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Abstract

This paper proposes a competition model in which universities freely fix
their tuition fees in a setting where their soft capacity is chosen endogenously.
Because of the growing competition between universities to attract additional
students, universities choose to support an increasing marginal cost for stu-
dents enrolled beyond their initial capacity. Our results show that i) a more
convex cost leads the universities to choose a larger capacity but also higher
tuition fees; ii) when the marginal cost is low, an increase in tuition fees with
the number of universities is possible; iii) when the marginal cost is sufficiently
high, competition between an increasing number of universities maintains fees
at their maximum level (collusive fees) without reducing either the total num-
ber of admissions or social welfare.

Key words: price competition, capacity, tuition fees, higher education
market.

Code JEL: C7, H52, I22, I23.

1 Introduction

Public authorities have a real interest in ensuring that students can access a broad
range of higher education opportunities. An important question is then how the
strategic behavior of universities affects the availability and cost of higher education
for students.

In the UK, tuition fees have nearly tripled since their recent deregulation, a
reform that also included relaxing controls on the number of students a given uni-
versity can recruit. Since 2012, the vast majority of UK public universities have
been charging tuition fees of £9,000, the maximum allowed under the government-
imposed cap. “Now, universities do battle to enroll as many scholars as they can.
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That is because they must attract students or cut costs” (The Economist, Feb 23rd
2017).

This growing competition between universities to increase their enrollment should
have lead to a drop in fees (i.e. they should be lowest for universities with the lowest
admission standards) or a more differentiated education landscape. On the contrary,
some poorly-performing universities with low admission standards charge high fees1.
The current trend has seen students asked to bear a substantially larger share of
the cost of tertiary education. This is particularly true in countries in which fees
have been deregulated (Desrochers and Hurlburt, 2016). How can this be explained?
This question is made all the more relevant by the fact that government-determined
fees in a number of other European countries (such as France, Spain, Italy, and
Germany) are very low2.

The upward trend of fees in countries with a deregulated fee system has several
possible explanations:

i) The first is that the high fees are justified by the high quality of teaching and
research in these universities. Many papers have been written on the pos-
sible conflict between improvements in teaching and research under different
competition models. Del Rey (2001) used a spatial model to describe the be-
havior of universities that decide how to allocate funds between teaching and
research activities and then compete on admission standards. The balance
between research and teaching efforts depends on the funding rules. In the
same vein, De Fraja and Iossa (2002) have studied the effect of the mobility
cost supported by students on the choice of admission standards by multi-
tasking universities. In Grazzini et al. (2010), the literature on capital tax
competition is used in order to analyze how student mobility affects univer-
sity competition on both tuition fees and research and teaching expenditure.
Other contributions have focused on how the type of funding system has an
impact on the allocation of academics’ time and then on the trade-off between
teaching and research quality (Beath et al., 2003; Gautier and Wauthy, 2007;
Beath et al., 2012). Finally, considering competition between a private and a
public university, the divergence in admission standards and teaching quality
may explain the difference in fees between the two types of institution and
thus the persistence of high tuition fees (Romero and Del Rey, 2004; Oliveira,
2006; Lasram and Laussel, 2017). What all these papers have in common is
that they consider universities that are ex-ante differentiated with respect to

1In the UK, a proposed reform would allow universities that provide excellent teaching and give
the best employment prospects to their graduates to raise their fees above the current maximum of
£9,000, in line with inflation (“Teaching Excellence Framework” (TEF)). The government hopes
to be able to link the fees that universities are allowed to charge with levels of instruction (The
Economist, Aug 12th 2017).

2Since 2014, access to public universities is free of charge in Germany.
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their location, financial endowment, admission standards, education quality
or even in some cases, their curriculum levels (Eisenkopf and Wohlschlegel,
2012).

ii) The second explanation is that students expect a higher return from studying.
Becker’s model of human capital views education as an investment whereby
costs are compared with expected future benefits, primarily higher wages. If
investments in education are expected to produce better returns, this can ex-
plain both higher enrollment and higher costs. This presumes that students
have foresight on which university will maximize their return. As suggested
by Jensen (2010) however, it is not necessarily easy for students and/or their
parents to estimate the future returns of education and thus make an informed
decision about which university to attend. Do high fees indicate better educa-
tional investments? This question is related to a more general one about the
sensitivity of demand to prices in the higher education market: whether enroll-
ment figures are really sensitive to prices remains an open question. Generally,
the impact of tuition fees on enrollment rates is hard to evaluate (because of
unobservable differences in preferences for higher education, in financial sup-
port, in student mobility...). Many empirical studies (Leslie and Brinkman,
1987; Kane, 1994; Heller, 1997; Card and Lemieux, 2000; Hübner, 2012) have
examined the impact on enrollment of increasing tuition fees, focusing on
quantifying price elasticities. Because of the variety of educational offers and
because of differences in financial resources, the response of enrollment num-
bers to price fluctuations may vary between countries, states, types of colleges
and universities. But one interesting finding is that large increases in tuition
fees in the US have specifically lead to a decrease in the enrollment of selective
public universities (Hemelt and Marcotte, 2011).

iii) The final explanation that can be put forward is the declining funding of uni-
versities. In many countries, the decrease in non-tuition revenue and increasing
numbers of non-teaching staff have forced public universities to charge high
tuition fees (Martin, 2002). Using data on all US public 4-year colleges and
universities from 1991 to 2006, Hemelt and Marcotte (2011) suggest that, be-
cause the tuition elasticity of enrollment is low, the decline in enrollment is
small enough that net revenue should increase in the short run when fees are
increased.

