝐿→𝒏𝒐 𝐗 𝑎 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 

 

𝐘 ? 𝑅→𝒏𝒐 𝐗 𝑏 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 

Negation 𝐗 ~𝑎: 𝐁𝐨𝐨𝐥 𝐘 ? ~𝑎 

𝐗 ~𝑎 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 
𝐏 𝒚𝒆𝒔 ⟦𝑎 = 𝒏𝒐⟧𝐎

∶ 𝐁𝐨𝐨𝐥 

𝐗 ~𝑎 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 
𝐏 𝒏𝒐 ⟦𝑎 = 𝒚𝒆𝒔⟧𝐎

∶ 𝐁𝐨𝐨𝐥 

Yes-equality 

(negation) 

 

𝐗 ~𝑎 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 
 

𝐘 ?~ 𝒚𝒆𝒔 

 

𝐗 𝑎 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 
 

No-equality 

(negation) 
𝐗 ~𝑎 = 𝒏𝒐: 𝐁𝐨𝐨𝐥 𝐘 ?~ 𝒏𝒐 𝐗 𝑎 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥  

Reading the strategic reason for the product: 

If both of the components of the product are affirmative (𝒚𝒆𝒔 answer), that is if O 

has at some point stated both, then the recapitulation answer is 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥, provided these 

O statements—⟦〈𝑎 = 𝒚𝒆𝒔, 𝑏 = 𝒚𝒆𝒔〉⟧𝐎. If at least one of the two components is a denial, 

that is if O has at some point stated one or the other, then the recapitulation answer is 

𝒏𝒐: 𝐁𝐨𝐨𝐥,  provided one of these O statements—⟦𝑎 = 𝒏𝒐 | 𝑏 = 𝒏𝒐⟧𝐎. 

X.2 Material dialogues through identity and equality 

From the CTT perspective, the identity predicate 𝑰𝒅 should be differentiated from  

1. definitional equality, which does not express a proposition but introduces real 

definitions and establishes equivalence relations between pieces of evidence 

(proof-objects), 

2. nominal definitions, which produces linguistic abbreviations, and 

3. equality (or Identity) as a relation building up a proposition, that is, the 

relation we know from first-order logic, and which constitutes a proposition.  
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We therefore distinguish between 

1. the real definition or judgemental equality 𝑎 = 𝑏: 𝐴; 

2. the nominal definition, for example "1" stands for successor of "𝑠(0)"; 

3. the propositional identity 𝑐: 𝑎 =𝐴 𝑏, or better 𝑐: 𝑰𝒅(𝐴, 𝑎, 𝑏). 
 

In a dialogical setting,  

 real definitions express at the object-language level P’s right to state 𝑏, O 

having already stated both, 𝑎  and that 𝑎  defines 𝑏 . So P's move 𝑎 = 𝑏: 𝐴 , 

responding to O’s request of justification for 𝑏 ∶  𝐴, can be read as "you just 

conceded 𝑎 ∶  𝐴, and furthermore you conceded that 𝑎 defines 𝑏".   

 Nominal definitions allows P to deploy the abbreviations established in such 

kinds of definition. 

 P is allowed to state the Identity 𝑰𝒅(𝐴, 𝑎, 𝑏) only if he can state that 𝑐 is equal 

to the local (reflexivity) reason 𝒓𝒆𝒇𝒍(𝐴, 𝑎) —that is if he can state 

𝒓𝒆𝒇𝒍(𝐵, 𝑎) = 𝑐: 𝑰𝒅(𝐴, 𝑎, 𝑏)—, and if he can show that the equality 𝑎 = 𝑏: 𝐵 

presupposed by the formation of 𝑰𝒅(𝐴, 𝑎, 𝑏) has been fulfilled. 

 The generation of Id X.2.1

The identity predicate 𝑰𝒅(𝑥, 𝑦, 𝑧), where 𝑥 is a set—or a prop—and 𝑦 and 𝑧 are 

local reasons for 𝑥, can be read as “𝑦 is identical to 𝑧 within 𝑥.” The dialogical meaning 

explanation of this identity predicate is provided below through the different rules 

governing its use (formation rule and Specifi Socratic rule for 𝑰𝒅), but can be grasped 

through this fact that X’s entitlement to state 𝑰𝒅(𝐴, 𝑎, 𝑏)—“𝑎  is identical to 𝑏  within 

𝐴”—for instance, presupposes that 𝑎: 𝐴 and that 𝑏: 𝐴, which is precisely its formation 

rule: 

Table 34: Formation rule for 𝑰𝒅 

 Move Challenge Defence 

Formation of the 

identity predicate 
𝐗 𝑰𝒅(𝐴, 𝑎𝑖, 𝑎𝑗) ∶  𝑝𝑟𝑜𝑝 

𝐘 ?𝐹1 𝑰𝒅 𝐗 𝐴 ∶  𝐬𝐞𝐭 

𝐘 ?𝐹2 𝑰𝒅 𝐗 𝑎𝑖 ∶  𝐴 

𝐘 ?𝐹3 𝑰𝒅 𝐗 𝑎𝑗 ∶  𝐴 
 

The three available challenges for the statement that 𝐈𝐝(𝐴, 𝑎𝑖 , 𝑎𝑗) ∶  𝑝𝑟𝑜𝑝 

correspond to the three presuppositions for this statement, namely that the first argument 

is a set, and that the second and third arguments are members of the first argument.  

 

Since the basic cases of 𝑰𝒅-statements involve elementary propositions, the rules 

prescribing the dialogical interaction for this kind of statements must be handled by a 

Socratic rule specific to that predicate (thus providing material meaning). In the case of 

𝑰𝒅, O’s identity statements can only be challenged by two means: either the rule of 

Global analysis, or the Leibniz-substitution rule. We will now provide these Specific 

Socratic rules for 𝑰𝒅. 

X.2.1.1 SR-Id.1 Specific Socratic rules for 𝑰𝒅(𝑨, 𝒂, 𝒂) 

 

If P states 𝑰𝒅(𝐴, 𝑎, 𝑎), then he must bring forward the definitional equality that 

conditions statements of propositional intensional identity. Furthermore, the statement 
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𝐏 ! 𝑰𝒅(𝐴, 𝑎, 𝑎)  commits the Proponent to make explicit the local reason behind his 

statement, namely, the local reason 𝒓𝒆𝒇𝒍(𝐴, 𝑎) specific to 𝑰𝒅-statements, whose internal 

structure only depends on 𝑎.  

Thus, the dialogical meaning of the instruction 𝒓𝒆𝒇𝒍(𝐴, 𝑎) amounts to prescribing 

the definitional equality 𝑎 =  𝒓𝒆𝒇𝒍(𝐴, 𝑎) ∶  𝐴  as defence to the challenge 𝐎 ? =
𝒓𝒆𝒇𝒍(𝐴, 𝑎) . The following table displays the global rules that implement those 

prescriptions. 

Table 35: Specific Socratic rule for the global synthesis of the local reason for 
P!𝑰𝒅(𝐴, 𝑎, 𝑎) and the rules of equality 

 Move Challenge Defence 

Identity predicate 

(for reflexivity) 
𝐏 !  𝑰𝒅(𝐴, 𝑎, 𝑎) 𝐎 ?𝑟𝑒𝑎𝑠𝑜𝑛 𝑰𝒅 𝐏 𝒓𝒆𝒇𝒍(𝐴, 𝑎) ∶  𝑰𝒅(𝐴, 𝑎, 𝑎) 

Rules of equality 

𝐏 𝒓𝒆𝒇𝒍(𝐴, 𝑎) ∶  𝑰𝒅(𝐴, 𝑎, 𝑎) 𝐎 ? = 𝒓𝒆𝒇𝒍(𝐴, 𝑎) 𝐏 𝑎 =  𝒓𝒆𝒇𝒍(𝐴, 𝑎) ∶  𝐴 

𝐏 𝑎 =  𝒓𝒆𝒇𝒍(𝐴, 𝑎) ∶  𝐴 𝐎 ? =  𝑎 𝐏 𝑎 =  𝑎 ∶  𝐴 

Note:  

This rule presupposes that the well-formation of 𝑰𝒅(𝐴, 𝑎, 𝑎) has been established. 

What is more, notice that the two lines for the rules of equality follow each other: the 

defence that P must bring forward to answer the first challenge is the object of the second 

challenge. For an application of these rules, see below, section X.2.3. 

 

The last line is just applying the general Socratic rule for local reasons to the 

specific case of 𝒓𝒆𝒇𝒍(𝐴, 𝑎), and shows that the local reason 𝒓𝒆𝒇𝒍(𝐴, 𝑎)  is in fact equal to 

𝑎 (see section  VII.2.1).  

Challenging O-elementary statements 

Since in dialogues for immanent reasoning it is O who is given the authority to set 

the local reasons for the relevant sets, P can always trigger from O the identity statement 

𝐎 𝑝 ∶  𝑰𝒅(𝐴, 𝑎, 𝑎) for any statement 𝐎 𝑎 ∶  𝐴 brought forward during a play. This leads to 

the next table that constitutes one of the exceptions to the interdiction on challenges of 

O's elementary statements. 

Table 36: Specific Socratic rule for triggering the reflexivity move 𝐎! 𝑰𝒅(𝐴, 𝑎, 𝑎) 

 Move Challenge Defence 

O-elementary 

statements I 
𝐎 𝑎: 𝐴 𝐏 ? 𝑰𝒅  𝐎 𝒓𝒆𝒇𝒍(𝐴, 𝑎): 𝑰𝒅(𝐴, 𝑎, 𝑎) 

Remark 

Notice that it looks as if P would not need to use this rule since according to the 

rule for the synthesis of the local reason for a P-identity statement, he can always state 

𝑰𝒅(𝐴, 𝑎, 𝑎), provided O stated 𝑎 ∶  𝐴. However, in some cases such as when carrying out 

a substitution based on identity, P might need O to make an explicit statement of identity 

suitable for applying  a substitution rule.  
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The next rule (global analysis of 𝐎 𝑝: 𝑰𝒅(𝐴, 𝑎, 𝑎)), also allows P to challenge an O-

elementary statement by prescribing how to analyse a local reason 𝑝 brought forward by 

O in order to support the statement 𝑰𝒅(𝐴, 𝑎, 𝑎). 

Table 37: Analysis I: The Global Analysis of 𝐎 𝑝: 𝑰𝒅(𝐴, 𝑎, 𝑎) 

 Move Challenge Defence 

Analysis of 

O-elementary 

statements 

𝐎 𝑝: 𝑰𝒅(𝐴, 𝑎, 𝑎) 𝐏 ? = 𝑝 𝐎 𝑝 = 𝒓𝒆𝒇𝒍(𝐴, 𝑎): 𝑰𝒅(𝐴, 𝑎, 𝑎) 

 

The second rule for analysis involves statements of the form 𝑰𝒅(𝐴, 𝑎, 𝑏), so we 

need general rules for statements that are not restricted to reflexivity. In fact the rules for 

𝑰𝒅(𝐴, 𝑎, 𝑏) can be obtained by re-writing the previous rules—with the exception of the 

rule that triggers statements of reflexivity by O. 

 

We will not spell out the rules for 𝑰𝒅(𝐴, 𝑎, 𝑏), but let us stress two important points  

(1) the unicity of the local reason 𝒓𝒆𝒇𝒍(𝐴, 𝑎);  

(2) the non-inversibily of the intensional predicate of identity in relation to 

judgmental equality.  

 

In relation to the first remark, the unicity of the local reason 𝒓𝒆𝒇𝒍(𝐴, 𝑎), the point is 

that the local reason produced by a process of synthesis for any identity statement is 

always 𝒓𝒆𝒇𝒍(𝐴, 𝑎). In other words, the local reason prescribed by the procedures of 

synthesis involving the statement !  𝑰𝒅(𝐴, 𝑎, 𝑎) and the statement 𝑰𝒅(𝐴, 𝑎, 𝑎), is the same 

one, namely 𝒓𝒆𝒇𝒍(𝐴, 𝑎). 

 

In relation to the second point, the non-inversibily of the intensional predicate of 

identity in relation to judgmental equality, it is important to remember that the global 

synthesis rule refers to the commitments undertaken by P when he affirms the identity 

between 𝑎 and 𝑏. Such commitment amounts to i) providing a local reason for such an 

identity, and ii) stating 𝑎 =  𝑏 ∶  𝐴. 

On the contrary, the rule of global analysis of an O-identity statement prescribes 

what P may require from O’s statement. In that case, P cannot force O to state 𝑎 = 𝑏: 𝐴 

on the sole basis of her having stated 𝑰𝒅(𝐴, 𝑎, 𝑏): this would only be possible with the so-

called extensional version of propositional identity—see section X.2.4, or (Nordström, 

Petersson, & Smith, 1990, pp. 57-61) for a thorough discussion.  

The dialogical view of non-reversibility here is that the rule of synthesis sets the 

conditions P must fulfil when he states and identity, not what follows from his statement 

of identity. 

 Global Analysis II: Leibniz’s substitution rule for Id X.2.2

Assume that O has stated the propositional identity of 𝑎  and 𝑏 , that is, 

𝐎!  𝑰𝒅(𝐴, 𝑎, 𝑏), as well as 𝑑 ∶  𝐵(𝑎) ; P can then force her to further state 𝐵(𝑏) , by 

requesting a substitution of indistinguishables. The following table displays the dialogical 

take on Leibniz-substitution-rule in the context of Id-statements. 

Table 38: Leibniz-substitution for 𝑰𝒅 

 Move Challenge Defence 
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Leibniz-

substitution for 

𝑰𝒅 

𝐎 𝑐: 𝑰𝒅(𝐴, 𝑎, 𝑏) 

… 

𝐎 𝑑: 𝐵(𝑎) 

𝐏 ?𝐿𝑏𝑧−𝑰𝒅 𝑏/𝑎 𝐎 𝐿𝑏𝑧   – 𝑰𝒅– 𝑠𝑢𝑏𝑠𝑡(𝑐, 𝑑): 𝐵(𝑑) 

The rule assumes 

𝑎: 𝐴, 𝑏: 𝐴, and 

𝐵(𝑥): 𝑝𝑟𝑜𝑝 [𝑥: 𝐴] 

Apply 

substitution! 
Application of substitution 

 

The substitution rule allows the development of a play where P brings forward 

𝐿𝑏𝑧-𝑰𝒅-𝑠𝑢𝑏𝑠𝑡(𝑐, 𝑑) in order to defend his statement 𝐵(𝑎). Such kind of plays do not stop 

(like in the case of formal dialogues) with the affirmation of a definitional reflexivity of 

the form 𝐿𝑏𝑧-𝑰𝒅-𝑠𝑢𝑏𝑠𝑡(𝑐, 𝑑) = 𝐿𝑏𝑧-𝑰𝒅-𝑠𝑢𝑏𝑠𝑡(𝑐, 𝑑): 𝐵(𝑎); the aim of the play is rather 

to make it explicit, by means of a series of equalities, that the local reason 

𝐿𝑏𝑧-𝑰𝒅-𝑠𝑢𝑏𝑠𝑡(𝑐, 𝑑) for 𝐵(𝑏), is ultimately equal to the one for 𝐵(𝑎), since O stated that 

𝑎 and 𝑏 are indistinguishable local reasons in 𝐴.  

More precisely, the structure of the play should make it patent that the local reason 

for 𝐵(𝑏) , if based on an application of the Leibniz substitution rule for Id, is 

𝐿𝑏𝑧-𝑰𝒅-𝑠𝑢𝑏𝑠𝑡(𝑐, 𝑑) =  𝑑(𝑎): 𝐵(𝑏), and that the latter is constituted by the definitional 

equalities 𝒓𝒆𝒇𝒍(𝐴, 𝑎) = 𝑐 [𝐎 𝑐 ∶  𝑰𝒅(𝐴, 𝑎, 𝑏): 𝐴] and 𝑑 = 𝑑(𝑎/𝑥): 𝐵(𝑎/𝑥) [𝑎/𝑥 ∶ 𝐴]. 
 
 

The table below displays the full-version of the sequence of moves that leads to 

such a definitional equality. The table starts with a statement of the form 𝐏 !  𝐵(𝑏), and 

the challenge 𝑶 ?𝑟𝑒𝑎𝑠𝑜𝑛 𝐵(𝑏), but is mutatis mutandis similarly applicable if the starting 

statement is 𝐏 𝑰 ∶ 𝐵(𝑏) and the challenge is 𝑂 ? =  𝑰–where 𝑰 stands for some instruction.  

In practice, we might display a shortened version so that when P brings 

forward 𝐿𝑏𝑧-𝑰𝒅-𝑠𝑢𝑏𝑠𝑡(𝑐, 𝑑) in order to defend his statement 𝐵(𝑎), the response to the 

challenge O ? = 𝐿𝑏𝑧-𝑰𝒅-𝑠𝑢𝑏𝑠𝑡(𝑐, 𝑑) ∶  𝐵(𝑏) is the non-reflexive definitional equality 

𝐿𝑏𝑧-𝑰𝒅-𝑠𝑢𝑏𝑠𝑡(𝑐, 𝑑) = 𝑑(𝑎): 𝐵(𝑏) and then we stop.  

 

Table 39: 𝐿𝑏𝑧-𝑰𝒅-𝑠𝑢𝑏𝑠𝑡 and Definitional Equality 

Move Challenge Defence 

𝐏! 𝐵(𝑏) 𝐎 ?𝑟𝑒𝑎𝑠𝑜𝑛 𝐵(𝑏) 𝐏 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑐, 𝑑): 𝐵(𝑏) 

𝐏 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑐, 𝑑): 𝐵(𝑏) 
𝐎 ?
=  𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑐, 𝑑): 𝐵(𝑏) 

𝐏 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑐, 𝑑)
= 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑐, 𝑑): 𝐵(𝑏) 

 

Provided that 

 𝐎 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑐, 𝑑): 𝐵(𝑏) 

𝐏 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑐, 𝑑)
= 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑐, 𝑑): 𝐵(𝑏) 

𝐎 ? = 𝑐 

𝐏 𝒓𝒆𝒇𝒍(𝐴, 𝑎) = 𝑐 ∶ 𝐴 
 

Provided that 

𝑶 𝑐 ∶ 𝑰𝒅(𝐴, 𝑎, 𝑏) 

𝐏 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑐, 𝑑): 𝐵(𝑏) 

… 

𝐏 𝒓𝒆𝒇𝒍(𝐴, 𝑎) = 𝑐 ∶ 𝐴 

[𝑶 𝑐 ∶ 𝑰𝒅(𝐴, 𝑎, 𝑏)] 

𝐎 ?  𝒓𝒆𝒇𝒍(𝐴, 𝑎) / 𝑐 
𝐏 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝒓𝒆𝒇𝒍(𝐴, 𝑎), 𝑑) 

: 𝐵(𝑏) 

𝐏 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝒓𝒆𝒇𝒍(𝐴, 𝑎), 𝑑) 

: 𝐵(𝑏 𝐎 ? =  𝑑 
𝐏 𝑑 =  𝑑(𝑎/𝑥): 𝐵(𝑎/𝑥) 

[𝑎/𝑥 ∶ 𝐴] 
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𝐏 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝒓𝒆𝒇𝒍(𝐴, 𝑎), 𝑑) 

: 𝐵(𝑏) 

… 

𝐏 𝑑 =  𝑑(𝑎/𝑥): 𝐵(𝑎/𝑥) 

[𝑎/𝑥 ∶  𝐴] 

 
𝐎 ? 

𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕 

(𝒓𝒆𝒇𝒍(𝐴, 𝑎), 𝑑) : 𝐵(𝑏) 

 

𝐏 𝑑(𝑎) = 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕 

(𝒓𝒆𝒇𝒍(𝐴, 𝑎), 𝑑): 𝐵(𝑏) 
 

Provided that 

𝐎!  𝑰𝒅(𝐴, 𝑎, 𝑏) 

Note 

The statements on lines two and four share a common statement (lines five and six 

as well). It must however be not only noted that the challenges differ, but also that the 

object of each of the challenges are different. It is important to realize that these rules do 

not concern local meaning but global meaning, which is determined by the evolution of 

the play. Thus, those challenges targetting pairs of statements such that one member of 

the pair is different to the other, do not involve using twice the repetition ranks for 

challenging the common statement: they are different attacks to different statements. 

 

The Leibniz-elimination rule can be inferred from a more general rule provided by 

(Nordström, Petersson, & Smith, 1990, p. 58). This general rule includes cases of 

applying substitution to judgements of the form B(c) that expresses that some property 

holds of some non-canonical proof-object c for an identity judgement. Thus, the 

importance of this form of judgments is that it makes it possible to justify that some 

property applies to proof-objects of identities. We will however not develop it here. 

 Application to 𝐁𝐨𝐨𝐥: the third (canonical element) excluded X.2.3

A natural way to combine Boolean operations and elements with propositional 

connectives is to make use of the identity predicate 𝑰𝒅.  

Let us see how real definitions and identity interact when establishing the validity 

of the proposition every element of the set 𝐁𝐨𝐨𝐥 is equal to yes or to no. That is, let us 

build the winning strategy for 

 

(∀𝑥: 𝐁𝐨𝐨𝐥)𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒚𝒆𝒔) ∨ 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒏𝒐) 𝒕𝒓𝒖𝒆 

 

Notice that this proposition can be interpreted as the classical third-excluded, this 

proposition indeed saying that there is no third canonical element in 𝐁𝐨𝐨𝐥beside 𝒚𝒆𝒔 and 

𝒏𝒐: any element of 𝐁𝐨𝐨𝐥 can thus be reduced to either one of them. 

