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Abstract: 

 
Networks facilitate the exchange of goods and information and create benefits. We consider 
a network composed of complementary nodes, i.e., nodes that need to be connected to 
generate a positive payoff. This network may face intelligent attacks on links. To study how 
the network should be designed, we develop a strategic model, inspired by Dziubiński and 
Goyal (2013), with two players: a Designer and an Adversary. The Designer has two potential 
ways to defend her network: forming destructible links among the given set of nodes to 
increase connectivity or protecting a group of nodes (with indestructible links). Links 
formation and protections (indestructible links) are costly. The Adversary then allocates her 
resources to attack links. We examine two situations which differ according to the number of 
protections available to the Designer. Our main findings are that if the number of protections 
is not limited, the Designer should either protect all the nodes, or create a large number of 
(destructible) links to absorb the Adversary's attack; if the available number of protections is 
limited, then a strategy that uses protections and links can be the equilibrium. 
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Optimal design and defense of networks under link attacks∗

Christophe Bravard†, Liza Charroin‡
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Abstract

Networks facilitate the exchange of goods and information and create benefits. We consider a network

with complementary nodes, i.e. nodes need to be connected to generate a positive payoff. This network

may face intelligent attacks on links. To study how the network should be designed and protected, we

develop a strategic model inspired by Dziubiński and Goyal (2013) with two players: a Designer and

an Adversary. First, the Designer forms costly protected and non-protected links. Then, the Adversary

attacks k links given that protected links cannot be removed by her attacks. The Designer designs a

network that minimizes its costs given that it has to resist the attacks of the Adversary. We establish

that in equilibrium the Designer forms a minimal 1-link-connected network which contains only protected

links, or a minimal (k+ 1)-link-connected network which contains only non-protected links, or a network

which contains one protected link and (n− 1)(k + 1)/2 non-protected links. We also examine situations

where the Designer has a limited number of protected links and situations where protected links are

imperfect, i.e. protected links are removed by attacks with some probabilities. We show that if the

available number of protected links is limited, then there exists an equilibrium network which contains

several protected and non-protected links. In the imperfect defense framework, we provide conditions

under which the results of the benchmark model are preserved.

JEL Classification: D74, D85.

Key Words: Attacks on links, Network defense, Network design.

1 Introduction

Networks can be seen as communication structures. They are composed of nodes and links, where

links represent the flow of information. Networks represent a crucial feature in our society, and are of
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the program Investissements d’Avenir (ANR-11-IDEX-007) operated by the French National Research Agency (ANR).
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particular interest in different fields such as military defense, telecommunication or computer networks.

Some networks can be damaged by natural disasters or intelligent attacks. Attacks can affect nodes

(agents, computers, telecommunication antennas, ...) or links (roads, communications flows, ...), and

may disconnect a network.1 In this paper, we examine situations where attacks target links. To illustrate

this type of situations, suppose a firm which consists of several production units (nodes of the network).

Each production unit produces a part of the product and the parts are assembled by a given production

unit. The links of the network allow the parts of the good to be transferred among the units. If one unit

is not connected to the rest of the units, its part cannot be transferred and the product has no value.

Recall that during the Second World War, the production units for the weapons (nodes) were buried,

so they were impossible to target, and attacks had to target the roads (links) in order to destroy the

production process of the enemy. Therefore, the issue was to design a network of communication between

the production units that the enemy could not disconnect.

Our goal is to examine how to design and protect the network in an optimal way, such that the network

remains connected after an intelligent link attack.2 We say that a network is designed and protected in

an optimal way when the costs associated to the design and the protection of the network are minimized.

We consider a two-stage game with two players: a Designer (D) and an Adversary (A).

• Stage 1. The Designer moves first and chooses both a set of protected, and a set of non-protected

links. Protected links cannot be removed by the attacks of the Adversary.

• Stage 2. After observing the network (strategy) formed by the Designer, the Adversary attacks

the network by allocating attacks to specific links. The number of attacks, k, available for the

Adversary is given.

Creating protected and non-protected links is costly for the Designer. The benefits obtained by the

Designer at the end of the game depends on the connectivity of the residual network, that is the network

obtained after the attack of the Adversary. If the residual network is connected, then the Designer wins

the game: her benefits are equal to 1 and the benefits of the Adversary are 0. If the residual network

is not connected, then the Adversary wins the game: her benefits are equal to 1 and the benefits of the

Designer are 0. The payoff obtained by the Designer is equal to the difference between the benefits and

the costs associated to her strategy. The payoff obtained by the Adversary is equal to its benefits. If we

take again our military example, and assume that node i− 1 is the supplier of node i, then the Designer

has to maintain a path between each pair of nodes i− 1 and i to obtain some end goods. In other words,

the residual network has to be connected to allow some production.

We are interested in the Sub-game Perfect Equilibrium (SPE) of the two-stage game. We assume that

the cost of protected links and non-protected links are sufficiently low so that the Designer has some

profitable strategies which allow the residual network to be connected. First, given the number of nodes

and the available number of attacks of the Adversary, we provide the minimal cost for each number

of protected links chosen by the Designer when she designs a network that resists an optimal attack

1A network is connected if no set of nodes is isolated from the rest of nodes.
2Note that an intelligent attack can also be seen as the worst case of a random or natural attack.
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of the Adversary. Second, we establish that three non-empty networks may arise in equilibrium in the

benchmark model.

1. A minimal (k + 1, n)-link-connected network which contains no protected links.3

2. A minimal (1, n)-link-connected network which contains only protected links.

3. A network g which contains one protected link and (n− 1)(k + 1)/2 non-protected links.

The first network is the unique SPE when the cost of forming non-protected links is sufficiently low

relative to the cost of forming protected links. The second network is the unique SPE when the cost

of forming non-protected links is sufficiently high relative to the cost of forming protected links. The

third network is the unique SPE for intermediate relative costs (cost of a protected link / cost of a

non-protected link) when the number of nodes is odd and the number of attacks is even.

Additionally to the benchmark model described above, we study some variations of the game to develop

a larger understanding of optimal design of networks. We take into account two types of limitations

concerning protections. First, we consider that D has a number of protected links that is smaller than

in the benchmark model.4 Then, we consider situations where each protected link has a probability π to

be removed when it is attacked by A.5

In the framework where the number of protected links available for D is low, we show that for interme-

diate relative costs (cost of a protected link / cost of a non-protected link), strategy where D designs a

network which contains both protected links and non-protected links is a SPE. In the framework where

protected links are removed by attacks with some probabilities, we provide conditions under which the

results obtained in our benchmark model are preserved.

We now relate our paper to the existing literature on networks. This literature has become broader

in the recent years (Jackson [18], Goyal [10] and Vega-Redondo [24]). The two seminal papers on the

formation of social and economic networks are the paper of Jackson and Wolinsky [19] and the paper

of Bala and Goyal [3]. Bala and Goyal [4] and Haller and Sarangi [14] introduce imperfectly reliable

links in the Bala and Goyal [3] model. Bala and Goyal [4] show that for certain ranges of linking cost

and probability of failure, the equilibrium network is at least (2, n)-link-connected, i.e. two nodes are

connected by at least two paths. Haller and Sarangi [14] extend the model of Bala and Goyal [4] by

allowing heterogeneity in probabilities of link failure. These authors model random link failure but not an

intelligent attack that seeks to interrupt the communication flow. In this paper, we study the robustness

of a network that must be designed and protected to resist an intelligent attack on links.

A growing literature on attacked networks studies situations where the Adversary attacks the nodes. Dz-

iubinski and Goyal (DG, [9]) study the optimal design and defense of network under an intelligent attack

on nodes. In DG’s framework, there are two players: the Designer and the Adversary; the Designer can

3A network g, which contains n nodes, is a minimal (k+ 1, n)-link-connected network, if it is not possible to disconnect it by
removing k links, and such that there is no network which cannot be disconnected by removing k links and contains a smaller
number of links.

4If we take again our military example, the ennemy may not have enough resources to protect the whole network.
5Despite the effort of the Designer (of the army) to protect the communication flow, the Adversary (the enemy) may still

be able to succeed in destroying protected links with some probabilities.
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form links between n nodes, and/or protect these nodes to ensure their survival. The model we propose

is close to the model of DG. The major differences between the DG’s framework and our framework are

the following.

• The Adversary attacks nodes in the DG’s framework while she attacks links in our framework;

• In our framework, the Designer wins the game if every node of the population is able to communicate

with each other node in the residual network. In the DG’s framework, the Designer wins the game if

the residual network is connected whatever the number of nodes removed by the Adversary. Thus,

our setting is based on the complementarity of nodes while DG assume that nodes are substitutable.

DG show that in a SPE, the Designer protects 0 or 1 node. If the Designer protects 0 node, then she

designs a minimal (k + 1, n)-node-connected network.6 We obtain the same type of networks when the

Designer uses no protection in the DG’s framework and in our framework. At first sight, this result seems

intriguing since the Adversary attacks nodes in DG’s paper and links in our paper. However, a minimal

(k+ 1, n)-node-connected network defined as in DG is also a network that contains the minimal number

of links and resists the Adversary who attacks links. In DG, if the Designer uses protections, she designs

a star network7 and protects 1 node, the central node. In our framework, when D uses protections, she

designs either a network which contains 1 protected link and (n− 1)(k + 1)/2 non-protected links, or a

network which contains n − 1 protected links. The results differ because in our framework every node

needs to be connected with each other node in the residual network. Moreover, we establish that if we

limit the number of available protections, then there exist situations where D designs networks which

contain several protected and non-protected links. This result follows the discontinuity in the number of

non-protected links that each protection allows the Designer to save.

