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Abstract

A market with asymmetric information can be viewed as a repeated exchange game
between an informed sector and an uninformed sector. The case where all agents in the
market are risk neutral was analyzed in De Meyer [2010]. The main result of that paper
was that the price process in this risk neutral environment should be a particular kind
of Brownian martingale called CMMV. This type of dynamics is due to the strategic use
of their private information by the informed agents. In this paper, we generalize this
analysis to the case of a risk averse market. Our main result is that the price process is
still a CMMV under a martingale equivalent measure.

JEL Classification: G14, C72, C73, D44
Keywords: Asymmetric information, Price dynamics, Martingales of maximal variation,
Repeated games, Martingale equivalent measure, Risk aversion

1 Introduction

Information asymmetries are omnipresent in financial markets. We don’t mean here insider
trading which is illegal and hopefully quite marginal but, de facto, there is an asymmetry
between agents: institutionals have typically a better access to information than private
investors. They have access to more information, quicker, and they are better skilled to
analyze it. In such a situation everybody is aware that informational asymmetries exist and
knows who are the informed agents.

Actions by the informed agents on the market are therefore analyzed by the uninformed
agents in order to deduce the informative content behind these actions. As suggested pre-
vious papers (De Meyer [2010] and De Meyer and Saley [2003]), this phenomenon could
partially explain the kind of price dynamics observed on the market.

In De Meyer and Saley [2003], the game between two market makers with asymmetric
information was analyzed. This paper proved in a very particular risk neutral case that
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the price process converges to a continuous martingale involving a Brownian motion in its
description. This result gives thus an endogenous justification for the appearance of the
Brownian term in the price dynamics: it is seen as an aggregation of the random noises
introduced strategically day after day by the informed agents on their moves to hide their
private information.

This idea was generalized in De Meyer [2010] to a broader setting and the main result
of that paper was that the price dynamics must be a so called “Continuous martingale
with maximal variation” (CMMV), see Definition 1 below. These martingales also involve
a Brownian motion. The market is analyzed there as a repeated exchange game between
an informed sector and an uninformed one. Both sectors exchange a risky asset R with a
numeraire in counterpart. In this game, the informed sector plays as a unique risk neutral
player who wants to maximize the expected value of his final portfolio. To modelize the
market in the broadest generality, an exchange mechanism T is introduced. T maps couples
of actions (i, j) to a resulting transfer Ti,j = (Ai,j , Bi,j) of risky asset and money between
the sectors. To make a realistic modelization, a set (H) of five hypothesis is made on T :

(H)



1: Invariance with respect with the numeraire scale

2: Invariance with respect to the risk-less part of the risky asset

3: Existence of the value.

4: Positive value of information

5: Continuity of V1.

De Meyer [2010] noticed that a profit for the informed player results in a loss for the
uninformed player. The exchanges between the players are typically zero sum (no creation
of goods). It is then natural to consider in a first analysis the case of two risk neutral
players. In this framework the price at period q is naturally identified with the conditionnal
expectation of the final value of the risky asset given the public information at that period.
The main result is that under (H), the price process at equilibrium pn, (considered as a
process in continuous time t→ pnbntc) converges to a CMMV as n goes to infinity. The same

martingale appears no matter the choice of the mechanism T satisfying (H). The class
of CMMV is therefore very robust as it doesn’t depend on the peculiarity of the trading
mechanism.

In the third chapter of his thesis Gensbittel [2010] studied the case of risk neutral players
on a market with multiple risky assets and asymmetric information. In the particular case
where all assets are derivatives that depends monotonically on a given underlying asset, the
price dynamics of all assets are again CMMV.

The question we adress in the present paper is also about the robustness of the CMMV
class: will this class still appear without the hypothesis that the uninformed sector is risk
neutral? Since it typically represents big institutional investors, it is natural to model the
informed sector as risk neutral agent. The problem is more about player 2 which is an
aggregation of small uninformed agents. As individual, they typically display risk aversion.
We will model this aggregated sector by a single representative agent called player 2, and

2

 
Documents de travail du Centre d'Economie de la Sorbonne - 2015.54



it seems then natural to assume him to be risk averse.