We shall proceed as usual by running the plays constituting a P-winning strategy 

(see section VII.5) 

 

While on the one hand winning strategies concern the process of bringing forward 

the piece of evidence that justifies the proposition involved in the judgement, here that 

every element of the set 𝐁𝐨𝐨𝐥  is equal to 𝒚𝒆𝒔  or to 𝒏𝒐 , on the other hand the 

commitments engaged in asserting that something is one of the pieces of evidence for 

Bool, say, 𝑎 + ~𝑎 ∶  𝐁𝐨𝐨𝐥, amounts to answering the question, Which of the canonical 

elements of 𝐁𝐨𝐨𝐥 is this piece of evidence equal to? In our case,  𝑎 + ~𝑎 =  𝒚𝒆𝒔 ∶  𝐁𝐨𝐨𝐥. 
Notice that since the set Bool contains only two elements, universal quantification over 

Bool can be tested by considering each of the elements of the set, each of them triggering 

a new play.  
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Play 17: first play for 𝐁𝐨𝐨𝐥 third-excluded 

𝓟𝟏 O P  

     
! (∀𝑥 : 𝐁𝐨𝐨𝐥)(𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒚𝒆𝒔)

∨  𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒏𝒐)) 
0 Thesis 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2  
Synthesis of local 

reason for universal 

quantification (Table 

19) 

3 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 [𝛿𝟏, … ]  0  
𝒚𝒆𝒔: (𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒚𝒆𝒔)

∨ 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒏𝒐)) 
4  

Analysis of local reason 

for disjunction (Table 

20) 
5 ?∨ 4  𝐿∨(𝒚𝒆𝒔): 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒚𝒆𝒔) 6  

Resolution of the 

instruction 7 ? …/𝐿∨(𝒚𝒆𝒔) 6  𝒓𝒆𝒇𝒍(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔): 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒚𝒆𝒔) 8 
Table 35 

local reason 

𝑰𝒅(𝐴, 𝑎, 𝑎) 
Rule of equality  

(Table 35) 
9 ? =  𝒓𝒆𝒇𝒍(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔) 8  𝒚𝒆𝒔 =  𝒓𝒆𝒇𝒍(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔) ∶  𝐁𝐨𝐨𝐥 10  

Rule of equality 

(Table 35) 
11 ? = 𝒚𝒆𝒔 8  𝒚𝒆𝒔 = 𝒚𝒆𝒔: 𝑩𝒐𝒐𝒍 12  

P wins. 

 

Play 18: second play for 𝐁𝐨𝐨𝐥 third-excluded 

𝓟𝟐 O P 

     
! (∀𝑥 : 𝐁𝐨𝐨𝐥)(𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒚𝒆𝒔)

∨  𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒏𝒐)) 
0 

 1 𝑚 ≔ 1   𝑛 ≔ 2 2 

 3 𝒏𝒐: 𝐁𝐨𝐨𝐥 [𝛿1, 𝛿2]  0  
𝒏𝒐: (𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒏𝒐, 𝒚𝒆𝒔)

∨ 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒏𝒐, 𝒏𝒐)) 
4 

 5 ?∨ 4  𝑅∨(𝒏𝒐): 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒏𝒐, , 𝒏𝒐) 6 

 7 ? …/𝐿∨(𝒏𝒐) 6  𝒓𝒆𝒇𝒍(𝐁𝐨𝐨𝐥, 𝒏𝒐): 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒏𝒐, 𝒏𝒐) 8 

 9 ? =  𝒓𝒆𝒇𝒍(𝐁𝐨𝐨𝐥, 𝒏𝒐) 8  𝒏𝒐 = 𝒓𝒆𝒇𝒍(𝐁𝐨𝐨𝐥, 𝒏𝒐): 𝐁𝐨𝐨𝐥 10 

 11 ? = 𝒏𝒐 8  𝒏𝒐 = 𝒏𝒐: 𝑩𝒐𝒐𝒍 12 

P wins 

 

Since every O-decision option has been considered with plays 𝓟𝟏and 𝓟𝟐, which 

are both P-terminal, P has a winning strategy for 

(∀𝑥 : 𝐁𝐨𝐨𝐥)(𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒚𝒆𝒔) ∨  𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒏𝒐)), which is thus demonstrated (see chapter IX). 

 

Notice that, in this framework, though it is trivial to show  

𝐏 𝑎 + ~𝑎 =  𝒚𝒆𝒔 ∶ 𝐁𝐨𝐨𝐥 
we cannot build a winning strategy for: 

!  (∀𝑥 : 𝐁𝐨𝐨𝐥) (𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒚𝒆𝒔) ∨ ¬𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒚𝒆𝒔)) 
unless we presuppose ¬𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒏𝒐, 𝒚𝒆𝒔). This will be discussed in the next section. 

 The extensional propositional identity 𝑬𝒒 X.2.4

The dialogical rules that prescribe the extensional propositional identity 𝑬𝒒 are 

simpler than the other forms of equality. Once O stated an extensional propositional 

identity, P is allowed to ask him to state a definitional equality involving the terms of the 
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relation 𝑬𝒒. Thus, the rules that prescribe statements of the form 𝑬𝒒(𝐴, 𝑎, 𝑏) are the same 

for P and O.  However, the local reason for the resulting proposition, namely the local 

reason 𝒆𝒒  for 𝑬𝒒(𝐴, 𝑎, 𝑏) ; yet the analysis of 𝒆𝒒  does not render the local reasons 

involved in the definitional equality 𝑎 =  𝑏 ∶  𝐴 on the basis of which the predicate 𝑬𝒒 

has been stated: 𝒆𝒒 is thus a kind of analogue of ontological equality. Moreover, every 

local reason 𝑐 for 𝑬𝒒(𝐴, 𝑎, 𝑏) is definitionally equal to 𝒆𝒒.  

Table 40: Formation rules for Eq 

 Move Challenge Defence 

Eq-formation 𝐗  𝐄𝐪(𝐴, 𝑎i, 𝑎j) ∶  𝐩𝐫𝐨𝐩 

𝐘 ?𝐹1 𝑬𝒒 𝐗  𝐴: 𝐬𝐞𝐭 

𝐘?𝐹2 𝑬𝒒 𝐗  𝑎𝑖 : 𝐴 

𝐘?𝐹3 𝑬𝒒 𝐗 𝑎𝑗: 𝐴 

 

Since we are dealing with formation plays, these challenges can all be carried out 

without requiring the use of repetition ranks. 

 

Table 41: Specific Socratic rule for the Global Synthesis of the local reason for 
𝐗! 𝑬𝒒(𝐴, 𝑎, 𝑎) 

 Move Challenge Defence 

Socratic rule 
𝐗 !  𝐄𝐪(𝐴, 𝑎i, 𝑎j) 𝐘 ?𝑟𝑒𝑎𝑠𝑜𝑛 𝑬𝒒 𝐗 𝒆𝒒 ∶ 𝑬𝒒(𝐴, 𝑎𝑖, 𝑎𝑗) 

𝐏 𝒆𝒒 ∶  𝑰𝒅(𝐴, 𝑎, 𝑎) 𝐎 ? =  𝒆𝒒 𝐏 𝒆𝒒 =  𝒆𝒒 ∶  𝐴 

 

Notice that the crucial difference between the 𝑰𝒅  and 𝑬𝒒  is that the rules of 

synthesis are formulated as player-independent. In the context of an 𝑰𝒅-statement, P 

cannot force O to bring forward 𝑎 =  𝑏 ∶  𝐴  after 𝐎  𝒆𝒒: 𝑬𝒒(𝐴, 𝑎, 𝑏) , whereas in the 

context of 𝑬𝒒 , P can. Moreover, the defintional equality of 𝒆𝒒  is 𝒆𝒒 , which is 

responsable for the "extensionality" of 𝑬𝒒 and leads to the undecidability of assertions of 

the form 𝑎 =  𝑏 ∶  𝐴—see chapter II.  

 

The rest of the rules follow from adapting the tables for Id to Eq and eq  

X.3 Mathematics and logic 

 Material dialogues for ℕ X.3.1

Let us display the main specifications yielding material dialogues for the natural 

numbers. Since we are in the presence of material dialogues, we need to "harmonize" the 

rules of synthesis and analysis with equality rules specific to ℕ . Moreover, the 

development of a play that includes statements of the form 𝐏 𝑛 ∶  ℕ [0 ∶  ℕ]  might 

presuppose some particular nominal definitions that must be described by the structural 

rules. In the following sections we display the corresponding tables for synthesis, 

analysis, and equality, and the set of structural rules for the development of a play based 

on nominal definitions for 1, 2, … ∶  ℕ. 
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Synthesis of ℕ 

If X states that 𝑛 is a natural number, he is committed to the further statement that 

its successor is also a natural number. 

 

Table 42: Synthesis of  ℕ 

 Move Challenge Defence 

Synthesis of ℕ 𝐗 𝑛: ℕ 𝐘 ? 𝑠(𝑛) 𝐗 𝑠(𝑛): ℕ 

Analysis of ℕ 

If X states that the property 𝐶 applies to any natural number 𝑛, then X must also 

state 

1. that it applies to 0 and  

2. that it also applies to 𝐶(𝒔(𝑚)), for any 𝑚 chosen by Y. 

 

Thus, the local reason 𝑝 is constituted by a left component locally grounding the 

statement 𝐶(0) , and a right component. Thus, two analysis rules are due, the first 

prescribing the moves yielding the left component of 𝑝, and the second those for the right 

component. The analysis for the right component requires analyzing this right component 

of 𝑝 into two further components, namely,  

1. the left component of the right component of 𝑝, which provides the local 

reason for Y's statement that the property 𝐶 applied to 𝑚; and  

2. the right component of the right component of 𝑝 , which provides a local 

reason for X's statement that 𝐶 also applies to the successor of 𝑚.   

Table 43: Analysis rules of ℕ 

 Move Challenge Defence 

Analysis 

of ℕ 

Left 

𝐗 𝑝: 𝐶ℕ(𝑛) 
 

For arbitrary 𝑛 ∶  ℕ, 

given 𝐶(𝑧): 𝒔𝒆𝒕 [𝑧: ℕ] 

𝐘 ? 𝐿𝑑𝑓
ℕ 𝐶 𝐗 𝐿ℕ(𝑝)𝐗 ∶ 𝐶(0) 

Right 

𝐗 𝑝 ∶ 𝐶ℕ(𝑛) 
… 

𝐗 𝐿ℕ(𝑝)𝐗: 𝐶(0) 
 

For arbitrary 𝑛: ℕ, and 

given 𝐶(𝑧): 𝒔𝒆𝒕 [𝑧: ℕ] 

𝐘 𝐿 (𝑅ℕ(𝑝))
𝐘

: 𝐶(𝑚𝐘) 

 

For arbitrary 𝑚 ∶  ℕ, 

chosen by Y 

𝐗 𝑅 (𝑅ℕ(𝑝))
𝐗

∶  𝐶 (𝒔(𝑚𝐘)) 

 

Specific Socratic rules for ℕ 

The rules for definitional equality assume that O brought forward 𝑝1 and 𝑝2 as local 

reasons for 𝐶(0) and 𝐶(𝒔(𝑚)) respectively. 

 

Table 44: Specific Socratic rules for ℕ 

 Move Challenge Defence 

Socratic 

rules 

Definitional 

equality I 
𝐏 𝑝1 ∶  𝐶(0) 𝐎 ? =  𝑝1

 𝐏 𝑝1
𝐎 = 𝐿ℕ(𝑝): 𝐶(0) 
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for ℕ Definitional 

equality II 
𝐏 𝑝2 ∶  𝐶(𝒔(𝑚)) 𝐎 ? =  𝑝2

 𝐏 𝑝2
𝐎 = 𝑅 (𝑅ℕ(𝑝)) : 𝐶(𝒔(𝑚)) 

Rules specific to 𝑪 

Y's challenge upon 𝐶(𝑛) is specifically defined for 𝐶. Thus, if 𝐶 is the predicate “𝑥 

is an odd number”, the rule establishes that the challenge upon, say, 𝐶(𝒔(0))  is  

choose an 𝑥 such that 𝑰𝒅(ℕ, (𝒔(0), 2. 𝑥𝐗 + 1)134 

 

That is, the precise form of the challenge in our case a challenge would be the challenge 

of the existential: 

𝐗! (∃𝑥: ℕ) 𝑰𝒅(ℕ, (𝒔(0), 2. 𝑥𝐗 + 1) 
 

The response would assume that 𝑛 stands for 𝒔(0), and that 𝐶(𝑛) stands for “𝒔(0) is an 

odd number”. This response would thus be the answer to the challenge on the right side 

of the above existential, the response to the left side being: 

𝐗 !  0 ∶  ℕ 
Hence, in this example  

𝐗 𝑝 ∶  𝐶(𝑛) 
would stand for  

𝐗 𝑝: (∃𝑥: ℕ) 𝑰𝒅(ℕ, (𝒔(0), 2. 𝑥𝐗 + 1)  
which presupposes 

𝑂𝑑𝑑(𝒔(0)) = (∃𝑥: ℕ)𝑰𝒅(ℕ, 𝒔(0), 2. 𝑥 + 1): 𝑝𝑟𝑜𝑝 [𝒔(0): ℕ] 
which presupposes the definition:  

𝑂𝑑𝑑(𝑦) = (∃𝑥: ℕ)𝑰𝒅(ℕ, 𝑦, 2. 𝑥 + 1) ∶ 𝑝𝑟𝑜𝑝 [𝑦 ∶  ℕ] 

Structural rules for statements of the form 𝐏 𝟏 ∶  ℕ [𝟎 ∶  ℕ], 𝐏 𝟐 ∶  ℕ [𝟎 ∶  ℕ], … 

Given a statement of the form 𝐏  𝑛: ℕ [0: ℕ], where 𝑛 stands for 1, or 2, or …,
135

 O 

can challenge it by means of the attack ? 𝑛. If P's initial statement is 1 ∶  ℕ [0 ∶  ℕ], then P 

can respond to the challenge ? 1 with 𝒔(0) ≡𝑑𝑓 1 ∶  ℕ only if O stated 𝒔(0): ℕ; similarly 

for 2, and so on. In other words: 

 

𝐏 1 ∶  ℕ   𝐏 𝑛 ∶  ℕ  

𝐎 ? 1 𝐎 𝒔(0): ℕ  𝐎 ? 𝑛 𝐎 𝒔 (… (𝒔(𝒔(0)))) : ℕ 

𝐏 1 ≡𝑑𝑓 𝒔(0): ℕ  𝐏 𝑛 ≡𝑑𝑓 𝒔 (… (𝒔(𝒔(0)))) : ℕ 

(The answer cannot be challenged.) 

Example 
Let us sketch briefly as an example the play relevant for constituting a winning 

strategy for the thesis 3 ∶  ℕ [0 ∶  ℕ]:   
 

 

O P 

    3 ∶  ℕ  [0 ∶  ℕ] 0 

1 𝑚 ∶=  1   𝑛 ∶= 2 2 

                                                 
134

 The rule assumes that multiplication and addition have been defined already.  
135

 This kind of statement can for instance result from defending the left side of an existential such 

as as  (∃ 𝑥 ∶  ℕ) 𝑰𝒅(ℕ, (𝒔(0), 2. 𝑥𝐗 + 1). 
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3 0 ∶  ℕ   3 ∶  ℕ 4 

5 ?  3 4  𝑠 (𝑠(𝑠(0))) ≡𝑑𝑓 3: ℕ 12 

7 𝑠(0) ∶  ℕ  3 ?  𝑠(0) 6 

9 𝑠(𝑠(0)): ℕ  7 ? 𝑠(𝑠(0)) 8 

11 𝑠 (𝑠(𝑠(0))) : ℕ  9 ? 𝑠 (𝑠(𝑠(0))) 10 

P wins. 

Description:  

 Moves 0-5: establish the thesis 3 ∶  ℕ , the concession 0 ∶  ℕ , and the 
challenge ? 3 on the thesis. 

 Moves 6-7: P applies the rule of synthesis to the concession 0 ∶  ℕ . O 

responds to it. 
 Moves 8-11: P applies the rule of synthesis to moves 7 and 9. O responds to 

them. 
 Move 12: P applies the nominal definition of "3" established by the Socratic 

rule and wins responding to the challenge on 5. 

 Beyond Bool: Finite Sets and Large Sets of Answers.  X.3.2

Let us now come back to the case of 𝐁𝐨𝐨𝐥. A natural extension of the framework is 

to have a larger set of answers than just the yes-no responses of 𝐁𝐨𝐨𝐥. The interpretation 

scope offered by the generalization we propose here is quite broad, as it can be 

interpreted as the different degrees of certainty an answer to a question can take; it can 

also be understood as encoding different possible answers to a question, so that 0 is the 

answer 𝑎, 1 is the answer 𝑏, and so on (we will discuss some examples in the next 

section). 

 

Since the formation rule for a finite set ℕ𝑛 of 𝑛 canonical elements (such that 
𝑛 stands for some natural number) has no premisses in the CTT setting, the dialogical 

formation rule for it amounts to the following: 

Table 45: Formation rule of ℕ𝑛 

 Move Challenge Defence 

Formation of ℕ𝑛 𝐗 ! ℕ𝑛 𝐘 ?𝐹 ℕ𝑛 𝐗 ℕ𝑛 ∶ 𝑠𝑒𝑡 

 

The rules of synthesis and analysis are a straightforward generalization of the set 

𝐁𝐨𝐨𝐥 (that is the set ℕ2). 

Table 46: rules for ℕ𝑛 

 Move Challenge Defence 

Synthesis for ℕ𝑛 𝐗 ! ℕ𝑛 𝐘 ? ℕ𝑛 

𝐗  𝑚1: ℕ𝑛 

… 

𝐗  𝑚𝑛: ℕ𝑛 

Analysis for ℕ𝑛 

and equalities 
𝐗  𝑝 ∶  𝐶(𝑐) [𝑐 ∶  ℕ𝑛] 𝐘 ? =  𝑐ℕ𝑛

 

𝐗  𝑐 = 𝑚1: ℕ𝑛 

… 

𝐗  𝑐 = 𝑚𝑛: ℕ𝑛 
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𝐗 𝑐 = 𝑚1: ℕ𝑛 

… 

𝐗 𝑐 = 𝑚𝑛: ℕ𝑛
 

… 

𝐗 𝑝: 𝐶(𝑐)[𝑐 ∶  ℕ𝑛] 

𝐘 𝑐 ∶ ℕ𝑛
 

… 

𝐘 ?𝑟𝑒𝑎𝑠𝑜𝑛 𝐶(𝑐) 

𝐗 𝑝1: 𝐶(𝑚1) 
… 

𝐗 𝑝𝑛: 𝐶(𝑚𝑛) 

Then the play continues with O challenging the elementary statement 

according to the attack prescribed by the general Socratic Rule. This 

procedure yields the remaining equalities. 

The case of ℕ𝟎 and ℕ𝟏 

ℕ𝟎 : following our main interpretation, a statement such as 𝐗! ℕ0  should be 

understood as stating that there is no local reason that can be adduced for the empty set. 

From a more dialogical point of view, we can coonsider ℕ0 as the empty set of possible 

answers to an enquiry: the player thus states that there is no possible answer or solution to 

the enquiry at stake. Analoguously to the Kolmogorov interpretation of a proposition as a 

problem associated with all that can count as a solution to it, the natural reading in a 

dialogical setting would be to understand a proposition as a solution to a problem or 

enquiry. 

Accordingly, the dialogical rule for ℕ0 is the same as the one for ⊥, that is the rule 

for giving up:  

 The player who states ℕ0 (or 𝑝 ∶  ℕ0)at move 𝑛 loses the current play. If it is 

O who states it, P can adduce the local reason O-gives up(𝑛) in support for 

any statement that he has not defended before O stated ℕ0 at move 𝑛. 

 

ℕ𝟏: if ℕ0 is in fact the empty set ⊥, then the unary set is ⊤, inhabited by only one 

local reason, namely 𝒚𝒆𝒔𝒚𝒆𝒔 ∶  ⊤: 

 The player who states ℕ1, can always adduce 𝒚𝒆𝒔𝒚𝒆𝒔 as its local reason.  

 The set 𝐁𝐨𝐨𝐥 and some applications to mathematics and logic X.3.3

Universes and codes of sets  
The main motivation of introducing universes is to have a device for dealing with 

contexts in which the use of sets of sets is required, though we cannot have the set of all 

sets, since we cannot describe all the possible ways of constituting a set. However, since 

sets of sets are particularly useful in the foundations of mathematics, Martin-Löf (1984, 

pp. 47-49) introduces the notion of universe of small sets. A universe 𝓤 is a set of codes 

of sets: 𝒏𝒏 is the code of the set ℕ𝒏. A small set is a set with a code. The universe 𝓤 has 

no code in 𝓤 (otherwise a paradox would follow). The formation of a universe requires a 

decoding function 𝒯 that yields sets from codes, i.e. the evaluation of 𝒯(𝒏𝒌) yields the 

set ℕ𝒌 whose code is 𝒏𝒌. In the dialogical setting the formation rule can be formulated in 

the following way: 

 

Table 47: Formation rules for 𝓤 

 Move Challenge Defence 

Formation of 𝓤 
𝐗 !  𝓤 𝐘 ?𝐹 𝓤 

𝐗 𝒏𝟎: 𝓤 

… 

𝐗 𝒏𝒏: 𝓤 

𝐗 𝒏𝒌: 𝓤 𝐘 ? 𝒯(𝒏𝒌) 𝐗  ℕ𝐤 ∶ 𝑠𝑒𝑡 



IMMANENT REASONING OR EQUALITY IN ACTION 205 

 

 

 

The notion of universe allows one to examine from another angle the difference 

between the canonical elements of 𝐁𝐨𝐨𝐥 , yes and 𝒏𝒐, and the expressions 𝒕𝒓𝒖𝒆 and 

𝒇𝒂𝒍𝒔𝒆 as applied to a proposition. As mentioned above in the case of the empty set, the 

dialogical setting allows reading the statement  

 

𝐗 !  𝐴 
 

as expressing that player X states that there is a least one possible solution or answer to 

the enquiry 𝐴. 
In the case of 

𝐗 !  𝐁𝐨𝐨𝐥  
 

the statement expresses that X is committed that at least one of the two possible answers 

to the enquiry associated with the set 𝐁𝐨𝐨𝐥holds. For example  

 

𝐗 𝟎 ∶   𝐁𝐨𝐨𝐥 
 

which is certainly different from establishing that there is no possible answer to the 

enquiry 

𝐗 !  ¬𝐁𝐨𝐨𝐥 
 

Now, one consequence of this distinction is that in general we cannot 

demonstrate—that is, we cannot develop a winning strategy—in such a system that the 

elements of 𝐁𝐨𝐨𝐥 are different, or not identical: ¬𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒏𝒐), unless we assume 
that 𝒚𝒆𝒔 and 𝒏𝒐 are associated to the codes of two disjoint sets, which are elements 
of a universe. In fact it was shown by Jan Smith (1988, pp. 842-843) by means of a 

metamathematical demonstration, that for any type 𝐴, the demonstration of an inequality 

of the form ¬𝑰𝒅(𝐴, 𝑎, 𝑏) requires universes constituted by codes of sets. 

Demonstration that 𝒚𝒆𝒔 and 𝒏𝒐 are not identical in 𝐁𝐨𝐨𝐥 
In order to develop a winnings strategy for ¬𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒏𝒐) —i.e. 

𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒏𝒐, 𝒚𝒆𝒔) ⊃⊥—we follow the basic ideas of Martin-Löf’s (1984, p. 51) and 

Nordström, Petersson & Smith’s (1990, p. 86) demonstration of Peano's fourth axiom. 