DG examine imperfect defense through an example. They assume that the protections used by the De-

signer can fail when they are attacked by the Adversary. More precisely, an attack on an unprotected

target always destroys the target, and an attack on a protected target destroys the target with a positive

probability. A recent independent work of Landwehr [21] extends the analysis of imperfect defense. He

shows that for a certain range of protection cost and cost of forming links, strategies that use both

protections and several links are equilibria.

Hoyer and De Jaegher [17] consider a framework where the Designer has to shape the network and form

enough links in order to resist the attacks. In this framework, the Designer cannot protect specific parts

of the network. The authors study the optimal way to design a network under link or node deletion

with various cost levels. They show that if the costs of forming links are low, a regular network8 with a

sufficient number of links is the optimal network for the Designer. If costs are high and links are attacked,

then a star network is optimal for the Designer. The difference with our paper (except for the fact that

they do not use protected links) is that in our framework, nodes are complementary and the Designer

cannot sacrifice any node to minimize her costs. Haller [13] extends the model of Hoyer and De Jaegher

6A minimal (k+1, n)-node-connected network is a network, which contains n nodes, that cannot be disconnected by removing
k nodes, and such that there is no network which cannot be disconnected by removing k nodes and contains a smaller number
of links.

7A star network is a network where one node, the central one, is linked with all other nodes, and other nodes are only linked
with the central node.

8A network where all nodes have the same number of links.
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by adding the possibility for two nodes to be connected by more than one link. In that case, it is more

difficult for the Adversary to disconnect the network. The possibility for multiple links between nodes

can be seen as a different way to protect a connection between specific nodes than ours.

A part of the literature on attacked networks examines the role played by the contagion of attacks in

networks. Goyal and Vigier [11] extend the work of DG by allowing the contagion of attacks (or threats).

They find that the star network with a protected central node remains an equilibrium network. Cabrales,

Gottardi and Vega-Redondo [6] and Baccara and Bar-Isaac [2] study the contagion of attacks in networks

respectively in the field of financial firms where a financial risk can spread between connected firms and

in the field of criminal networks where connectivity increases vulnerability because of external threats.9

Cerdeiro, Dziubinski and Goyal [7] and Acemoglu, Malekian and Ozdaglar [1] identify nodes to players.

Cerdeiro, Dziubinski and Goyal [7] propose a three-stage game. First, the Designer chooses the network.

Second, each player observes the network and chooses independently and simultaneously if they invest

in protection or not. Third, the Adversary observes the protected network and chooses the players to in-

fect. In Acemoglu, Malekian and Ozdaglar [1] nodes/players are connected in a random network. Players

have to invest in protection to be immune. Their investment depends on their links and the probability

of being infected in the random network. This model allows to examine for instance the impact of a

contagious disease on the individual behavior. These papers are different from the present one for two

reasons. First, we take into account situations where an attack on a link can remove only this specific

link. Indeed, literature on contagious attacks reflects situations such as epidemics or virus spreading

while our paper is focused on the study of specific link removal (for military strategies for instance).

Second, in our model nodes cannot influence the architecture of the network by their decision.10

The rest of the paper is organized as follows. In section 2, we present the model setup. In section

3, we present our main results. In section 4, we extend our model by examining situations where the

number of protected links available for the Designer is limited, and situations where protected links have

some probabilities to be removed by an attack. In section 5, we conclude.

9McBride and Hewitt [22] study the best way to dismantle a criminal network with imperfect information on its architecture.
There also exists a literature which examines the particular cases of terrorist attacks, transportation network security, and
homeland security (see Brown, Carlyle, Salmeron and Wood [5], Tambe [23], and Hong [16].)

10Additionally to economic, several fields study problems close to the one we deal with. In an early graph theoretic work,
Harary [15] exhibits a family of (k, n)-node-connected networks with a total number of links that is minimal. This family of
networks is crucial to establish our results. Groetschel, Monma and Stoer [12] study a situation where a firm has to prevent a
communication network to be disconnected given that there exist possibilities of communication failure. As some connections
may be interrupted, the firm has to design the least costly network that guarantees the best service for the consumers. Moreover,
there also exists a literature on the design of survivable networks (see the survey of Kerivin and Mahjoun [20]) in Computer
Science. Cunningham [8] studies network security and considers a model where the Designer allocates a different number of
defense units to each link. A defended link has a level of resistance that depends on the number of defense units the Designer
has allocated to it. The Adversary allocates attack units to remove a link. A link is removed if more attack units than defense
units have been allocated to this link. The author proposes an algorithm which exhibits how some links have to be reinforced
in order to protect the network.
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2 Model setup

To simplify the notation, we set Ja, bK = {a, . . . , b}. Let E be the set of even natural numbers and O be

the set of odd natural numbers. Moreover, bxc and dxe are the smallest integer smaller or equal to x and

the smallest integer higher or equal to x respectively.

Network. An undirected network g is an ordered pair of disjoint sets (N,E) such that E is a sub-

set of the set N × N of unordered pairs of N . The set N = J1, nK, with n ≥ 4, is the set of nodes and

E is the set of links. If g is a network, E(g) is the link set of g. A link {i, j} is said to join the nodes

i and j and is denoted ij. If there exists a link between i and j in g, then i and j are adjacent, and

nodes i and j are incident to the link ij. Let G be the set of undirected networks with n nodes. We

define E = {ij : i ∈ N, j ∈ N \ {i}} as the set of links of the network where all links have been formed.

We consider two types of links: the protected ones and the non-protected ones. Let EP (g) be the set of

protected links in g and ENP (g) be the set of non-protected links in g, with E(g) = EP (g) ∪ ENP (g),

and EP (g) ∩ ENP (g) = ∅. To simplify notation, we let |EP | = p. Protected links are not removed by

the attacks considered in the benchmark model and non-protected links are removed by these attacks.

Let di(g) be the number of links incident to the node i in g, that is the degree of node i in g. We say

that g′ = (N ′, E′) is a subnetwork of g = (N,E) if N ′ ⊆ N and E′ ⊆ E. A path between two nodes i0

and iL of a network g is a finite alternating sequence of distinct nodes and links i0, i0i1, i1, . . . , iL−1iL, iL

where i` ∈ N for all ` ∈ J0, LK and i`i`+1 ∈ E(g) for all ` ∈ J0, L− 1K. A cycle is a path where i0 = iL.

A network g is connected if for each pair of nodes (i, j) ∈ N × N \ {i}, there exists a path between

them. Subnetwork g′ = (N ′, E′) is a component of network g if g′ is connected and there is no connected

subnetwork of g, g′′ = (N ′′, E′′), such that N ′ ⊆ N ′′. By convention, a node i ∈ N such that di(g) = 0 is

a component. We define gP = (N,EP ) as the subnetwork of g which contains only the protected links of

g. Given a link ij ∈ EP (g), the network g \ ij is obtained by contracting the link ij; that is, to get g \ ij
we identify the nodes i and j and remove all resulting links joining a node to itself. The EP -contraction

of network g, ĝEP , is obtained from g by sequences of links contraction for all links in EP (g).11 We

illustrate the EP -contraction of network g in Figure 1.

1 2

3 4

5

1 2

3 4

5

{1, 2}

{3, 4}

5

(a) Network g (b) Network gP (c) Network ĝEP

Figure 1: Illustration of EP -contraction

11In the EP -contraction, two nodes may be linked by several links; in this case it is a multigraph. Formal definition of a
multigraph is given in the appendix.
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Two player game. The players are the Designer (D) and the Adversary (A). We consider a two-

stage game where D moves first and A moves at the second stage. A strategy for D consists in a pair

g = (E(g), EP (g)), with g ∈ G and EP (g) ⊆ E(g). In other words, D designs a network g and she

protects a subset of links of g. Let G be the set of strategies of D. Given a maximal number of attacks,

k ∈ J0, n − 3K, a strategy for A is a function Ea : G → 2E, Ea : g = (E(g), EP (g)) 7→ Ea(g), with

Ea(g) ⊆ E(g) and |Ea(g)| ≤ k. In other words, A attacks a subset of links formed by D given that she

can attack at most k links. To sum up, at the first stage D chooses a strategy g = (E(g), EP (g)), and

at the second stage, A attacks a subset of links formed by D, given that A attacks at most k links.