This risk aversion is modeled with the introduction of a non linear utility function in
player 2’s payoff. Due to this utility function, we are not in front of a zero sum game
anymore as it was the case in De Meyer [2010]. This makes the analysis more involved,
the notions of value and optimal strategies are here to be replaced by the notion of Nash
equilibrium.

In this model, since player 2 is risk averse, it makes no sense to define the price as the
expectation of the final value of the risky asset. What would be the price in this risk averse
setting with a general (abstract) trading mechanism? We chose to bypass this question by
considering a particular exchange mechanism that naturally involves prices.

The mechanism considered in this paper is very simple: the uninformed sector is repre-
sented here by a risk averse market maker called player 2. At each period q ∈ {1 . . . , n}, he
chooses a price pq for one share of the risky asset, and player 1 will have to decide whether
he wants to sell or to buy. Both players try to maximize their utility for the liquidation
value of their final portfolio.

We first prove the existence of Nash equilibrium for a game with fixed length n. We
then analyze the price dynamics at equilibrium. Let Pn denote the law of the price process
at equilibrium. Pn is referred to as the historical probability measure. We then prove that
this price dynamics is compatible with the financial theory of no-arbitrage (Harrison and
Pliska [1981]): There exists a probability measure Qn, equivalent to the historical one Pn(
∂Pq
∂Qn

= yn > 0
)

, such that the price process pt is a martingale under Qn.

We then analyze the asymptotics of the price dynamics as the lenght n increases to
infinity. Our main result is that under Qn, the price process pn converges in finite dimen-
sional distribution to a CMMV Zt with probability distribution Q. We further prove that
the historical distributions Pn converge to a limit distribution P which is equivalent to Q.

This paper seems therefore to indicate that under the martingale equivalent probabil-
ity measure, the actualized price processes on the market should be CMMV. This class of
martingales seems therefore to be a natural class of stochastic processes that could be used
to develop pricing and hedging models.

We now give a precise definition of CMMV:

Definition 1. A continuous martingale of maximal variation (CMMV) is a stochastic pro-
cess Π, which is a martingale satisfying:

Πt = f(Bt, t)

where B is a standard Brownian motion and f : R× [0, 1]→ R is a deterministic function
which is increasing in its first variable.
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Remark 2. Due to Itô’s formula, this definition implies in particular that f must satisfy
the time reversed heat equation:

∂f

∂t
+

1

2

∂2f

∂x2
= 0

Remark 3. The terminology ”CMMV” was introduced in De Meyer [2010] due to the
following result. The n-variation of a martingale (Xt)t∈[0,1] is:

V n
X =

n−1∑
q=0

‖X q+1
n
−X q

n
‖L1

Consider the problem Mn of maximizing the n-variation V n
X on the class of martingales

X with final distribution µ (X1 ∼ µ). It is proved in De Meyer [2010] that the martingales
that solve Mn, (i.e. martingales of maximal variation) converge in finite distributions, as
n goes to infinity, to a process that satisfies the above Definition 1.

Remark 4. Note that if B is a Brownian motion on a filtration (Ft) and g is an increasing
function R→ R, then Xt := E[g(B1)|Ft] is a CMMV. Indeed, due to the Markov property
of the Brownian motion, we have Xt = E[g(B1)|Ft] = E[g(B1)|Bt]. We get therefore
Xt = f(Bt, t), where f(x, t) = Ez[g(x + z

√
1− t)], with z ∼ N (0, 1). Note that f is

the convolution of g with a normal density kernel. This convolution preserves the class of
increasing functions and f is thus indeed increasing in x.

2 Description of the model

In the game we are considering, player 1 receives initially some private information about
the risky asset R. This information will be publicly disclosed at a future date (for example
at the next shareholder meeting). At that date, the value L of the risky asset will depend
on the information initially received. Since the liquidation value is the only part of the
information that is relevant for R, we can model the whole situation as follows: (1) Nature
draws initially L, once for all, with a lottery µ. (2) Player 1 observes L, not player 2. (3)
All this process, including µ, is common knowledge.