The main idea is introduce a predicate defined over 𝐁𝐨𝐨𝐥 , more precisely the 

function 𝑮(𝑥) that evaluates in the universe 𝓤.
136

 Since it evaluates in 𝓤, the function 

yield codes, namely, if 𝑥 is 𝒏𝒐, then it yields 𝒏𝟎, and it yields 𝒏𝟏, if 𝑥 is 𝒚𝒆𝒔. The codes 

𝒏𝟎 and 𝒏𝟏 are codes for the empty set ℕ𝟎 and the unary set ℕ𝟏 respectively. So, 𝒚𝒆𝒔 and 

𝒏𝒐 are associated to two disjoint sets in 𝓤: thus, since the predicate 𝑮(𝑥) applies to 𝒚𝒆𝒔, 

but yields the empty set when applied to 𝒏𝒐 , then 𝒚𝒆𝒔  and 𝒏𝒐  cannot be identical. 

Moreover, the assumption that both of the canonical elements of 𝐁𝐨𝐨𝐥  are identical 

would lead to conclude that the empty set is inhabited, and this proves its negation.
 137

  

                                                 
136

 Since it is a predicate over 𝐁𝐨𝐨𝐥, it follows the rules for the analysis of these kind of statements 

(in the CTT its definition stems from the elimination rules for 𝐁𝐨𝐨𝐥).   
137

 The CTT-demonstration in a nutshell is the following, with the arrow standing for functions, and 

the original notation of Martin-Löf where n_0 is the notation for code and t, f are the canonical elements of 

𝐁𝐨𝐨𝐥 (see chapter  II): 

Define a family of sets G : Bool →U. G(x) =:df if x then n_1, else n_0 : U  [x : Bool]. 

F : Bool → set, by F(x) =:df T(G(x)) : set [x : Bool]. 

tt : T(G(t)  (given tt : ℕ1, G(t) = n_1 : U, and  T(G(t)) = ℕ1: set, thus tt : F(t).  
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In the dialogical setting we formulate a Socratic rule specific to 𝑮(𝑥). We also provide 

the rule of synthesis specific to the unary set ℕ𝟏.  

 

Table 48: Specific Socratic rules for 𝑮(𝑥) and synthesis of ℕ𝟏 

 Move Challenge Defence 

Specific Socratic 

rule to 𝑮(𝑥) 

𝐗 𝑮(𝑥): 𝓤(𝑥: 𝐁𝐨𝐨𝐥) 
𝐘 𝒏𝒐: 𝐁𝐨𝐨𝐥 𝐗 (𝑮(𝒏𝒐) =  𝒏𝟎: 𝓤 

𝐘 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥 𝐗 (𝑮(𝒚𝒆𝒔) =  𝒏𝟏: 𝓤 

𝐗 𝑮(𝒏𝒐) =  𝒏𝟎: 𝓤 𝐘 ?  𝒯(𝑮(𝒏𝒐)) 𝐗 𝒯(𝑮(𝒏𝒐)) = ℕ𝟎: 𝑠𝑒𝑡 

𝐗 𝑮(𝒚𝒆𝒔) =  𝒏𝟏: 𝓤 𝐘 ?  𝒯(𝑮(𝒚𝒆𝒔)) 𝐗 𝒯(𝑮(𝒚𝒆𝒔)) = ℕ𝟏: 𝑠𝑒𝑡 

Synthesis of ℕ𝟏 𝐗 ! ℕ𝟏  𝐘? ℕ𝟏 𝐗 𝒚𝒆𝒔𝒚𝒆𝒔: ℕ𝟏 

Note 

In the case of Y’s chalenge of 𝐗 𝑮(𝑥): 𝓤(𝑥: 𝐁𝐨𝐨𝐥), if Y is P, then the challenge assumes 

that O already conceded 𝒚𝒆𝒔, 𝒏𝒐 ∶  𝐁𝐨𝐨𝐥. 
 

We will only display here the relevant play for the determination of the winning 

strategy for ¬𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒏𝒐) . The thesis is stated under the condition that O 

concedes the codes 𝒏𝟎 and 𝒏𝟏 are elements of 𝓤, the canonical answers (elements) of 

𝐁𝐨𝐨𝐥  and the special predicate (function) 𝑮(𝑥) [𝑥 ∶  𝐁𝐨𝐨𝐥]  defined by the specific 

Socratic rule given above.  
 

Play 19: 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒏𝒐) ⊃⊥ [𝒏𝟎, 𝒏𝟏: 𝓤; ℕ𝟏;  𝒚𝒆𝒔, 𝒏𝒐 ∶  𝐁𝐨𝐨𝐥;  𝑮(𝑥): 𝓤 [𝑥 ∶  𝐁𝐨𝐨𝐥]] 

O P 

0.1 

0.2 

0.3 

0.4 

𝒏𝟎, 𝒏𝟏: 𝓤 
!  ℕ𝟏  

𝒚𝒆𝒔, 𝒏𝒐 ∶  𝐁𝐨𝐨𝐥 
𝑮(𝑥) ∶ 𝓤 [𝑥 ∶  𝐁𝐨𝐨𝐥] 

  

! 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒏𝒐) ⊃⊥ 

[
𝒏𝟎, 𝒏𝟏: 𝓤; ℕ𝟏; 

𝒚𝒆𝒔, 𝒏𝒐 ∶  𝐁𝐨𝐨𝐥; 

𝑮(𝑥): 𝓤 [𝑥 ∶  𝐁𝐨𝐨𝐥]
] 

 

0 

1 𝑚 ∶= 1   𝑛 ∶=  2 2 

3 𝑝1 ∶  𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒏𝒐) 0  𝒚𝒐𝒖𝒈𝒂𝒗𝒆 𝒖𝒑(19): ⊥ 20 

5 𝑮(𝒚𝒆𝒔) = 𝒏𝟏: 𝓤  0.4 𝒚𝒆𝒔 ∶  𝐁𝐨𝐨𝐥 4 

7 𝒯(𝑮(𝒚𝒆𝒔)) = ℕ𝟏: 𝑠𝑒𝑡  5 ? 𝒯(𝑮(𝒚𝒆𝒔)) 6 

9 𝒚𝒆𝒔𝒚𝒆𝒔 ∶  ℕ𝟏 4 0.4 ? ℕ𝟏 8 

11 𝒚𝒆𝒔𝒚𝒆𝒔 ∶  𝒯(𝑮(𝒚𝒆𝒔))  9, 7 ? 𝒯(𝑮(𝒚𝒆𝒔)) /ℕ𝟏 10 

13 𝑮(𝒏𝒐) = 𝒏𝟎: 𝓤  0.4 𝒏𝒐 ∶ 𝑩𝒐𝒐𝒍 12 

15 𝒯(𝑮(𝒏𝒐)) = ℕ𝟎: 𝑠𝑒𝑡  13 ? 𝒯(𝑮(𝒏𝒐)) 14 

17 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑝1, 𝒚𝒆𝒔𝒚𝒆𝒔): 𝒯(𝑮(𝒏𝒐))  11, 3 ?𝑳𝒃𝒛–𝑰𝒅–𝒔𝒖𝒃𝒔𝒕  𝒏𝒐/𝒚𝒆𝒔 16 

19 𝑳𝒃𝒛– 𝑰𝒅– 𝒔𝒖𝒃𝒔𝒕(𝑝1, 𝒚𝒆𝒔𝒚𝒆𝒔) ∶  ℕ𝟎  17, 15 𝒯(𝑮(𝒏𝒐))/  ℕ𝟎 18 

P wins. 

                                                                                                                                                  
Assume z : Id(Bool, t, f), then subst(z, tt): F(f)).  

Hence, (z)subst(z, tt) : Id(Bool, t, f).  



IMMANENT REASONING OR EQUALITY IN ACTION 207 

 

 

Description of the play 

 Moves 0-5: After O's challenge (move 3) on the thesis, P counter-attacks (4) 

the concession 0.4, following the prescription of the Socratic rules specific to 

G(x). P can carry out this challenge because of concession 0.3. In fact it is 

justified in the Copy-cat rule—we skip here the further challenge of O asking 

for a justification and P's answer with the reflexivity 𝒚𝒆𝒔 = 𝒚𝒆𝒔: 𝐁𝐨𝐨𝐥. 
 Moves 6-7 follow from implementing the decoding prescription for 𝑮(𝑥).  

 Moves 8-11: After O provides the local reason 𝒚𝒆𝒔𝒚𝒆𝒔 for the unary set ℕ𝟏, 

P asks O to substitute ℕ𝟏 by 𝒯(𝑮(𝒚𝒆𝒔)), given the equality conceded move 

7. 

 Moves 12-15: P repeats moves 4,6, but chooses this time 𝒏𝒐 ∶  𝐁𝐨𝐨𝐥—we 

also skip here the moves leading to the reflexivity 𝒏𝒐 =  𝒏𝒐 ∶  𝐁𝐨𝐨𝐥. 
 Moves 16-20: Move 16 is the crucial move and leads to the victory of P; P 

requests of O to replace 𝒚𝒆𝒔  with 𝒏𝒐 within move 11, given the identity 

conceded in move 3 and given the Leibniz-substitution rule for 𝑰𝒅 . O's 

response (17) and her concession (15) that 𝒯(𝑮(𝒏𝒐)) and ℕ𝟎 are equal sets 

leads her to state the giving up move 19. Indeed, in move 19 O is forced to 

admit that following her own moves the empty set (of answers) is not empty. 

In move 20, P can answer O’s first challenge which was left unanswered by 

bringing forward the local reason 𝒚𝒐𝒖𝒈𝒂𝒗𝒆 𝒖𝒑(19) for defending his statement, 

which happens to be ⊥ (see section VII.2.1, SR7: Winning rule for plays). He 

thus wins the play. 

 

 After a recapitulation of the possible moves, P can bring forward 𝒚𝒐𝒖𝒈𝒂𝒗𝒆 𝒖𝒑(19) 

as a strategic reason for grounding his thesis and thus assert: 

𝒚𝒐𝒖𝒈𝒂𝒗𝒆 𝒖𝒑(19):  𝑰𝒅(𝑩𝒐𝒐𝒍, 𝒏𝒐, 𝒚𝒆𝒔) ⊥ 

We did not include this in the play, since we did not develop the whole strategy.  

The fourth axiom of Peano's arithmetic 

The demonstration of the fourth axiom of Peano's arithmetic, “0 is identical to no 

successor of a natural number”: 

(∀𝑥: ℕ)¬𝑰𝒅(ℕ, 0, 𝒔(𝑥)) 

is very close to the precedent one: Peano's fourth axiom was  demonstrated first by 

Martin-Löf (1984, p. 51) using strong elimination rules for 𝑰𝒅. Nordström, Petersson & 

Smith (1990, p. 86) provide a demonstration without those rules.  Instead of a function 
defined over 𝐁𝐨𝐨𝐥, what is required is a function 𝑯(𝑥), defined over the natural 
numbers such that the value is the code for the unary set if the 𝑥 is 0, and it is the 
code for the empty set if 𝑥 is the successor of any natural number—thus there will 
be a predicate that applies to 0 but not to any other natural number, which 
contradicts that 0 and the successor of a natural number are identical. We leave to 
the diligent reader the development of both the dialogical rules for 𝑯(𝑥) and of the 
relevant play for building the winning strategy—notice that 𝑯(𝑥), will be defined 
following the rules of analysis for predicates defined over ℕ.  

 
The conceptual background underlying these demonstrations is that in order to 

demonstrate that the canonical elements of 𝐁𝐨𝐨𝐥 and ℕ are different, we need to have a 

look from the outside of the respective sets and assume that there is a universe such that 

the Boolean 𝟏 amounts to a code for the truth, the unary set; and 𝟎 amounts to a code for 
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the false, namely the empty set. This elucidates George Boole's own use of 𝟏 and 𝟎, both 

as selective functions and as the universal domain ⊤and the empty set ⊥.
138

 

 

Let us now extend the set 𝐁𝐨𝐨𝐥 and study some applications for truth-functional 

non-classical logics 

Integrating many-valued logics: Operations within larger sets 

Given some finite set ℕ𝑛 as defined above, we can define operations over it. For 

example the three-element set ℕ3 can yield operations that correspond to a three-valued 

logic, based on the answers, 𝒚𝒆𝒔, ?, 𝒏𝒐. So (𝑎+𝟑𝑏) is equal to ?, if one of the elements is 

equal to 𝒏𝒐 and the other to ?, or both 𝑎 and 𝑏 are equal to ?.  

More generally, for any set ℕ𝒏  with elements 𝟎, 𝟏, … , 𝒏 , with minimum 𝟎  and 

maximum 𝒏,139 and with the help of the following definition of 𝑥 ≤ 𝑦 and its inverse 

𝑥 ≥  𝑦: 

𝑥 ≤ 𝑦 = (∃𝑧: ℕ)𝑰𝒅(ℕ, 𝑥 + 𝑧, 𝑦) ∶  𝒑𝒓𝒐𝒑 [𝑥: ℕ, 𝑦: ℕ] 
𝑥 ≥ 𝑦 = (∃𝑧: ℕ)𝑰𝒅(ℕ, 𝑥 − 𝑧, 𝑦) ∶  𝒑𝒓𝒐𝒑 [𝑥: ℕ, 𝑦: ℕ] 

 

we obtain the following :  

 (𝑎 ×𝒏 𝑏) is equal to 𝑎 = 𝒎 if 𝒎 ≤ 𝒎′ = 𝑏, otherwise it is equal to 𝒎′ = 𝑏; 

 (𝑎+𝒏𝑏) is equal to 𝑎 = 𝒎 if 𝒎 ≥ 𝒎′ = 𝑏, otherwise it is equal to 𝒎′ = 𝑏; 

 ~𝒏𝑎 is equal to 𝒏 – 𝒎, where 𝒏 is the maximum and 𝒎 =  𝑎. 
What is more, (𝑎 →𝒏 𝑏) can be defined as ~𝑛𝑎+𝒏𝑏. 

 

The dialogical formulation of this generalization is straightforward: 

 the defender states that some operation is an element of ℕ𝒏; 

 the challenger requests that the defender shows the operation is equal to some 

element of ℕ𝒏; 

 once the defender chooses one of the elements, the challenger can request that 

he shows that this choice satisfies the ≤  (or ≥ ) condition defining that 

operation. 

 

For the sake of simplicity we will not display this last request. The following 

example should be enough. Assume that the defender stated  

 

𝐗 (𝑎 ×𝒏 𝑏) = 𝒎 = 𝑎: ℕ𝒏 
 

The challenger can then ask to check if 𝒎 satifies the 𝒎 ≤  𝒎′ condition required by the 

operator ×𝒏.
140

 Challenge and defence have the following form  

 

𝐘 ?  𝒎 ≤  𝒎′ 
Does 𝑚 satisfy the condition 𝒎 ≤  𝒎′ ?) 

𝐗 𝒎 ≤ 𝒎′: ℕ𝒏 
 

                                                 
138

 For a discussion on this ambiguity see (Prior, 1949). 
139

  Where 𝟎 can be interpreted as corresponding to the lowest truth-value and 𝒏 to the highest truth-

value of some 𝒏-valued logic. 
140

 Again we assume the defintion of "≤" and  "≥". The dialogical formulation of it deploys a 

Socratic rule specific to that relation, namely, if player X states 𝑛 ≤ 𝑚, given 𝑥 ∶  ℕ, 𝑦 ∶  ℕ, then Y can ask 
X to choose a 𝑧 ∶  ℕ such that 𝑛 + 𝑧 =  𝑚. Similarly for  "≥".  
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Table 49: dialogical rules for operations in many-valued logics 

Integrating many-valued logics: The Logics of Formal Inconsistency and the White 
Bullet Operator 

In a recent paper, E. A. Barrio, N. Clerbout & S. Rahman (2017) developed a 

dialogical reconstruction of the so-called Logics of Formal Inconsistency (LFI)—see 

(Carnielli, Coniglio, & Marcos, 2007). The LFIs are logics tolerant to some amount of 

inconsistency but in which some versions of explosion (ex falso) still hold. Thus, the LFIs 

are a form of paraconsistent logics, that is, logics where ex falso sequitur quodlibet does 

not generally hold, and so inconsistencies are tolerated. However, the LFIs do not tolerate 

all forms of inconsistencies but only those considered to be relevant in a context.
141

 In 

fact LFI constitute a whole family of logics distinguished by the kind of inconsistency 

they allow.   

The main result of (Barrio, Clerbout, & Rahman, 2017)  is to provide a formal 

framework applicable to situations in which inconsistent information may appear during 

                                                 
141

 Closely related are the important adaptive logics of (Batens, 1980) which are contextually 

sensitive to different inconsistent situations. They however seemed to have a more inferentialist 

background than the family of paraconsistent logics that came out of the work of Newton da Costa by 

1970–see (d'Ottaviano & da Costa, 1970); for an overview of these logics and their origin see (Bonbenrieth 

Miserda, 1996); for a recent presentation of new developments see (Carnielli & Coniglio, Paraconsistent 

Logic: Consistency, Contradiction and Negation, 2016). (Beirlaen & Fontaine, 2016) develop a dialogical 

reconstruction of some adaptive logics. 

 Move 
Synthesis of local reasons Synthesis of 

strategic reasons Challenge Defence 

Product 𝐗 (𝑎 ×𝒏 𝑏): ℕ𝒏 𝐘 ? = (𝑎 ×𝒏 𝑏) 

𝐗 (𝑎 ×𝒏 𝑏) = 𝒎
= 𝑎: ℕ𝒏 

If 𝒎 ≤ 𝒎′, where 

𝒎′ = 𝒃: ℕ𝑛 

𝐏 (𝑎 ×𝒏 𝑏) = 𝒎 ⟦〈 𝒎, 𝒎′〉⟧𝐎 ∶ ℕ𝒏 

𝐏 (𝑎 ×𝒏 𝑏) = 𝒎′⟦〈 𝒎, 𝒎′〉⟧𝐎: ℕ𝒏 

if 𝒎 ≤  𝒎′ 
 

if 𝒎 >  𝒎′ 

𝐗 (𝑎 ×𝒏 𝑏) = 𝒎′
= 𝑏: ℕ𝒏 

or 

if 𝒎 > 𝒎′ 

given 

𝐎 𝒎 = 𝑎: ℕ𝒏,  𝒎′ = 𝑏: ℕ𝒏  

Addition 𝐗 (𝑎+𝒏𝑏): ℕ𝒏 𝐘 ? = (𝑎+𝒏𝑏) 

𝐗 (𝑎+𝒏𝑏) = 𝒎
= 𝑎: ℕ𝒏 

If 𝒎 ≥ 𝒎′, where 

𝒎′ = 𝑏: ℕ𝑛
 

𝐏 (𝑎+𝒏𝑏) = 𝒎 ⟦〈 𝒎, 𝒎′〉⟧𝐎 ∶ ℕ𝒏 

𝐏 (𝑎+𝒏𝑏) = 𝒎′⟦〈 𝒎, 𝒎′〉⟧𝐎: ℕ𝒏 

if 𝒎 ≥  𝒎′ 
 

if 𝒎 <  𝒎′ 

𝐗 (𝑎+𝒏𝑏) = 𝒎′

= 𝑎: ℕ𝒏 
if 𝒎 < 𝒎′ 

given 

𝐎 𝒎 = 𝑎: ℕ𝒏, 𝒎′ = 𝑏: ℕ𝒏 

Implication 𝐗 (𝑎 →𝑛 𝑏): ℕ𝑛 Equivalent to the rules for addition. 

Negation 𝐗 ~𝒏𝑎: ℕ𝒏 𝐘 ? = ~𝒏𝑎 

𝐗~𝒏𝑎 =  𝒏 –  𝒎,  

𝒎 =  𝑎: ℕ𝒏 

where 
𝐏~𝒏𝑎 =  𝒏 –  𝒎⟦〈 𝒎, 𝒏〉⟧𝑶: ℕ𝒏 

𝐎 𝒎 =  𝑎 ∶  ℕ𝒏 
given 
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certain argumentative interactions, but always within some limits, in particular always 

keeping some “safe” propositions for which inconsistency is not tolerated. This result has 

been obtained from the dialogical inferentialist point of view: Barrio, Clerbout & Rahman 

(2017) reconstructed in their section 5 the many-valued semantics of two of the LFIs into 

structural rules.  

This is therefore a nice example of how one can unify a family of logics in one of 

the frameworks. As already suggested with the case of Boolean operators, we shall 

embed the truth-functional semantics of one of the logics studied, namely the Logic of 

Pragmatic Truth or Quasi-Truth (MPT) of (Coniglio & Silvestrini, 2014), within our 

general framework. However, a generalization for all of the LFIs seem to be 

straightforward.  

 

The truth-functional semantics for MPT includes the operators of product, addition, 

and negation we described above for ℕ𝟑 (let us here use the standard three values, 𝟎, ½, 

𝟏, where 𝟎 is the minimum and 𝟏 the maximum), and adds a different negation and a new 

implication, that we indicate with the superscript MPT, as well as a consistency operator. 

The dialogical formulation of these operators in the lines proposed for ℕ𝒏  is 

straightforward. 

 

 (𝑎 ×𝟑 𝑏): ℕ𝐌𝐏𝐓;  

(𝑎 ×𝟑 𝑏) is equal to 𝟎 if 𝑎 = 𝟎, otherwise it is equal to 𝑏; 

 (𝑎+𝟑𝑏): ℕ𝐌𝐏𝐓;  

(𝑎+𝟑𝑏) is equal to 𝟏 if 𝑎 = 𝟏, otherwise it is equal to 𝑏; 

 ~𝟑𝑎: ℕ𝐌𝐏𝐓;  

~𝟑𝑎 is equal to 𝟏 – 𝒎, where (where 𝒎 = 𝑎). 

 

 ~𝐌𝐏𝐓𝑎: ℕ𝐌𝐏𝐓;  

~𝐌𝐏𝐓𝑎 is equal to 𝟏 if 𝑎 = 𝟎, otherwise it is equal to 𝟎. 

 (𝑎 →𝐌𝐏𝐓 𝑏): ℕ𝐌𝐏𝐓; 

(𝑎 →𝐌𝐏𝐓 𝑏) is equal to 𝟎 if {
𝑏 = 𝟎
𝑎 = 𝟏

 or if {
𝑏 = 𝟎
𝑎 = ½

 otherwise it is equal to 𝟏. 

 𝑎°: ℕ𝐌𝐏𝐓 

𝑎° is equal to 𝟎 if 𝑎 = ½, otherwise it is equal to 𝟏.  