Residual network and benefits. Given the strategy g = (E(g), EP (g)) played at the first stage

by D and the removal of the set of links Ea(g) ⊆ E(g) at the second stage by A, we obtain a resid-

ual network gR such that E(gR) = EP (g) ∪ (ENP (g) \ Ea(g)). By construction, gR = (N,E(gR)) is a

subnetwork of g. The benefits of D are given by:

φ(gR) =

 1, if gR is connected,

0, otherwise.
(1)

Network and costs. Both protected and non-protected links are costly. We assume linear costs:

each protected link has a strictly positive cost cP > 0 and each non-protected link has a strictly positive

cost cL > 0. We assume that cP > cL. The cost of a defended network is

c(g) = cL|ENP (g)|+ cP |EP (g)|. (2)

If the cost of protected or non-protected links is too high, then D cannot use strategy where she forms

protected links or non-protected links. Therefore, to obtain non trivial results, we assume that the cost

of protected and non-protected links are sufficiently low to allow D to form the number of protected and

non-protected links necessary to protect the network (given k). More specifically, in the rest of the paper

we assume that cP < 1/(n− 1) and cL < 1/(dn(k + 1)/2e).

Payoffs. The payoff of the Designer from choosing g = (E(g), EP (g)) when the Adversary chooses

Ea(g) ⊆ E(g) is

ΠD(g, Ea(g)) = φ(gR)− c(g) (3)

The payoff associated with gR obtained by A is 1− φ(gR).

To sum up, the objective of the Designer is to obtain a connected residual network at a minimal cost.

The objective of the Adversary is to obtain a residual network that is disconnected. Hence, her goal is

to isolate a part of the network.

We now provide some illustrations where the payoff function given in equation 3 captures the payoff of

D. Suppose that D has n production units identified to nodes. Let yi be the output of production unit

i, and δi be a Kronecker index, such that δi = 1 if there is a path between i ∈ J2, nK and production
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unit i− 1, and δi = 0 otherwise. Here, production unit i− 1 can be interpreted as the unique supplier of

production unit i. We assume that y1 = γ, γ > 0, and yi = δi−1γ for i ∈ N \ {1}. If the total output D

obtained from the production units is Y = yn, then the total output function is in line with our payoff

function. Similarly, if Y = mini∈N{yi} or Y =
∏
i∈N (yi)

ρi with ρi > 0, then the total output function

is in line with our payoff function.

Moreover, let nodes be identified to cities and links be identified to communication flows between the

cities. Public authorities may have an incentive to maintain communication between all the cities when

some communication flows are broken because of a natural disaster or a strategic attack. Indeed, if some

cities are isolated from the others, then it is difficult for the public authorities to rescue inhabitants of

these cities.

Sub-game Perfect Equilibrium (SPE). At equilibrium, for every g, A chooses a set of links Ea(g) ⊆
ENP (g) resulting in gR such that φ(gR) is minimized. Given the best response outcome gR, D achieves

payoff φ(gR) − c(g) when choosing g. At the specific equilibrium, D chooses strategy g that maxi-

mizes her payoff. More formally, a SPE is a list ((E?(g?), E?P (g?)), E?a(g?)), with E?P (g?) ⊆ E?(g?),

E?a(g?) ⊆ E?NP (g?) that prescribes the following strategic choices. At Stage 2, A plays a best response

E?a(g) to g = (E(g), EP (g)), we have

E?a(g) ∈ argmin
Ea(g)⊆E(g)

{φ(gR)}.

Note that E?a(g) ⊆ ENP (g) since attacks cannot remove protected links. Let g?R be the residual

network obtained when D plays strategy g and A plays a best response to g. Given the best response

outcome g?R, D achieves payoff φ(g?R)−c(g) when choosing g. At Stage 1, D plays g? = (E?(g?), E?P (g?))

such that

g? ∈ argmax
g∈G

{φ(g?R)− c(g)}.

With a slight abuse of notation, we say that g? is a sub-game perfect equilibrium.

Specific architectures. The empty network is the network which contains no links. A network g

which contains n nodes is a (κ, n)-link-connected network if any subnetwork g′ obtained from g by re-

moving κ − 1 links is connected, and there exists a subnetwork g′ obtained from g by removing κ links

that is not connected. Let G(κ, n) be the set of minimal networks with n nodes which are (κ, n)-link-

connected, i.e. if g ∈ G(κ, n), then there does not exist a (κ, n)-link-connected network, g′, such that

|E(g′)| < |E(g)|. It is easy to see that every node i of a minimal (κ, n)-link-connected network g satisfies

di(g) ≥ κ, as otherwise it could be separated by removing all its neighbors. Consequently, if n or κ are

even, then the number of links in a minimal (κ, n)-link-connected network is at least nκ/2. Moreover, due

to the handshake lemma, if n and κ are odd, then the number of links in a minimal (κ, n)-link-connected

network is at least (nκ + 1)/2. As was shown by Harary [15], these conditions are also sufficient. The

proof of this result is constructive − Harary describes how to obtain the desired family of graphs. The

minimal (κ, n)-link-connected networks described by Harary are called (κ, n)-Harary-networks. To give

the reader some idea of how (κ, n)-Harary-networks look like, we provide some examples in Figure 2 with

8



5 nodes. For full description of the construction the interested reader is referred to Harary [15].

(2, 5)-Harary-network (3, 5)-Harary-network (4, 5)-Harary-network

Figure 2: Example of (κ, n)-Harary-networks

Specific strategies. Let us consider that the number of links that A may attack is k. Strategy

(∅, ∅) is the strategy where D forms the empty network, and so she does not protect any link. Strat-

egy gF is the strategy where D uses n − 1 protected links and does not form any non-protected links.

We define strategy gk+1 as the strategy of D where she uses no protected links and designs a minimal

(k + 1, n)-link-connected network. Strategy gk+1
1 is the strategy where D uses one protected link, and

designs a network g such that the EP -contraction of network g is a minimal (k+ 1, n− 1)-link-connected

network.

3 Model Analysis

First, we provide the optimal cost function for each pair (p, k) given that D builds a network that A

cannot disconnect with k attacks. First, we define two useful functions.

C1(p, k) =


cL
2

[(n− p)(k + 1)] + pcP , if (n− p)(k + 1) ∈ E ,

cL
2

[(n− p)(k + 1) + 1] + pcP , if (n− p)(k + 1) ∈ O,

and

C2(p, k) = (n− 2p)

(
k + 1− n− 2p− 1

2

)
cL + pcP .

Second, we set p1(k, n) and p2(k, n) as follows:

p1(k, n) =
4 n− 3 k − 5−

√
9 k2 − 8 k n+ 30 k − 8 n+ 25

8
,

p2(k, n) =
4 n− 3 k − 5 +

√
9 k2 − 8 k n+ 30 k − 8 n+ 25

8
.

Proposition 1 The optimal cost function associated with the pair (p, k) given that D builds a network

9



that A cannot disconnect with k attacks, is

C?(p, k) =



C1(p, k), for p ∈ J0, n− 2K \ Jbp1(k, n)c+ 1, dp2(k, n)e − 1K,

C2(p, k), for p ∈ Jbp1(k, n)c+ 1, dp2(k, n)e − 1K,

(n− 1)cP , for p = n− 1.

(4)

Proof The proof is given in Appendix. �

Let us provide the intuition of Proposition 1. First, observe that each additional protected link

formed by D allows to merge two components of gP = (N,EP ). Therefore, the number of components

of gP = (N,EP ) decreases by one for each additional protected link formed by D. Consequently, the

number of components in gP = (N,EP ) is n−p. Second, observe that if g is a SPE, then each component

of gP = (N,EP ) is incident to at least k + 1 non-protected links, otherwise A can disconnect network

g with k attacks. When n − p or k + 1 is even, there exist situations such that if each component

of gP = (N,EP ) is incident to k + 1 non-protected links, then A cannot disconnect network g with k

attacks. Similarly, when n− p and k + 1 are odd, there exist situations such that if each component of

gP = (N,EP ) is incident to k+ 1 non-protected links except one which is incident to k+ 2 non-protected

links, then A cannot disconnect network g with k attacks. For these cases we have C?(p, k) = C1(p, k).

We illustrate this type of situations in the following example.

Example 1 Suppose N = J1, 10K and k = 6. Consider the case where p = 5. We describe a strategy g

that allows D to incur a cost of forming links equal to C1(5, 6). First, D forms protected links between

node a ∈ J1, 10K and node b ∈ J1, 10K in g if a and b are linked in g3 given in Figure 3, that is gP = g3.

Moreover, D forms a non-protected link between node a ∈ J1, 10K and node b ∈ J1, 10K in g if a and b are

linked in g1 or g2 given in Figure 3. Note that g1 is a complete network and g2 is a (3, 5)-Harary-network.

Finally, we observe that each component in g3 is incident to at least 7 non-protected links and there is

no possibility for A to disconnect g with 6 attacks.

1 3

5 7

9

2 4

6 8

10

1 2 3 4

5 6 7 8 9 10

protected link

g1 g2 g3

Figure 3: Networks associated with Example 1

Recall that each component of gP = (N,EP ) is incident to at least k + 1 non-protected links. This

fact implies that there exist some situations where D has to incur cost of forming links given by C2. We

illustrate these situations through the following example.

