
HAL Id: halshs-01224145
https://shs.hal.science/halshs-01224145

Submitted on 4 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Harsanyi’s theorem without the sure-thing principle: On
the consistent aggregation of Monotonic Bernoullian and

Archimedean preferences
Stéphane Zuber

To cite this version:
Stéphane Zuber. Harsanyi’s theorem without the sure-thing principle: On the consistent aggregation
of Monotonic Bernoullian and Archimedean preferences. 2015. �halshs-01224145�

https://shs.hal.science/halshs-01224145
https://hal.archives-ouvertes.fr


 
 

 

Documents de Travail du 
Centre d’Economie de la Sorbonne 

 

 

 
 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 

 

Harsanyi’s theorem without the sure-thing principle: 

On the consistent aggregation of Monotonic Bernoullian 

and Archimedean preferences 

 

Stéphane ZUBER 

 

2015.69 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647  Paris Cedex 13 
http://centredeconomiesorbonne.univ-paris1.fr/ 

ISSN : 1955-611X 

 



Harsanyi’s theorem without the sure-thing principle:
On the consistent aggregation of Monotonic Bernoullian

and Archimedean preferences
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Abstract

This paper studies the extension of Harsanyi’s theorem (Harsanyi, 1955) in a frame-
work involving uncertainty. It seeks to extend the aggregation result to a wide
class of Monotonic Bernoullian and Archimedean preferences (Cerreia-Vioglio et
al., 2011) that subsumes many models of choice under uncertainty proposed in
the literature. An impossibility result is obtained, unless we are in the specific
framework where all individuals and the decision-maker are subjective expected
utility maximizers sharing the same beliefs. This implies that non-expected utility
preferences cannot be aggregated consistently.
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1 Introduction

Harsanyi (1955) proved the following theorem: if (i) all individuals and the social

observer are expected utility maximizers on the set of simple lotteries over a set Y ;

(ii) whenever all individuals prefer lottery p to lottery q, the social observer must also

prefer p to q (the Pareto principle); then the social observer’s utility function must be

an affine combination of individuals’ von Neumann and Morgenstern utility functions.

This result is known as Harsanyi’s aggregation theorem.

The purpose of this note is to take up the issue considered by Harsanyi, namely

the aggregation of preferences, but when uncertainty rather than risk prevails. In that

context, the basic model is Subjective Expected Utility (henceforth SEU, see Savage,

1954), which captures beliefs through a probability distribution. But this model has

been challenged, in particular because the Sure-Thing Principle (holding that outcomes

which occur regardless of which action is chosen should not affect one’s preferences) is

often violated by individual decision makers.

In this note, we considerably widen the investigation by considering a large class

of preferences, namely Monotonic Bernoullian Archimedean preferences (henceforth

MBA preferences, see Cerreia-Vioglio et al., 2011). This model permits a separation

between tastes and ambiguous beliefs (represented by a set of probability distributions),

in a specific sense. It also encompasses many models of decision under uncertainty

that have been proposed recently, in particular the Choquet expected utility model by

Schmeidler (1989), the multiple-prior preferences by Gilboa and Schmeidler (1989), the

variational preferences of Maccheroni, Marinacci and Rustichini (2006) and the second

order expected utility model by Klibanoff, Marinacci and, Mukerji (2005) and Ergin

and Gul (2009).

Our main result is that agents’ MBA preferences can be aggregated into MBA social

preferences only in the very specific case where all individuals and the society have SEU

preferences and share the same beliefs. In that case, it is also shown that the social

aggregation rule is very specific, namely the social SEU is an affine combination of the

agents SEU. Hence a consistent social aggregation of preferences is impossible as soon

as at least one of the following is true: (i) agents have different beliefs; (ii) agents have

non-SEU preferences.

It is already known that in models of decision under uncertainty it may not be

possible to aggregate beliefs and tastes in a consistent way. Hylland and Zeckhauser
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(1979) and Mongin (1995, 1998) showed that for SEU preferences: when individuals

are simultaneously heterogeneous in terms of tastes and beliefs, it is impossible to

aggregate individual preferences into an SEU social preference. A key issue is “spurious

unanimity”: opposite beliefs and tastes may induce people to agree that a decision is

better for conflicting reasons.