 

The idea of the white-bullet operator “°”, called consistency operator is to create a 

fragment in which some of the truth-functional objects behave like in classical logic, that 

is like in our framework for 𝐁𝐨𝐨𝐥. The dialogical reconstruction of this operator deployed 

the operator "𝐕°" which triggers the opening of a subplay in which the rules of the game 

are classical (Barrio, Clerbout, & Rahman, 2017).  

 

In the present framework we will study the white-bullet operator as another truth-

functional operator, that is as a non-canonical element of the three-elements set ℕ𝐌𝐏𝐓, but 

also as a function that evaluates the elements of some fixed subset 𝐶 of non-canonical 

elements of ℕ𝐌𝐏𝐓 as the codes of the universe 𝓤 (described above) and those codes, 

whose decoding yields the empty set falsum (ℕ𝟎, or⊥) and the unary set verum (ℕ𝟏, or 

⊤). This provides the insight that "°" triggers a transfer from ℕ𝟑 to 𝐁𝐨𝐨𝐥. 
 

Thus the insight we gain here is that 𝐕° should be understood as the following 

function, with 𝑥: 𝐶𝐌𝐏𝐓as an abbreviation for {𝑥 ∶  ℕ𝐌𝐏𝐓 | C(𝑥)}: 
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Table 50: dialogical rules from ℕ𝟑 to 𝐁𝐨𝐨𝐥 

 Move Challenge Defence 

White 

bullet 

𝐗 𝐕°(𝑥): 𝓤 [𝑥: 𝑪𝐌𝐏𝐓] 

𝐘 𝑎 = 𝟎: 𝑪𝐌𝐏𝐓 𝐗 𝐕°(𝑎) = 𝒏𝟏: 𝓤  

𝐘 𝑎 = 𝟏: 𝑪𝐌𝐏𝐓 𝐗 𝐕°(𝑎) = 𝒏𝟏: 𝓤 

𝐘 𝑎 = 𝟏/𝟐: 𝑪𝐌𝐏𝐓 𝐗 𝐕°(𝑎) = 𝒏𝟎: 𝓤 

𝐗 𝐕°(𝑎): 𝓤 𝐘 ? 𝒯(𝐕°(𝑎)) 

𝐗  𝒯(𝐕°(𝑎)) = ⊤: 𝑠𝑒𝑡 

if 𝑎 = 𝟎: 𝑪𝐌𝐏𝐓 

𝐗  𝒯(𝐕°(𝑎)) = ⊤: 𝑠𝑒𝑡 

if 𝑎 = 𝟏: 𝑪𝐌𝐏𝐓 

𝐗  𝒯(𝐕°(𝑎)) =⊥: 𝑠𝑒𝑡 

if 𝑎 = 𝟏/𝟐: 𝑪𝐌𝐏𝐓 

 

We can also deploy 𝑰𝒅 within 𝐁𝐨𝐨𝐥 for rendering empirical propositions. Let us 

discuss this issue now.  

X.4 Empirical Quantities and Material Dialogues 

 Empirical Quantities as Finite Sets of Answers X.4.1

As already mentioned in the opening of the chapter, non-canonical elements of the 

set 𝐁𝐨𝐨𝐥 can be used to study the meaning of empirical propositions, though what we 

need in particular is the notion of empirical quantity. This notion has been introduced by 

Martin-Löf in applying CTT to the empirical realm (Martin-Löf, 2014): whereas 

quantities of mathematics and logic are determined by computation, empirical quantities 

are determined by experiments and observation. An example of a mathematical quantity 

is 2 + 2; it is determined by a computation yielding the number 4. An example of an 

empirical quantity is the colour of some object. This is not determined by computation; 

rather, one must look at the object under normal conditions.  

 

In the dialogical framework, we can consider empirical quantities as answers to a 

question. For example, give the question  

 

Are Cheryl's eyes blue? 

 

The yes or no answer, obtained through some kind of empirical procedure received in a 

given context, can be defined over the set 𝐁𝐨𝐨𝐥, namely as being equal to 𝒚𝒆𝒔 or 𝒏𝒐. The 

following question however might involve many different answers: 

 

What is the colour of Cheryl's eyes? 

 

If 𝙓  stands for the empirical quantity Colour of Cheryl's eyes, we might define the 

possible answers over some finite set ℕ𝒏  of natural numbers: 

 
𝙓 = 1: ℕ𝒏 if Cheryl's eyes are brown 

𝙓 = 2: ℕ𝒏 if Cheryl's eyes are green 

𝙓 = 3: ℕ𝒏if Cheryl's eyes are blue 
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  … 

𝙓 = 𝑛: ℕ𝒏  if Cheryl’s eyes are… 

 

Certainly the question Are Cheryl's eyes blue? can also be defined over a larger set, 

if several degrees of colour are to be included as an answer, or alternatively degrees of 

certainty (definitely blue, quite blue, slightly blue…).  Let us assume then another set ℕ𝒋 

for the degree of colour: 

 

𝙔 = 0_1: ℕ𝑗 if Cheryl's eyes are dark blue 

𝙔 = 0_2: ℕ𝑗 if Cheryl's eyes are light blue. 

𝙔 = 0_3: ℕ𝑗 if Cheryl's eyes are green-blue.  

  …  
𝙔 = 0_𝑗: ℕ𝑗 if Cheryl’s eyes are…  

 

The general dialogical rule for an empirical quantity can thus be rendered: 

Table 51: general dialogical rule for an empirical quantity 

 Move Challenge Defence 

Empirical quantity 𝐗  𝙓 ∶  ℕ𝑛 𝐘 ? =  𝙓 

𝐗 𝑚1 =  𝙓 ∶  ℕ𝑛 

… 

𝐗 𝑚𝑛 =  𝙓 ∶  ℕ𝑛 
(the defender chooses) 

 

Notice that determining the value of the empirical quantity is an empirical 

procedure, specific to that quantity; the result of carrying out such a procedure is 

determined by the rules for that quantity. Moreover, the value of two different empirical 

quantities might be the same: the quantities only indicate that the way of determining the 

answer to the question might be the same. Take for example these two enquiries 

(1) Did Jorge Luis Borges compose the poem “Ajedrez”? 

(2) Is Ibn al-Haytham the author of Al-Shukūk ‛alā Batlamyūs (Doubts 

Concerning Ptolemy)? 

These two enquiries involve determining the value of the empirical quantity 𝙓 for 

(1) and 𝙔  for (2), which can be the same: they can both be 𝒚𝒆𝒔  for instance if the 

underlying set is 𝐁𝐨𝐨𝐥. 
This leads to a Socratic rule specific to statements of the form 𝙓, 𝙔, 𝗭 ∶  ℕ𝑛. For 

example, given the set ℕ𝑛
, P can defend the challenges  

 

𝐎 ? =  𝙓  with the statement 𝐏 𝑚1 = 𝙓: ℕ𝑛
 

𝐎 ? =  𝙔  with the statement 𝐏 𝑚2 = 𝙔: ℕ𝑛
 

𝐎 ? =  𝗭  with the statement 𝐏 𝑚𝟑 = 𝗭: ℕ𝑛
 

Incompatibility 

A system of rules that targets the development of a more complex meaning network 

might include incompatibility rules formulated as challenges. Thus, instead of 

establishing the simple use of Copy-cat, the game might include more sophisticated rules 

specific to a particular empirical quantity. For example, if a player responded 𝒚𝒆𝒔 to the 

enquiry associated with 𝙓 

 

(3) Did the Greek won in 480 BC the sea-battle take of Salamis? 
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that is, if he stated  𝒚𝒆𝒔 =  𝙓 ∶  𝐁𝐨𝐨𝐥; this player might not be allowed to respond 𝒚𝒆𝒔 to 

the enquiry associated with 𝗭  

 

(4) Did Xerxes won in 480 BC the sea-battle of Salamis? 

 

that is, he might not be entitled to further state 𝒚𝒆𝒔 =  𝗭 ∶  𝐁𝐨𝐨𝐥. That is, the other player 

may challenge the right to answer both (3) and (4) with 𝒚𝒆𝒔: 

(5) Both answers cannot be 𝒚𝒆𝒔. 

that is, she can challenge his two statements by stating that ¬(𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝙓) ∧

 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝗭)). The first player would then have to give up. This challenge would be 

calling upon some formal incompatibility between two statements. 

Table 52: Formal incompatibility 

 Moves Challenge Defence 

Formal 

incompatibility 

𝐏 𝒚𝒆𝒔 = 𝙓 ∶ 𝐁𝐨𝐨𝐥 
and 

𝐏 𝒚𝒆𝒔 =  𝗭 ∶ 𝐁𝐨𝐨𝐥 

𝐎 ¬(𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝙓)

∧  𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝗭)) 
𝐏 𝑔𝑖𝑣𝑒𝑠 𝑢𝑝 

 

But there is another kind of incompatibility challenge, calling upon contentual 

incompatibility. Consider for instance (4): if a player answers 𝒚𝒆𝒔, Xerxes won in 480 BC 

the sea-battle of Salamis, then the other player can challenge this through contentual 

incompatibility: the challenger simply states the formally incompatible answer to the 

challenged statement: 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝙓),  The Greek won in 480 BC the sea-battle of 

Salamis. The challenged player must then give up. 

 

Table 53: Contentual incompatibility 

 Moves Challenge Defence 

Contentual 

incompatibility 
𝐏 𝒚𝒆𝒔 =  𝗭 ∶ 𝐁𝐨𝐨𝐥 𝐎 𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝙓)  𝐏 𝑔𝑖𝑣𝑒𝑠 𝑢𝑝 

 Dependent Empirical Quantities X.4.2

Another more sophisticated form of dealing with empirical quantities is to 

implement a structure where one empirical quantity might depend on another one.  For 

example let us define the empirical quantity 𝙔 as the function 𝑏(𝙓): ℕ𝑗
𝒏 [𝙓: ℕ𝒏] such that  

 

 𝙔 ∶=𝒅𝒇 𝑏(𝙓): ℕ𝑗
𝒏 [𝙓: ℕ𝒏]  

𝑏(𝙓) = 𝑗𝑖: ℕ
𝒋

, given 𝙓 = 𝑛𝑚: ℕ𝒏 

 … 

𝑏(𝙓) = 𝑗𝑘: ℕ
𝒋

, given 𝙓 = 𝑛𝑛: ℕ𝒏, if … 

 

Suppose we are interested in determining the meaning of some empirical 

propositions; this can involve for instance establishing that stating that something has a 

determinate colour (say, red) would presuppose that the player already answered the 

question whether the object at stake is coloured or not. 
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In this case also the rules of the game might include rules for challenging empirical 

quantities on the basis of a certain evaluation of another empirical quantity on which the 

first is dependent; this would be like challenging that something is red by denying that the 

empirical quantity that yields the evaluation 𝙓 has a positive response to the question if 

the object at stake has a colour.  

Dependent Empirical Quantities and Futures Contingents 
Among empirical quantities are the quantities of future events, the indicator then 

being whether or not the event occurs, following an analogous practice in mathematics, 

defining such a quantity 𝙓 by making it equal to 𝒚𝒆𝒔 if the event occurs and to 𝒏𝒐 if the 

event does not occur. We are dealing here with empirical quantities because an empirical 

method is required for determining their value. 

Martin-Löf used such empirical quantities of future events for dealing with 

Aristotle’s sea-battle puzzle: the question 

Will a sea-battle take place tomorrow? 

can have two answers, 𝙓 = 𝒚𝒆𝒔 tomorrow a sea-battle will take place (the event will 

occur), or 𝙓 = 𝒏𝒐 tomorrow a sea-battle will not take place (the event will not occur). In 

a dialogical setting, if we replace the empirical quantity 𝙓 by a variable 𝒙, we would 

obtain the following thesis (in the form of a hypothetical): 

 

𝐏 ! (𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒙, 𝒚𝒆𝒔) ∨  𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒙, 𝒏𝒐)) [𝒙 ∶  𝐁𝐨𝐨𝐥] 
 

Since we do have a winning strategy for (∀𝑥 : 𝐁𝐨𝐨𝐥)(𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒙, 𝒚𝒆𝒔) ∨

𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒙, 𝒏𝒐)) (see section X.2.3), it is possible to assert this thesis even though for 

practical reasons we cannot yet determine the value of 𝒙. 

Application in law 
This piece of logical analysis finds a nice application

142
 in what Leibniz has called 

suspensive conditions or also moral conditions,
143

 determining some conditional right 

such as: 

Primus must pay 100 dinar to Secundus if a ship arrives from Asia  

(within a set time frame) 

 

According to Leibniz, this problem should be coupled with both a logical and an 

epistemic analysis: the contracting parties must not have any information yet whether the 

antecedent (that a ship arrives from Asia) is true or false (if they know, then the contract 

is not conditional). The right established by the contract should be considered to be 

legally binding, despite the fact that the condition has not yet been satisfied.  

 

Klev (2014b) uses in this context Martin-Löf’s notion of empirical quantity: let 𝙓 

be an empirical quantity equal to 𝒚𝒆𝒔 if a ship arrives and equal to 𝒏𝒐 if no ship has 

arrived within a certain time span. The empirical method here that can be used to 

determine whether 𝙓 = 𝒚𝒆𝒔 or 𝙓 = 𝒏𝒐 can for instance consist in standing on the dock 

for the specified time span and recording the incoming ships. We can now define a 

function 𝑏 on the set 𝐁𝐨𝐨𝐥 ∶=  {𝒚𝒆𝒔, 𝒏𝒐} by setting 

                                                 
142

 Traditional legal approaches to conditional right considered suspensive conditions through the 

notions of existence or legal fiction (Magnier, 2015, p. 72). New recent logical reconstructions of 

conditional right have been triggered by the work of (Armgardt, 2001; 2008; 2010), such as the studies of 

(Thiercelin, 2009; 2010), (Magnier, 2013; 2015), (Rahman, 2015). 
143

 Doctrina conditionum in Leibniz (1964), see also (Armgardt, 2001). 
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𝑏(𝒏𝒐) = 0 and 

 𝑏(𝒚𝒆𝒔)  =  100  

where 0 and 100 are to be understood as the amount of money to be paid. 

 

Since 𝙓, being a (non-canonical) element of 𝐁𝐨𝐨𝐥, is equal to either 𝒚𝒆𝒔 or 𝒏𝒐, 

𝑏(𝙓) is well defined, it's evaluation being either 0 or 100. So 𝑏(𝙓) is understood as the 

amount to be payed by Primus to Secundus [𝙓 ∶  𝐁𝐨𝐨𝐥].  
Thus, in the dialogical framework using empirical quantities, the thesis stated by P 

would be the following: 

 

P ! Primus must pay 𝑏(𝙓) dinar to Secundus. 

 

Notice that this thesis is not hypothetical but has a categorical form: the condition If a 

ship arrives is not given in a hypothesis, it is built straight into the empirical quantity 𝙓; 

one should therefore probably speak of dependent obligation rather than conditional 

right. The ruling dependents on the value of 𝙓, though leaving the possibility open of not 

yet being in a position to determine 𝙓, but as soon as it is determined, so is 𝑏(𝙓), and 

thereby Primus's debt to Secundus: 

 if we can determine that 𝙓 is 𝒏𝒐, then we can assert the debt to be 𝑏(𝒏𝒐) = 0;  

 if we can determine that 𝙓 is 𝒚𝒆𝒔, then we can assert the debt to be 𝑏(𝒚𝒆𝒔)  =
 100.  

What one is obliged to do depends on the value of such a determined empirical 

quantity. 

 

What is more, Islamic jurists also have intensive discussions on the issue, and have 

been precursors of Leibniz’s rejection of the roman notion of retroactivity. As pointed out 

by Yvon Linant de Bellefonds (1965, pp. 425-430), the Islamic jurists considered that 

only a restricted set of suspensive (muʿallaq) conditions (taʿliq) yield legally binding 

contracts. It might be argued that, from the logical point of view, their rejection was 

based on a hypothetical analysis of conditional right. An indication of this is that transfers 

of goods are excluded from contracts with suspensive conditions. A suspensive 

condition—unless a clear time frame was defined—might introduce a too hazardous 

parameter for the establishment of the juridical act. In fact, if the time frame is clearly 

defined and the condition not absolutely contingent, then it was considered not falling 

under suspensive conditions. Thus, contracts stipulating too vague conditions such as If 

next year I will have a profitable harvest, then 𝐵, where not considered to be legally 

binding. However, if the condition is set in a clear time frame, then it is not considered as 

falling under what they understood to be suspensive. In fact, only a reduced set of cases 

were allowed, including those juridic acts that can in principle be revoked, such as a will: 

since it can be revoked, the fulfilment of the will might be formulated as including an 

explicit suspensive condition—tacit conditions have another structure, see (Linant de 

Bellefonds, 1965, pp. 429-430). 

 

This might perhaps lead to distinguish between dependent obligations (rather than 

susupensive conditions) and conditional right (dependent upon suspensive conditions). In 

relation to the latter, a possible reconstruction that stresses the hypothetical character of 

the conditional right and deploys empirical quantities is the following:  

 

𝐏! (𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒙, 𝒚𝒆𝒔) ⊃ 𝑰𝒅(ℕ, 𝒚, 𝒚𝒆𝒔))

∧ (𝑰𝒅(𝑩𝒐𝒐𝒍, 𝒙, 𝒏𝒐) ⊃ 𝑰𝒅(ℕ, 𝒚, 𝒏𝒐))  [𝒙, 𝒚: 𝐁𝐨𝐨𝐥] 
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Where 𝒙  is stands for a variable for the empirical quantity 𝙓 , Ashraf fulfils 

condition 𝐶 [explicitly established as a condition in Zayd’s will], and where 𝒚 stands for 

a variable for the empirical quantity 𝙔, Ashraf receives 100 dinar after Zayd’s death 

(according to Zayd’s will).  

The procedure determining the value of 𝒚 is eminently empirical: it amounts to 

decide if the contract is or not legally binding (this amounts to verifying if it the condition 

meets the requirements settled for muʿallaq taʿliq (suspensive condition)). Similar applies 

to the determination of 𝒙.144
 

 Conclusion on Empirical Quantities X.4.3

Local reasons in general, and empirical quantities in particular, take care of some 

old and new criticisms raised against the standard dialogical approach to meaning 

formulated by (Lorenzen & Lorenz, 1978)—see sections  I.1, p. 14 and  XI.4 for further 

details on these criticisms and our take on the issue. 

It is fair to say that the notion of material dialogues seem to be underdeveloped in 

relation to the formal dialogues that gathered much more attention. However, let us stress 

that the fathers of dialogical logic where aware of the need of a contentual (material was 

the chose term) basis right from the beginning; they tackled the issue with different 

devices. Lorenz (1970) in particular dedicated to this issue very thorough and deep 

studies, most of them collected in (Lorenz, 2010a; 2010b). Moreover, the rules for 

integrating empirical quantities within the dialogical framework described above are 

directly inspired by the predicator rules already discussed in (Lorenz & Mittelstrass, 

1967). Predicator rules, the dialogical counterparts of semantic definitions, are part of the 

play level; the formalistic interpretation of the dialogical framework pointed out in the 

opening of this chapter comes for a large part from neglecting this level of meaning. 

Chapter  XI, our concluding chapter, will deal more at large on this neglect of the play 

level. 

Predicator rules are part of the Orthosprache project of the Erlangen 

Constructivism proposed by 1970,
145

 which challenged at that time also the approach of 

mainstream analytic theory of meaning. The underlying idea is the explicit and 

constructive development, by example (exemplarisch), of a contentual language in order 

to build a specific scientific terminology (Kamlah & Lorenzen, 1972, pp. 70-111). 

The qualification “by example” refers to one of the major tenets of the overall 

philosophy of language of the Erlangen School, namely the idea that we grasp an 

individual as exemplifying something—type theoreticians will say, as exemplifying a 

type (see below): 
Yet even science cannot avoid the fact that things do not proffer themselves 

everywhere as different of their own accord, more often in important areas (e.g. in the social 

or historical sciences) science must decide for itself what it wants to regard as of the same 

kind and what is of different kind, and address them accordingly. […] 

As we have said already, the world does not “consist of objects” (of “things in 

themselves”) which are subsequently named by men […]. 

In the world being disclosed to us all along through language we tend to grasp the 

                                                 
144

 See (Rahman & Iqbal, 2018) for a general dialogical approach to legal reasoning in the context of 

Islamic jurisprudence. 
145

 The term “Orthosprache” was introduced by Lorenzen in 1972, quoted in a footnote in the 

second edition of the Logische Propädeutik (Kamlah & Lorenzen, 1972, p. 73 footnote 1) and discussed in 

the bible of the Erlangen School: Konstruktive Logik, Ethik und Wissenschaftstheorie (Lorenzen & 

Schwemmer, 1975). 



IMMANENT REASONING OR EQUALITY IN ACTION 217 

 

 

individual object as individual at the same time that we grasp it as specimen of… Further, 

when we say “This is a bassoon” we mean thereby “This instrument is a bassoon” […] or 

when we say “This is a blackbird”, we presuppose that our discussion partner already knows 

“what kind of an object is meant”, that we are talking about birds. (Kamlah & Lorenzen, 

1984, p. 37) 

Accordingly, the predicators of the Orthosprache are introduced via the study of 

exemplification instances. Now, a scientific terminology does not only consist in a set of 

predicators or even of sentences expressing propositions: an adequate scientific language 

constitutes a system of conceptual interrelations. The main logical device of the 

Orthosprache project is to establish the corresponding transitions by predicator rules that 

normalize the passage from one predicator to the other. Moreover, these transition rules 

are formulated within a dialogical frame, so that given the predicator rule 

𝑥 휀 𝐴  ⇒   𝑥 휀 𝐵 
(where 𝑥 is a free variable and “𝐴” and “𝐵” are predicators) 

we have: if a player brings forward an object of which predicator 𝐴 is said to apply, then 

he is also committed to ascribe the predicator 𝐵 to the same object. The idea is that if, for 

example, someone claims 𝑘 is a bassoon, then he is committed to the further claim 𝑘 is a 

musical instrument (where 𝑘 is an individual constant: in the Logische Propädeutik the 

application of these norms proceeds by substituting individual constants for free 

variables). The Constructivists of Erlangen called material-analytic norms such transition 

rules which structure a (fully interpreted) scientific language by setting the boundaries of 

a predicator. Material-analytical propositions (or, more literally, material-analytical 

truths) are defined as the universally quantified propositions based on such material-

analytic norms (Lorenzen & Schwemmer, 1975, p. 215). 