We define Gn(µ), n ≥ 1, as the n-times repeated game where two players are exchanging
at each round a risky asset R for a numeraire. At period q ∈ {1, . . . , n}, player 1 decides
to buy (uq = 1) or to sell (uq = −1) one unit of the risky asset. uq ∈ {+1,−1} is thus the
action of player 1. Simultaneously, player 2 selects the price pq ∈ R of the transaction at
stage q.

Remark 5. Choices are thus considered to be simultaneous: in our model, player 1 does
not observe player 2’s action before deciding whether to sell or buy. This can be surprising
at first glance. Indeed, one usually assumes that the trader will buy or sell after observing
the market maker’s prices. In fact, we argue that this sequential model where player 1 reacts
to the price posted by player 2 is in fact equivalent to our model. Indeed, we prove in section
4 that, due to Jensen’s inequality, the equilibrium strategy of player 2 in the simultenaous
game considered here, is a pure strategy. Player 2’s move pq is thus completely forecastable
for player 1 at period q. Player 1 would get no benefit from observing pq before selecting uq.
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We denote hq the history of plays until round q, i.e. hq = (u1, p1, . . . , uq, pq) and Hq

the set of all possible histories until round q. At the end of stage q, uq and pq are publicly
revealed. Then both player know and remember all the past actions taken by both of them.
Since the game is with perfect recall we can apply Kuhn’s theorem and assume, without
loss of generality, that players use behavioral strategies.

A behavioral strategy for player 1 in this game is σ = (σ1, . . . , σn) with σq : (hq−1, L)→
σq(hq−1, L) ∈ ∆({−1,+1}). A behavioral strategy for player 2 is τ = (τ1, . . . , τn) with
τq : hq−1 → τq(hq−1) ∈ ∆(R). A triple (µ, σ, τ) induces a unique probability distribution on
(L, hn). When X is a random variable, we denote Eµ,σ,τ [X] its expectation with respect to
this probability.

In this paper, player 1 is risk neutral. His payoff in Gn(µ) is then the expected value of
his final portfolio:

g1(σ, τ) = Eµ,σ,τ

 1√
n

n∑
q=1

uq(L− pq)

 (1)

Note that we introduced the normalization factor 1√
n

. The interest of this normalization

appears in De Meyer [2010]. Indeed, without this normalization factor, this particular game
corresponds to an exchange mechanism T defined by:

i ∈ {−1,+1}, j ∈ R and Ti,j = (i,−i× j)

It can be easily shown that this mechanism satisfies the five hypothesis mentionned
above, and we know from De Meyer [2010] that the value Vn of the game is such that Vn√

n

converges to a finite quantity. This result points out that payoffs should be normalized by
a factor 1√

n
. This normalization has no effect on player 1 since he is risk neutral, but it is

important for player 2.

The particularity of the current paper is that we consider a risk averse player 2. The
payoff he aims to minimize (we keep the formalism of the zero sum games where player 2
is a minimizer) is thus:

g2(σ, τ) = Eµ,σ,τ

H
 1√

n

n∑
q=1

uq(L− pq)

 (2)

where H is a risk aversion function, (convex and increasing).
Throughout this paper, we will make the following assumptions on µ and H:

A1: µ is a probability measure on [0, 1] absolutely continuous with respect to the
Lebesgue measure. Its density function fµ is strictly positive and C1.

A2: H is a strictly positive, strictly convex and C2 function and H ′ is Lipschitz-
continuous and satisfies: ∃K, ε > 0 such that for all x ∈ R : ε < H ′(x) < K.
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Observe that in A1 we assume that L takes only values in the [0, 1] interval. We could
obviously change this assumption to any compact interval by just a renormalization.

3 Results and structure of the paper

In the first part of the paper (sections 4, 5, 6), we analyse the game Gn(µ) for a fixed number
n of stages. We first prove in section 4 that some equilibria of Gn(µ) can be found among
the equilibria of the simpler game Gn(µ) where the informed player 1 does not observe the
actions of player 2. We then focus on the reduced game Gn(µ).

This game can be completly reformulated: a strategy of player 1 can be identified with
a probability Πn on the pair (ω,L) where ω = (u1, . . . , un). Due to Jensen’s inequality we
prove in Proposition 10 that player 2 can restrict himself to pure strategies.