In the case of ambiguous beliefs, few results on preference aggregation exist in the

literature. Chambers and Hayashi (2006) considered a Savage framework, where deci-

sion makers may have non-SEU preferences. They showed that, when individuals have

different beliefs, eventwise monotonicity is incompatible with the Pareto axiom. Our

setting further weaken eventwise dominance to statewise dominance (monotonicity).

Yet, we are able to obtain an impossibility similar to the one they describe even when

people have the same beliefs.

Gajdos, Tallon and Vergnaud (2008) showed that, within the class of “Rank-Depen-

dent Additive”preferences, a consistent aggregation is impossible, even if all individuals

have the same beliefs, unless the society and the individual are uncertainty neutral

(which occurs in the SEU model). However, their aggregation result is obtained for a

smaller class of preferences than the one studied in this note.

The paper closest to ours is Mongin and Pivato (2015), which was written indepen-

dently of the present note. Their conclusion, like ours, is that consistent aggregations of

preferences can be achieved only if (i) the individuals and the observer are all SEU max-

imizers, and (ii) they use the same subjective probabilities. Technically, their method

of proof is similar to ours. It is based on the key insight provided by Blackorby, Don-

aldson and Mongin (2004) that the Pareto principle and monotonicity (or statewise

dominance) impose separability conditions. Combining these separability conditions

yield an additive separable representation. Their paper has a more general framework

than the one in this note: it encompasses other frameworks than choice under uncer-

tainty. But they also assume technical structural conditions (that the set of feasible

alternative is connected, sectionally connected, and indifference connected for the social

ordering). In the Anscombe-Aumann framework (Anscombe and Aumann, 1963), we

do not need such structural assumptions, but only standard and easily interpretable

choice-theoretic premisses.1

1In different but related settings, Blackorby, Donaldson and Mongin (2004) and Chambers and
Hayashi (2014) use the same ideas to derive additive representations, but they need to assume that the

2

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2015.69



Recently, Herzberg (2013) also obtained an impossibility result for the class of MBA

preferences we consider in this note. But he does so within an Arrovian aggregation

framework, using an aggregator desideratum of systematicity. In this note, we do not

impose such regularity constraints on the social aggregator.

Other papers are related to this note. Fleurbaey (2009) studied the aggregation

of expected utility individual preferences into a non-expected utility social preference

ordering, which satisfies statewise dominance. He obtained that the social aggrega-

tion must be affine so that society must use an expected utility to evaluate prospects.

We also find this affine aggregation when individuals’ preferences are SEU. This note

broadens the investigation to non SEU individual preferences and does not assume ob-

jective probabilities. Our proof is nonetheless related to his, for it relies on functional

equations.

More generally, there is a strand of the literature studying the consistency of ex ante

and ex post social judgements. Most of the literature has focused on the expected util-

ity case, to show that the Utilitarian rule is the only one that can be used consistently

ex ante and ex post (see in particular Hammond, 1981; Myerson, 1981; Blackorby, Don-

aldson and Weymark, 1999). The present note also seeks consistent social judgements,

but enlarges the study to non-expected utility preferences. It shows that not only the

social aggregation rule matters, but also the kind of preferences that are aggregated.

Specifically, we show that only SEU preferences with common beliefs can be aggregated

consistently.

The remainder of the note is divided into three sections and one appendix. In

Section 2, we lay down the model and define MBA preferences. In Section 3, we

present the result concerning the possibility of consistent aggregation of preferences

(Theorem 1). In Section 4, we discuss this result and several directions that can be

explored to go beyond it. An appendix provides the proof of Theorem 1.

2 The framework

Consider a society made of a finite number of agents N = {1, · · · , N}. Let N0 =

{0, 1, · · · , N} where 0 refers to society.

set of alternatives is a a product space. This is less general than Mongin and Pivato (2015) and the
present note.

3
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Uncertainty is modeled using the Anscombe-Aumann framework (Anscombe and

Aumann, 1963). There is a finite set S = {1, · · · , S} of states of the world. Let C be a

non-empty set of consequences and X = ∆(C) be the set of simple lotteries over C (that

is lotteries with finite support). Let A be the set of acts, that is, mappings f : S → X.