X.5 Some General Epistemological Consequences  

 Play Level and Material Dialogues X.5.1

The philosophical background to our dialogical approach of Martin-Löf's notion of 

empirical quantity is set in describing how to internalize empirical data into the rules of 

the play (Peregrin, 2014, pp. 34-36, 100-104); or, to put it in Sellars’ words, describing 

how to place empirical data within the space of reasons. As it is well known, Sellars 

introduces the notion of space of reasons in the context of observational reports such as 

“This is green”. According to Sellars (1991, pp. 129-194), such a report expresses a state 

of knowledge, if the one who brings forward the reports is able to justify his assertion by 

calling on some further, more general, knowledge about the reliability of such reports: 
The essential point is that in characterizing an episode or a state as that of knowing, 

we are not giving an empirical description of that episode or state; we are placing it in the 

logical space of reasons, of justifying and being able to justify what one says. (Sellars, 1991, 

p. 169)  

Brandom’s (1994; 2000; 2008) interpretation of the space of reasons intends to 

provide an inferentialist reading to both the internalization of empirical data, and the 

broader knowledge that is required for the reliability of such reports: the relations in the 

space of reasons are constituted by possibilities of reaching positions of entitlement or 

commitment by inference from prior positions of entitlement or commitment; thus what 

language needs to become the games of giving and asking for reasons’ vehicle are 

inferential rules. To be able to give reasons we must be able to make claims that can serve 

as reasons for other claims; hence our language must provide for sentences that entail 

other sentences. To be able to ask for reasons, we must be able to make claims that count 

as a challenge to other claims; hence our language must provide for sentences that are 
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incompatible with other sentences. Our language must therefore be structured by these 

entailment and incompatibility relations.  

One must also add on the one hand the relation from which commitments and 

entitlements are inherited: by committing myself to This is a dog I also and thereby 

commit myself to This is an animal, and being entitled to It is raining I am also and 

thereby entitled also to The streets are wet; and on the other hand the relation of co-

inheritance of incompatibilities (𝐴 is in this relation to 𝐵 iff whatever is incompatible 

with 𝐵 is incompatible with 𝐴).  

 

The relation between dialogical logic and the games of asking and giving reasons 

has already been pointed out by (Keiff, 2007) and (Marion, 2006; 2009; 2010): 
My suggestion is simply that dialogical logic is perfectly suited for a precisification of 

these ‘assertion games’. This opens the way to a ‘game-semantical’ treatment of the ‘game of 

giving and asking for reasons’: ‘asking for reasons’ corresponds to ‘attacks’ in dialogical 

logic, while ‘giving reasons’ corresponds to ‘defences’. In the Erlangen School, attacks were 

indeed described as ‘rights’ and defences as ‘duties’, so we have the following equivalences:  

Right to attack ↔ asking for reasons 

Duty to defend ↔ giving reasons 

The point of winning ‘assertion games’, i.e., successfully defending one’s assertion 

against an opponent, is that one has thus provided a justification or reason for one’s 

assertion. Referring to the title of the book [Making it Explicit], one could say that playing 

games of ‘giving and asking for reasons’ implicitly presupposes abilities that are made 
explicit through the introduction of logical vocabulary. (Marion, 2010, p. 490) 

An important component for linking Brandom’s intepretation of Sellar’s space of 

reasons with the dialogical framework, namely the strategic level, is stressed in section 

1.2 of (Keiff, 2007):  
Traditionnellement, la logique est présentée comme la science des arguments (ou du 

raisonnement) préservant la vérité, et les objets de cette théorie sont déterminés par rapport 

à cette propriété : les constantes logiques sont les unités syntaxiques dans les énoncés qui 

constituent un argument que l’on ne peut altérer tout en garantissant la préservation de la 

vérité. Ce que l’on peut reformuler en termes brandomiens : les constantes logiques sont 

définies comme les unités syntaxiques qu’on ne peut altérer tout en préservant l’identité des 

conditions d’assertabilité. Mais l’approche dialogique détermine son objet de façon plus 

précise : elle définit les conditions d’assertabilité en termes de stratégies de justification.
146

 

Yet, despite the dialogical framework’s close links with Brandom’s inferentialism, 

there is also—as argued by (Clerbout & Rahman, 2015, pp. ix-xi)—an important 

difference: the play-level. Indeed from dialogical point of view, strategies are constituted 

by plays: if we are prepared to determine meaning from the point of view of dialogical 

games, the constitution of the strategy is a process that cannot be left by side. To put it 

other words, not every sequence of moves in games of asking for reasons and providing 

them is necessarily inferential, only those plays leading to winning strategies are.  

                                                 
146

 Logic is traditionnally presented as the science of arguments (or of reasoning) preserving truth, 

and the objects of this theory are determined according to this property: the logical constants are syntactical 

units in the expressions constituting an argument that cannot be changed while still warranting the truth 

preservation. To put it in Brandomian terms: logical constants are defined as syntactical units that cannot be 

changed while preserving the identity of the assertability conditions. But the dialogical approach 

determines its object in a more precise fashion: this approach defines the assertability conditions in terms of 

strategies of justification. 
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To put in the nice of words of Peregrin (2014, pp. 228-229), the prescription for the 

interaction of questions and answers at the play level provides the material by the means 

the which we reason, not the material that prescribes how to reason:
147

  
This is a crucial point, because it is often taken for granted that the rules of logic tell 

us how to reason precisely in the tactical sense of the word. But what I maintain is that this is 

wrong, the rules do not tell us how to reason, they provide us with things with which, or in 

terms of which, to reason. (Peregrin, 2014, pp. 228-229) 

This idea that not every move in the space of reasons is inferential might be related 

to McDowell’s (2004; 2009) worry concerning Brandom’s interpretation of Sellars:  
Someone can know what colour something is by looking at it only if she knows enough 

about the effects of different sorts of illumination on colour appearances.  The essential thing 

for our purposes is that the relation of this presupposed knowledge to the knowledge that 

presupposes it—support in Sellars’s second dimension—is not that the presupposing 

knowledge is inferentially grounded on the presupposed knowledge. (McDowell, 2004) 

  

We only need to register that it is experience that yields the knowledge expressed in 

observation reports. Recognizing the second dimension puts us in a position to understand 

observation reports properly.  The knowledge they express is not inferentially grounded on 

other knowledge of matters of fact, but—in the crucial departure from traditional 

empiricism—it presupposes other knowledge of fact. (McDowell, 2009, p. 223) 

Our reconstruction of the controversy between Brandom and McDowell is based on 

a double articulation:  

 the difference between the play and the strategy level, and 

 the difference between dependences upon empirical quantities and dependences as 

structured by premises-conclusion. 

For short, while the dialogical framework allows for interaction through questions 

and answers that cannot be reduced to the strategy level—though it may well have the 

general intent of constituting them, see (Keiff, 2004, pp. 41-42)—, the richer language of 

immanent reasoning can analyze empirical reports as constituted by empirical quantities 

and the propositions that bear them, that is, as statements involving local reasons adduced 

in favour of certain propositions. In this regard, we can analyze this kind of report  

 

(1) This apple looks green to me 

 

 as the play level statement of some concrete player, say, Eloise: 

 

𝐸𝑙𝑜𝑖𝑠𝑒 𝙓 = 3: ℕ𝟓  

                                                 
147

 In fact Peregrin (2014) uses the dialogical framework to develop a new approach of the issue on 

the normativity of logic: he understands the normativity of logic not in the sense of prescriptions on how to 

reason, but rather as providing the material by the means of which we reason. If we link this proposal with 

the distinction between the play level and strategy level, we can distinguish prescriptions that aim the 

development of a play and provide the material for reasoning, from those proper to the tactics, considering 

the optimal means on how to win. These last prescriptions dictate the design of feasible strategies; 

Peregrin's suggestion leads to dividing the strategy level with tactics singling out the subset of feasible 

strategies from the whole set of strategies. While tactical considerations try to find the optimal way to 

achieve victory, normativity in a more general and fundamental level involves the play level, that is, the 

level where instruments of reasoning and meaning are forged. Moreover, Peregrin links the normativity of 

logic with another main conceptual tenet of the dialogical framework, namely, the public feature of the 

speech-acts underlying an argumentative approach to reasoning. See in particular (Peregrin, 2014, pp. 228-

229). 
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(where 𝙓 is the empirical quantity that encodes the response to the enquiry on the apple 

being green). 

 

Moreover, determining the response to such an empirical quantity 𝙓  may well be 

dependent upon another empirical quantity 𝙔: 

 

𝐸𝑙𝑜𝑖𝑠𝑒 𝙓 ∶=𝑑𝑓  𝑏(𝙔) = 3: ℕ𝟓 [𝙔 ∶  𝐁𝐨𝐨𝐥] 

(where 𝙔 is the empirical quantity that encodes the response to the enquiry on the apple 

being coloured). 

 

Notice that we are here like McDowell making an empirical quantity dependent 

upon another one by means of a function between those quantities rather that expressing 

the dependence by means of inferences.
148

  

The rules of the play level internalize the empirical features by prescribing the rules 

specific to the empirical quantity at stake. However this does not mean that we cannot 

move from the statement it looks green to me to the assertion it is green: a winning 

strategy is required for this, strategy that can be totally rendered by inferential moves. In 

a winning strategy, it is sufficient for Eloise to show that she can defend her statement, 

given the material rules set by the game, against any challenge of her antagonist Abelard 

playing according to these rules. 

 The Dialogical Internalization and the Myth of the Given  X.5.2

Let us stress the point that, if our reconstruction of Sellars' observational reports by 

means of empirical quantities is correct, acknowledging the legitimacy of such reports 

does not fall into the so-called Myth of the Given (Sellars, 1956): in our approach, 

empirical quantities are non-canonical elements of some set in the context of CTT; in 

such a context there is no way to approach some object without apprehending it as 

determining what it is. Indeed two main tenets of CTT are 

1. No entity without type 

2. No type without semantical equality 

If we recall the Curry–Howard isomorphism between types and propositions we have  

 

Every entity is bearer of a proposition.  

 

This is what the internalization of empirical content within a dialogical stance is about: 

bringing forward local reasons for a proposition.
149

 Moreover, the dialogical approach 

understands “no type without semantical equality” as making semantical equality result 

from the interaction of giving and asking for reasons, which would take care of 

Brandom's (1994; 1997; 2000; The Centrality of Sellars's Two-Ply Account of 

Observation to the Arguments of 'Empiricism and the Philosophy of Mind', 2002) worries 

in interpreting observational reports the way McDowell suggested. 

 

The discussion between McDowell and Brandom has interesting parallels with the 

opposition between Hintikka's (1973) notion of outdoor-games and Lorenzen & Lorenz’s 

                                                 
148

 In the early stages of the development of the dialogical framework, meaning dependences where 

normed by means of transition rules between predicators, at the play level. See section  X.4.3. 
149

 This is the sense of internalization discussed by (Peregrin, 2014, pp. 34-36, 100-104). However, 

since he does not use the CTT language, he does not have the means for distinguishing the empirical 

quantity from the set (proposition) it instantiates.   
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(1978) indoor-games. Indeed Hintikka (1973, pp. 77-82), who acknowledges the close 

links between dialogical logic and game-theoretical semantics, launched an attack against 

the philosophical foundations of dialogical logic because of its indoor—or purely 

formal— approach to meaning as use. He argues that formal proof games are not much 

help in accomplishing the task of linking the linguistic rules of meaning with the real 

world: 
In contrast to our games of seeking and finding, the games of Lorenzen and 

Stegmüller are ‘dialogical games’ which are played ‘indoors’ by means of verbal ‘challenges’ 

and ‘responses’. […] 

 If one is merely interested in suitable technical problems in logic, there may not be 

much to choose between the two types of games. However, from a philosophical point of view, 

the difference seems to be absolutely crucial. Only considerations which pertain to ‘games of 

exploring the world’ can be hoped to throw any light on the role of our logical concepts in the 
meaningful use of language. (Hintikka, 1973, p. 81) 

This kind of worries have been dealt away by integrating Socratic rules specific to a 

given predicate and by incorporating empirical quantities. 
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XI. CONCLUDING REMARKS: A PLAIDOYER FOR THE PLAY 
LEVEL 

To some extent, the criticisms the dialogical approach to logic has been subject 

to have provided an opportunity for clarifying its basic tenets. Moreover, our responses to 

the objections have highlighted crucial distinctions constituting the originality and 

flexibility of this logical framework. We will therefore in this concluding chapter 

consider some recent objections raised against the dialogical framework in order to 

pinpoint some of its fundamental features, whose importance may not have appeared 

clearly enough through the main body of the book; namely, dialogue-definiteness, player-

independence, and the dialogical conception of propositions. Showing how and why these 

features have been developped, and specifying their point and the level they operate on, 

will enable us to vindicate the play level and thus disarm the objections that have been 

raised against the dialogical framework for having neglected this crucial level.  

We shall first come back on the central notion of dialogue-definiteness and on the 

dialogical conception of propositions, which are essential for properly understanding the 

specific role and importance of the play level. We shall then be able to address three 

objections to the dialogical framework, due to a misunderstanding of the notion of Built-

in Opponent, of the principles of dialogue-definiteness and of player-independence, and 

of the reflexion on normativity that constitutes the philosophical foundation of the 

framework; all of these misunderstandings can be reduced to a misappraisal of the play 

level. We shall then go somewhat deeper in the normative aspects of the dialogical 

framework, according to the principle that logic has its roots in ethics. A last section 

before our final words will come back to the origins of immanent reasoning, sketching 

some important aspects of Dialogical Constructivism which rest on the learning process 

constituting the core of intersubjectivity. 

XI.1 Dialogue-Definiteness and Propositions 

The dialogical theory of meaning is structured in three levels, that of the local 

meaning (determined by the particle rules for the logical constants), of the global 

meaning (determined by the structural rules), and the strategic level of meaning 

(determined by what is required for having a winning strategy). The material level of 

consideration is part of the global meaning, but with particular rules so precise that they 

determine only one specific expression (through a modified Socratic rule). A 

characteristic of the local meaning is that the rules are player independent: the meaning is 

thus defined in the same fashion for each player; they are bound by the same sets of 

duties and rights when they start a dialogue. This normative aspect is thus constitutive of 

the play level (which encompasses both the local meaning and the global meaning): it is 

even what allows one to judge that a dialogue is taking place. In this regard, meaning is 

immanent to the dialogue: what constitutes the meaning of the statements in a particular 

dialogue solely rests on rules determining interaction (the local and the global levels of 

meaning). The strategy level on the other hand is built on the play level, and the notion of 

demonstration operates on the strategy level (it amounts to having a winning strategy).  

Two main tenets of the dialogical theory of meaning can be traced back to 

Wittgenstein, and ground in particular the pivotal notion of dialogue-definiteness: 
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1. the internal feature of meaning (the Unhintergehbarkeit der Sprache
150

), and  

2. the meaning as mediated by language-games.  

 

As for the first Wittgensteinian tenet, the internal feature of meaning, we already 

mentioned in the introduction that if we relate the notion of internalization of meaning 

with both language-games and fully-interpreted languages of CTT, then a salient feature 

of the dialogical approach to meaning can come to fore: the expressive power of CTT 

allows all these actions involved in the dialogical constitution of meaning to be 

incorporated as an explicit part of the object-language of the dialogical framework.
151

 

In relation to the second tenet, the inceptors of the dialogical framework observed 

that if language-games are to be conceived as mediators of meaning carried out by social 

interaction, these language-games must be games actually playable by human beings: it 

must be the case that we can actually perform them,
152

 which is captured in the notion of 

dialogue-definiteness.
153

 Dialogue-definiteness is essential for dialogues to be mediators 

of meaning, but it is also constitutive of what propositions are, as Lorenz clearly puts it: 
[…] for an entity to be a proposition there must exist an individual play, such that this 

entity occupies the initial position, and the play reaches a final position with either win or 

loss after a finite number of moves according to definite rules. (Lorenz, 2001, p. 258) 

A proposition is thus defined in the standard presentation of dialogical logic (see 

chapters III-V) as a dialogue-definite expression, that is, an expression 𝐴 such that there 

is an individual play about 𝐴, that can be said to be lost or won after a finite number of 

steps, following given rules of dialogical interaction.
154

 

The notion of dialogue-definiteness is in this sense the backbone of the dialogical 

theory of meaning: it provides the basis for implementing the human-playability 

requirement and the notion of proposition. 

 

Dialogue-definiteness sets apart rather decisively the level of strategies from the 

level of plays, as Lorenz’s notion of dialogue-definite proposition does not amount to a 

set of winning strategies, but rather to an individual play. Indeed, a winning strategy for a 

player X is a sequences of moves such that X wins independently of the moves of the 

antagonist (see section  III.5 and chapter V). It is crucial to understand that the 

                                                 
150

 See Tractatus Logico-Philosophicus, 5.6. 
151

 Moreover as discussed in section  X.5, the dialogical conception of CTT internalization enables 

subjective reports such “this looks green to me” to be rendered. 
152

 As observed by (Marion, 2006, p. 245), a lucid formulation of this point is the following remark 

of  (Hintikka, 1996a, p. 158) who shared this tenet (among others) with the dialogical framework:  

[Finitism] was for Wittgenstein merely one way of defending the need of 

language-games as the sense that [sic] they had to be actually playable by human 

beings. […] Wittgenstein shunned infinity because it presupposed constructions that 

we human beings cannot actually carry out and which therefore cannot be 

incorporated in any realistic language-game. […] What was important for 

Wittgenstein was not just the finitude of the operations we perform in our calculi and 

other language-games, but the fact that we can actually perform them. 

Otherwise the entire idea of language-games as meaning mediators will lose its 

meaning. The language-games have to be humanly playable. And that is not possible 

if they involve infinitary elements. Thus it is the possibility of actually playing the 

meaning-conferring language-games that is the crucial issue for Wittgenstein, not 

finitism as such. 

153
 The fact that these language-games must be finite does not rule out the possibility of a 

(potentially) infinite number of them. 
154

 While establishing particle rules the development rules have not been fixed yet, so we might call 

those expressions propositional schemata. 
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qualification independently of the moves of the antagonist amounts to the fact that the one 

claiming 𝐴 has to play under the restriction of the Copy-cat rule: if possessing a winning 

strategy for player X involves being in possession of a method (leading to the win of X) 

allowing to choose a move for any move the antagonist might play, then we must assume 

that the propositions brought forward by the antagonist are justified. There is a winning 

strategy if X can base his moves leading to a win by endorsing himself those propositions 

whose justification is rooted on Y’s authority (see Martin-Löf’s discussion of this point in 

our Preface). For short, the act of endorsing is what lies behind the so-called Copy-cat 

rule and structures dialogues for immanent reasoning: it ensures that X can win whatever 

the contender might bring forward in order to contest 𝐴 (within the limits set by the 

game).  

 

Furthermore, refuting, that is bringing up a strategy against 𝐴, amounts to the 

dual requirement: that the antagonist Y possess a method that leads to the loss of X !  𝐴, 

whatever X is can bring forward, and that she can do it under the Copy-cat restriction: 

X !  𝐴 is refuted, if the antagonist Y can bring up a sequence of moves such 

that she (Y) can win playing under the Copy-cat restriction. 

Refuting is thus different and stronger than contesting: while contesting only requires that 

the antagonist Y brings forward at least one counterexample in a kind of play where Y 

does not need to justify her own propositions, refuting means that Y must be able to lead 

to the loss of X ! A, whatever X’s justification of his propositions might be.  

In this sense, the assumption that every play is a finitary open two-person zero-sum 

game does not mean that either there is a winning strategy for 𝐴 or a winning strategy 

against 𝐴: the play level cannot be reduced to the strategy level.  

For instance, if we play with the Last-duty first development rule (see 

section  IV.4.2), P will lose the individual plays relevant for the constitution of a strategy 

for ∨ ¬𝐴 . So 𝐴 ∨ ¬𝐴 is dialogue-definite, though there is no winning strategy against 𝐴.  

The distinction between the play level and the strategy level thus emerges from the 

combination of dialogue-definiteness and the Copy-cat rule.  

 

The classical reduction of strategies against 𝐴 to the falsity of 𝐴 (by means of the 

saddle-point theorem) assumes that the win and the loss of a play reduce to the truth or 

the falsity of the thesis. But we claim that the existence of the play level and a loss in one 

of the plays introduces a qualification that is not usually present in the purely proof-

theoretic approach; to use the previous example, we know that P does not have a winning 

strategy for !  𝐴 ∨ ¬𝐴  (playing under the intuitionisitic development rule SR1i), but 

neither will O have one against it if she has to play under the Copy-cat rule herself 

(notice the switch in the burden of the restriction of the Copy-cat rule when refuting a 

thesis). Let us identify the player who has to play under the Copy-cat restriction by 

highlighting her moves: 

Play 20 against P !  𝐴 ∨ ¬𝐴 

O P 

    !  𝐴 ∨ ¬𝐴 0 

1 𝑛 ≔ 1   𝑚 ≔ 2 2 

3 ?∨ 0  !  𝐴 4 

    P wins  
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The same obviously happens with the negation of the thesis (! ¬(𝐴 ∨ ¬𝐴)), albeit 

there is a winning strategy against a contradiction (! 𝐴 ∧ ¬𝐴): 

Play 21 against P !  𝐴 ∧ ¬ 𝐴 

O P 

    ! 𝐴 ∧ ¬𝐴 0 

1 𝑛 ≔ 2   𝑚 ≔ 3 2 

3 ? 𝐿∧ 0  !  𝐴 4 

5 ? 𝑅∧ 0  !¬ 𝐴 6 

7 ! 𝐴   —  

 O wins     

 

The distinction between the play and the strategy level can be understood as a 

consequence of introducing the notion of dialogue-definiteness which amounts to a win 

or a loss at the play level, though strategically seen, the proposition at stake may be 

(proof-theoretically) undecidable. Hence, some criticisms to the purported lack of 

dynamics to dialogical logic are off the mark if they are based on the point that "games" 

of dialogical logic are deterministic:
155

 plays are deterministic in the sense that they are 

dialogue-definite, but strategies are not deterministic in the sense that for every 

proposition there would either be a winning strategy for it or a winning strategy against 

it. 

 

Before ending this section let us quote quite extensively (Lorenz, 2001), who 

provides a synopsis of the historical background that lead to the introduction of the notion 

of dialogue-definiteness and the distinction of the deterministic conception of plays—

which obviously operates at the level of plays—from the proof-theoretical undecidable 

propositions—which operate at the level of strategies: 
[…] It was Alfred Tarski who, in discussions with Lorenzen in 1957/58, when 

Lorenzen had been invited to the Institute for Advanced Study at Princeton, convinced him of 

the impossibility to characterize arbitrary (logically compound) propositions by some 

decidable generalization of having a decidable proof-predicate or a decidable refutation-

predicate. 