In this article, we propose another explanation, complementary to the above
three and similar to the one put forward by Jacqmin and Wauthy (2014): for given
levels of teaching quality and admission standards, increased competition between
higher education institutions to attract students increases the enrollment costs borne
by the universities. The rising costs associated with the enrollment of students be-
yond their capacities suffice to explain the high tuition fees demanded by universities.
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The recent theoretical contributions in Industrial Organization regarding price
competition in the presence of convex costs may be useful to answer our question.
As usual in price competition, a firm that undercuts its competition will increase
its demand. In a seminal contribution, Dastidar (1995) showed that this move is
not profitable for a firm when the marginal cost increases. Thus, at equilibrium,
prices may be higher than the average cost and even higher than the marginal
cost. Another point to consider from the literature is the presence of capacity
constraints: the tradition in Industrial Organization has long been to relax price
competition based on the fact that firms are limited by their production capacities
to match demand (Vives (1999), p. 124 for details). Recently, Cabon-Dhersin and
Drouhin (2014, 2017) and Burguet and Sákovics (2017) have provided a rationale
for capacity constraints in a two-stage setting (with capacities chosen in a first stage
and competition on prices with convex costs in the second).

Based on these contributions, we analyze how the capacities chosen by a set of
more than two universities influence tuition fees and enrollment capacities as a func-
tion of the number of universities in the market. In order to neutralize any effects
of teaching differences between the competing universities, we assume here that the
courses that they offer are identical and of the same quality; in addition, we assume
that the applying students all have similar skills and grades. When universities
enroll students above capacity, the cost function is strictly convex. Indeed, compe-
tition for students drives universities to invest, to increase their educational assets
(teachers, libraries, rooms, administrative services, etc.) and meet the additional
demand. Clearly, better facilities are a boon for students and in the UK for example,
growing universities have for some years been building libraries, housing blocks and
all the facilities required to accommodate additional students. In 2013, UK uni-
versities spent £2.4bn on construction, 43% more than they did in 2012, and have
continued to spend at that level in the years since3. Our framework is similar to the
one adopted by Jacqmin and Wauthy (2014) in that we use “non-rigid” capacities,
as introduced by Chowdhury (2009). However, Jacqmin and Wauthy (2014)’s com-
petition model involves two homogeneous universities that produce both research
and teaching and in which increases in the opportunity cost of providing education
beyond a certain exogenously fixed threshold capacity reduce the amount of time
available for research.

In contrast, this article focuses on the influence of capacity constraints on the
level of fees under oligopolistic competition. We consider two stages. In the first,
universities endogenously fix their (subsequently invariable) capacity before com-
peting in terms of tuition fees to satisfy student demand. When universities enroll
students above capacity, the cost function is strictly convex.

The contribution of the present work may be understood as follows. To the best

3A report by the Higher Education Funding Council for England (Financial health of the higher
education sector: 2015-16 to 2018-19 forecasts), warned of declining cash levels and an increase in
borrowing by universities that could prove unsustainable.
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of our knowledge, no existing theoretical model explains how capacities, fees and
enrollment are decided in the context of a growing competition between universities
that can adjust their tuition fees to attract more students. Among other factors that
can explain increasing fees (lower public subsidies, improved teaching and research,
higher expected returns of a university education), this theoretical analysis focuses
on the effects of universities competing on cost for students. For a common fixed
level of teaching quality, we show that:

(i) however many universities there are and for all values of the cost parameters,
universities decide to operate above their enrollment capacity at equilibrium:
the number of students enrolled is always greater than the endogenously chosen
threshold capacity.

(ii) a more convex cost of supporting additional students leads the universities to
choose a larger capacity but also higher tuition fees at equilibrium.

(iii) when the number of universities increases, each university enrolls fewer stu-
dents but increases their tuition fees up to the maximum level. When the
convex costs are high enough to satisfy the additional demand (beyond the
threshold capacity), tuition fees become independent of the size and the num-
ber of universities in the higher education market. Finally, competition be-
tween an increasing number of universities maintains fees at their maximum
level (collusive fees) without reducing either the total number of admissions
or social welfare.

The paper is organized as follows. Section 2 introduces the model. Section
3 presents the equilibria of the two-stage game. A comparative static analysis is
presented in section 4 and a brief social welfare analysis in section 5. Section 6
concludes.