Since X is a mixture space, the mixture operation αx+ (1− α)y is well-defined for all

α ∈ [0, 1] and x, y ∈ X, and αx+ (1− α)y ∈ X. We will identify X with the subset of

sure acts, that is acts x ∈ A such that x(s) = x for all s ∈ S, where x ∈ X. One can also

define a mixture operation on A in the following way: for any f, g ∈ A and α ∈ [0, 1],

the act αf + (1− α)g in A is such that (αf + (1− α)g)(s) = αf(s) + (1− α)g(s) ∈ X
for every state s ∈ S.

We model the preferences of an agent i ∈ N on A by a binary relation %i, and

denote by �i and ∼i its symmetric and asymmetric components. Society’s preferences

are denoted %0, with similar definitions.

Let us now define some properties of binary relations % over A. The first prop-

erty guarantees that preferences are complete orderings that can be represented by

continuous utility functions.

Property 1 (Regularity). The binary relation % satisfies:

a. Completeness. For all f, g ∈ A either f % g or g % f (or both).

b. Transitivity. For all f, g, h ∈ A, if f % g and g % h then f % h.

c. Archimedean. For all f, g, h ∈ A, if f � g and g � h then there exist α, β ∈ (0, 1)

such that αf + (1− α)h � g and g � βf + (1− β)h.

The second property is a dominance property that guarantees the consistency be-

tween preferences over acts and preferences over lotteries in each state of the world.

Property 2 (Monotonicity). For all f, g ∈ A, if f(s) % g(s) for all s ∈ S, then

f % g. If furthermore there exists t ∈ S such that f(t) � g(t), then f � g.

Note that we use a strong version of Monotonicity, which implies the sensitivity to

each state of the world. This also means that we rule out the existence of null states.

This is done for the sake of simplicity, to avoid some complications with dealing with

null states that would not change the message of the present note.

The last property is the VNM independence axiom restricted to risk situations

where probabilities are known.

4
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Property 3 (Risk independence). For all x, y, z ∈ X, if x % y, then for all

α ∈ [0, 1], x % y ⇐⇒ αx+ (1− α)z % αy + (1− α)z.

For any set Z, and function v : Z → R, we define Rg(v) = {a ∈ R : ∃z ∈ Z, a =

v(z)}. Let B be an interval in R, a monotonic function I : BS → R is normalized if

I(b, · · · , b) = b for all b ∈ B.

Definition 1. The binary relation % on A is a Monotonic Bernoullian Archimedean

(MBA) preference ordering if there exist an affine function u : X → R and a continuous

increasing and normalized function I : Rg(u)→ R such that, for all f, g ∈ A,

f % g ⇐⇒ I
(
u
(
f(1)

)
, · · · , u

(
f(S)

))
≥ I
(
u
(
g(1)

)
, · · · , u

(
g(S)

))
. (1)

Moreover, if v : X → R and Iv : Rg(v) → R also satisfy (1) and Iv is normalized,

then there exist λ ∈ R++ and µ ∈ R such that v(x) = λu(x) + µ for all x ∈ X and

Iv(b1, · · · , bS) = λI( b1−µλ , · · · , bS−µλ ) for all (b1, · · · , bS) ∈ Rg(v)S.

MBA preferences are characterized by the three properties introduced above.

Proposition 1 (Cerreia-Vioglio et al., 2011). A binary relation % on A is an

MBA preference ordering if and only if it satisfies Regularity, Monotonicity and Risk

Independence.

Proof. Similar to the proof of Proposition 1 in Cerreia-Vioglio et al. (2011), the only

difference being that we only consider a finite number of states of the world, which are

all essential by Monotonicity, so that I is increasing.

MBA preferences encompass many decision models proposed in the literature on

choice under uncertainty. In particular it encompasses the SEU model.