10



1 2 3 4

5 6 7 8 9 10

protected linknon-protected link 5

6

7 8

9

10

Subnetwork g′ Subnetwork g′′

Figure 4: Subnetworks associated with Example 2

Example 2 Suppose N = J1, 10K and k = 7. Consider the case where p = 2. We assume that D

forms a protected link between nodes 1 and 2 and between nodes 3 and 4. Network gP = (N, {12, 34})
contains 8 components; we denote by C the component which contains nodes 1 and 2, and we denote

by C′ the component which contains nodes 3 and 4. Each of these components has to be incident to 8

non-protected links, otherwise there exists a strategy that allows A to disconnect the network formed by

D. Note that each node a ∈ J5, 10K can form at most 5 non-protected links with other nodes in J5, 10K.

We illustrate this remark in subnetwork g′′ in Figure 4. Consequently, each node a ∈ J5, 10K has to form

at least 3 non-protected links with nodes in J1, 4K. We illustrate this remark in subnetwork g′ in Figure

4. It is worth noting that nodes 5, 6, 7, 8, 9 and 10 have to form a total of 18 non-protected links with

nodes 1, 2, 3 and 4. As for components C and C′, they should be incident to a total of 16 non-protected

links. By the pigeon hole principle, the function C1 cannot be satisfied in this situation. More precisely,

a network that cannot be disconnected by A with 7 attacks has to contain 33 non-protected links instead

of 32. Function C2 captures this type of situations.

In Example 2, we have assumed that D uses protected links to form two components which con-

tain two nodes in gP = (N,EP ). Assume that D forms a unique component in gP = (N,EP ). For

instance, D forms a protected link between nodes 1 and 2 and between nodes 2 and 3. Then, each

node a ∈ J4, 10K can form at most 6 non-protected links with other nodes in J4, 10K. Consequently,

since k = 7 each node a ∈ J4, 10K has to form at least 2 non-protected links with nodes in J1, 3K. The

component which contains nodes 1, 2 and 3 is incident to 14 non-protected links. It follows that D forms

21+14 = 35 non-protected links instead of 33 links in Example 2. This example illustrates that D designs

gP = (N,EP ) in order to maximize its number of components which contain strictly more than one node.

We now generalize Example 2 to provide some intuition for p1(k, n) and p2(k, n). Let p be the number of

components which contain two nodes. We observe that components which contain one node need to be

incident to at least k+ 1 non-protected links. The minimal total number of non-protected links between

these components and components which contain two nodes is equal to (n−2p)((k+1)−(n−2p−1)). More-

over, to minimize the number of links, the total number of non-protected links incident to components

which contain two nodes should be equal to (k+1)p. Equation (n−2p)((k+1)− (n−2p−1)) = (k+1)p

is satisfied for p = p1(k, n) and p = p2(k, n). For p ∈ Jbp1c + 1, dp2e − 1K, the number of non-protected

links required to resist the attacks of A is given by the function cost C2.

11



Finally, we observe that if D forms n − 1 protected links, then she has no incentive to form any non-

protected links. Consequently, C?(n− 1, k) = (n− 1)cP .

We now characterize the SPE according to the costs of forming protected and non-protected links.

Since the costs of links formation are sufficiently low by assumption, strategy (∅, ∅) is not a SPE.

Proposition 2 We assume that k < n− 2.

1. Suppose that n or k + 1 is even.

(a) If cP /cL >
(

n
n−1

) (
k+1

2

)
, then gk+1 is the unique SPE.

(b) If cP /cL <
(

n
n−1

) (
k+1

2

)
, then gF is the unique SPE.

2. Suppose that n and k + 1 are odd, k < n− 3.

(a) If cP /cL <
(
n−1
n−2

) (
k+1

2

)
, then gF is the unique SPE.

(b) If (k + 2)/2 > cP /cL >
(
n−1
n−2

) (
k+1

2

)
, then gk+1

1 is the unique SPE.

(c) If (k + 2)/2 < cP /cL, then gk+1 is the unique SPE.

Proof We prove successively the two parts of the proposition.

1. Suppose that n or k+1 is even and k < n−2. By Proposition 1, we know that for p ∈ J1, n−2K, we

have C?(p, k)−C?(0, k) > pcP − cL(k+ 1)/2. Therefore, for p ∈ J1, n− 2K, C?(p, k)−C?(0, k) > 0

if cP /cL > (k + 1)/2. Similarly, for p ∈ J1, n− 2K, we have C?(n− 1, k)− C?(p, k) > 0 if cP /cL >(
n−p
n−p−1

) (
k+1

2

)
. Moreover, C?(n− 1, k)− C?(0, k) > 0 if cP /cL >

(
n
n−1

) (
k+1

2

)
.

First, assume that cP /cL >
(

n
n−1

) (
k+1

2

)
. Then, cP /cL > (k + 1)/2 and gk+1 is the unique SPE.

Second, assume that cP /cL <
(

n
n−1

) (
k+1

2

)
. Then, cP /cL <

(
n−p
n−p−1

) (
k+1

2

)
for all p ∈ J1, n− 2K.

It follows that if cP /cL <
(

n
n−1

) (
k+1

2

)
, then gF is the unique SPE.

2. Suppose that k+1 and n are odd, and k < n−2. By Proposition 1, we know that C(0, k)−C(1, k) > 0

if cP /cL < (k+2)/2, C(1, k)−C(n−1, k) > 0 if cP /cL <
(
n−1
n−2

) (
k+1

2

)
, and C(0, k)−C(n−1, k) > 0

if cP /cL <
(
k+1

2

)
+
(

k+2
2(n−1)

)
. Note that (k+2)/2 >

(
n−1
n−2

) (
k+1

2

)
for k < n−3. By using the same

argument as in the previous point, we establish that there is no SPE associated with p ∈ J2, n− 2K.

Assume that cP /cL <
(
n−1
n−2

) (
k+1

2

)
, then cP /cL <

(
k+1

2

)
+
(

k+2
2(n−1)

)
and gF is the unique SPE.

Assume that cP /cL >
(
n−1
n−2

) (
k+1

2

)
. There are two possibilities. If cP /cL < (k + 2)/2, then

C(1, k) − C(n − 1, k) < 0 and C(1, k) − C(0, k) < 0. It follows that gk+1
1 is the unique SPE. If

cP /cL > (k + 2)/2, then C(0, k)− C(n− 1, k) < 0 and C(0, k)− C(1, k) < 0. It follows that gk+1

is the unique SPE.

�

Note that in Proposition 2 inequality (k+2)/2 > cP /cL >
(
n−1
n−2

) (
k+1

2

)
is not satisfied for k = n−3.

Consequently, for k = n− 3 there does not exist situation where gk+1
1 is a SPE.
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Let us provide the intuition of Proposition 2. To simplify notation, we set p1 = p1(k, n) and p2 = p2(k, n).

First, we consider the first part of Proposition 2: n or k + 1 is even. In Figure 5, we use Proposition

1 to draw the average number of non-protected links that each protected link allows to save given that

A cannot disconnect the network designed by D with k attacks. The slope of line (dp̃), sp̃, can be in-

terpreted as the average number of non-protected links that each protected link allows to save between

the situation where D does not form any protected links and the situation where D forms p̃ protected

links, with p̃ ∈ Jbp1c + 1, dp2e − 1K. The slope of line (d), sd, can be interpreted as the average number

of non-protected links that each protected link allows to save between the situation where D does not

form any protected links and the situation where D forms p ∈ J1, n− 2K \ Jbp1c+ 1, dp2e − 1K protected

links. The slope of line (d′), sd′ , can be interpreted as the average number of non-protected links that

each protected link allows to save between the situation where D does not form any protected links and

the situation where D forms n− 1 protected links. Finally, the slope of line (e), se, can be interpreted as

the average number of non-protected links that each protected link allows to save between the situation

where D forms p′ protected links and D forms n− 1 protected links.

A line (dp̃) that is built with any p̃ ∈ Jbp1c+ 1, dp2e − 1K satisfies |sp̃| < |sd|, and |sd| < |sd′ |. Similarly,

a line (e) that is built with any p′ ∈ J1, n− 2K satisfies 1/|se| < 1/|sd′ |.
Suppose cP /cL > |sd′ |. Then, costs of forming non-protected links in gk+1 are lower than the costs of

forming protected links in gF . Moreover, if cP /cL > |sd′ |, then cP /cL > |sd| > |sp̃|. Recall that these

inequalities are satisfied when p̃ is replaced by any p ∈ J1, n−2K. It follows that the cost of forming links

is minimized for strategy gk+1. Suppose cP /cL < |sd′ |. We have cL/cP > 1/|sd′ |, and if cL/cP > 1/|sd′ |,
then cL/cP > 1/|se|. Reall that the inequality is satisfied when p′ is replaced by any p ∈ J1, n − 2K. It

follows that the cost of forming links is minimized for strategy gF . Finally, note that by construction,

|sd′ | =
(

n
n−1

) (
k+1

2

)
, and we obtain the result given in part 1. of Proposition 2.
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Average number of non-protected links

p

p1 p̃ p2

(dp̃)

(d)

(d′)

(e)

p′ n− 2 n− 1

Figure 5: Intuition of Proposition 2 when n(k + 1) ∈ E

We now consider second part of Proposition 2: n and k + 1 are odd, and k < n − 3. The intuition

is similar to the situation where n or k + 1 is even except for p = 0 and p = 1. Consequently, we focus

only on three cases: p = 0, p = 1 and p = n− 1. In Figure 6, we use Proposition 1 to draw the average

number of non-protected links that each protected link allows D to save when n and k+ 1 are odd. The

slope of (e1), s1, can be interpreted as the average number of non-protected links that the first protected

link allows to save. The slope of (e2), s2, can be interpreted as the average number of non-protected links

that each protected link allows to save between the situation where D forms one protected link and the

situation where D forms n − 1 protected links. The slope of (e3), s3, can be interpreted as the average

number of non-protected links that each protected link allows to save between the situation where D

forms no protected links and the situation where D forms n− 1 protected links.