2 Model

We consider a higher education market with m identical universities. Universities
can (with no obligation) select students (based on past performance or an admission
test). If universities have the same admission requirements, the same subset of
the student population is admissible to each one. If not, some proportion of the
candidates will nevertheless be eligible for enrollment at several universities. In
other words, whatever the recruitment process, universities always compete for some
share of the student population.

The utility students derive from graduating from university i is defined as u(θ) =
θ − fi, where θ represents a student’s willingness to pay to go to university and fi
is the level of fees. θ is uniformly distributed in [0, 1]. Our analysis rests on the
assumption that all students are not all equally willing to pay for university, as in

5



Jacqmin and Wauthy (2014) 4. Each student implicitly receives one unit of education
and the student population is therefore normalized to unity.

For a given university course, eligible students choose to enroll at the univer-
sity with the lowest fees. Since the universities are otherwise identical in terms of
curriculum and all other non-price dimensions (location, teaching/research trade-
off, financial endowment etc.), the demand for enrollment at a university i, ni, is a
discontinuous function of its fees5:

ni(fi, f−i) =


0 if fi > fmin−i

N(fi)
m

if fi = f−i

N(fi) = 1− fi if fi < fmin−i

We denote N(fi) the total number of students enrolled when university i sets
fees fi,
fi, the tuition fees at university i, and f−i = {f1, ...fi−1, fi+1, .., fm}, the vector
of the fees of all universities in the higher education market. Note that fmin−i =
Min{f1, ..., fi−1, fi+1..., fm}.

In this model, universities are not allowed to deny admission in the second stage
if students pay the required fees, i.e. they cannot undertake student rationing6.
Thus, it is not profitable for a university i to set higher fees than the minimum
charged by the other competing universities (ni = 0). When universities equalize
their fees, they share students equally. Finally, if university i sets its fees to the
minimum, it must be able to accommodate all the students that apply on this basis.

Furthermore, we assume that the mission of universities is to create (through
research, R) and disseminate (via teaching, T ) fundamental knowledge. The general
form of each university’s objective function is thus G(T,R), where G is strictly
increasing in both arguments. The separability of the objective function allows us to
consider, as elsewhere in the higher education literature, universities that specialize
solely in teaching or research.

Each university’s objective function is defined as:

Max Gi(T,R), i = 1, ...m, i 6= j (1)

4As Jacqmin and Wauthy (2014) point out, they account for disparities in students’ willingness
to pay but they do not consider differences in ability or location.

5This choice of the form of the demand function is debatable. It is indeed unlikely that students
are equally sensitive to the price of educational goods (Leslie and Brinkman, 1987; Kane, 1994;
Heller, 1997; Card and Lemieux, 2000; Hübner, 2012). However, this paper deals with the supply
side of the higher education market and this restrictive hypothesis about student demand does not
affect the reasoning and the different effects resulting from our analysis.

6Forbidding student rationing allows us to preserve the existence of Nash equilibria in pure
strategies.
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with ∂Gi

∂T
> 0 and ∂Gi

∂R
> 0.

As suggested by Rothschild and White (1995), universities compete for students
for two basic reasons:

(i) As inputs, students are required for the production of education. With regard
to teaching activities, we assume for convenience that the level of teaching in
university i is equal to the number of students enrolled, ni, weighted by the
parameter 0 < γ < 1:

T = γni

where γ quantifies the relative importance granted to education over research
objectives in this university.

(ii) As clients, students provide the funds a university needs to operate, either
directly through fees (f) or indirectly via the government. R represents each
university’s expenditure on research. Here, the research output, Si, depends
only on the money invested in it:

R = Si

More students enrolled may therefore imply an increased research budget,
particularly when a university is funded through a per-student government
subsidy, s (0 < s < 1).

However, increasing the size of the student population is costly, in particular
when the number of students enrolled exceeds the capacity ki. The cost supported
by each university depends on its capacity, ki, with a unit cost δ; beyond capacity
though, the cost increases quadratically with the number of students. According to
Cabon-Dhersin and Drouhin (2014), the capacity constraint is “soft” and education
services provided above this limit incur an additional per unit cost (µ).

Thus, the cost function of a university i is given by

Ci(ni, ki) =

{
δki if 0 ≤ ni ≤ ki
δki + µ(ni − ki)2 if ni > ki

(2)

where µ, δ > 0. The cost parameters (δ and µ) are constant and similar for all
universities.

The optimization program for university i is thus given by:

Max
fi
{γni + Si} s.t. Si + Ci(ni, ki) = (fi + s)ni
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Our model considers a novel sequential scenario. In the first stage, the univer-
sities choose a subsequently invariable capacity, ki. In the second, the universities
may use the price strategic variable (i.e. set their tuition fees to satisfy the demand
they face). Note that in the second stage, δki is like a “sunk cost”, i.e. one that is
unavoidable in this stage7. This implies that when the number of students enrolled is
lower than the capacity threshold, the marginal cost of each student is nil up to the
capacity threshold ki and the average cost per student decreases with ni. Above the
capacity threshold ki, the marginal cost increases with n as does the average cost,
giving a familiar U-shaped average cost function. This seems to be the case at least
for the average cost per student completion in Australian universities (Worthington
and Higgs, 2011).