Definition 2. A binary relation % on A is a subjective expected utility (SEU) pref-

erence ordering if there exists a vector (p1, · · · , pS) ∈ (0, 1)S with
∑

s∈S ps = 1 and an

affine function u : X → R such that, for all f, g ∈ A,

f % g ⇐⇒
∑
s∈S

psu(f(s)) ≥
∑
s∈S

psu(g(s)). (2)

In the above definition, the vector (p1, · · · , pS) is the subjective probability distri-

bution used by the decision maker. When two decision makers have preferences that
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are SEU preference orderings, and when they have the same subjective probability

distribution, we say that they share the same beliefs.

3 The (im)possibility of consistent aggregations of MBA preferences

Let us now turn to the aggregation of preferences. We assume that all decision makers

(including society) have MBA preferences orderings %i, i ∈ N0. We also assume that

there exists some diversity among the individual preferences that we seek to aggregate.

It is represented by the following assumption that is known in the literature as the

‘independent prospects’ property (Weymark, 1991; Mongin, 1998).

Assumption 1. For any i ∈ N , there exists xi, yi ∈ X such that xi �i yi and xi ∼j yi
for all j ∈ N \ {i}.

The aim of a social aggregation is to derive the social preference ordering from

individual preference orderings. Many ethical principles can be invoked to determine

how this aggregation should be made. But the most widely accepted principle is the

Pareto principle, whose strong version is as follows.

Axiom 1 (Strong Pareto). For all f, g ∈ A, if f %i g for all i ∈ N , then f %0 g. If

moreover there exists j ∈ N such that f �j g, then f �0 g.

The following (im)possibility theorem, whose proof is in the Appendix, delineates

the scope of consistent preference aggregations.

Theorem 1. Assume that all individuals have MBA preferences satisfying Assumption

1. Social preferences can be MBA preferences and satisfy the Strong Pareto principle

only if all individuals have SEU preferences and share the same beliefs.

In that case, there exist weights (a1, · · · , aN ) ∈ RN+ such that, for all f, g ∈ A:

f %0 g ⇐⇒
∑
s∈S

ps

(∑
i∈N

aiui
(
f(s)

))
≥
∑
s∈S

ps

(∑
i∈N

aiui
(
g(s)

))
, (3)

where (p1, · · · , pS) ∈ (0, 1)S is the individuals’ subjective probability distribution. Fur-

thermore the weight vector (a1, · · · , aN ) ∈ RN+ is unique, and the affine functions ui are

unique up to positive affine transformations with a common multiplier.
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The first part of Theorem 1 is an impossibility result. It states that it is impossible to

consistently aggregate preferences under uncertainty, unless individuals and the society

have SEU preferences and share the same beliefs. In particular, SEU preferences cannot

be aggregated when individuals have different beliefs (Mongin, 1995). And non-SEU

preferences cannot be aggregated even when people share the same beliefs (Gajdos,

Tallon and Vergnaud, 2008). Theorem 1 thus generalizes existing impossibility results.

The second part is the extension of Harsanyi’s results to the Anscombe-Aumann

framework when people are SEU and share the same beliefs. The social welfare function

must be an affine aggregation of individuals’ SEU. This specific aggregation has been

best described as generalized utilitarian (for clear and comprehensive reviews of the eth-

ical significance of Harsanyi’s theorem, see Weymark, 1991; Mongin and d’Aspremont,

1998). It may is problematic for societies wishing to incorporate fairness into their

decision making process.

As already noted by Diamond (1967), Harsanyi’s aggregation procedure prevents

ex ante equity considerations requiring progressive transfers of expected utility to be

welfare improving. Myerson (1981) also noted the difficulty of defining egalitarian

principles in risky situations. In the more general framework of dynamic choice under

uncertainty, Bommier and Zuber (2012) have already proved that rational Paretian

social observers must have the same aversion to inequality. Theorem 1 further specifies

this result by implying that inequality aversion is nil (with respect to specific normal-

izations of the expected utilities). Another issue is that of ex post equity. Fleurbaey

(2010) has proposed a specific weakening of the Pareto principle to deal with it.

4 Discussion

Theorem 1 states that it is generally impossible to consistently aggregate MBA indi-

vidual preferences into MBA social preferences. To escape the impossibility, several

directions can be explored.