Suppose that cP /cL < |s2|. Then, cP /cL < |s3|. It follows that gF is the unique SPE. Suppose that

cP /cL > |s2|. Then, there are two possibilities. If cP /cL > |s1|, then gk+1 is the unique SPE. If

cP /cL < |s1|, then gk+1
1 is the unique SPE.
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Average number of non-protected links

p
1 n− 1

(e2)

(e1)

0

(e3)

Figure 6: Intuition of Proposition 2 when n(k + 1) ∈ O and k < n− 3

We now compare the results obtained in our framework where A attacks links and the results obtained

in DG’s framework where A attacks nodes (Proposition 1, [9]). Recall that in DG’s paper, the non-empty

networks formed by D are either a star network with a protected central node, or a minimal (k + 1, n)-

node-connected network without any protection. Observe that the strategy gk+1 is a SPE when the

cost of links (non-protected links in our case) is sufficiently low relative to the cost of protection in both

frameworks.

However, when A attacks nodes, D uses at most one protection in equilibrium. The role played by

protection is different since in DG, if D builds a star network, one protection is sufficient to protect the

network and resist the attack of A. In our framework, D may use more than one protected link in a

SPE: when the cost of protected links is sufficiently low relative to the cost of non-protected links, D

designs a (1, n)-link-connected network which contains only protected links. Protecting a network under

link-attack is more costly than protecting a network under node-attack. This is due to the fact that

we require the survival of every node in our framework, while this requirement is not true in the DG’s

framework.

4 Limited number of protected links and imperfect pro-

tected links

In this section, we assume that protected links that D can use are limited. We take into account two

types of limitations. First, we consider that D has an available number of protected links that is smaller

than n− 1. In particular, we are interested in situations where the number of protected links is smaller

than bp2c. Then we consider situations where each protected link has a probability π to be removed

when it is attacked by A.
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4.1 Limited number of protected links

Proposition 2 establishes that in a SPE, it is not possible to obtain a situation where D uses both non-

protected links and protected links in order to protect the network against A when n or k + 1 is even.

We now examine a situation where the maximal number of protected links, p̄, that D can form is strictly

smaller than n−1. More precisely, we are interested in the situation where p̄ ∈ Jbp1(k, n)c+1, dp2(k, n)e−
1K.

Let gk+1
p1

be the strategy where D uses bp1(k, n)c protected links, and designs a network g such that the

EP -contraction of network g cannot be disconnected by removing k non-protected links and g contains

(1/2)d(n− bp1(k, n)c)(k+ 1)e non-protected links.12 In the following, we establish that there exist some

situations where the strategy gk+1
p1

is the unique SPE. To simplify the analysis, we restrict our attention

to situations where k + 1 is even.

Proposition 3 Assume that k+1 is even. Moreover, assume that bp1(k, n)c ≥ 1, dp2(k, n)e−bp1(k, n)c ≥
4, and p̄ ∈ Jbp1(k, n)c + 1, dp2(k, n)e − 1K.13 There exists ε > 0 such that if cP /cL < (k + 1)/2 and

cP /cL > (k + 1)/2− ε, then gk+1
p1

is the unique SPE.

Proof By inspecting the proof of Lemma 2, for each p ∈ Jbp1(k, n)c + 1, p̄K, we observe that the total

number of non-protected links formed in a SPE g, K, is strictly greater than (n − p)(k + 1)/2. We set

σ = K − (n − p)(k + 1)/2 > 0. For p ∈ Jbp1(k, n)c + 1, p̄K, we have C?(bp1(k, n)c, k) − C?(p, k) = 0, if

cP /cL = (k+1)/2−σ/(p−bp1(k, n)c) = Bp. We have Bp < (k+1)/2. We consider p? ∈ Jbp1(k, n)c+1, p̄K

such that Bp? ≤ Bp for all p ∈ Jbp1(k, n)c+ 1, p̄K, and we set ε = ((k + 1)/2− Bp?)/2.

Assume that cP /cL < (k+ 1)/2 and cP /cL > (k+ 1)/2− ε. Since cP /cL < (k+ 1)/2, C1(bp1(k, n)c, k) <

C1(p, k) for all p ∈ J0, bp1(k, n)c−1K and there is no SPE associated with p ∈ J0, bp1(k, n)c−1K. Moreover,

since cP /cL > (k+ 1)/2− ε > Bp? there is no SPE associated with p ∈ Jbp1(k, n)c+ 1, p̄K. Consequently,

the unique SPE is gk+1
p1

. �

We use Figure 5 to provide intuition of Proposition 3. To simplify notation, we set p1 = p1(k, n)

and p2 = p2(k, n). Recall that the slope of line (d), sd, can be interpreted as the average number of

non-protected links that each protected link allows to save between the situation where D does not form

any protected links and the situation where D forms p ∈ J1, bp1cK protected links; and the slope of line

(dp̃), sp̃, can be interpreted as the average number of non-protected links that each protected link allows

to save between the situation where D does not form any protected links and the situation where D

forms p̃ protected links, with p̃ ∈ Jbp1c+ 1, dp2e − 1K. Note that for all p̃ ∈ Jbp1c+ 1, dp2e − 1K, we have

|sd| > |sp̃|. If |sd| > cP /cL > |sp̃|, then the minimal costs incurred by D, when she forms no protected

links, is higher than the minimal costs incurred by D when she forms bp1c protected links. Similarly, the

minimal costs incurred by D when she forms p̃ ∈ Jbp1c+ 1, p̄K are higher than the minimal costs incurred

by D when she forms bp1c protected links. It follows that the unique SPE is gk+1
p1

.

DG [9] show that when A attacks nodes, there exist situations where the SPE consists in a star network

12A process which allows to obtain such EP -contraction is given in the appendix (Lemma 2, part 3.B).
13To establish the existence of such intervals, consider N = J1, 80K and k = 70. We have bp1(k, n)c = 9, and dp2(k, n)e = 17.
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with a protected central node. In this case D uses both protections and links to protect her network. In

our framework, D also uses both protected and non-protected links to protect her networkif the number

of protected links available to D belongs to Jbp1c+1, dp2e−1K. We find this result because of the existence

of a discontinuity in the number of non-protected links that each protected link allows the Designer to

save.

4.2 Imperfect protected links

We now assume that each protected link has a probability π ∈ (0, 1) to be removed when it is attacked

by A. To simplify notation, the set of links of network g is denoted by E instead of E(g). Consider for

each Ea, network ġ = (N, Ė) with Ė = EP ∪ ĖNP , with ĖNP = ENP \ Ea. We define a realization

of network ġ as a subnetwork ġr = (N,Er) of ġ with Er ⊆ Ė, and |Ė| − |Er| ≤ k − |ENP ∩ Ea|. We

illustrate these networks in the following example.

Example 3 Suppose N = J1, 5K, ENP (g) = {13, 15, 25, 34, 35, 45}, EP (g) = {12, 24} and Ea(g) =

{12, 34}. Network ġ is drawn in Figure 7 (b). Two realizations of network ġ are drawn in Figure 7 (c)

and (d). Note that ġ1
r occurs with probability 1− π, and ġ2

r occurs with probability π.

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

(a) g and attacked links (b) Network ġ (c) Realization ġ1r (d) Realization ġ2r

Figure 7: Networks of Example 3

Let λ(ġr|ġ, EP , Ea) be the probability that ġr is realized given ġ, EP and Ea. We have

λ(ġr|ġ, EP , Ea) =
∏

ij∈Er,ij∈EP∩Ea

(1− π)
∏

ij∈Ė\Er,ij∈EP∩Ea

π.

The expected benefits obtained by D when she chooses strategy g and A chooses Ea is

∑
ġr,Er⊆Ė

λ(ġr|ġ, EP , Ea)φ(ġr).

We assume that the costs incurred by D when she chooses strategy g are given by equation 2. The

expected payoffs obtained by D is the difference between the expected benefits and the costs of forming

protected and non-protected links.

We first examine a situation where probability π is sufficiently low to preserve our results.
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Proposition 4 We assume that n or k + 1 is even, and cL > 1− (1− π)k.

1. If cP /cL >
(

n
n−1

) (
k+1

2

)
, then strategy gk+1 is the unique SPE.

2. Assume that 1− (1− π)k < cL(n− p)(k + 1)/2− cP (n− 1− p) for all p ∈ J0, k − 1K. Then, gF is

the unique SPE.

Proof Let NP be the set of nodes incident to protected links in g. First, we establish that D chooses

a strategy such that (NP , E(g)) is acyclic. Observe that the expected benefits for D, associated with a

network where optimal strategies for A consists in targeting no non-protected links, is at least (1− π)k.