We argue in section 5 that such a pure strategy can be identified with a map Xn from
Ωn := {−1, 1}n to R that satisfies Eλn [Xn] = 0 where λn is the uniform probability on Ωn.
The link between Xn and the corresponding pure strategy is made precise in subsection 5.1.

We show in subsection 5.2 that, in order to be an equilibrium in Gn(µ), (Πn, Xn) must
satisfy the conditions (C1) to (C4), with Πn denoting the marginal of Πn on (L, Sn), with
Sn := 1√

n

∑n
k=1 uk, and Ψn being a convex function such that Xn(ω) = Ψn(Sn(ω)).

(C1): Eλn [Ψn(Sn)] = 0, where λn is the law of Sn under λn.

(C2): The marginal distribution Πn|L of L under Πn is µ.

(C3): The marginal distribution Πn|Sn of Sn under Πn, denoted νn, is such that the

density ∂λn
∂νn

is proportional to EΠn
[H ′(LSn −Ψn(Sn)) | Sn].

(C4) Πn(L ∈ ∂Ψn(Sn)) = 1 where ∂Ψn denotes the subgradient of the convex function
Ψn.

Conversely, one can always associate an equilibrium to a pair (Πn,Ψn) satisfying the
four conditions.

Using the link between Xn and the corresponding pure strategy of player 2 (which is the
price process at equilibrium), we prove in the subsection 5.3 that if conditions (C1) to (C4)
are satisfied, there exists a unique probability Qn, equivalent to the historical probability
Pn, such the price process (pnq )q=1,...,n is a martingale under Qn.

We next turn to the problem of existence of these reduced equilibria. In fact, the
existence could be proved by classical methods, using Nash-Glicksberg’s theorem. We give
here an alternative proof introducing in section 6 an operator Tλ : ∆(R) to ∆(R). This
operator will be useful both to prove existence, and to study the asymptotic properties of
these equilibria.

The idea behind this operator Tλ is as follow: as explained in section 6, the problem of
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finding a pair (Πn,Ψn) satisfying (C1) to (C4) can be further reformulated. First observe
that the marginal νn = Πn|S completely determines Πn and Ψn as long as (C1), (C2) and
(C4) are satisfied.

Indeed, due to Fenchel lemma, condition (C4) can heuristically be interpreted by saying
that Sn is an increasing function1 g of L: Sn = g(L). When L is µ-distributed, g(L) must
have distribution νn. There is essentially a unique function g which satisfies that condition2

and we find therefore heuristically that L = Ψ′n(Sn) = g−1(Sn). This fix Πn which is then
the joint law of (L, g(L)) when L is µ-distributed. This also fix Ψn up to a constant which
can be determined in a unique way to satisfy (C1).

So, from the above discussion, given a measure λ on R, for all measure ν on R there
exists a unique pair (Πν ,Ψν,λ) satisfying (C1) with λn replaced by λ, (C2), (C4) and such
that the marginal distribution of Sn under Πν is ν.

So we are now seeking a ν for which condition (C3) is further satisfied. There exists a
unique probability ρ such that ∂ρ

∂ν is proportional to EΠν
[H ′(LS−Ψν,λ(S)) | S]. Call Tλ the

map ν → Tλ(ν) := ρ. With these notations, finding an equilibrium in Gn(ν) is equivalent
to find a measure ν satisfying the equation:

Tλn(ν) = λn (3)

The existence of equilibrium in the game Gn(µ) is finally proved in section 6 by showing
that the operator Tλn is onto the space of measures. We first prove the continuity of the
operator Tλn in term of Wasserstein distance W2. The onto property of Tλn results then
from an application of the KKM theorem. Indeed, it follows from its definition that Tλn(ν)
is absolutely continuous with respect to ν. So, if one consider the restriction of Tλn(ν) to the

set of measures having the same finite support K as λn, Tλn(ν) is essentially a continuous
map from the |K|-dimensional simplex to itself that preserves the faces.

Section 7 of the paper is devoted to the asymptotics of νn. Remember that λn is the law
of 1√

n

∑n
q=1 uq when uq are independent and centered. Due to the central limit theorem,

λn converges (in Wasserstein distance W2) to the normal law λ∞.
On the other hand, by a compactness argument we can prove that any sequence (νn)n∈N

of solutions νn of equation (3) has an accumulation point ν satisfying Tλ∞(ν) = λ∞. The
convergence of (νn)n∈N is then obtained by proving in subsection 7.4 that there is a unique
solution to this equation.