3 Equilibria

The universities fix their capacities in the first stage, then compete on fees to attract
students in the second. The game is solved by backward induction. The universities
must thus decide whether to operate below or above capacity. If the number of
students enrolled at equilibrium is always greater than the endogenous enrollment
capacity, the case in which universities operate under capacity can be ignored.

3.1 The second stage of the game: competition on tuition
fees

We can express the payoff Gi of each university i as:

Gi(fi, f−i, ki,m) =


−δki if fi > fmin−i

(fi + γ + s)N(fi)
m
− Ci(N(fi)

m
, ki) = GD if fi = f−i

(fi + γ + s)N(fi)− Ci(N(fi), ki) = GM if fi < fmin−i

where as before, fi stands for the fees of university i and N(fi) is the total number
of students enrolled when university i sets fees fi.

The function GD(fi, ki,m) represents the payoff of university i when all the
universities charge the same fees, while the function GM represents the payoff of
university i when it charges the lowest tuition fees and serves all the demand. GM

and GD are strictly concave in fi and in ki
8.

7Avoidable fixed costs create problems for the existence of a price equilibrium (Saporiti and
Coloma, 2010; Dastidar, 2011b,a).

8All the second order conditions are always satisfied: ∂2GD(fi, ki,m)/∂fi
2 < 0,

∂2GD(fi, ki,m)/∂ki
2 < 0, ∂2GM (fi, ki,m)/∂fi

2 < 0 and ∂2GM (fi, ki,m)/∂ki
2 < 0.
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We define f̄(ki,m) to be the value that solves GM(f, ki,m) = GD(f, ki,m). Thus,
f̄(ki,m) represents the fee threshold at which the university is equally inclined to
operate in the higher education market alone and with its rivals. We obtain:

(1− fi)(fi + γ + s)− µ[(1− fi)− ki]2 =
1

m
(1− fi)(fi + γ + s)− µ[

(1− fi)
m

− ki]2

⇔ f̄(ki,m) =
µ(m+ 1)−m(γ + s)− 2mµki

m+ µm+ µ
(3)

In the second stage, the fixed capacity cost, δki, is sunk and the universities only
quote a fee if the variable part of their payoff is positive, i.e. if GD(f, ki,m) ≥ −δki.
Thus, we also define f̂(ki,m), the lowest fees compatible with enrolling students in
the second stage, as the value that solves GD(f, ki,m) = −δki for a given ki.

Finally, we define fc(ki,m), the fees that maximize the payoff of university i
when all the universities operate in the higher education market (collusive fees).
In simple terms, this value can be interpreted as the maximum fees when all the
universities have chosen the same capacity in the first stage.

fc(ki,m) = arg max
f
{Gi(f, ki,m)} =

m(1− γ − s) + 2µ(1−mki)
2(m+ µ)

(4)

One crucial point here is the negative impact of the capacity on the equilibrium
fee levels (f̄ and fc). This means that the lower (higher) the capacity is, the higher
(lower) the costs to attract additional students are, and consequently, the higher
(lower) the tuition fees are.

It is important to understand how these utility functions (GM and GD) and fees
(f̂ , fc, and f̄) depend on one another.

Lemma 1. For a given ki > 0 and m ≥ 2,
f̂(ki,m) < f̄(ki,m) < fc(ki,m) if µ < m

m−1

f̂(ki,m) < f̄(ki,m) = fc(ki,m) if µ = m
m−1

f̂(ki,m) < fc(ki,m) < f̄(ki,m) if µ > m
m−1

In Proposition 1 below, we look for the Nash equilibrium in fees assuming that
all universities have chosen the same capacity in the first stage, k = k1 = ... = km

9.

9This assumption can easily be relaxed. Cabon-Dhersin and Drouhin (2017) propose a general
model with m firms with potentially asymmetric capacities. They show how m firms choose the
same capacity in the first stage anticipating its effect on the price equilibria in the second stage.
Here, we simplify the model by assuming equal capacities already in the first stage. This assumption
enables tractable analysis.
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Proposition 1. In the second stage, for a given k and m ≥ 2, fN(k,m) is a pure-
strategy Nash equilibrium such that:

(i) If µ < m
m−1

, fN(k,m) ∈ [f̂(k,m), f̄(k,m)] and f̄1(k,m) = ... = f̄m(k,m) =

f̄(k,m) is a payoff-dominant pure-strategy Nash equilibrium,

(ii) If µ = m
m−1

, fN(k,m) ∈ [f̂(k,m), f̄(k,m)] and f̄1(k,m) = ... = f̄m(k,m) =

f̄(k,m) = fc(k,m) is a payoff-dominant pure-strategy Nash equilibrium

(iii) If µ ≥ m
m−1

, fN(k,m) ∈ [f̂(k,m), f̄(k,m)] and fc(k,m) ∈ [f̂(k,m), f̄(k,m)] is
a payoff-dominant pure-strategy Nash equilibrium

Proof : see Appendix A. �

Table (1) presents the outcomes in the second stage of the game in different
settings. By simply calculating the derivatives, we find that f̄(k,m) and fc(k,m)
decrease with k for a given m and with m for a given k; n̄(k,m) and nc(k,m) increase
with k for a given m but decrease with m for a given k.