This expected payoff is obtained when |EP | ≥ k and optimal strategies for A consists in targeting no

non-protected links. The maximal expected benefits that D can obtain in a network is 1; it arises when

D chooses strategy gk+1. It follows that an additional link allows to obtain an additional benefit which

is at most equal to 1 − (1 − π)k. This additional link induces an additional cost at least equal to cL.

Since cL > 1 − (1 − π)k and cP > cL, D has no incentive to form a link that increases her expected

benefits without allowing to reduce the number of non-protected links she forms. It follows that D uses

a strategy where network (NP , E(g)) is acyclic.

Second, we establish successively the two parts of the proposition.

1. Suppose that cP /cL >
(

n
n−1

) (
k+1

2

)
. By Proposition 2 part 1., we know that C?(0, k) < C?(p, k)

for all p ∈ J1, n− 1K. Moreover, given that D chooses a strategy such that gP = (N,EP ) is acyclic,

the expected benefits obtained by D when she forms p protected links is (1− π)p for p ∈ J1, k− 1K

and (1− π)k for p ∈ Jk, n− 1K. The expected benefits obtained by D when she forms 0 protected

link is 1. Since 1 > (1− π)p, for p > 0 and C?(0, k) < C?(p, k) for all p ∈ J1, n− 1K, the expected

payoff obtained by D is maximized when she plays strategy gk+1.

2. Suppose that 1 − (1 − π)k < cL(n − p)(k + 1)/2 − cP (n − p − 1), for all p ∈ J0, k − 1K. Since

(1− π)p < 1, we have (1− π)p− (1− π)k < cL(n− p)(k+ 1)/2− cP (n− 1− p) for all p ∈ J0, k− 1K.

Therefore, (1 − π)p − cL(n − p)(k + 1)/2 − pcP < (1 − π)k − cP (n − 1), for all p ∈ J0, k − 1K.

Moreover, since 0 < 1 − (1 − π)k < cLn(k + 1)/2 − cP (n − 1), we have cP /cL <
n(k+1)
2(n−1)

. We have

(n − p)cL(k + 1)/2 − (n − p − 1)cP > 0, for p ∈ J1, n − 2K, when cP /cL < n(k+1)
2(n−1)

. Consequently,

(1− π)k − cP (n− 1) > (1− π)k − cL(n− p)(k+ 1)/2− pcP for all p ∈ Jk, n− 1K. It follows that gF

is the unique SPE.

�

In Proposition 4, we consider situations where probability π is low relative to the cost of forming

non-protected links. We now examine other situations through an example.

Example 4 Suppose that N = J1, 5K and k = 2. We draw networks that maximize the expected payoff

of D given that A plays an optimal strategy when p = 1, . . . , 5. Thick lines identify attacks on links

that maximize the expected payoff of player A in these networks. Note that D has no incentive to form

networks which contains at least 6 protected links since cP > cL. Observe that the expected payoff of D

associated with network g1 is not modified when π changes, while her expected payoff associated with

all other networks drawn in Figure 4 decreases with π. Consequently, given cP and cL there exists a
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g1 g2 g3 g4

1− 8cL (1− π)− 6cL − cP (1− π)− 5cL − 2cP (1− π)− 3cL − 3cP

g5 g6 g7

(1− π)2 − 4cP (1− π)− cL − 4cP 1− π2 − 5cP

Figure 8: Networks of Example 4

probability π̄ such that for π > π̄ network g1 is a SPE. Moreover, for π = 0.2, cP = 0.02, and cL = 0.018

network g7 is a SPE.14 Note that in g7, each node is incident to 2 protected links and k = 2.

Example 4 establishes two main insights. First, networks without protected links are the unique SPE

in situation where π is sufficiently high. Second, there exist situations where the Designer designs a

network where each node is incident to m protected links, with m = k. Note that since cP > cL, D has

no incentive to form a network where each node is incident to k + 1 protected links.

Moreover, by Proposition 2, if π is sufficiently low, n(k+ 1) is odd and k < n− 3, then there exist values

for cL, cP such that gk+1
1 = g3

1 is a SPE. In Example 4, since n = 5 and k = 2 we have k = n − 3, and

network g2 cannot be a SPE in our benchmark model.

DG [9] examine the impact of imperfect defense in a framework where D protects nodes instead of

links. They use an example and provide two insights. First, there exist parameters such that the SPE

obtained in the perfect defense model remain equilibria in the imperfect defense model, i.e. the empty

network, the center protected star, and the minimal (k+1, n)-node-connected networks remain equilibria.

Second, they establish that richer strategies than those played by D in the perfect defense model may

appear in equilibrium. In particular, there exist situations where an optimal strategy for D is to protect

multiple nodes and create a network which generalizes the center protected star network, or to design a

(2, n)-Harary-network and to protect all the nodes.

It is worth noting that imperfect defense has the same type of impact in the framework of DG and in

our framework. First, if the probability of success of attacks π is sufficiently high and the cost of forming

non-protected links is sufficiently low, then the strategy gk+1 is the unique optimal strategy for D. Sec-

14Note that DG [9] and Landwehr [21] establish that in models with imperfect defense, there exist situations where D designs
a (2, n)-Harary-networks in equilibrium.
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ond, the set of strategies candidate to be an equilibrium is larger in the imperfect defense framework than

in the perfect defense framework. In particular, for sufficiently high π, D has an incentive to increase

the number of protections relative to a situation where π = 0: there exist situations where D protects all

the nodes in DG’s framework, and there exist situations where D designs a network where each node is

incident to k protected links in our framework. Third, in both frameworks it is difficult to obtain general

results when imperfect defense is introduced. However, Landwehr [21] provides equilibrium strategies for

D when the number of attacks is very small. In particular, he establishes that if k = 2, then there exist

6 types of strategies that D may play in equilibrium according to the value of π, cP , and cL.

5 Conclusion

In this paper, we have studied the optimal way to design and protect a network under link attack. In

our benchmark model, the number of protected links available for the Designer is not bounded, and

protected links cannot be removed by the Adversary. Our main findings in this model are the following.

There exist three types of network that are SPE according to the value of the parameters of the model.

First, if the relative cost (cost of a protected link / cost of a non-protected link) is low relative to the

number of attacks, then D forms a (1, n)-link-connected network which contains only protected links.

Second, if the relative cost is high relative to the number of attacks, then the Designer forms a minimal

(k + 1, n)-connected network which contains only non-protected links. Third, for intermediate relative

costs, there exist situations where the Designer forms a network which contains one protected link and

(n − 1)(k + 1)/2 non-protected links. To sum up, in this paper we provide the minimal costs that D

incurs to protect her network against an intelligent attack (i.e. the worst attack).

We also examine situations where the number of protected links available for the Designer is limited. In

that case, we establish that for intermediate relative costs, the Designer forms a network which contains

several protected and non-protected links. Finally, we discuss the case of imperfect protected links. We

cannot provide a full characterization of SPE in the imperfect defense model, but we provide conditions

under which results obtained in the framework with perfect defense are preserved. Moreover, we establish

through an example that the set of equilibria is larger in the framework with imperfect defense links than

in the framework with perfect defense.

In this paper, we have assumed that the Designer incurs the same costs if she forms protected links that

are adjacent and if she forms protected links that are not adjacent. It would be interesting to examine

a situation where it is more costly for the Designer to form protected links that are not adjacent.

Appendix

First, to simplify the presentation of the proofs, we provide some useful definitions. In a multigraph

multiple links and loops are allowed.15 Formally, a multigraph g is an ordered triple (V (g), E(g), ψg)

consisting of a non-empty set of nodes, V (g), a set of links, E(g), disjoint of V (g), and an incidence

15By definition a network does not contain a loop, that is a link joining a node to itself; neither does it contain multiple links,
that is, several links joining the same two nodes.
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function ψg that associates with each link an unordered pair of nodes of g. If e is a link and i and j are

nodes such that ψg(e) = ij, then e is said to join i and j. We observe that if ψg is injective and there is

no e ∈ E(g) such that ψ(e) = ii with i ∈ V (g), then g is a network. A bipartite multigraph is one whose

nodes set can be partitioned into two subsets X and Y so that each link is incident to a node in X and

a node in Y .

Second, we observe that in a SPE (E(g), EP (g)), subnetwork (N,EP (g)) of g contains no cycle, other-

wise D has formed a costly protected link that is not useful. It follows that if the number of protections

used by D is equal to p, then the number of nodes of ĝEP is always equal to n − p. Indeed, let

C1(gP ), . . . , C`(gP ), . . . , Cm(gP ) be the components of gP with c`(gP ) the number of nodes of the com-

ponent C`(gP ). We have simultaneously
∑m
`=1 c`(gP ) = n and

∑m
`=1(c`(gP ) − 1) = p. It follows that

m = n − p. By construction, the number of nodes in ĝEP is equal to the number of components in the

network gP = (N,EP ).