An important condition for Theorem 1 to hold is Assumption 1. Of course, if the

assumption is true for some individuals in N only, the impossibility would still hold

(we only lose the uniqueness of the weights ai in Equation 3). To recover a possibility

result, we need to assume that all individuals have the same preferences on X. This

assumption was made by Crès, Gilboa and Vieille (2011). They showed that it is

then possible to aggregate agents beliefs in a consistent way within the multiple prior

7
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preference model. This finding is interesting but it seems restrictive to assume that

people have exactly the same risk preferences. The result is however useful if we focus

on the aggregation of preferences restricted to common-taste uncertain options (see

Danan et al., 2015).

Another option would be to widen the scope of admissible social preferences beyond

MBA preferences. An option that has widely been explored is to allow social prefer-

ences to be state-dependent. Within the SEU framework, Mongin (1998) obtained a

possibility result: although agents have different beliefs, it is possible to obtain a state

dependent SEU social ordering, which is an affine combination of agents ex ante ex-

pected utilities. Similar results have been presented by Chambers and Hayashi (2006).

However, allowing for state dependence at the social level cannot restore the possibility

for non-SEU preferences (see Gajdos, Tallon and Vergnaud, 2008; Mongin and Pivato,

2015). The results of the present note could be extended to allow state dependence,

without modifying the result. Another possibility would be to completely drop the

requirement of Monotonicity (or statewise dominance). This is actually what was sug-

gested by the literature promoting ex ante equity in the context of risk and uncertainty

(see for instance Diamond, 1967; Epstein and Segal, 1992), but one then has to deal

with the issue of time consistency (Machina, 1989).

A last option to restore possibilities would be to weaken the Pareto principle. A

first direction would be to only use the Weak Pareto principle. This would make pos-

sible dictatorial choices, where the society always makes decision using the preference

ordering of a specific individual. Positional dictatorships (such as Maxmin) are however

not possible in general (see Chambers and Hayashi, 2014). Other weakened versions

of the Pareto principle have been proposed. To avoid spurious unanimities Gilboa,

Samet and Schmeidler (2004) proposed to restrict the use of the Pareto principle to

cases where SEU agents have the same beliefs. Danan et al. (2015) have recently shown

that this not enough if we want to study MBA preferences: even with identical sets

of belief, agents may agree to prefer situations which are socially dominated in each

state of the world. Danan et al. (2015) hence further restricted the Pareto principle

to apply to common-taste outcomes (they call this principle the common-taste robust

Pareto principle). Brunnermeier et al. (2014) proposed a similar version of the Pareto

principle. Gilboa, Samuelson and Schmeidler (2014) proposed a stronger notion of no-

betting Pareto dominance. This route is thus a promising avenue for research. One

8
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limitation, though, is that affine aggregations of utilities are in general still obtained

(see for instance Gilboa, Samet and Schmeidler, 2004; Danan et al., 2015). Fairness

issues, such as those discussed Section 3, remain unresolved by the use of such weakened

Pareto principles.

Appendix

Assume that all agents have MBA preferences on A, and that social preferences are

also MBA. By Proposition 1, for any i ∈ N0 there exist an affine function ui : X → R
and a continuous increasing and normalized function Ii : Rg(ui)→ R such that, for all

f, g ∈ A,

f %i g ⇐⇒ Ii

(
ui
(
f(1)

)
, · · · , ui

(
f(S)

))
≥ I
(
ui
(
g(1)

)
, · · · , ui

(
g(S)

))
. (4)

The following Lemma concerns the aggregation in risky situations.

Lemma 1. There exist unique weights (a1, · · · , aN ) ∈ RN++ and a constant b ∈ R such

that, for all x ∈ X:

u0(x) =
∑
i∈N

aiui(x) + b, (5)

Proof. Applying the Strong Pareto principle to preferences restricted to X, this follows

from the results by Fishburn (1984, Theorem 2 and Corollary 1).

Define U =
{

(v1, · · · , vN ) ∈ RN | ∃x ∈ X : vi = ui(x),∀i ∈ N
}

. The set U is a

nonempty convex subspace of RN of dimension N .2 Hence US is also a nonempty convex

subspace of RN×S of dimension NS. A vector v ∈ US has coordinates vsi , meaning that

there exists f ∈ A such that, for any i ∈ N and any s ∈ S, vsi = ui
(
f(s)

)
.