If µ < m
m−1

fN(k,m) = f̄(k,m) = µ(m+1)−m(γ+s)−2mµk
m+µm+µ

n̄(k,m) = 1+γ+s+2µk
m+µm+µ

If µ ≥ m
m−1

fN(k,m) = fc(k,m) = m(1−γ−s)+2µ(1−mk)
2(m+µ)

nc(k,m) = 1+γ+s+2µk
2(m+µ)

Table 1: Equilibrium levels of fees in the second stage of the game as a function of
µ.

The predicted Nash equilibrium in the second stage of the game is essentially
identical to the one reported by Dastidar (1995). For all fees above f̄(k,m), no
student enrolls at university i, undermining its finances. When the other universi-
ties charge any fee f(k,m) ∈ [f̂(k,m), f̄(k,m)], the best response for university i
is to quote the same tuition fees so that students split between the institutions. A
university can increase its revenue (through higher enrollment) by lowering its fees,
but the corresponding costs, strictly convex above capacity, will increase even more,
making a fee decrease nonprofitable. For this reason, a continuum of fees with
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f(k,m) ∈ [f̂(k,m), f̄(k,m)], can be sustained at Nash equilibria in pure strate-
gies. A high value of parameter µ means that costs are sufficiently convex (i. e.
C”(ni) ≥ 2m

m−1
(−1
D′

) which is equivalent to µ ≥ m
m−1

)10 to ensure that high fees
are sustained as Nash equilibria in pure strategies (Dastidar, 2001). In this case,
fc(k,m) lies between f̂(k,m) and f̄(k,m). The symmetry and the payoff dominance
criterion are sufficient here to reduce the set of equilibria11 and prove the uniqueness
of the solution12. There are then two fee equilibria: (i) when µ < m

m−1
, the sym-

metric fee fN(k,m) = f̄(k,m) is the unique (payoff-dominant) pure-strategy Nash
equilibrium; (ii) when µ ≥ m

m−1
, the unique and symmetric equilibrium is such that

fN(k,m) = fc(k,m) and corresponds to the solution of the joint-payoff maximiza-
tion program in the second stage of the game (tacit collusive fees).

Considering just one university with a given capacity, Proposition (1) allows us to
draw the functions GM and GD and to represent graphically the unique equilibrium
in tuition fees for each case depending on the value of the parameter µ. Figure (1)
illustrates the three cases in the second stage of the game (i.e. for a fixed capacity):

(i) when µ < m
m−1

, the universities charge the maximum fees f̄ which equates GM

and GD. At any fee below f̄(k,m), GM is less than GD. At any fee higher
than f̄(k,m), it is the other way round. That is f̄(k,m) is the lowest level of
fees at which undercutting (reducing fees to increase enrollment) does not pay
and corresponds to the payoff-dominant Nash equilibrium. Note that in this
case, f̄(k,m) < fc(k,m).

(ii) when µ = m
m−1

, f̄(k,m) = fc(k,m).

(iii) when µ > m
m−1

, the universities charge the collusive fee, fc(k,m), which be-

comes lower than f̄(k,m) and corresponds to the payoff-dominant Nash equi-
librium.

10This condition is similar to the one in Dastidar (2001) p.86, Prop.1.
11An equilibrium point is said to be payoff dominant if it is not strictly dominated by another

equilibrium point; that is, there exists no other equilibrium in which payoffs are higher for all
universities (Harsanyi and Selten, 1988).

12See Cabon-Dhersin and Drouhin (2017) for a proof of this uniqueness.
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µ < m
m−1

µ = m
m−1

1
f(ki , m)

Gi

f fcf

GD

GM

-δk
1
f(ki , m)

Gi

f =fcf

GD

GM

-δk

µ > m
m−1

Pure-strategy

Nash equilibria range

Payoff-dominant

pure-strategy Nash equilibrium

1
f(ki , m)

Gi

ffcf

GD

GM

-δk

Figure 1: Nash equilibria in the second stage as a function of µ (with s = 0.001,
γ = 0.1, δ = 0.01 and m = 5).