Third, we build the multigraph ĝ = (N̂g, Êg, ψg) from g as follows. Let {C1(gP ), . . . , Cn−p(gP )} be the

set of components of gP = (N,EP ), we set N̂g = J1, n − pK.16 Moreover, Êg = {eij : ij ∈ ENP (g)}
and ψg(eij) = ab with i ∈ Ca(gP ), j ∈ Cb(gP ) and a, b ∈ J1, n − pK. For a, b ∈ J1, n − pK, we define

mab(ĝ) = |{ei,j ∈ Êg : ψg(eij) = ab}| as the number of links between nodes a and b in ĝ.

Note that if ĝ cannot be disconnected by removing k non-protected links, then g cannot be disconnected

by removing k non-protected links.

To prove Proposition 1, we need to distinguish two cases: p ≥ dn/2e and p < dn/2e.

Lemma 1 Suppose p ≥ dn/2e, p 6= n− 1. For (p, k) the minimal cost associated with a network that A

cannot disconnect with k attacks is C1(p, k).

Proof We establish that for p ≥ dn/2e, p 6= n − 1, there exists a strategy g ∈ G for D such that (1)

ĝ is a minimal (k + 1, n− p)-link-connected network or multigraph, and (2) ĝ contains (n− p)(k + 1)/2

non-protected links if n− p or k + 1 are even, and contains ((n− p)(k + 1) + 1)/2 non-protected links if

n− p and k + 1 are odd. Thus, we are interested in building ĝ that induces a network g whose costs of

link formation satisfy C1(p, k).

1. First, we establish that if p ≥ dn/2e, then the maximal number of links incident to a node is at

least n− 2 in ĝ. To achieve this goal, we examine a strategy where the components in g have a size

equal to bn/(n − p)c or bn/(n − p)c + 1. Let x, r ∈ IN , r < n − p be such that (n − p)x + r = n.

By the euclidian algorithm, x and r exist. We assume that D chooses EP such that gP = (N,EP )

contains n− p− r components with x nodes and r components with x+ 1 nodes. By construction

of ĝ, the maximal number of links between a ∈ J1, n − pK and b ∈ J1, n − pK is ca(gP )cb(gP )

in ĝ. We provide the maximal number of links incident to any node a ∈ J1, n − pK given that

gP = (N,EP ) contains n − p − r components with x nodes and r components with x + 1 nodes.

The maximal number of links incident to any node a ∈ J1, n− pK is at least equal to x2(n− p− 1).

By definition, x ≥ (p + 1)/(n − p) since r ≤ n − p − 1. It follows that the maximal number

of links incident to node a ∈ J1, n − pK is at least equal to ((p + 1)/(n − p))2(n − p − 1). Let

16Observe that the set of nodes of the EP -contraction of g is equal to N̂g .
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f : p 7→ ((p + 1)/(n − p))2(n − p − 1). Then f ′(p) = p+1
(n−p)3 (p2 − p(3n + 1) + 2n2 − n − 2) > 0

since p2 − p(3n+ 1) + 2n2 − n− 2 ≥ (n− 2)2 − (n− 2)(3n+ 1) + 2n2 − n− 2 = 4 > 0. Moreover,

f((2n− 1)/3) = 4
(
n−2

3

)
> n− 2. It follows that for x = 2 and r = n− p− 1 the maximal number

of links incident to any node a ∈ J1, n − pK is at least equal to n − 2. Since x 7→ x2(n − p − 1) is

increasing with x, and x 7→ (n− r)/(n− p) is decreasing with r, for x = 2 and r = 0 the maximal

number of links incident to any node a ∈ J1, n − pK is at least equal to n − 2. Consequently, for

p ≥ dn/2e the maximal number of links incident to any node a ∈ J1, n−pK is at least equal to n−2.

2. We now deal with the non-protected linksD forms between the nodes in ĝ. Let y, ρ ∈ IN , ρ < n−p−1

be such that (n− p− 1)y + ρ = k + 1. To build ĝ we need to define a network g0 = (J1, n− pK, E).

Suppose ρ = 1. If n−p is even, then we have for a, b ∈ J1, n−pK, [a+b = n−p+1 =⇒ ab ∈ E(g0)]

and there is no other link in g0; if n − p is odd, then we have for a, b ∈ J1, n − p − 1K, [a + b =

n− p =⇒ ab ∈ E(g0)] and there is a link between node 1 and dn− pe in g0. We have mab(ĝ) = y

if ab 6∈ E(g0) and mab(ĝ) = y + 1 if ab ∈ E(g0). Suppose ρ > 1. Then, we build a (ρ, n− p)-Harary

network g0. We have mab(ĝ) = y if ab 6∈ E(g0) and mab(ĝ) = y + 1 if ab ∈ E(g0). Note that due

to point 1. and the construction chosen for ĝ, it is possible for D to form y + 1 links between two

nodes in ĝ since y + 1 ≤ n− 2 for p < n− 2, and ρ = 0 for p = n− 2.

3. We now establish that ĝ is (k+1, n−p)-link-connected. Suppose ĝ is a network, then by construction,

it is a (k + 1, n − p)-Harary-network, and it is (k + 1, n − p)-link-connected. Suppose ĝ is not a

network, so y ≥ 1. It is sufficient to show that there is no subset X ⊆ J1, n − pK that can be

disconnected from the subset J1, n−pK\X in ĝ by removing k links. Suppose ρ > 1. It is equivalent

to say that ĝ is (k + 1, n − p)-link-connected and it is not possible to simultaneously disconnect

y complete networks and one (ρ, n − p)-link-connected network by removing k links. Since the

number of links between nodes in X and nodes in N \X are equal to |X|(n− |X|) in the complete

network, it is clear that in the complete network the subsets X that require the smallest number

of attacks to be disconnected satisfies |X| = 1. Hence, the most optimal attacks of A in ĝ consists

in removing all the links incident to one node, and it is not possible to disconnect ĝ by removing k

links. Finally, by construction of ĝ, the cost of links associated with ĝ is given by C1(p, k). We use

similar arguments for ρ = 1.

�

To simplify the presentation of the following lemma, we let p1 = p1(k, n) and p2 = p2(k, n).

Lemma 2 Suppose p < dn/2e. For (p, k) the minimal cost associated with a network that A cannot

disconnect with k attacks is C?(p, k).

Proof Suppose p < dn/2e. We assume that numbers of nodes in components C1(gP ), C2(gP ), . . . , Cn−p(gP )

satisfy c1(gP ) ≤ c2(gP ) ≤ . . . ≤ cn−p(gP ). If g cannot be disconnected by k attacks, then there are at

least k + 1 non-protected links in g between each component of gP and other components of gP .

1. Suppose that cn−p(gP ) ≥ 3. Then, since p < dn/2e, we have c1(gP ) = c2(gP ) = 1. Suppose that
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there exists `? ∈ J2, n− pK such that

Ξ1 = (k + 1)`? −
∑

`,`′∈J1,`?K
6̀=`′

c`(gP )c`′(gP ) > (k + 1)(n− p− `?) = Ψ1.

Ξ1 is the minimal number of links between components in J1, `?K and components in J`? + 1, n− pK
that allows each component in J1, `?K to be incident to at least k+ 1 non-protected links. Ψ1 is the

number of links such that each component in J`? + 1, n−pK is incident to k+ 1 non-protected links.

It follows that the minimal number of non-protected links required to obtain a network which is

not disconnected by k attacks contains d(n− p)(k + 1)/2e+ Ξ1 −Ψ1 links. We note that Ξ1 −Ψ1

decreases if g is replaced by a network similar to g except that a node i and a protected link which

belong to Cn−p(gP ) are removed and put in C1(gP ). It follows that the costs of forming links are

minimized when there are n−2p components which contain 1 node and p components which contain

2 nodes.

2. Given k, we examine p such that the number of non-protected links formed in g is higher than

d(n − p)(k + 1)/2e. We know that there are n − p components, p components contain 2 nodes

and n − 2p components contain 1 node. By construction C1(gP ), . . . , Cn−2p(gP ) are the com-

ponents of gP which contain 1 node and Cn−2p+1(gP ), . . . , Cn−p(gP ) of gP are the components

which contain 2 nodes. The number of non-protected links in g required to protect components

C1(gP ), . . . , Cn−2p(gP ) is equal to the minimal number of non-protected links required to protect

components Cn−2p+1(gP ), . . . , Cn−p(gP ) if p satisfies

(n− 2p)((k + 1)− (n− 2p− 1)) = (k + 1)p.

This equation is satisfied for p1 and p2. Let Γ = (n− 2p)((k+ 1)− (n− 2p− 1)) and Ψ2 = (k+ 1)p.

For p ∈ Jbp1c + 1, dp2e − 1K, we have Ψ2 < Γ. In that case the minimal number of non-protected

links formed by D given that she builds a network that A cannot disconnect with k attacks is

(n− 2p)((k + 1)− (n− 2p− 1)) +
(n− 2p)(n− 2p− 1)

2
= (n− 2p)

(
k + 1− n− 2p− 1

2

)
.

Note that, by construction, (n− 2p)
(
k + 1− n−2p−1

2

)
> d(n− p)(k + 1)/2e.