For all i ∈ N , we now define the relations %∗i over US in the following way. For any

v, ṽ ∈ US and any f, g ∈ A such that vsi = ui
(
f(s)

)
and vsi = ui

(
f(s)

)
for all i ∈ N

and s ∈ S:

v %∗i ṽ ⇐⇒ f %i g. (6)

2Indeed, if v = (v1, · · · , vn) ∈ U and ṽ = (ṽ1, · · · , ṽn) ∈ U , this implies that there exist x, y ∈ X
such that vi = ui(x) and ṽi = ui(y),∀i ∈ N . For any λ ∈ (0, 1), let z = λx + (1 − λy). Then, for all
i ∈ N , ui(z) = λui(x)+(1−λ)ui(y) = λvi+(1−λ)ṽi. Hence, λv+(1−λ)ṽ ∈ U . Assumption 1 implies
that the dimension of U is N , because all components are independent.

9
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Hence, using Equation (4), for all i ∈ N and all v, ṽ ∈ US , v %∗i ṽ ⇐⇒ Ii
(
v1i , · · · , vSi

)
≥

Ii
(
ṽ1i , · · · , ṽSi

)
. By Lemma 1, it must also be the case that, for all v, ṽ ∈ US ,

v %∗0 ṽ ⇐⇒ I0

(∑
i∈N

aiv
1
i +b, · · · ,

∑
i∈N

aiv
S
i +b

)
≥ I0

(∑
i∈N

aiṽ
1
i +b, · · · ,

∑
i∈N

aiṽ
S
i +b

)
(7)

The following Lemma lists some properties of relation %∗0.

Lemma 2. The relation %∗0 on US is complete, transitive, continuous and all indiffer-

ence sets of %∗0 are connected subsets of US.

Proof. That %∗0 is complete, transitive and continuous is proved by the fact that it is

represented on US by a continuous real-valued function (Equation 7).

Consider any v, ṽ ∈ US such that v ∼∗0 ṽ. Denote S̄ =
{
s ∈ S|

∑
i∈N aiv

s
i >∑

i∈N aiṽ
s
i

}
and S =

{
s ∈ S|

∑
i∈N aiv

s
i <

∑
i∈N aiṽ

s
i

}
. For any λ, µ ∈ [0, 1], also

denote µ
λv the vector such that

(a) µ
λv

s
i = λvis + (1− λ)ṽis for all i ∈ N and s ∈ (S \ S),

(b) and µ
λv

s
i = µṽis + (1− µ)vis for all i ∈ N and s ∈ S.

By convexity of U , we know that µ
λv ∈ U

S for any λ, µ ∈ [0, 1].

Case 1: S̄ = S = ∅. In that case, v ∼∗0 λ
λv ∼∗0 ṽ for any λ ∈ [0, 1]. Hence the map

ψ : [0, 1] → US such that ψ(λ) = λ
λv for all λ ∈ [0, 1] defines a path between v and

ṽ whose elements are on the same indifference curve as v and ṽ. The segment of the

indifference curve between v and ṽ is path connected.

Case 2: S̄ = ∅ and S 6= ∅ or S̄ 6= ∅ and S = ∅. This is impossible: because I0 is

increasing, this would imply either v ≺ ṽ or v � ṽ, which is a contradiction.

Case 3: S̄ 6= ∅ and S 6= ∅. For λ ∈ (0, 1), we have 0
λv ≺∗0 v ∼∗0 ṽ ≺∗0 1

λv.3 the map

Ψ : [0, 1]→ US such that Ψ(µ) = µ
λv for all µ ∈ [0, 1] defines a path between 0

λv and 1
λv.