3.2 The first stage of the game: choice of enrollment capac-
ity

The universities set their capacities non-cooperatively by maximizing their objective
function and anticipating its effect on the fee equilibria in the second stage:

∂Gi(f
N(k,m), k,m)

∂k
= 0 ⇔

k∗(m) =
fN(k,m)′

(
m(1− γ − s) + 2µ− 2(m+ µ)fN(k,m)

)
−m(δm− 2µ)− 2mµfN(k,m)

2mµ(fN(k,m)′ +m)

For each configuration, depending on µ, a unique and symmetric solution exists,
satisfying ∂Gi

∂k
= 0. Proposition (2) presents the equilibrium prediction of the whole

game.
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Proposition 2. ∀m ≥ 2, the Subgame Perfect Equilibrium (SPE) is such that:

(i) If µ < m
m−1

,
k̄∗(m) = 4µ2m(1+γ+s)−(m+µm+µ)2δ

2µ((m+µm+µ)2−4mµ2)
> 0 for δ < 4µ2m

(m+µm+µ)2
(1 + s+ γ)

f̄ ∗(m) = 1−m (m+µm+µ)
(m+µm+µ)2−4mµ2

(1 + γ + s− δ)

n̄∗(m) = (m+µm+µ)
(m+µm+µ)2−4mµ2

(1 + γ + s− δ)

(ii) If µ ≥ m
m−1

,
k∗c (m) = n∗b(m)− δ

2µ
> 0 for δ < µ

µ+m
(1 + s+ γ)

f ∗c (m) = 1−γ−s+δ
2

n∗c(m) = 1+γ+s−δ
2m

with f ∗c , f̄
∗ > 0 for s < s̄ = 1 + γ − δ 13.

Proof : The proof is straightforward.

Corollary 1. ∀µ, s, δ > 0, m ≥ 2 and k > 0, we verify that at SPE:

k̄∗(m) < n̄∗(m) and k∗c (m) < n∗c(m)

Proof : see Appendix B. �

Competition on tuition fees between m universities is likely to induce a situation
in which student demand exceeds capacity. In the first stage, the universities can
choose not to recruit beyond their capacity, and thus Ci = δki. But the Subgame
Perfect Equilibrium implies that the number of students enrolled, n∗, is always
greater than the endogenous capacity k∗, which means that only the case in which
Ci = δki + µ(ni − ki)2 needs to be taken into account. Whatever the values of the
parameters in the game and the number of universities involved, they all choose to
enroll beyond capacity at a convex marginal cost.

13If the level of subsidies is too high, university sets a level of fees equal to zero.
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4 Comparative Statics

We now investigate how the convexity of the cost function and the number of uni-
versities influence the equilibrium results.

Corollary 2. We verify that:

(i) If µ < m
m−1

,

∂k̄∗

∂µ
> 0,

∂n̄∗

∂µ
< 0,

∂f̄ ∗

∂µ
> 0

(ii) If µ ≥ m
m−1

,

∂k∗c
∂µ

> 0,
∂n∗c
∂µ

= 0,
∂f ∗c
∂µ

= 0

Proof : see Appendix C �

In our model, the convexity of the cost function in the second stage is crucial.
Figure (2) shows how the degree of convexity impacts the equilibrium prediction of
the whole game, when ten universities operate in the higher education market.

0.5 1.0 1.5 2.0
μ

-0.1

0.1

0.2

0.3

0.4

0.5

0.6
f * , n* , k *

m

m- 1

Tuition Fees

Number of students per university

Capacity

Figure 2: Tuition fees, number of students per university and university capacities
as a function of µ (with s = 0.001, γ = 0.1, δ = 0.01 and m = 10).

Note that the benefits of undercutting are negative, as the costs increase dispro-
portionately. A more convex variable cost function implies that fee adjustment in
the second stage is more costly (here, with ten universities, a university that de-
creases its fees has to enroll approximately ten times more students to compensate.)
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This implies that more convex costs (higher values of µ) tend to push f̄ up to f ∗.
When the degree of convexity is sufficiently high (µ ≥ m

m−1
), the universities all

charge the collusive fee, f ∗c . Thus, because the average cost is U-shaped, each uni-
versity can adopt an efficient capacity in the first stage of the game that minimizes
its costs. When the additional marginal cost (µ) increases, the university chooses a
higher capacity to limit the number of students enrolled beyond this threshold: the
capacity can be increased to minimize the total cost. Consequently, the collusive fee
and the number of students enrolled at the collusive equilibrium no longer depend
on the convexity of the cost function.

We now study how the tuition fees, capacities and the number of students en-
rolled vary with the number of universities.

Corollary 3. For m ≥ 3, we verify the following properties:

(i) If µ < m
m−1

, 
∂k̄∗(m)
∂m

< 0
∂f̄∗(m)
∂m

> 0 if µ > µ̄
∂n̄∗(m)
∂m

< 0

with µ̄ =
−m(m−1)+2m

√
m(m−1)

3m2−2m−1
∈ (0, m

m−1
)

(ii) If µ ≥ m
m−1

, 
∂k∗c (m)
∂m

< 0
∂f∗c (m)
∂m

= 0
∂n∗c(m)
∂m

< 0

Proof : see Appendix D. �

Figure (3) relates the equilibrium prediction f ∗ with the number of universities.
This reveals an important threshold. When the number of universities is low (be-
tween 3 and µ

µ−1
= 6), fees increase with m and the corresponding equilibrium fees

are f̄ ∗. Beyond m = µ
µ−1

, f ∗c being lower than f̄ ∗, the equilibrium fees become the
collusive fees.