[…] It became necessary to search for some decidable predicate which may be used to 

qualify a linguistic entity as a proposition about any domain of objects, be it elementary or 

logically compound. Decidability is essential here, because the classical characterization of 

a proposition as an entity which may be true or false, has the awkward consequence that of 

an undecided proposition it is impossible to know that it is in fact a proposition. This 

observation gains further weight by L. E. J. Brouwer’s discovery that even on the basis of a 

set of “value-definite”, i.e., decidably true or false, elementary propositions, logical 

composition does not in general preserve value-definiteness. And since neither the property 

of being proof-definite nor the one of being refutation-definite nor properties which may be 

defined using these two, are general enough to cover the case of an arbitrary proposition, 

some other procedure had to be invented which is both characteristic of a proposition and 

satisfies a decidable concept. The concept looked for and at first erroneously held to be 

synonymous with argumentation[
156

] turned out to be the concept of dialogue about a 

                                                 
155

 For such criticisms see (Trafford, 2017, pp. 86-88). 
156

 Lorenz identifies argumentation rules with rules at the strategy level and he would like to isolate 

the interaction displayed by the moves constituting the play level—see (Lorenz, 2010a, p. 79). We deploy 

the term argumentation-rule for request-answer interaction as defined by the local and structural rules. It is 

true that nowadays argumentation-rules has even a broader scope including several kinds of communicative 

interaction and this might produce some confusion on the main goal of the dialogical framework which is in 

principle, to provide an argumentative understanding of logic rather than the logic of argumentation. 
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proposition A (which had to replace the concept of truth of a proposition A as well as the 

concepts of proof or of refutation of a proposition A, because neither of them can be made 

decidable).  Fully spelled out it means that for an entity to be a proposition there must exist a 

dialogue game associated with this entity, i.e., the proposition A, such that an individual play 

of the game where A occupies the initial position, i.e., a dialogue D(A) about A, reaches a 

final position with either win or loss after a finite number of moves according to definite 

rules: the dialogue game is defined as a finitary open two-person zero-sum game. Thus, 

propositions will in general be dialogue-definite, and only in special cases be either proof-

definite or refutation-definite or even both which implies their being value-definite. Within 

this game-theoretic framework where win or loss of a dialogue D(A) about A is in general not 

a function of A alone, but is dependent on the moves of the particular play D(A), truth of A is 

defined as existence of a winning strategy for A in a dialogue game about A; falsehood of A 

respectively as existence of a winning strategy against A. Winning strategies for A count as 

proofs of A, and winning strategies against A as refutations of A. The meta-truth of “either ‘A 

is true’ or ‘A is false’ ” which is provable only classically by means of the saddlepoint 

theorem for games of this kind may constructively be reduced to the decidability of win or 

loss for individual plays about A. The concept of truth of dialogue-definite propositions 

remains finitary, and it will, as it is to be expected of any adequate definition of truth, in 

general not be recursively enumerable. The same holds for the concept of falsehood which is 

conspicuously defined independently of negation. (Lorenz, 2001, pp. 257-258) 

XI.2 The Built-in Opponent and the Neglect of the Play Level 

In recent literature Catarina Duthil Novaes (2015) and James Trafford (2017, pp. 

102-105) deploy the term internalization for the proposal that natural deduction can be 

seen as having an internalized Opponent, thereby motivating the inferential steps. This 

form of internalization is called the built-in Opponent. The origin of this concept is linked 

to Göran Sundholm who, by 2000, in order to characterize the fundamental links between 

natural deduction and dialogical logic, introduced in his lectures and talks the term 

implicit interlocutor. Yet, since the notion of implicit interlocutor was meant to link the 

strategy level with natural deduction, the concept of built-in Opponent—being the 

implicit interlocutor’s offspring—inherited the same strategic perspective on logical 

truth. Thus, logical truth can be seen as the encoding of a process through which the 

Proponent succeeds in defending his assertion against a stubborn ideal interlocutor.
157

  

From the dialogical point of view however, the ideal interlocutor of the strategy 

level is the result of a process of selecting the relevant moves from the play level. 

Rahman, Clerbout & Keiff (2009), in a paper dedicated to the Festschrift for Sundholm, 

designate the process as incarnation, using Jean-Yves Girard’s term. Their thorough 

description of the incarnation process already displays those aspects of the cooperative 

endeavour, which was formulated by Duthil Novaes (2015) and quoted by Trafford 

(2017, p. 102) as a criticism of the dialogical framework. Their criticism seems to rest on 

the idea that the dialogues of the dialogical framework are not truly cooperative, since 

they are reduced to constituting logical truth. If this is really the point of their criticism, it 

is simply wrong, for the play level would then be completely neglected: the 

intersubjective in-built and implicit cooperation of the strategy level (which takes care of 

inferences) grows out of the explicit interaction of players at the play level in relation to 

the formation-rules; accepting or contesting a local reason is a process by the means of 

                                                                                                                                                  
However, once this distinction has been drawn nothing prevents to develop the interface dialogical-

understanding of logic/logical structure of a dialogue. In fact, it is our claim that in order to study the 

logical structure of a dialogue, the dialogical conception of logic provides the right venue.  
157

 With "ideal" we mean an interlocutor that always make the optimal choices in order to 

collaborate in the task of testing the thesis. 
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which players cooperate in order to determine the meaning associated to the action-

schema at stake.
158

 

 

It is fair to say that the standard dialogical framework, not enriched with the 

language of CTT, did not have the means to fully develop the so-called material 

dialogues, that is dialogues that deal with content. Duthil Novaes (2015, p. 602)—but not 

Trafford (2017, p. 102)—seems to be aware that dialogues are a complex interplay of 

adversarial and cooperative moves,
159

 even in Lorenzen and Lorenz’ standard 

formulation. However, since she understands this interplay as triggered by the built-in 

Opponent at the strategy level, her suggestions or corrections motivated by reflections on 

the Opponent’s role cannot be made explicit in the framework, and the way this role 

contributes in finally constituting a winning strategy cannot be traced back.
160

 

Duthil Novaes’ (2015, pp. 602-604) approach leads her to suggest that 

monotonicity is a consequence of the role of the Opponent as a stubborn adversary, which 

takes care of the non-defeasibility of the demonstration at stake; from this perspective, 

she contends that the standard presentations of dialogical logic, being mostly adversarial 

or competitive, are blind to defeasible forms of reasons and are thus “[…] rather 

contrived forms of dialogical interaction, and essentially restricted to specific circles of 

specialists” (Duthil Novaes, 2015, p. 602).  But this argument is not compelling when 

considering the strategy level as being built from the play level: setting aside the point on 

content mentioned above, if we conceive the constitution of a strategy as the end-result of 

the complementary role of competition and cooperation taking place at the play level, we 

do not seem to need—at least in many cases—to endow the notion of inference with non-

monotonic features. The play level is the level were cooperative interaction, either 

constructive or destructive, can take place until the definitive answer—given the 

                                                 
158

 In fact, when Trafford (2017) criticizes dialogical logic in his chapter 4, he surprisingly 

claims that this form of dialogical interaction does not include the case in which the plays would be open-

ended in relation to the logical rules at stake, though it has already been suggested—see for instance in 

(Rahman & Keiff, 2005, pp. 394-403)—how to develop what we called Structure Seeking Dialogues 

(SSD). Moreover, Keiff’s (2007) PhD-dissertation is mainly about SSD. The idea behind SSD is roughly 

the following; let us take some inferential practice we would like to formulate as an action-schema, mainly 

in a teaching-learning situation; we then search for the rules allowing us to make these inferential practices 

to be put into a schema. For example: we take the third excluded to be in a given context a sound inferential 

practice; we then might ask what kind of moves P should be allowed to make if he states the third excluded 

as thesis. It is nonetheless true to say that SSD were studied only in the case of modal logic.  
159

 To put it in her own words: “the majority of dialogical interactions involving humans 

appear to be essentially cooperative, i.e., the different speakers share common goals, including mutual 

understanding and possibly a given practical outcome to be achieved.” (Duthil Novaes, 2015, p. 602)  
160

 See for instance her discussion of countermoves (Duthil Novaes, 2015, p. 602) : indefeasability 

means that the Opponent has no available countermove: “A countermove in this case is the presentation of 

one single situation, no matter how far-fetched it is, where the premises are the case and the conclusion is 

not—a counterexample.“ The question then would be to know how to show that the Opponent has no 

countermove available. The whole point of building winning strategies from plays is to actually construct 

the evidence that there is no possible move for the Opponent that will lead her to win: that is a winning 

strategy. But when the play level is neglected, the question remains: how does one know the Opponent has 

no countermove available? It can actually be argued that the mere notion of countermove tends to blurr the 

distinction between the level of plays and of strategies: a countermove makes sense if it is ‘counter’ to  a 

winning strategy, as if the players were playing at the strategy level, but that is something we explicitly 

reject, see for instance section  III.5; see also our discussion of strategic reasons in section  VII.7 which 

inserts strategy level considerations within the play level, not the other way round. At the play level, on the 

other hand, there are only simple moves: these can be challenges, defences, counterattacks, but 

countermoves do not make any sense. 
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structural and material conditions of the rules of the game—has been reached.
161

 The 

strategy level is a recapitulation that retains the end result.  

These considerations should also provide an end to Trafford's (2017, pp. 86-88) 

search for open-ended dialogical settings: open-ended dialogical interaction, to put it 

bluntly, is a property of the play level. Certainly the point of the objection may be to 

point out either that this level is underdeveloped in the literature—a fact that we 

acknowledge with the provisos formulated above—, or that the dialogical approach to 

meaning does not manage to draw a clean distinction between local and strategic 

meaning—the section on tonk below intends to make this distinction as clear as possible.  

 

At this point of the discussion we can say that the role of the (built-in) Opponent in 

Lorenzen and Lorenz' dialogical logic has been fully misunderstood. Indeed, the role of 

both interlocutors (implicit or not) is not about assuring logical truth by checking the 

non-defeasibility of the demonstration at stake, but their role is about implementing both 

the dialogical definiteness of the expressions involved and the internalization of 

meaning.
162

  

XI.3 Pathological cases and the Neglect of the Play Level  

The notorious case of tonk has been several times addressed as a counterargument 

to inferentialism and also to the “indoor-perspective” of the dialogical framework. This 

also seems to constitute the background of how Trafford (2017, p. 86) for instance 

reproduces the circularity objection against the dialogical approach to logical constants. 

At this point of the discussion, Trafford (2017, pp. 86-88) is clearly aware of the 

distinction between the rules for local meaning and the rules of the strategy level, though 

he points out that the local meaning is vitiated by the strategic notion of justification. This 

is rather surprising as (Rahman & Keiff, 2005), (Rahman, 2012), (Rahman, Clerbout, & 

Keiff, 2009), and (Rahman & Redmond, 2016) have shown it is precisely the case of tonk 

that provides a definitive answer to the issue. 

In this respect, three well distinguished levels of meaning are respectively 

determined by specific rules: 

 the local meaning of an expression establishes how a statement involving such an 

expression is to be attacked and defended (through the particle rules); 

 the global meaning of an expression results from structural rules prescribing how 

to develop a play having this expression for thesis; 

 the strategy rules (for P) determine what options P must consider in order to show 

that he does have a method for winning whatever O may do—in accordance with 

the local and structural rules. 

It can in a quite straightforward fashion be shown (see below) that an inferential 

formulation of rules for tonk correspond to strategic rules that cannot be constituted by 

the formulation of particle rules. The player-independence of the particle rules—

responsible for the branches at the strategy level—do not yield the strategic rules that the 

inferential rules for tonk are purported to prescribe.  

For short, the dialogical take on tonk shows precisely how distinguishing rules of 

local meaning from strategic rules makes the dialogical framework immune to tonk. As 

this distinction is central to the dialogical framework and illustrates the key feature of 

                                                 
161

 See (Rahman, 2015) and (Rahman & Iqbal, 2018). 
162

 Notice that if the role of the Opponent in adversial dialogues is reduced to checking the 

achievement of logical truth, one would wonder what the role of the Opponent might be in more 

coperation-featured dialogues: A soft interlocutor ready to accept weak arguments? 
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player-independence of particle rules, we will now develop the argument; we will then be 

able to contrast this pathological tonk case to another case, that of the black-bullet 

operator. 

 The tonk challenge and player-independence of local meaning XI.3.1

To show how the dialogical framework is immune to tonk through the importance 

and priority it gives to the play level, winning strategies are linked to semantic tableaux. 

According to the dialogical perspective, if tableaux rules (or any other inference system 

for that matter) are conceived as describing the core of strategic rules for P (see 

section V.2 for the core of a strategy), then the tableaux rules should be justified by the 

play level, and not the other way round: the tonk case clearly shows that contravening this 

order yields pathological situations. We will here only need conjunction and disjunction 

for dealing with tonk.
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A systematic description of the winning strategies available for P in the context of 

the possible choices of O can be obtained from the following considerations: if P is to 

win against any choice of O, we will have to consider two main different dialogical 

situations, namely those 

(a) in which O has uttered a complex formula, and those 

(b) in which P has uttered a complex formula.  

We call these main situations the O-cases and the P-cases, respectively. In both of 

these situations another distinction has to be examined: 

(i) P wins by choosing  

i.1. between two possible challenges in the O-cases (a), or  

i.2. between two possible defences in the P-cases (b),  

iff he can win with at least one of his choices. 

(ii) When O can choose  

ii.1. between two possible defences in the O-cases (a), or  

ii.2. between two possible challenges in the P-cases (b),  

P wins iff he can win irrespective of O’s choices.  

 

The description of the available strategies will yield a version of the semantic 

tableaux of Beth that became popular after the landmark work on semantic-trees by 

Raymond Smullyan (1968), where O stands for T (left-side) and P for F (right-side), and 

where situations of type ii (and not of type i) will lead to a branching-rule.  

 

Table 54: tableaux and P-winning strategies for conjunction and disjunction 

(P)-Chooses (O)-Chooses 

  

 (P) 𝐴 ∨ 𝐵 

  

(𝐏)𝐴 ∧ 𝐵 

  

〈𝐎? 〉 (𝐏)𝐴 〈𝐎?∧1〉(𝐏)𝐴    〈𝐏?∧2〉(𝐏)𝐵 

〈𝐎? 〉 (𝐏)𝐵 
 

The expressions of the form 〈𝐗 … 〉 
constitute interrogative utterances. 

The expressions of the form 〈𝐗 … 〉 constitute 

interrogative utterances. 

(𝐎)𝐴 ∧ 𝐵 (𝐎)𝐴 ∨ 𝐵 
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 (Clerbout, 2014a; 2014b) worked out the most thorough method for linking winning strategies 

and tableaux. 
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 〈𝐏 ?∧1〉 
(𝐎)𝐴 
〈𝐏?∧2〉 
(𝐎)𝐵 

  〈𝐏? 〉 
(𝐎)𝐴  (𝐎)𝐵 

 

 

However, as mentioned above, tableaux are not dialogues. The main point is that 

dialogues are built bottom up, from local to global meaning, and from global meaning to 

validity. This establishes the priority of the play level over the winning strategy level. 

From the dialogical point of view, Prior’s original tonk contravenes this priority. 

Let us indeed temporarily assume that we can start not by laying down the local 

meaning of tonk, but by specifying how a winning strategy for tonk would look like with 

the help of T(left)-side and F(right)-side tableaux-rules (or sequent-calculus) for logical 

constants; in other words, let us assume that the tableaux-rules are necessary and 

sufficient to set the meaning of tonk.  
 

Prior’s tonk rules are built for half on the disjunction rules (taking up only its 

introduction rule), and for half on the conjunction rules (taking up only its elimination 

rule). This renders the following tableaux version for the undesirable tonk:164 

 

(O) [or (T)] 𝐴𝑡𝑜𝑛𝑘𝐵 

(O) [(T)] 𝐵 

 (P) [or (F)] 𝐴𝑡𝑜𝑛𝑘𝐵 

(P)[(F)] 𝐴 

 

Tonk is certainly a nuisance: if we apply the cut-rule, it is possible to obtain a closed 

tableau for T𝐴 , F𝐵 , for any 𝐴  and 𝐵 . Moreover, there are closed tableaux for both 

{𝐓𝐴, 𝐴𝑡𝑜𝑛𝑘¬𝐴} and {𝐓𝐴, ¬(𝐴𝑡𝑜𝑛𝑘¬𝐴)}. 

 

From the dialogical point of view, the rejection of tonk is linked to the fact there is no 

way to formulate rules for its local meaning that meet the condition of being player-

independent: if we try to formulate rules for local meaning matching the ones of the 

tableaux, the defence yields a different response, namely the tail of tonk if the defender is 

O, and the head of tonk if the defender is P:  

Table 55: O-tonk rule for challenge and defence 

O-move Challenge Defence 

O ! 𝐴𝑡𝑜𝑛𝑘𝐵 P ?𝑡𝑜𝑛𝑘 O !  𝐵 

 

Table 56: P-tonk rule for challenge and defence 

P-move Challenge Defence 

P !  𝐴𝑡𝑜𝑛𝑘𝐵 O ?𝑡𝑜𝑛𝑘 P ! 𝐴 

 

The fact that we need two sets of rules for the challenge and the defence of a tonk 

move means that the rule that should provide the local meaning of tonk is player-

dependent, which should not be the case.  

Summing up, within the dialogical framework tonk-like operators are rejected 

because there is no way to formulate player-independent rules for its local meaning that 

justify the tableaux rules designed for these operators. The mere possibility of writing 
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 Cf. (Rahman, 2012, pp. 222-224). 
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tableaux rules that cannot be linked to the play level rules shows that the play level rules 

are not vitiated by strategic rules.  

 

This brief reflection on tonk should state our case for both, the importance of 

distinguishing the rules of the play level from those of the strategy level, and the 

importance of including in the rules for the local meaning the feature of player-

independence: it is the player-independence that provides the meaning explanation of the 

strategic rules, not the other way round. 

 The black-bullet challenge and dialogue-definiteness XI.3.2

Now, Trafford (2017, pp. 37-41) contests the standard inferentialist approach to the 

meaning of logical constants by recalling the counterexample of Stephen Read, the black-

bullet operator. Indeed, Read (2008; 2010) introduces a different kind of pathological 

operator, the black-bullet •, a zero-adic operator that says of itself that it is false. Trafford 

(2017, p. 39 footnote 35) suggests that the objection also extends to CTT; this claim 

however is patently wrong, since those counterexamples would not meet the conditions 

for the constitution of a type.
165

 Within the dialogical framework, though player-

independent rules for black-bullet can be formulated (as opposed to tonk), they do not 

satisfy dialogue-definiteness. 

 

Let us have the following tableaux rules for the black-bullet, showing that it 

certainly is pathological: they deliver closed tableaux for both • and ¬ •:  

(P) • 

〈𝐎? 〉 
(P)•⊃⊥ 

 

(𝐎) • 

〈𝐏? 〉 
(𝐎) •⊃⊥ 

We can in this case formulate the following player-independent rules: 

Table 57: black-bullet player-independent particle rules 

Move Challenge Defence 

𝐗 ! • 𝐘 ?• 𝐗!  •⊃⊥ 

 

The black-bullet operator seems therefore to meet the dialogical requirement of 

player-independent rules, and would thus have local meaning. But if it does indeed have 

player-independent rules, the further play on the defence (which is a negation) would 

require that the challenger concedes the antecedent, that is black-bullet itself: 

  

Table 58: deploying the black-bullet challenges 

Y X 

 …   …  

    !  • 𝑖 
𝑖 + 1 ?• 𝑖  !  •⊃⊥ 𝑖 + 2 
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 Klev (2017, p. 12 footnote 7) points out that the introduction rule of such kind of operator fails to 

be meaning-giving because the postulated canonical set Λ(𝐴) occurs negatively in its premiss, and that the 

restriction avoiding such kind of operators have been already formulated by (Martin-Löf, 1971, pp. 182-

183), and  by (Dybjer, 1994). 
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𝑖 + 3 !  • 𝑖 + 2    

   𝑖 + 3 ?• 𝑖 + 4 

      

 

Obviously, this play sequence can be carried out indefinitely, regardless of which 

player initially states black-bullet. So the apparently acceptable player-independent rules 

for playing black-bullet would contravene dialogue-definiteness; and the only way of 

keeping dialogue-definiteness would be to give up player-independence!
166

  

Conclusion: the meaning of expressions comes from the play level 

The two pathological cases we have discussed, the tonk and the black-bullet 

operators, stress the difference between the play level and the strategy level and how the 

meaning provided by rules at the strategy level does not carry to the local meaning. Thus, 

from the dialogical point of view, the rules determining the meaning of any expression 

are to be rooted at the play level, and at this level what is to be admitted and rejected as a 

meaningful expression amounts to the formulation of a player-independent rule, that 

prescribe the constitution of a dialogue-definite proposition (where that expression 

occurs as a main operator).  

 

Notice that if we include material dialogues (see chapter  X), the distinction between 

logical operators and non-logical operators is not important any more. If we enrich the 

dialogical framework with the CTT-language, this feature comes more prominently to the 

fore. What the dialogical framework adds to the CTT framework is, as pointed out by 

Martin-Löf (2017a; 2017b), to set a pragmatic layer where normativity finds its natural 

place.  

XI.4 Other than logical constants 

In his recent book, Jaroslav Peregrin (2014) marshals the distinction between the 

play level and the strategy level (that he calls tactics) in order to offer another insight, 

more general, into the issue of normativity mentioned at that start of our volume (see 

section I.2). Indeed, Peregrin understands the normativity of logic not in the sense of a 

prescription on how to reason, but rather as providing the material by the means of which 

we reason.  
It follows from the conclusion of the previous section that the rules of logic cannot be 

seen as tactical rules dictating feasible strategies of a game; they are the rules constitutive of 

the game as such. (MP does not tell us how to handle implication efficiently, but rather what 

implication is.) This is a crucial point, because it is often taken for granted that the rules of 

logic tell us how to reason precisely in the tactical sense of the word. But what I maintain is 

that this is wrong, the rules do not tell us how to reason, they provide us with things with 

which, or in terms of which, to reason. (Peregrin, 2014, pp. 228-229) 

Peregrin endorses at this point the dialogical distinction between rules for plays and 

rules for strategies. In this regard, the prescriptions for developping a play provide the 

material for reasoning, that is, the material allowing a play to be developped, and without 

which there would not even be a play; whereas the prescriptions of the tactical level (to 

use his terminology) prescribe how to win, or how to develop a winning-strategy:  
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 We could provide at the local level of meaning a set of player-independent rules, and add some 

special structural rule in order to force dialogue-definiteness—see (Rahman, 2012, p. 225); however, such 

kinds of rules would produce a mismatch in the formation of black-bullet: the formulation of the particle 

rule would have to assume that black-bullet is an operator, but the structural rule would have to assume it is 

an elementary proposition.  
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This brings us back to our frequently invoked analogy between language and chess. 