Given that %∗0 is continuous, there exist µ ∈ (0, 1) such that µ
λv ∼

∗
0 v ∼∗0 ṽ. We denote

µ(λ) this number, which is unique.4 We also take µ(0) = 1 and µ(1) = 0. Hence the

map ψ : [0, 1] → US such that ψ(λ) =
µ(λ)
λ v for all λ ∈ [0, 1] defines a path between v

3Indeed, by definition, for all s ∈ S̄,
∑
i∈N aiv

s
i > λ

(∑
i∈N aiv

s
i

)
+ (1 − λ)

(∑
i∈N aiṽ

s
i

)
=∑

i∈N ai
0
λv
s
i ; in the meantime,

∑
i∈N aiv

s
i =

∑
i∈N ai

0
λv
s
i for all s ∈ (S \ S̄). Similarly, for

all s ∈ S̄,
∑
i∈N aiṽ

s
i < λ

(∑
i∈N aiv

s
i

)
+ (1 − λ)

(∑
i∈N aiṽ

s
i

)
=
∑
i∈N ai

1
λv
s
i ; in the meantime,∑

i∈N aiṽ
s
i =

∑
i∈N ai

1
λv
s
i for all s ∈ (S \ S̄). The results thus hold because I0 is increasing.

4Indeed, we have
∑
i∈N ai

µ
λv
s
i = λ

(∑
i∈N aiv

s
i

)
+(1−λ)

(∑
i∈N aiṽ

s
i

)
for all µ ∈ [0, 1] and s ∈ (S\S).
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and ṽ whose elements are on the same indifference curve as v and ṽ. The segment of

the indifference curve between v and ṽ is path connected.

All indifference sets of %∗0 are path-connected and thus connected.

The function Vi : US → R defined by Vi(v) = Ii(v
1
i , · · · , vSi ) for all v ∈ US is a

representation of %∗i for each i ∈ N . The function V0 : US → R defined by V0(v) =

I0

(∑
i∈N aiu

1
i + b, · · · ,

∑
i∈N aiu

S
i

)
+ b
)

for all v ∈ US is a representation of %∗0. The

Strong Pareto principle and the definition of %∗i also imply that:

(P*) For all v, ṽ ∈ US , if v %∗i v̂ for all i ∈ N , then v %∗0 v̂. If moreover there exists

j ∈ N such that v �∗j v̂, then v �∗0 v̂.

We have the following Lemma:

Lemma 3. Let B =
{

(b1, · · · , bN ) ∈ RN | ∃v ∈ US : bi = Vi(v) for all i ∈ N
}

. There

exists a continuous and increasing function W : K → R such that for all f ∈ A:

V0(f) = W
(
V1(f), · · · , VN (f)

)
. (8)

Proof. Under Pareto Indifference (which is implied for preferences over US by property

P*), Blackorby, Donaldson and Weymark (1999, Lemma 1, p. 369; Lemma 2, p.370)

showed that there must exist a continuous social aggregator function W . Condition P*

further entails that W must be increasing in each of its components.

By definition of the Vi functions, using Equation (8), and denoting, for each s ∈
S, ws : U → R the function such that ws(v

s
1, · · · , vsN ) =

∑
i∈N aiv

s
i + b for any

(vs1, · · · , vsN ) ∈ U , the following equation holds for any v ∈ US :

W
(
I1
(
v11, · · · , vS1

)
, · · · , IN

(
v1N , · · · , vSN

))
= I0

(
w1(v

1
1, · · · , v1N ), · · · , wS(vS1 , · · · , vSN )

)
.

(9)

Consider any open box K in RN×S which is a subspace of US . The functional

equation (9) holds for any vector in K. Given that the functions I0, W , w and Ii are

And, for all s ∈ S: ∑
i∈N

ai
µ
λv
s
i >

∑
i∈N

ai
µ̂
λv
s
i ⇐⇒ µ < µ̂.

The only possibility to have µ
λv ∼

∗
0
µ̂
λv is that µ = µ̂.

11
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all continuous and increasing, the solution of the functional equation is (see Aczél and

Maksa, 1996, Theorem 5):

I0(w1, · · · , wS) = Φ

(∑
s∈S

ψs(ws)

)
(10)

W (I1, · · · , IN ) = Φ

(∑
i∈N

φi(Ii)

)
(11)

∀s ∈ S, ws(v
s
1, · · · , vsN ) = ψ−1s

(∑
i∈N

ϕsi (v
s
i )

)
(12)

∀i ∈ N , Ii(v
1
i , · · · , vSi ) = φ−1i

(∑
s∈S

ϕsi (v
s
i )

)
(13)

where the real functions Φ, ψs, φi, ϕ
s
i are continuous and increasing.