15
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Figure 3: Tuition fees, number of students per university and university capacities
as a function of m (with s = 0.001, γ = 0.1, δ = 0.01 and µ = 1.2).

The above properties have two surprising effects:

(i) Conventional wisdom suggests that when the number of firms involved in price
competition increases, the outcome is more competitive prices. We obtain the
opposite result: under increased competition on tuition fees, these increase
with m. This is somewhat counterintuitive.

(ii) If the cost function is sufficiently convex (µ ≥ m
m−1

), f ∗c is the unique equilib-
rium and does not vary with m. For intermediate marginal costs (µ < m

m−1
),

f̄ ∗ increases toward f ∗c .

An intuitive explanation of these properties is that the increase in m has two
opposite effects on tuition fees. On the one hand, as the number of universities
increases, each one faces lower marginal costs since the number of students enrolled
(ni) decreases (demand being shared out evenly). These lower marginal costs (the
cost function is less convex) encourage the universities to lower their fees through the
“demand effect”. On the other hand, the “capacity effect” promotes the opposite
behavior: when there are more universities, each one chooses a lower capacity in
the SPE (see Corollary (3)). Equations (3) and (4) clearly highlight the negative
correlation between fees and capacities: lower capacities induce a rise in fees, all
things being equal.

Either effect can dominate, depending on the convexity of the cost function.
When µ is very low (µ < µ̄), the “demand effect” dominates and fees (f̄ ∗) fall as
m increases. A stronger “capacity effect” implies higher marginal costs such that
fees increase with m up to the maximum, f ∗c . When costs become “too” convex
(C”(ni) ≥ 2m

m−1
or µ ≥ m

m−1
), each university chooses a capacity that maximizes its

revenue and minimizes the average cost per student. This adjustment allows the fees
to be maintained at the maximum level, f ∗c , regardless of the number of universities.
In this case, the “capacity effect” is exactly offset by the “demand effect”.
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5 Welfare Analysis

Another question we address is how the number of otherwise identical universities
competing on tuition fees affects social welfare.

We define social welfare as

SW =
N2

2︸︷︷︸
Consumer surplus

+ (m.Gi)︸ ︷︷ ︸
University surplus

− s.N︸︷︷︸
Social cost of the subsidy

(5)

We obtain:

SW = (1 + γ)N − N2

2
−mC(n, k)

Proposition 3. When the marginal costs are sufficiently convex (µ ≥ m
(m−1)

), social
welfare always increases with the number of universities:

∂SW

∂m
=
δ2

4µ
> 0

Proof : Appendix E. �

When the cost to attract additional students is sufficiently convex, the compe-
tition between an increasing number of universities allows fees to be sustained at
their maximum level without reducing the total number of admissions. Under fee
competition, a greater number of universities enhances social welfare in spite of the
higher fees they set. This counterintuitive result can be explained by the possibility
universities have to choose the most efficient capacity, allowing them to reduce their
costs. From this result, we can conclude that all policies leading to an increase in
the number of universities should not lower tuition fees or increase the total number
of students. The efficient consideration of costs when there are many universities
in the market increases welfare, especially since the cost of the fixed capacity (δ) is
high and the cost of each student enrolled beyond this capacity (µ) is low.

6 Conclusion

In this paper, we have analyzed a two-stage game between homogeneous univer-
sities that fix their capacity, and then compete on tuition fees. Interestingly, our
model emphasizes the role of the strategic variable and the cost structure in decid-
ing the outcome of the game and offers a framework that explains some stylized
facts. This contribution thus shows that high tuition fees cannot just be explained
by improvements in teaching and/or research, lower public subsidies or higher ex-
pected returns of a university education. Competition between a large number of
homogeneous universities to attract additional students creates a higher-education
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market in which universities charge high, sometimes (tacitly) collusive fees. The
fees charged by universities can even increase with the number of universities. Fi-
nally, competition between an increasing number of universities maintains fees at
their maximum level (collusive fees) without reducing either the total number of
admissions or social welfare.

These results could be considered “unrealistic”. Nevertheless, some politicians in
the United Kingdom are considering asking the competition regulator to investigate
the collusive behavior of universities. Universities are unlikely to collude explicitly.
However, our results show that the cost structure in a deregulated higher education
market can induce behaviors akin to collusion.

Some of the simplifying assumptions made here merit further discussion. First
of all, the particular form of the demand function in this work is critical to the
results obtained. We assume that demand is infinitely elastic: this elasticity can
have an impact on the different equilibrium outcomes of the model. The nature of
student support policies (financial or other) may also influence our results. Secondly,
we assume that the universities are identical in terms of their curriculum and all
other non-price dimensions. These could be considered in the future but the results
obtained in this article are surprising enough to warrant attention by themselves.
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Appendix A Proof of Proposition 1

Let us first investigate symmetric strategy profiles in the interval [f̂ , f̄ ]. When a
competitor charges fees f ∈ [f̂i; f̄i], the best response for university i is to quote the
same amount. When university i quotes the same fees, it obtains GD(f). We know
that for all f > f̂i, GD(f) > −TFC. If the university deviates (by quoting f − ε), it
gains Gd(f−ε). We also know that for all f ∈ [f̂i; f̄i], GD(f) > GM(f) > GM(f−ε).
Since the university must satisfy all the demand it faces, the additional revenue
(from higher enrollment) is less than the increase in costs: the university enrolls
additional students at an excessive marginal cost. By quoting f + ε, university i
receives no demand and obtains zero variable payoff for its research activities. The
optimal strategy is therefore for each university to quote the same fee. There are no
incentives to deviate, which proves the implication in Proposition 1. It also proves
that all asymmetrical strategy profiles in which at least one university quotes a price
in the interval are not Nash equilibria.