There are two kinds of rules of chess: first, there are rules of the kind that a bishop can move 

only diagonally and that the king and a rook can castle only when neither of the pieces have 

previously been moved. These are the rules constitutive of chess; were we not to follow them, 

we have seen (Section 5.5) we would not be playing chess. In contrast to these, there are 

tactical rules telling us what to do to increase our chance of winning, rules advising us, e.g., 

not to exchange a rook for a bishop or to embattle the king by castling. Were we not to follow 

them, we would still be playing chess, but with little likelihood of winning. (Peregrin, 2014, 

pp. 228-229) 

This observation of Peregrin plus his criticism on the standard approach to the 

dialogical framework, according to which this framework would only focus on logical 

constants (Peregrin, 2014, pp. 100, 106)—a criticism shared by many others since 

(Hintikka, 1973, pp. 77-82)
167

—naturally leads to the main subject of our book, namely 

immanent reasoning, or linking CTT with the dialogical framework.  

The criticism according to which the focus would be on logical constants and not 

on the meaning of other expressions does indeed fall to some extent on the standard 

dialogical framework, as little studies have been carried out on material dialogues in this 

basic framework;
168

 but the enriched CTT language in material dialogues deals with this 

shortcoming.  

Yet this criticism seems to dovetail this other criticism, summoned by Martin-Löf 

as starting point in his Oslo lecture: 
I shall take up criticism of logic from another direction, namely the criticism that you 

may phrase by saying that traditional logic doesn't pay sufficient attention to the social 

character of language. (Martin-Löf, 2017a, p. 1) 

The focus on the social character of language not only takes logical constants into 

account, of course, but it also considers other expressions such as elementary 

propositions or questions, as well as the acts bringing these expressions forward in a 

dialogical interaction, like statements, requests, challenges, or defences—to take 

examples from the dialogical framework—and how these acts made by persons 

intertwine and call for—or put out of order—other specific responses by that person or by 

others. In this regard, the social character of language is put at the core of immanent 

reasoning through the normativity present in dialogues: normativity involves, within 

immanent reasoning, rules of interaction which allow us to consider assertions as the 

result of having intertwined rights and duties (or permissions and obligations). This 

central normative dimension of the dialogical framework at large, which stems from 

questionning what is actually being done when implementing the rules of this very 

framework, entails that objections according to which the focus would be only on logical 

constants will always be, from the dialogical perspective, slightly off the mark. 

XI.5 Normativity and the Dialogical Framework: A New 
Venue for the Interface Pragmatics-Semantics 

In his Oslo and Stockholm lectures, Martin-Löf’s (2017a; 2017b) delves in the 

structure of the deontic and epistemic layers of statements within his view on dialogical 
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 For a response to this see our chapter  X on material dialogues.  
168

 This kind of criticism does not seem to have been aware of (Lorenz, 1970; 2009; 2010a; 2010b), 

carrying out a thorough discussion on predication from a dialogical perspective, which discusses the 

interaction between perceptual and conceptual knowledge. However, perhaps it is fair to say that this 

philosophical work has not been integrated into the dialogical logic—we will come back to this subject 

below.  
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logic. In order to approach this normative aspect which pervades logic up to its technical 

parts, let us discuss the following extracts of “Assertion and Request”:
169

 
[…] we have this distinction, which I just mentioned, between, on the one hand, the 

social character of language, and on the other side, the non-social […] view of language. But 

there is a pair of words that fits very well here, namely to speak of the monological 

conception of logic, or language in general, versus a dialogical one. And here I am showing 

some special respect for Lorenzen, who is the one who introduced the very term dialogical 

logic. 

The first time I was confronted with something of this sort was when reading Aarne 

Ranta's book Type-Theoretical Grammar in (1994). Ranta there gave two examples, which I 

will show immediately. The first example is in propositional logic, and moreover, we take it to 

be constructive propositional logic, because that does matter here, since the rule that I am 

going to show is valid constructively, but not valid classically. Suppose that someone claims a 

disjunction to be true, asserts, or judges, a disjunction to be true. Then someone else has the 

right to come and ask him, Is it the left disjunct or is it the right disjunct that is true? There 

comes an opponent here, who questions the original assertion, and I could write that in this 

way: 

? ⊢ 𝐴 ∨  𝐵 𝑡𝑟𝑢𝑒 
And by doing that, he obliges the original assertor to answer either that 𝐴 is true that 

is, to assert either that 𝐴 is true or that 𝐵 is true, so he has a choice, and we need to have 

some symbol for the choice here. 

(Dis) 
⊢ 𝐴 ∨ 𝐵 𝑡𝑟𝑢𝑒           ? ⊢  𝐴 ∨ 𝐵 𝑡𝑟𝑢𝑒 

⊢ 𝐴 𝑡𝑟𝑢𝑒 |  ⊢  𝐵 𝑡𝑟𝑢𝑒 
Ranta's second example is from predicate logic, but it is of the same kind. Someone 

asserts an existence statement, 

⊢  (∃𝑥 ∶  𝐴)𝐵(𝑥) 𝑡𝑟𝑢𝑒 
and then someone else comes and questions that 

? ⊢  (∃𝑥 ∶  𝐴)𝐵(𝑥) 𝑡𝑟𝑢𝑒 
And in that case the original assertor is forced, which is to say, he must come up with 

an individual from the individual domain and also assert that the predicate 𝐵 is true of that 

instance. 

[…] So, what are the new things that we are faced with here? Well, first of all, we have 

a new kind of speech act, which is performed by the| oh, I haven't said that, of course I will 

use the standard terminology here, either speaker and hearer, or else respondent and 

opponent, or proponent and opponent, as Lorenzen usually says, so that's terminology but the 

novelty is that we have a new kind of speech act in addition to assertion. 

[…] So, let's call them rules of interaction, in addition to inference rules in the usual 

sense, which of course remain in place as we are used to them. 

[…] Now let's turn to the request mood. And then it's simplest to begin directly with 

the rules, because the explanation is visible directly from the rules. So, the rules that involve 

request are these, that if someone has made an assertion, then you may question his 

assertion, the opponent may question his assertion. 

(Req1) 
⊢  𝐶 

? ⊢𝑚𝑎𝑦  𝐶 
Now we have an example of a rule where we have a may. The other rule says that if we 

have the assertion ⊢  𝐶, and it has been challenged, then the assertor must execute his 

knowledge how to do 𝐶. And we saw what that amounted too in the two Ranta examples, so I 

will write this schematically that he will continue by asserting zero, one, or more we have two 

in the existential case so I will call that schematically by 𝐶0. 

(Req2) ⊢  𝐶        ? ⊢  𝐶 
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 Transcription of (Martin-Löf, 2017a, pp. 1-3 ; 7). 
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 ⊢𝑚𝑢𝑠𝑡  𝐶′ 
   

The Oslo and the Stockholm lectures of Martin-Löf (2017a; 2017b) contain 

challenging and deep insights in dialogical logic, and the understanding of defences as 

duties and challenges as rights is indeed at the core of the deontics underlying the 

dialogical framework.
170

 More precisely, the rules Req1 and Req2 do both, they condense 

the local rules of meaning, and they bring to the fore the normative feature of those rules, 

which additionally provides a new understanding for Sunholm's notion of implicit 

interlocutor: once we make explicit the role of the interlocutor, the deontic nature of logic 

comes out.
171

 Moreover, as Martin-Löf points out, and rightly so, they should not be 

called rules of inference but rules of interaction. 

Accordingly, a dialogician might wish to add players X and Y to Req2, in order to 

stress both that the dialogical rules do not involve inference but interaction, and that they 

constitute a new approach to the action-based background underlying  Lorenzen’s (1955) 

Operative Logik. This would yield the following, where we substitute the horizontal bar 

for an arrow:
172

  

  ⊢𝐗 𝐶 ? ⊢𝑚𝑎𝑦
𝐘  𝐶  

(Req2) ⇓ 
 

 ? ⊢𝑚𝑢𝑠𝑡
𝐗  𝐶′  

 

Such a rule does indeed condense the rules of local meaning, but it still does not 

express the choices while defending or challenging; yet it is the distribution of these 

choices that determines for example that the meaning of a disjunction is different from 

that of a conjunction: while in the former case (disjunction) the defender must choose a 

component, the latter (conjunction) requires of the challenger that, her right to challenge 

is bounded to her duty to choose the side to be requested (though she might further on 

request the other side). Hence, the rules for disjunction and conjunction (if we adapt them 

to Martin-Löf’s rules) would be the following: 

 

  ⊢𝐗 𝐷 ? ⊢𝑚𝑎𝑦
𝐘  D  

(Dis) ⇓ 
 

  ⊢𝑚𝑢𝑠𝑡
𝐗 𝐷′   
𝑐ℎ𝑜𝑜𝑠𝑒  

𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  

𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷 
 

 

 

  ⊢𝐗 𝐶 ?𝑙𝑒𝑓𝑡  ⊢𝑚𝑎𝑦
𝐘  C  

 

  ⊢𝐗 𝐶 ?𝑟𝑖𝑔ℎ𝑡  ⊢𝑚𝑎𝑦
𝐘  C  

(Conj) ⇓ 
 

 ? ⊢𝑚𝑢𝑠𝑡
𝐗 𝐶′′   
𝑎𝑠𝑠𝑒𝑟𝑡  

𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝐶 

 (Conj) ⇓ 
 

  ⊢𝑚𝑢𝑠𝑡
𝐗 𝐶′   

𝑎𝑠𝑠𝑒𝑟𝑡  

𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑜𝑓 𝐶 

 

                                                 
170

 See (Lorenz, 1981, p. 120), who uses the expressions right to attack and duty to defend. 
171

 This crucial insight of Martin-Löf on dialogical logic and on the deontic nature of logic 

seems to underly recent studies on the dialogical framework which are based on Sundholm's notion of the 

implicit interlocutor, such as (Duthil Novaes, 2015) and (Trafford, 2017). 
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 In the context of Operative Logik operations are expressed by means of arrows of the 

form “ ”.  
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These rules can be considered as inserting in the rules the back and forth movement 

described by Martin-Löf (2017a, p. 8) with the following diagram:  

 
    ⊢ C 
  

 
  ? ⊢ C 

speaker    hearer 

    
may 

 
    ⊢ C’’ 
 

    
must

 

 

Notice however that these rules only determine the local meaning of disjunction 

and conjunction, not their global meaning. For example, while classical and constructive 

disjunction share the same rules of local meaning, they differ at the global level of 

meaning: in a classical disjunction the defender may come back on the choice he made 

for defending his disjunction, though in a constructive disjunction this is not allowed, 

once a player has made a choice he must live with it.  

 

What is more, these rules are not rules of inferences (for example rules of 

introduction and elimination): they become rules of inference only when we focus on the 

choices P must take into consideration in order to claim that he has a winning strategy for 

the thesis. Indeed, as mentioned at the start of the present chapter (XI.3.1) strategy rules 

(for P) determine what options P must consider in order to show that he has a method for 

winning whatever O does, in accordance with the rules of local and global meaning.  

The introduction rules on the one hand establish what P has to bring forward in 

order to assert it, when O challenges it. Thus in the case of a disjunction, P must choose 

and assert one of the two components. So, P’s obligation lies in the fact that he must 

choose, and so P’s duty to choose yields the introduction rule. Compare this with the 

conjunction where it is the challenger who has the right to choose (and who does not 

assert but request his choice). But in both cases, defending a disjunction and defending a 

conjunction, only one conclusion will be produced, not two: in the case of a conjunction, 

the challenger will ask one after the other (recall that it is an interaction taking place 

within a dialogue where each step alternates between moves of each of the players).  

The elimination rules on the other hand prescribe what moves O must consider 

when she asserted the proposition at stake. So if O asserted a disjunction, P must be able 

to win whatever the choices of O be.  

The case of the universal quantifier adds the interdependence of choices triggered 

by the may-moves and the must-moves: if the thesis is a universal quantifier of the form 

(∀𝑥 ∶  𝐴) 𝐵(𝑥), P must assert 𝐵(𝑎), for whatever 𝑎 O may chose from the domain 𝐴: this 

is what correspond to the introduction rule. If it is O who asserted the universal 

quantifier, and if she also conceded that, 𝑎 ∶  𝐴, then P may challenge the quantifier by 

choosing 𝑎 ∶  𝐴, and request of O that she asserts 𝐵(𝑎); this is how the elimination rule 

for the universal quantifier are introduced in the dialogical framework (for details see 

chapter VII).  

 

These distinctions can be made explicit if we enrich the first-order language of 

standard dialogical logic with expressions inspired by CTT. The first task is to introduce 

statements of the form “ 𝑝 ∶  𝐴”. On the right-hand side of the colon is the proposition 𝐴, 
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on the left-hand side is the local reason 𝑝 brought forward to back the proposition during 

a play. The local reason is therefore local if the force of the assertion is limited to the 

level of plays. But when the assertion “𝑝 ∶  𝐴” is backed by a winning strategy, the 

judgement asserted draws its justification precisely from that strategy, thus endowing 𝑝 

with the status of a strategic reason that, in the most general cases, encodes an arbitrary 

choice of O.  

 

The rock bottom of the dialogical approach is still the play level notion of 

dialogue-definiteness of the proposition, namely 
For an expression to count as a proposition 𝐴 there must exist an individual play 

about the statement 𝑿 !  𝐴, in the course of which 𝑿 is committed to bring forward a local 

reason to back that proposition, and the play reaches a final position with either win or loss 

after a finite number of moves according to definite local and structural rules.
173

 

The deontic feature of logic is here built directly within the dialogical concept of 

statements about a proposition. More generally, the point is that, as observed by Martin-

Löf (2017a, p. 9), according to the dialogical conception, logic belongs to the area of 

ethics.  

One way of explaining how this important aspect has been overseen or 

misunderstood might be that the usual approaches to the layers underlying logic got the 

order of priority between the deontic notions and the epistemic notions the wrong way 

round.
174

  

 

The Oslo and Stockholm lectures of Martin-Löf propose a fine analysis of the inner 

and outer structure of the statements of logic from the point of view of speech-act theory, 

that put the order of priority mentioned above right; in doing so it pushes forward one of 

the most cherished tenets of the dialogical framework, namely that logic has its roots in 

ethics. 

In fact, Martin-Löf's insights on dialogical logic as re-establishing the historical 

links of ethics and logic provides a clear answer to Wilfried Hodge’s (2008)
175

 sceptical 

view in his section 2 as to what the dialogical framework’s contribution is. Hodge's 

criticism seems to target the mathematical interest of a dialogical conception of logic, 

rather than a philosophical interest which does not seem to attract much of his interest. 

In lieu of a general plaidoyer for the dialogical framework’s philosophical 

contribution to the foundations of logic and mathematics, which would bring us too far, 

let us highlight these three points which result from the above discussions:
176

  

1) the dialogical interpretation of epistemic assumptions offers a sound venue for the 

development of inference-based foundations of logic; 

2) the dialogical take on the interaction of epistemic and deontic notions in logic, as 

well as the specification of the play level’s role, display new ways of 

implementing the interface pragmatics-semantics within logic. 

3) the introduction of knowing how into the realm of logic is of great import 

(Martin-Löf, 2017a; 2017b). 

Obviously, formal semantics in the Tarski-style is blind to the first point, misunderstands 

the nature of the interface involved in the second, and ignores the third. 
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 See above, section  XI.1, for a discussion on dialogue-definiteness. 
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 See (Martin-Löf, 2017b, p. 9). 
175  See also (Hodges, 2001) and (Trafford, 2017, pp. 87-88). 
176

 See also our Preface and Introduction (chapter I).  
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XI.6 A brief historical study on material dialogues 

Allow us now a brief historic interlude on the distinction between statements of the 

form 𝑎: 𝐴  and of the form 𝐴(𝑎) 𝑡𝑟𝑢𝑒  (i.e. 𝑏(𝑎) ∶  𝐴(𝑎) , where 𝑎: 𝐵 ), 𝐵: 𝑠𝑒𝑡  and 

𝐴(𝑥): 𝑝𝑟𝑜𝑝 [𝑥 ∶ 𝐵] . As discussed in (Rahman & Clerbout, 2015, pp. 145-146), this 

distinction is close to the (Lorenz & Mittelstrass, 1967) reconstruction of Plato’s notion 

of correct naming in the Cratylus (Plato, 1997),
177

 and has some links with the dialogical 

notion of predicator rule, which lies at the very basis of material dialogues.  

 

Lorenz & Mittelstrass point out two fundamental speech-acts: naming (ὀνομάζειν) 

and stating (λέγειν). The first speech-act, naming, amounts to the act of subsuming an 

entity under a concept, while the second, stating, establishes a proposition about a 

previously named entity. If the naming has been correctly carried out, the (named) entity 

reveals the concept it instantiates (names reveal objects for what they are). Stating truly 

concerns the truth of a proposition that has been constituted by instantiating a 

propositional function with a suitable element of a genus (a correctly named instantiation 

of a genus). Thus both acts, naming and stating, involve judgements: while on the one 

hand naming corresponds to the assertion that an entity instantiates a given genus, it says 

what the entity is, and has therefore the following form  

 

𝑎: 𝐴 [𝐴: 𝑔𝑒𝑛𝑢𝑠] 
 

on the other hand, stating corresponds to the act of building a proposition, such as 𝐴(𝑎), 

out of the propositional function 𝐴(𝑥) and the genus 𝐵.  

 

In other words, the correct form of the result of an act of stating, or saying how 

something is, amounts to the judgment 

 

𝐴(𝑎): 𝑝𝑟𝑜𝑝 [𝑎: 𝐵] 
 

that presupposes 𝐴(𝑥): 𝑝𝑟𝑜𝑝 [𝑥: 𝐵], 𝐵: 𝑔𝑒𝑛𝑢𝑠. In this regard, 

 the act of naming 𝑎 ∶  𝐴 is said to be true iff 𝑎 instantiates 𝐴; and 

 the proposition 𝐴(𝑎)  is true iff 𝑎  is one of the entities to which the 

propositional function 𝐴(𝑥) applies (i.e, if 𝑎 is of the genus 𝐵), and it is the 

case that 𝐴(𝑥) can be said of 𝑎.  

So the resulting proposition (in the context of our example) 𝐴(𝑎) is true if 𝐴(𝑥) can be 

said of the entity 𝑎. In such a case 𝐴(𝑎) would be stated truly.  

 

The specialized literature harshly criticized Plato's claim, not that the results of acts 

of predication could be qualified as true or false, but that the results of acts of naming 

could be also.
178

 According to this criticism, while truth applies to propositions, it does 
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 For an endorsement of this interpretation see (Luce, 1969).  
178

 Viktor Ilievski (2013, pp. 12-13) provides a condensed formulation of this kind of criticisms:  

Socrates next proceeds briefly to discuss true and false speech, with an intention to point out to 

Hermogenes that there is a possibility of false, incorrect speech. It is a matter of very basic knowledge of 

logic that truth-value is to be attributed to propositions, or more precisely utterances, specific uses of 

sentences. Plato’s Socrates acknowledges that, but he, somewhat surprisingly, ascribes truth-value to the 

constituents, or parts of the statements as well, on the assumption that whatever is true of the unit, has to be 

true of its parts as well. This seems to be an example of flagrant error in reasoning, known as the fallacy of 

division. Why would Plato’s Socrates commit such a fallacy in the course of what seems to be a valid and 
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not apply to entities. (Lorenz & Mittelstrass, 1967, pp. 6-12) defended the old master by 

suggesting to read these passages as presupposing that in both cases we have the same 

kind of acts of predication,
179

 that is, both acts of predication can be qualified as true even 

if they do not involve the same form of predicator rule.  

 

Resorting to the CTT-setting in order to develop the (Lorenz & Mittelstrass, 1967) 

interpretation, it follows that claiming both acts of predication can be qualified as true 

does not necessarily entail that both involve propositional functions: Plato's claim can be 

defended by carefully distinguishinig both constituents of a judgement involving a 

specific propositional function, namely  

i. the act of asserting that a given entity exemplifies the genus presupposed by 

the formation of that propositional function, and  

ii. the act of asserting a proposition that results from substituting the variable of 

the relevant propositional function by a suitable instantiation. 

 

According to this analysis, it is possible to endorse at the same time the following 

claims of Plato:  

1. acts of naming and stating involve different acts of judgement; 

2. both naming and stating can be qualified as true. 

3. Neither 1 nor 2 assume
180

 that the truth of the result of an act of predication 

always involves a prescription on how to constitute a propositional function out of 

another one; rather, stating, that is saying how something is, presupposes what it 

is, that is naming.
181

 

 

Thus, on or view, whereas the act of predication 𝑡휀𝑆 (naming) can be reconstructed 

as 𝑡: 𝑆; the act of predication 𝑡휀𝑃 (stating), can be reconstructed as 𝑃(𝑡) [𝑡 ∶ 𝑆] 𝑡𝑟𝑢𝑒.  

This reconstruction makes explicit the (Lorenz & Mittelstrass, 1967, p. 6) point that 

stating presupposes naming. Indeed, let us take the expression 𝑚𝑎𝑛 , and use it 

ambiguously again to express both the assertion 𝑚𝑎𝑛 𝑡𝑟𝑢𝑒 (where 𝑚𝑎𝑛 ∶ 𝑔𝑒𝑛𝑢𝑠), and 

the assertion 𝑀𝑎𝑛(𝑎) 𝑡𝑟𝑢𝑒  (where 𝑀𝑎𝑛(𝑎): 𝑝𝑟𝑜𝑝 [𝑎 ∶ 𝑙𝑖𝑣𝑖𝑛𝑔 𝑏𝑒𝑖𝑛𝑔] ). From what we 

presented earlier on CTT, both make perfect sense:  

 𝑚𝑎𝑛 𝑡𝑟𝑢𝑒 iff 𝑚𝑎𝑛 can be instantiated, and thus asserting that a exemplifies 𝑚𝑎𝑛 

amounts to the truth of 𝑚𝑎𝑛—provided 𝑎 is indeed such an element;
182

  

 𝑀𝑎𝑛(𝑎) 𝑡𝑟𝑢𝑒 if a is an instantiation of the genus 𝑙𝑖𝑣𝑖𝑛𝑔 𝑏𝑒𝑖𝑛𝑔, presupposed by 

the formation of the propositional function 𝑀𝑎𝑛(𝑥); there is a method that takes 

                                                                                                                                                  
stable argument? One obvious answer would be that the very theory he is about to expound presupposes 

the notion of names as independent bearers of meaning and truth, linguistic microcosms encapsulating 

within themselves both truth-value and reference. In other words, the theory of true and false names has to 

presuppose that names do not only refer or designate, or even do not only refer and sometimes suggest 

descriptions, but that they always necessarily represent descriptions of some kind. 
179

 It follows that a true sentence SP really does consist of the ' true parts ' S and P, i.e. t S and t  

P. In case of a false sentence SP, however, the second part t  P is false, while the first part t  S should ex 

definitione be considered as true, because any sentence is necessarily a sentence about something (Soph. 