We first prove that if ν is solution to Tλ∞(ν) = λ∞ then Ψν,λ∞
is a C2 function. Since

Ψ′
ν,λ∞

(Sn) is µ-distributed when Sn is ν-distributed, we get that Ψ′
ν,λ∞

(Sn) = F−1
µ (Fν(Sn))

where Fµ and Fν are the cumulative distribution functions of µ and ν. Differentiating this
equation with respect to Sn gives, with fν and fµ the density functions of ν and µ:

Ψ′′
ν,λ∞

(Sn) =
fν(Sn)

fµ(F−1
µ (Fν(Sn)))

=
fν(Sn)

fµ(Ψ′
ν,λ∞

(Sn))

1We remain very heuristical in our explanation at this point because ∂Ψ]
n is actually a correspondence

and not a single valued function.
2Would ν have no atom, we would have g(`) = F−1

ν (Fµ(`)), where Fµ and Fν are the cumulative distri-
bution functions of µ and ν.
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The equation Tλ∞(ν) = λ∞ indicates that
fλ∞
fν

= ∂λ∞
∂ν = cH ′(LSn −Ψν,λ∞

(Sn)).
This is exactly the equation appearing in the differential problem (D) of Proposition

40. The proof of the uniqueness of the solution of that system is technically too involved
to be described in this introduction. It is done in section 7 (see Theorem 41).

Remark 6. The difficulty of this uniqueness result comes on one hand from the fact that
the equation is strongly non linear due to both fµ and H. On the other hand, it is usual
in game theory to prove the convergence of the values of discrete time repeated games to
a limit using the concept of viscosity solution and uniqueness result to these differential
problems. Nonetheless the corresponding equation are usually of second order. Our equation
is apparently also of the second order, but it involves an additional constant c. Such an
equation can be considered as a integral version of a third order equation without c. But
the theory of viscosity solution does not apply to third order equations and this explains the
technical difficulty of our proof.

With the convergence of νn proved in section 7, we can prove in section 8 that the
historical laws Pn converge. We also get the convergence of the law Qn of this process
under the martingale equivalent measure. More specifically, the discrete time price process
(pn1 , . . . , p

n
n) can be represented by the continuous time price process t→ pndnte.

We first show that the processes pnbntc under the law Qn can be represented (Sko-

rokhod embedding) on the natural filtration F of a Brownian motion on a probability
space (Ω̃,F , P̃ ). More precisely, there exists a sequence of variables p̃nq and an increasing
sequence of stopping times τnq such that p̃nq is Fτqn

-mesurable, and has the same distribution
as pnq . We show in Theorem 49 that p̃nbntc converges in finite dimensional distribution to a

limit process Zt defined on the space (Ω̃,F , P̃ ) and results to be a CMMV with law Q.
We also show the convergence in finite dimensional distribution of pnbntc under the his-

torical probability Pn. More precisely we show in Lemma 52 that the density yn = ∂Pn
∂Qn

converges in L1 to a density y, with y bounded. We can then show in Theorem 53 that the
historical law Pn = ynQn of the process pnbntc converges to the law P = y.Q.

4 Reduced equilibrium

Definition 7. The reduced game Gn(µ) is the game where player 1 does not observe player
2’s actions and player 2 is not allowed to randomize his moves (he only uses pure strategies).

In this paper pure strategies of player 2 will be denoted p. Such a strategy p is thus
a sequence of maps (p1, . . . , pn) where pq is a map Hq−1 → R. pq(hq−1) denotes then the
deterministic action taken by player 2 after history hq−1. Remark however that since player
2 does not randomize before stage q, the action he will take at stage q is just a deterministic
function of previous moves of player 1. Therefore, in this paper, a pure strategy of player
2 will be considered as a sequence (p1, . . . , pn) where pq is a function {−1,+1}q−1 → R.