3. We now provide networks that A cannot disconnect with k attacks, which minimize the costs of

forming links given (p, k). Let x, r ∈ IN , r < x and xp + r = Γ and x′ ∈ IN , x′(n − 2p) = Γ, with

x′ = k + 1− (n− 2p− 1). There are two possibilities.

(A) Assume that p ∈ Jbp1c + 1, dp2e − 1K. We now build Êg as follows. First, all distinct nodes

a, b ∈ J1, n− 2pK are linked in ĝ. Second, there is no link between nodes a, b ∈ Jn− 2p+ 1, n− pK.
We use the following process, called (P1), to form links between nodes in J1, n− 2pK and nodes in

Jn−2p+ 1, n−pK. The process consists in Γ steps. We let `t = t mod n−2p, with `t ∈ J1, n−2pK.

We define Et−1 the set of non-protected links formed during steps 1, . . . , t − 1 of the process and

d`(Et−1) the number of links between node ` ∈ Jn− 2p+ 1, n− pK and nodes in J1, n− 2pK at Step
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t− 1. We let Dmin(t− 1) = arg min
`′∈Jn−2p+1,n−pK

{d`′(Et−1)} and `min
t−1 = minDmin(t− 1). At Step 1, we

add a link between nodes 1 and n− 2p+ 1; we obtain E1. At Step t, we add a link between node

`t and node `min
t−1 to the set of links Et−1; we obtain Et. The process stops at step Γ. Êg all links

in EΓ and all links between nodes in J1, n − 2pK. By construction, subnetwork (J1, n − 2pK, Êg) is

complete and the bipartite multigraph g′ = (J1, n− pK, EΓ) is such that each node in J1, n− 2pK is

incident with x′ = k+ 1− (n− 2p− 1) links and each node in Jn− 2p+ 1, n− pK is incident with at

least k+ 1 links, and at least one node in J1, n− 2pK is incident to x > k+ 1 links. It follows that ĝ

is (k+1, n−p)-link-connected. By construction and by point 2, D incurs C2(p, k) to form links in g.

(B) Assume that p 6∈ Jbp1c + 1, dp2e − 1K. Suppose k + 1 ≤ n − p − 1. Then, we build ĝ as a

(k + 1, n − p)-Harary-network and we obtain the result. Suppose k + 1 > n − p − 1. Then there

exists a ∈ J1, n− 2pK and b ∈ Jn− 2p+ 1, n− pK such that mab(ĝ) = 2. Observe that if mab(ĝ) = 1

for all a ∈ J1, n − 2pK and b ∈ Jn − 2p + 1, n − pK, then the maximal number of links incident to

each node b ∈ Jn− 2p+ 1, n− pK is at least k+ 1 in ĝ since n− 2p+ 4(p− 1) = n+ 2p− 4 ≥ k+ 1,

for p ≥ 1. We now build Êg as follows. First, all distinct nodes a, b ∈ J1, n − 2pK are linked in ĝ.

Second, we deal with links between nodes in J1, n− 2pK and nodes in Jn− 2p+ 1, n− pK.
(B.0) Let ξ1, ρ1 ∈ IN , ρ1 < ξ1 be such that ξ1p+ρ1 = (n−2p)(k+1−(n−2p−1)). We use a process

similar to (P1) except that it stops when each node in J1, n− 2pK have formed k+ 1− (n− 2p− 1)

links with nodes in Jn − 2p + 1, n − pK. Due to the process, ρ1 nodes in Jn − 2p + 1, n − pK are

adjacent to ξ1 + 1 nodes and p− ρ1 nodes in Jn− 2p+ 1, n− pK are adjacent to ξ1 nodes. Moreover,

each node in J1, n− 2pK is incident to k + 1 links.

Third, we deal with links between nodes in Jn− 2p+ 1, n− pK. There are two possibilities.

(B.1) Suppose p−ρ1 is even. Let x2, r2 ∈ IN , r2 < x2 such that x2(p−1)+r2 = k+1−(ξ1 +1), with

ξ1 < k since p 6∈ Jbp1c+ 1, dp2e − 1K. We successively build additional links. Recall that at the end

of the process similar to (P1), there is a set of nodes X = {a1, . . . , ap−ρ1}, X ⊆ Jn− 2p+ 1, n− pK,
which are involved in ξ1 links. We use three steps to add links. At Step 1, we add a link between

two distinct nodes a` and a`′ if a`, a`′ ∈ X and ` + `′ = p − ρ1 + 1. Note that each node in

Jn− 2p+ 1, n− pK is involved in ξ + 1 links at the end of Step 1. At Step 2, there are three possi-

bilities. If r2 > 1, then we build a (r2, p)-Harary network on the set of nodes Jn− 2p+ 1, n− pK. If

r2 = 1 and p is even we add a link between nodes a ∈ Jn− 2p+ 1, n− pK and b ∈ Jn− 2p+ 1, n− pK
if a + b = 2n − p + 1. If r2 = 1 and p is odd we add a link between nodes a ∈ Jn − 2p + 1, n − pK
and b ∈ Jn− 2p+ 1, n− pK if a+ b = 2n− p+ 2 and we add a link between node n− 2p+ 1 and a

node in J1, n− 2pK. At Step 3, we add x2 links between each pair of vertices in Jn− 2p+ 1, n− pK.
(B.2) Suppose p−ρ1 is odd. Let x3, r3 ∈ IN , r3 < x3 such that x3(p−1)+r3 = k+1− (ξ1 +1). We

successively build additional links. Recall that at the end of process (P1), there is a set of nodes

X = {a0, a1, . . . , ap−ρ1−1}, X ⊆ Jn − 2p + 1, n − pK, which are involved in ξ1 links. At Step 1, we

add a link between two distinct nodes a` and a`′ if a`, a`′ ∈ X and ` + `′ = p − ρ1. Note that a0

is involved in 0 link with other nodes in Jn − 2p + 1, n − pK at the end of Step 1. There are two

possibilities for Step 2.

(B.2.a.) Suppose r3 and p are odd. Step 2 consists in building a (r3, p)-Harary network on the set of
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nodes Jn−2p+1, n−pK where a0 is the node with the highest degree of the (r3, p)-Harary network.

We use the same type of arguments as in (B.1) to deal with the case where r3 = 1, except that a0 is

incident to two links. At Step 3, we add x3 links between each pair of vertices in Jn−2p+ 1, n−pK.
(B.2.b.) Suppose r3 or p are even. Step 2′ consists in building a (r3, p)-Harary network on the set

of nodes Jn− 2p+ 1, n− pK and to add a link between node a0 and a node in J1, n− 2pK which is

involved in less than two links with a0. We use the same type of arguments as in (B.1) to deal with

the case where r3 = 1. At Step 3′, we add x3 links between each pair of vertices in Jn−2p+1, n−pK.

We now show that the cost of forming links is given by C1. We restrict our attention to the

situation where n− p is even and k + 1 is odd since all other possibilities are solved with the same

type of arguments. Since n− p is even, there are two possibilities, either n− 2p and p are odd, or

n − 2p and p are even. We show that due to our process, the total number of non-protected links

in g is n(k + 1)/2.

− Suppose n− 2p and p are odd. At the end of the process (B.0) the total number of links formed,

(n− 2p)(k+ 1− (n− 2p− 1)), is odd since (k+ 1) and (n− 2p) are odd. There are two possibilities

at the end of (B.0), either ξ1 is even, or ξ1 is odd.

First, suppose that ξ1 is even. Since (n − 2p)(k + 1 − (n − 2p − 1)) and p are odd and ξ1 is even,

ρ1 is odd. It follows that p− ρ1 is even. We use process (B.1). Since ξ1 is even and (k + 1) is odd,

(k + 1) − (ξ1 + 1) is even. Moreover, (p − 1) is even. Consequently, r2 is even and all nodes in

Jn− 2p+ 1, n− pK are incident to r2 links in the (r2, p)-Harary-network built in (B.1). Therefore,

each node is incident to k + 1 links in g in the end of (B.1).

Second, suppose that ξ1 is odd. Since (n−2p)(k+ 1− (n−2p−1)), p and ξ1 are odd, ρ1 is even. It

follows that p−ρ1 is odd and we use process (B.2). Moreover, since p−1 is even and k+1−(ξ1 +1)

is odd, r3 is odd. We use process (B.2.a.) and each node is incident to k + 1 links in g at the end

of process (B.2.a.).

− Suppose n−2p and p are even. At the end of the process (B.0) the total number of non-protected

links, (n−2p)(k+1−(n−2p−1)), is even since (n−2p) is even. Since p and (n−2p)(k+1−(n−2p−1))

are even, ρ1 is even. It follows that p − ρ1 is even. We use process (B.1) and since p is even, all

nodes in Jn − 2p + 1, n − pK are incident to r2 links in the (r2, p)-Harary-network. At the end of

process (B.1), each node is incident to k + 1 non-protected links in g.

By using similar arguments as in the situation where p ∈ Jbp1c+ 1, dp2e− 1K, we obtain the results:

ĝ is minimally (k + 1, n− p)-link-connected, and D incurs C1(p, k) to form links of g.

�

Proof of Proposition 1 Lemmas 1 and 2 provide the proof for p 6= n − 1. For p = n − 1, we observe

that non-protected links are not useful for D. �
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