But we also know that, for any s ∈ S and (vs1, · · · , vsN ) ∈ U , ws(v
s
1, · · · , vsN ) =∑

i∈N aiv
s
i +b. Combining with Equation (12), we obtain the following Pexider equation

on a rectangular non-empty subset of U :

∑
i∈N

ϕsi (v
s
i ) = ψs

(∑
i∈N

aiv
s
i + b

)
.

Thus there must exist a positive number πs and real numbers κsi such that ψs(z) =

πsz+
(∑

i∈N κ
s
i −πsb

)
and ϕsi (v

s
i ) = πsaiv

s
i +κsi , for all i ∈ N , on the relevant domain

(see Rádo and Baker, 1987, Theorem 1 and Corollary 3).

Let int(US) be the interior of the set US . For any v ∈ int(US), it is possible to

construct an open box K(v) in RN×S around v, which is a subspace of US . On K(v),

%∗0 is locally represented by the fully additive representation:

W (v) = Φ

(∑
i∈N

∑
s∈S

πsaiv
i
s +

∑
i∈N

∑
s∈S

κsi

)
.

But, since int(US) is convex and %∗0-indifference connected (Lemma 2), we know by

Theorem 2.2 of Chateauneuf and Wakker (1993) that this local fully additive repre-

sentation extends globally to the whole set int(US). Furthermore, this global additive

representation is unique up to a positive affine transformation. This implies that the

weight vectors (p1, · · · , pS) ∈ (0, 1)S and (a1, · · · , aN ) ∈ RN+ are uniquely defined. Last,

12
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since US is convex and %∗0 is continuous, the representation also extends to the bound-

aries of US .

Combining Equations (13), that ϕsi (v
s
i ) = πsaiv

s
i + κsi on the relevant domain, and

the fact that Ii is normalized, we obtained that, for any (v1i , · · · , vSi ) ∈ RS such that

there exists f ∈ A for which ui
(
f(s)

)
= vsi :

Ii(v
1
i , · · · , vSi ) =

∑
s∈S

πs∑
s∈S πs

vsi .

Denote ps = πs∑
s∈S πs

for all s ∈ S. The vector (p1, · · · , pS) ∈ (0, 1)S uniquely defines

a probability distribution over states of the world. And, because individuals have MBA

preferences, we obtain that for all i ∈ N and f, g ∈ A:

f %i g ⇐⇒ Ii

(
ui
(
f(1)

)
, · · · , ui

(
f(S)

))
≥ Ii

(
ui
(
g(1)

)
, · · · , ui

(
g(S)

))
⇐⇒

∑
s∈S

psui
(
f(s)

)
≥
∑
s∈S

psui
(
g(s)

)
.

By Definition 2 the individuals must therefore have SEU preferences and use the same

subjective probability distribution (p1, · · · , pS).

Combining Equations (10) and (12), and using ϕsi (v
s
i ) = πsaiv

s
i +κsi on the relevant

domain and that I0 is normalized, we also get that, for any v ∈ US :

I0

(
w1(v

1
1, · · · , v1N ), · · · , wS(vS1 , · · · , vSN )

)
=
∑
s∈S

ps

(∑
i∈N

aiv
s
i + b

)
.

Using the definition of %∗0, we have that for any f, g ∈ A:

f %0 g ⇐⇒ I0

(
w1

(
u1
(
f(1)

)
, · · · , uN

(
f(1)

))
, · · · , wS

(
u1
(
f(S)

)
, · · · , uN

(
f(S)

)))
≥ I0

(
w1

(
u1
(
g(1)

)
, · · · , uN

(
g(1)

))
, · · · , wS

(
u1
(
g(S)

)
, · · · , uN

(
g(S)

)))
⇐⇒

∑
s∈S

ps

(∑
i∈N

aiui
(
f(s)

))
≥
∑
s∈S

ps

(∑
i∈N

aiui
(
g(s)

))
.

The uniqueness of the global additive representation of % up to a positive affine

transformation implies that the affine functions ui must be unique up to positive affine

transformations with a common multiplier.

13
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