In this section we show that any equilibrium in Gn(µ) is an equilibrium in Gn(µ). These
equilibria will be referred to as reduced equilibrium. Let σ be a reduced strategy of player
1 and let τ be any strategy of player 2. Eµ,σ,τ [pq | u1, . . . , uq−1] is just some real valued
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function fq(u1, . . . , uq−1) (defined only on histories (u1, . . . , un) with positive probability
under (µ, σ)). The sequence (f1, . . . , fn) of those functions determines a pure strategy for
player 2. Let us call pσ,τ this trategy. The point is that pσ,τ has a version that does not
depend on the reduced strategy σ. Indeed, strategy σ being reduced, we can consider that
the whole sequence of actions u1, . . . , un is selected by player 1 after observing L and before
player 2 starts to play. Then τ1 will fix the law of the action p1 of player 2. The law of p2

conditionally on u1 will be given by τ2(u1, p1) when p1 is τ1-distributed and independent of
u1. And so forth: τ1, . . . , τq fix the law of p1, . . . , pq given u1, . . . , uq−1. Therefore σ does
not appear in the computation of the law of p1, . . . , pq given u1, . . . , uq−1. As announced,
Eµ,σ,τ [pq | u1, . . . , uq−1] does not depend on σ. We write therefore pτ instead of pσ,τ , and
we get thus for all reduced σ:

pτ,q = Eµ,σ,τ [pq | u1, . . . , uq−1]

Moreover, p1, . . . , pq do not contain more information on L, u1, . . . , un than the infor-
mation already contained in u1, . . . , uq−1. In other words, the law of L, uq, . . . , un is inde-
pendent of p1, . . . , pq given u1, . . . , uq−1.

We now compare the payoffs induced by a strategy τ with those induced by the corre-
sponding strategy pτ .

Lemma 8. For any τ a strategy of player 2, pτ is such that for all reduced strategy σ of
player : {

g2(σ, τ) ≥ g2(σ, pτ )

g1(σ, τ) = g1(σ, pτ )

Proof. To simplify notations, the expectation Eµ,σ,τ is denoted E.

g2(σ, τ) = E[H(

n∑
q=1

uq(L− pq))] = E[E[H(

n∑
q=1

uq(L− pq)) | u1, . . . , un, L]]

We now apply Jensen’s inequality with the convex function H, and take into account
the fact that uq and L are (u1, . . . , un, L)-measurable:

g2(σ, τ) ≥ E[H(E[
n∑
q=1

uq(L− pq) | u1, . . . , un, L])] = E[H(
n∑
q=1

uq(L−E[pq | u1, . . . , un, L]))]

As noticed above, pq is independent of (L, uq, . . . , un) conditionally to (u1, . . . , uq−1).
Therefore E[pq | u1, . . . , un, L] = E[pq | u1, . . . , uq−1], and we get:

g2(σ, τ) ≥ E[H(

n∑
q=1

uq(L− E[pq | u1, . . . , uq−1]))] = g2(σ, pτ )

Similarly, we have:
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g1(σ, τ) =Eµ,σ,τ [uq(L− pq)]

=Eµ,σ,τ [
n∑
q=1

uq(L− Eτ [pq | u1, . . . , uq−1])]

=Eµ,σ,τ [

n∑
q=1

uq(L− pτ,q)]

=g1(σ, pτ )

The next lemma highlights another property satisfied by the strategy pτ (as a pure
reduced strategy).

Lemma 9. Let p be a pure strategy of player 2 and σ any strategy of player 1 (even non
reduced). Then, there exists a reduced strategy of player 1 denoted σ̃(σ,p) which gives him
the same payoff as σ against p, i.e. :

g1(σ̃(σ,p), p) = g1(σ, p)

Proof. The strategy σ is not reduced, so σq depends on (u1, . . . , uq−1, p1, . . . , pq−1). But
player 2 is completely deterministic since he uses strategy p. Therefore he plays action
pq = pq(u1, . . . , uq−1), and the whole history p1, . . . , pq−1 is just a deterministic function of
u1, . . . , uq−2. In the arguments of σq, we can replace p1, . . . , pq−1 by this function and we
get in this way:

σ̃(σ,p),q(u1, . . . , uq−1) := σ(u1, . . . , uq−1, p1, . . . , pq−1(u1, . . . , uq−2))

which is a reduced strategy and clearly: g1(σ̃(σ,p), p) = g1(σ, p)

Proposition 10. If (σ?, p?) is an equilibrium in Gn(µ), then (σ?, p?) is an equilibrium in
Gn(µ).