262e), namely the subject of it. The subject has to be effectively determined, i.e. it must be a thing correctly 

named, before one is going to state something about it. (Lorenz & Mittelstrass, 1967, p. 6) 
180

 As (Lorenz & Mittelstrass, 1967, p. 13) seem to: 

Names, i.e. predicates, are tools with which we distinguish objects from each other. To name objects 

or to let an individual fall under some concept is on the other hand the means to state something about 

objects, i.e. to teach and to learn about objects, as Plato prefers to say.  
181

 See section  II.1.1. 
182

 In fact (Lorenz & Mittelstrass, 1967, p. 6) pointed out, and rightly so, that both acts presuppose a 

contextually given entity. 
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us from 𝑎 ∶  𝑙𝑖𝑣𝑖𝑛𝑔 𝑏𝑒𝑖𝑛𝑔  to 𝑀𝑎𝑛(𝑎) . Moreover, the falsity of 𝑀𝑎𝑛(𝑎)  also 

presupposes that 𝑎  is of the suitable genus presupposed by the propositional 

function 𝑀𝑎𝑛(𝑥).
 183

 

 

If we follow this interpretation the fact that the judgement 𝑀𝑎𝑛(𝑎) 𝑡𝑟𝑢𝑒 

presupposes 𝑀𝑎𝑛(𝑥) ∶  𝑝𝑟𝑜𝑝 [𝑥 ∶ 𝑙𝑖𝑣𝑖𝑛𝑔 𝑏𝑒𝑖𝑛𝑔]  makes explicit the relation between 

naming and stating.
184

 

In the dialogical framework we might say that the formation presupposed is the 

formation leading to specifying the Socratic rule for material dialogues. These 

considerations call for further generalization: the difference between the two Cratylus 

speech-acts dovetails the difference between categorical assertions, that involve 

independent types, and hypotheticals, that involve dependent ones. Let us summarize our 

suggestions in the following table:
185

 

 

Table 59: Comparing Categorical and Hypothetical judgements in CTT and Plato 

Categorical Judgements 

𝑡휀𝑆 
Hypothetical Judgements 

𝑡휀𝑃 
CTT Cratylus CTT Cratylus 

𝒄 ∶  𝑩 naming (ὀνομάζειν) 𝒄(𝒂): 𝑩(𝒂) [𝒂: 𝑨] stating (λέγειν) 

𝑐 is of type 𝐵 

𝐵 names 𝑐  

𝐵 is predicated of 𝑎 

under the condition that 

𝑎 exemplifies 𝐴 

𝑐 is 𝐵 
Presupposes the 

formation  rule: 

Presupposes the 

predicator rule: 

𝑐 exemplifies (the 

genus) 𝐵 

The propositional 

function 𝐵(𝑥) yields 

a proposition 

provided 𝑥 is an 

element of the set 𝐴 

𝐵(𝑥) yields a 

proposition provided 𝑥 

exemplifies 𝐴 

c:B true iff: 𝒄 is 𝑩 𝒕𝒓𝒖𝒆 iff: 𝑩(𝒂) 𝒕𝒓𝒖𝒆 iff: 𝑩(𝒂) 𝒕𝒓𝒖𝒆 iff: 

𝑐 is a canonical   

element of 𝐵, or 𝑐 correctly 

exemplifies 𝐵 
𝐵 applies to 𝑎 

𝐵(𝑥) is 

correctly said of 𝑎 𝑐 is generated 

from a canonical one 
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 Cf. (Lorenz & Mittelstrass, 1967, p. 6). 
184

 (Lorenz & Mittelstrass, 1967, pp. 6-7) claim that being correct and being true are to be considered as 

synonymous.  
185

 The table is based on preliminary results of an ongoing research project by S. Rahman and Fachrur 

Rozie. Let us point out that we do not claim herewith that the CTT-notion of type is the same as Plato’s 

notion of genus, but rather that they play the same role in judgements involving type/genus. The claim is 

that we can establish a kind of parallelism between the CTT use of judgements involving independent and 

dependent types on the one hand, and Plato’s distinction on the other hand between acts of naming and acts 

of asserting a proposition. For a detailed comparison between the CTT notion of type and Plato’s notion of 

genus, a detailed study is due. 
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presupposes the 

formation rule of 

presupposes the 

formation rule of 

presupposes the 

formation rule of 

presupposes the 

formation rule of 

the independent type 

𝐵 

the genus 𝐵 

(and not of 𝐵(𝑥)) 

the set 𝐴  (the genus) 𝐴 

and the propositional 

function 𝐵(𝑥) over 

the set 𝐴: 

and the predicator 

rule
186 

 for 𝐵(𝑥): 

 
 

 

𝐵(𝑥) : 𝑝𝑟𝑜𝑝 [𝑥 ∶  𝐴] 
 

where 𝐵(𝑥) is a 

dependent type upon 

𝐴. 

𝑥 exemplifies 𝐴  𝐵(𝑥) 

 
where B(x) is defined 

over the genus 𝐴 

Identifying versus Individuating 

As pointed out in in section II.1, the categorical predication of the form 𝑎 ∶  𝐵 does 

not have not the function-argument form that modern logic inherited from Frege, and 

responds to the question on what something is. The modern view conflating both forms of 

predication into a functional form can perhaps be put in the following terms: the act of 

predicating amounts to a process by the means of which some objects are selected from a 

given domain. If the process is set to select exactly one, then we have an individuating 

predication. According to this view, Frege-Russell’s claim that individual constants can 

be substituted salva veritate by definite descriptions can be seen as pushing forward the 

idea that at the very end there is only one fundamental form of predication that amounts 

to a process of selecting by description, either exactly one or a whole class of objects of 

the given domain. This certainly is very different from Plato and Aristotle: according to 

Plato’s approach the process associated to the act of naming cannot be reduced to relating 

some kind of sign with an object but establishes what that object is; in other words, the 

focus in Plato’s naming is on identifying, not individuating. Moreover, it is not only the 

case that in the tradition of Plato the acts are different but, according to the wise insight 

of our forefathers, the source of knowledge is not a given indiscriminate domain.  

This might provide some further insight on the division of waters between rigid 

designation and definite descriptions brought forward by Saul Kripke and Hilary Putnam 

(with some variation). Indeed, the theory of rigid designation assumes an indiscriminate 

domain of objects within which by some kind of individuation act of baptism exactly one 

individual is selected. According to this approach the selection happens in such a way 

that despite the fact that the initial act of selection might have been carried out by an 

individuating description (but not necessarily so), the further identification occurs by 

some kind of causally transmitted indexation.  

If we push our parallelism forward, we could say that in Plato there is also a chain 

of propagation of some (perhaps initial) act of identification. However, the chain might 

propagate a mistake, and the role of the philosopher is to stop the further dissemination of 

the error and investigate about its correctness by the means of dialectical interaction. 

                                                 
186

 For the notion of predicator rule see (Lorenz & Mittelstrass, 1967). We use here a slightly 

modified version: the original idea is that those kinds of rules establish how to constitute a predicate from a 

different one. We propose a more basic predicator rule, namely, a rule that establishes how a predicate is 

ascribed to a certain kind of objects (the genus underlying the predicate).  
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Thus the rigid-designation theory is a remarkable change from Plato’s distinction, 

as it considers after all that both definite descriptions and rigid designators have the same 

role: they are individuating operations. Plato’s theory of naming and stating establishes 

two different acts, one identifying while the other establishing how an object is.  

As pointed out by (Lorenz & Mittelstrass, 1967, p. 6), the act of establishing 

presupposes a domain already set by the act of identification.
187

 Thus, acts of 

individuation, that did not attract much neither Plato’s nor Aristotle’s attention, might 

find their place as special cases of acts of establishing how things are (if our aim is to 

insert them in their framework). If that is so, then acts of individuation presuppose a 

given domain.  

 

This certainly does not meet the perspective of those that strictly distinguish 

between individuation by flexible designation (or description) and individuation by rigid 

designation (or indexation). According to this view, both individuation acts are to be 

understood as two different irreducible ways of selecting objects within a domain, one by 

selecting an individual and the other as a unary set. The first form of individuation cannot 

be imported as such in the framework of the Cratylus,
188

 since it would assume that we 

could individuate an object without any knowledge of what it is.
189

 

XI.7 Intersubjectivity, Dialogues, and Learning 

The book Logic, Language and Method. On Polarities in Human Experience, 

published in 2010, includes papers written by Kuno Lorenz in a period extending over 

more than thirty years. These papers have planted the seeds for his further penetrating 

work (Lorenz, 2009; 2010a; 2010b), which can be considered as philosophical variations 

on Das Dialogische Prinzip (2010b, pp. 509-520) underlying what is often known as 

Dialogical Constructivism.  

In the framework of Dialogical Constructivism, the analysis of the notion of 

intersubjectivity starts by the study of a situation where two persons are engaged in the 

process of acquiring a common action-competence in a situation of teaching and 

learning;
190

 what is at stake then is not simply mirroring an individual competence in 

another individual, but rather it is a procedure which incorporates from the very 

beginning this dialogical situation.
191

 Immanent reasoning, being an offspring of 

Dialogical Constructivism, inherits its philosophical background and sensitivity. In this 

regard, the rules of the play level are not actualizations by themselves, but are rather 
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 It can be seen as an early formulation of what is nowadays known as the principle of 

comprehension or set-specification.  
188

 The proviso “as such” leaves the door open to the possibility that acts of individuation could be 

carried out over an already separated subset. However, it is not clear if this will work out in Plato’s 

framework, and it seems that it will not work at all in CTT.  
189

 In contemporary modal logic we have also a more sophisticated theory of dealing with 

individuation, namely the theory of individuals as World-Lines of the late Jaakko Hintikka (1969), but the 

discussion of it will go far beyond the aims of this short excursus. (Tulenheimo, 2017) provides both a 

thorough critical discussion of Hintikka’s formulations and a new approach inspired by the notion of world-

lines.
 
Tulenheimo’s distinction between world-bounded local objects, and individuals, might perhaps be 

asocciated to the distinction between identification (in a world) and Individuating (establishing world 

links). 
190

 The bibliographic background of this section is based mainly on (Lorenz, 2010a, pp. 2017-2018) 

chapter Procedural Principles of the Erlangen School. On the Interrelation between the principles of 

method, of dialogue, and of reason. 
191

 The act of executing must be distinguished from taking the action as an object: while executing 

an action, actor and execution are said to be indistinguishable. 
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procedures for actualizing some action consisting in dealing with an object or 

appropriating that object, be it in a situation of teaching and learning, or any dialogical 

situation. 

 

A consequence of Lorenz’s (2017b, pp. 509-520) general dialogical principle is that 

the interface semantics-pragmatics should be understood  

1. neither as the result of the semantization of pragmatics—where deontic, 

epistemic, ontological, and temporal modalities become truth-functional 

operators; 

2. nor as the result of the pragmatization of semantics—where a propositional 

kernel, when put into use, is complemented by moods yielding assertions, 

questions, commands and so on.  

Lorenz’s view (2010a, pp. 71-79) is that the differentiation of semantic and pragmatic 

layers is the result of the articulation within one and the same utterance: each utterance 

displays in principle both features: it signifies (semantic layer) and it communicates 

(pragmatic layer). 

Take for example one-word sentences such as: 

Rabbit! 

Water! 

With these utterances the speaker is conveying at the same time what the object is and 

how the object is. But while the first aspect (what) is related to object-constitution, the 

second (how) is related to object-description; or, if we use the terminology of 

Wittgenstein’s Tractatus, the first aspect relates to the act of showing and the second to 

the act of saying. Object-description is carried out by the use of predicates on an already 

constituted domain of objects. Lorenz recalls here Plato’s Cratylus (388b), in which these 

two acts and their interdependence are distinguished as naming (which has the role of 

indicating) and establishing (with the role of communicating).
192

 Lorenz’s view is that 

each utterance of a sentence has this double nature, not only one-word sentences. Thus: 

(a) Sam is smoking.  

has both roles, indicating as well as communicating; though according to this analysis, 

uttering such a sentence does not yield any ambiguity: uttering it simply displays within 

one movement object-constitution (or construction) and object-description (or 

attribution). 

While the first, object-constitution, involves differentiating parts of a whole 

(including the processes of partitioning a whole by synthesis and analysis), the second, 

object-description, involves stating that a certain relation holds. In this regard, attribution 

is not a relation, but a means for stating that relations hold of objects. The usual 

procedure for representing attribution by using extensional class-membership relations 

thus blurs this distinction. 

  

According to the language of immanent reasoning (borrowed from CTT),  

(a) Sam is smoking  

can be read as expressing either 

(b) ! Sam : Smoking 

or 

(c) ! d(Sam) : Smoking(Sam)  (Sam : Human) 

From the point of view of Lorenz's Dialogical Constructivism, me might say that 

the colon in both claims separates, using his words, the significative, particular, part of 

                                                 
192

 In the previous section ( XI.6) we briefly present the discussion of the Cratylus found in (Lorenz 

& Mittelstrass, 1967).  
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the expression from the communicative, universal, side of it, placed at the right side of 

the colon. 

 

These considerations deserve further investigation, though this conclusion is not 

their place. But the point here is to stress that, according to the dialogical principle, 

pragmatization and semantization are two different aspects: 𝑎: 𝐵 and 𝐵(𝑎) are not the 

result of an ambiguity of some sort, but are simply two aspects, the semantic aspect and 

the pragmatic aspect. 

The dialogical nature of meaning and the I-You-perspective 
From the point of view of Dialogical Constructivism however, it is not sufficient to 

simply observe utterances and to conceptually distinguish their two functions. Beyond 

descriptive observation, what it is needed is to be aware of the necessarily social 

character of the acquisition process by the means of which these expressions are used and 

some distinctions are drawn. Meaning is dialogical by nature and it emerges from 

participation and collective interaction.  

In other words, Dialogical Constructivism—and immanent reasoning after it—is 

based on the idea that the acquisition of meaning is intimately linked to both, the 

accomplishment of acting, and living together and participating in the actions the 

utterances express:  
[…]the use of predicators as passed from one generation to the another is not usually 

accomplished by mere deictic activities, that is, in distantiated pointing, but rather 
“empractically” (Bühler), i.e. in very accomplishment of acting and living together. What 

“walking” or “eating” is […] we learn  these things linguistically only along with the 

activities themselves, at the same time. In living with one another over a long period of time 

we acquired the use of such predicators as “father”, “brother” […]. (Kamlah & Lorenzen, 

1984, p. 36) 

Lorenz (2010a, pp. 142-146) develops further this empractical approach, based on 

the work of Johan Gottfried Herder (1960 [1772]) Part II, who uses a dialogue model of 

teaching and learning to identify items of cultural process, inasmuch as both “doing” and 

“suffering”, terms that can be used to characterize the two roles which always occur 

together: that of teaching and that of learning. Indeed, from the point of view of the 

teacher, there is a predominant active feature of “doing”, while the learner, in its passive 

perspective, is taking the doing of the teacher as the way to actualize the action-schema in 

question. This duality also applies to performances by the means of which singulars are 

brought forward, and holds likewise of actualizations by the means of which particulars 

are brought forward.  

In other words, within the model of an elementary dialogue situation in which two 

agents are engaged in the process of acquiring an action competence, the activities of 

actualizing and schematizing should not be understood as carrying out two separate 

actions; rather one acquires the compentence of one and the same action by learning to 

play both the active and the passive role. Active actualization makes the action appear in 

I-perspective, passive schematization lets it appear in You-perspective. Performing an 

action-schema by myself, that has been experienced as a schema through your 

actualization of the schema, amounts to learning by means of an I-You-perspective.  

 In order to switch from an I-You-perspective to a He-She-perspective, the 

constitution of a third-man perspective is required. The perspective of the "third-man" 

results from the nesting of I-You-perspectives— (Lorenz, 2010a, p. 48). In such a 

framework,
193
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 See (Lorenz, 2010a, pp. 144-146). 
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 individuality, i.e. a difference between individuals on the level of 

reflection, will be recognized only within some common activity where I- 

and You-perspectives are put into action.  

 sociality, i.e. an equality of individuals on the level of reflection, can be 

exercised only by being conscious of the different approaches within the 

same common activity. This amounts to cooperation by means of 

individual contributions. 

XI.8 Final Words  

The play level is the level where meaning is forged: it provides the material with 

which we reason.
194

 It reduces neither to the (singular) performances that actualize the 

interaction-types of the play level, nor to the “tactics” for the constitution of the schema 

that yields a winning strategy.  

 

We call our dialogues involving rational argumentation dialogues for immanent 

reasoning precisely because reasons backing a statement, that are now explicit denizens 

of the object-language of plays, are internal to the development of the dialogical 

interaction itself.  

 

More generally, the emergence of concepts, so we claim, are not only games of 

giving and asking for reasons (games involving Why-questions) they are also games that 

include moves establishing how is it that the reason brought forward accomplishes the 

explicative task. Dialogues for immanent reasoning are dialogical games of Why and 

How.   

 

More generally, Lorenz (2010a, pp. 140-147) associates competition with the 

process of individualization and cooperation with the process of socialization, so that 

both are different ways to display the I and the You perspectives. In this sense, the 

dialogical teaching-learning situation is where competition and cooperation interact: both 

intertwine in collective forms of dialogical interaction that take place at the play level.  

  

The point is that within the dialogical framework actualizing and schematizing 

should not be understood as performing two separate actions: through these actions we 

acquire the competence that is associated to the meaning of an expression by learning to 

play both, the active and the passive role. This feature of Dialogical Constructivism stems 

from Herder’s view
195

 that the cultural process is a process of education, in which 

teaching and learning always occur together: dialogues display this double nature of the 

cultural process in which concepts emerge from a complex interplay of why and how 

questions. 

 

If the reader allows us to condense our proposal once more, we might say that the 

perspective we are trying to bring to the fore is rooted in the intimate conviction that 

meaning and knowledge are something we do together; our perspective is thus an 

invitation to participate in the open-ended dialogue that is the human pursuit of 

knowledge and collective understanding, since philosophy’s endeavour is immanent to 

the kind of dialogical interaction that makes reason happen.  

                                                 
194

 To use Peregrin’s (2014, pp. 228-229) words. 
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 See (Herder, 1960 [1772]), Part II. 
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APPENDIX: MAIN NOTATION FOR CTT 

Equality and Identity 

 Judgemental equality 

o a = b : B 

o A = B: set 

 Identity-Predicate: Id(A, x, y), alternatively x =A y 

  

Judgement 

 Categorical  

o a : A  

o a = b : A  

o A : set, alternatively A : prop 

o A = B : set, alternatively , A = B : prop 

 

 Hypothetical  

o x : A ⊢ b : B, alternatively b : B (x : A) 

o x : A ⊢ b = c : B, alternatively b = c : B (x : A)  

o x : A ⊢ B : set, alternatively B : set (x : A) 

o x : A ⊢ B = C : set, alternatively B = C : set (x : A) 

 

Types 

 proposition: prop 

 sets: set 

 natural numbers: ℕ 

 propositional-function of prime numbers : Pr 

 

Operators over a family of sets 

 Σ-operator  (Σ x : A)B 

o Proof object:  <a, b> : (Σ x : A)B 

o Projectors for c : (Σx : A)B  fst(c) : (Σx : A)B snd(c) : (Σx : 

A)B[fst(c)] 

 

 П-operator (Πx : A)B  

o Proof object for П λx.b : (Πx : A)B : 

o Application for  c : (Πx : A)B , a : A  ap(λx.b, a) : B[a] 

 

 Disjoint union A + B 

o Proof-object given a : A   i(a) : A + B  

o Proof-object given b : B   j(b) : A + B 

o Selector given c : A + B,, x : A ⊢ d : C[i(x)], y : B ⊢ e : C[j(y)] D(c, 

x.d, y.e) : C[c] 
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21  (∃𝑥: 𝐷)(∃𝑦: 𝐷)𝐴(𝑥, 𝑦)[(∃𝑥: 𝐷)𝐴(𝑥, 𝑥)]  VII.6.12 

22  (∀𝑥: 𝐷)(∀𝑦: 𝐷)(𝐴(𝑥, 𝑦) ∧ 𝐴(𝑦, 𝑥)) [(∀𝑥: 𝐷)(∀𝑦: 𝐷)𝐴(𝑥, 𝑦)]  
VII.6.13V

II.4 

23 
 (∃𝑥: 𝐷)(𝐴(𝑥) ⊃ (∀𝑥: 𝐷)𝐴(𝑥)) 

 [((∃𝑥: 𝐷)¬𝐴(𝑥)) ∨ ((∀𝑥: 𝐷)𝐴(𝑥))] 
 (∃𝑥: 𝐷)(𝐴(𝑥) ⊃ (∀𝑥: 𝐷)𝐴(𝑥)) 

[((∃𝑥: 𝐷)(𝐴(𝑥) ⊃⊥)) ∨ ((∀𝑥: 𝐷)𝐴(𝑥))] 
VII.6.14 

24  (∀𝑥: 𝐴)(∃𝑦: 𝐵(𝑥))𝐶(𝑥, 𝑦) ⊃ (∃𝑓: (∀𝑥: 𝐴)𝐵(𝑥))𝐶(𝑥, 𝑓(𝑥))  VIII.2 

25  (∀𝑥 : 𝐁𝐨𝐨𝐥)(𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒚𝒆𝒔) ∨  𝑰𝒅(𝐁𝐨𝐨𝐥, 𝑥, 𝒏𝒐))  X.2.3 

26  𝑰𝒅(𝐁𝐨𝐨𝐥, 𝒚𝒆𝒔, 𝒏𝒐) ⊃⊥ [𝒏𝟎, 𝒏𝟏: 𝓤; ℕ𝟏;  𝒚𝒆𝒔, 𝒏𝒐 ∶  𝐁𝐨𝐨𝐥;  𝑮(𝑥): 𝓤 [𝑥 ∶  𝐁𝐨𝐨𝐥]]  X.3.3 

27  𝐴 ∧ ¬𝐴  𝐴 ∧ (𝐴 ⊃⊥) XI.1 

 