We now have to investigate all the other strategy profiles (viz. those in which
universities only quote prices outside the interval). It is easy to check that for all
symmetric strategic profiles with f < f̂ , the firm’s interest is to increase its tuition
fees. Conversely, universities will lower their fees if f > f̄ . The payoff dominance
criterion, the natural criterion given that all actors are presumably fully rational, is
sufficient to provide uniqueness in the two configurations.

Appendix B Proof of Corollary 1

Let us compare the number of students enrolled in a given university with its capacity
in different situations:

(i) If µ < m
m−1

,

n̄∗(m) > k̄∗(m)

⇔ 2µ(m+mµ+ µ)(1 + γ + s− δ) > 4µ2m(1 + γ + s)− (m+mµ+ µ)2δ

⇔ 2µ(m+ µ−mµ)(1 + γ + s) > (m+mµ+ µ)(µ−m−mµ)δ

which is always verified because m+ µ−mµ > 0 and µ−m−mµ < 0.

(ii) If µ ≥ m
m−1

,

nc
∗(m)− kc∗(m) =

δ

2µ
> 0
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Appendix C Proof of Corollary 2

(i) If µ < m
m−1

,

∂n̄∗

∂µ
= −mµ(µ(m− 1) + 2m(m− 2) + µ2m+ 2) + µ2 +m2 +m3

(µ2 +m2 − 2mµ2 + 2mµ+ 2m2µ+m2µ2)2
< 0 with m ≥ 2

Because f̄ ∗ = 1−m.n̄∗, we have

∂f̄ ∗

∂µ
> 0

From Equation (3), we have:

k̄∗ = −m+ µm+ µ

2mµ
f̄ ∗ +

m+ 1

2m
− γ + s

2µ

∂k̄∗

∂µ
> 0 with

∂f̄ ∗

∂µ
> 0

(ii) If µ ≥ m
m−1

,

We obtain cases (ii) with straightforward computations.

Appendix D Proof of Corollary 3

(i) If µ < m
m−1

,

∂n̄∗(m)

∂m
= −(1 + µ)(m+ µm+ µ)2 − 4µ3

((m+ µm+ µ)2 − 4mµ2)2 (1 + s+ γ − δ) < 0

∂k̄∗(m)

∂m
= − 2µm2(1 + µ)2 − 2µ3

((m+ µm+ µ)2 − 4mµ2)2 (1 + s+ γ − δ) < 0

∂f̄ ∗(m)

∂m
= −n̄∗(m)−m∂n̄∗(m)

∂m

∂f̄ ∗(m)

∂m
> 0 if −m∂n̄∗(m)

∂m
> n̄∗(m)

⇔ m
(1 + µ)(m+ µm+ µ)2 − 4µ3

((m+ µm+ µ)2 − 4mµ2)2 (1+s+γ−δ) > (m+ µm+ µ)

(m+ µm+ µ)2 − 4mµ2
(1+γ+s−δ)
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⇔ m(1+µ)(m+µm+µ)2−4mµ3 > (m+µm+µ)
(
(m+ µm+ µ)2 − 4mµ2

)
⇔ µ2(3m2 − 2m− 1)− µ(2m(1−m))−m2 > 0

We have,
∂f̄ ∗(m)

∂m
> 0 if µ̄ < µ ≤ m

m− 1

and
∂f̄ ∗(m)

∂m
< 0 if 0 < µ ≤ µ̄

with µ̄ =
−m(m−1)+2m

√
m(m−1)

3m2−2m−1

(ii) If µ ≥ m
m−1

,

We obtain cases (ii) with straightforward computations.

Appendix E Proof of Proposition 3

SW = (1 + γ)N − N2

2
−mδk −mµ(n− k)2

The derivative of the above expression with respect to m gives:

∂SW

∂m
= (1+γ−mn)

(
n+m

∂n

∂m

)
−δ
(
k +m

∂k

∂m

)
−µ(n−k)

(
(n− k) + 2m

∂(n− k)

∂m

)
If µ ≥ m

m−1
, we obtain

(i) n+m ∂n
∂m

= 0,

(ii) −δ
(
k +m ∂k

∂m

)
= δ2

2µ

(iii) −µ(n− k)
(

(n− k) + 2m∂(n−k)
∂m

)
= −µ(n− k)2 = − δ2

4µ

Finally,
∂SW

∂m
=
δ2

4µ
> 0
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