Proof. For all player 2’s strategy τ in Gn(µ), we have:

g2(σ?, p?) ≤ g2(σ?, pτ ) ≤ g2(σ?, τ)

where pτ is defined above. Indeed the first equality just indicates that the pure strategy
pτ is not a profitable deviation from the equilibrium strategy p? in Gn(µ). The second
inequality comes from Lemma 8.

Let σ be any strategy of player 1. With the notation of Lemma 9 we get:

g1(σ, p?) = g1(σ̃(σ,p?), p
?) ≤ g1(σ?, p?)

where the inequality follows from the fact that σ̃ is a reduced strategy and can thus not
be a profitable deviation from σ? for player 1.

Based on the previous proposition, equilibria in Gn(µ) will be referred to as the reduced
equilibria in Gn(µ). We will only focus on this paper on the reduced equilibria of Gn(µ).

10
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5 Characterisation of equilibrium

In subsection 5.1 we give an other representation of the strategy spaces in Gn(µ). Next, in
subsections 5.2 we provide necessary and sufficient conditions on a pair of strategies to be
an equilibrium.

5.1 Alternative representation of the strategy spaces

When playing a reduced strategy player 1 does not observe player 2’s actions and we can
therefore assume that he selects his actions after getting the information L and before the
first move of player 2. Thus, joint with µ, a reduced strategy σ induces a joint law Πn on
(L, ω) where ω = (u1, . . . , un) belongs to Ωn := {−1,+1}n. The marginal Πn|L of Πn on
L is clearly µ. We can further recover the strategy σ from Πn computing the conditional
probabilities given L. Therefore the player 1’s strategy space may be seen as the set of Πn

in ∆(R× Ωn) such that Πn|L = µ.
Let us now consider the set of pure strategies P of player 2. If p ∈ P, then pq is

a function Ωn → R which is measurable with respect to (u1, . . . , uq−1). Note that the
strategy p only appears in the payoff functions (see equations 1 and 2) thought the quantity
Xn,p(ω) := 1√

n

∑n
q=1 uqpq(ω). We can therefore identify the strategy space of player 2 with

the set Xn := {Xn,p|p ∈P} ⊂ RΩ.
Next lemma characterizes this set. Let λn be the uniform probability on Ωn. Under λn,

(uq)q=1,...,n are mutually independent, and have zero expectation.

Lemma 11. Xn = {X ∈ L1(λn) | Eλn [X] = 0}

Proof. Let X ∈ Xn. Then X = Xn,p for some p ∈P. Since Ωn is a finite set, X as a map
from Ωn to R belongs to L1(λn). Moreover, using that pq is (u1, . . . , uq−1) measurable:

Eλn

 1√
n

n∑
q=1

uqpq

 = E

 1√
n

n∑
q=1

Eλn [uqpq|u1, . . . , uq−1]

 = E

 1√
n

n∑
q=1

pqEλn [uq]

 = 0

We thus have proved that Xn ⊆ {X ∈ L1(λn) | Eλn [X] = 0}.
Suppose now that X ∈ L1(λn) is such that Eλn [X] = 0. For k ∈ {1, . . . , n− 1}, we denote
Xk(u1, . . . , uk) := Eλn [X | u1, . . . , uk]. Let 1{uk=1} denotes the random variable that takes

the value 1 if uk = 1 and 0 otherwise. An easy computation shows that 1{uk=1} =
uq+1

2 .
One gets therefore

Xk(u1, . . . , uk) = 1{uk=1}X
k(u1, . . . , uk − 1, 1) + 1{uk=−1}X

k(u1, . . . , uk − 1,−1)

=
uk + 1

2
Xk(u1, . . . , uk−1, 1) +

1− uk
2

Xk(u1, . . . , uk−1,−1)

=
ukpk(ω)√

n
+
Xk(u1, . . . , uk−1, 1) +Xk(u1, . . . , uk−1,−1)

2
,

11
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where:

pk(ω) =
Xk(u1, . . . , uk−1, 1)−Xk(u1, . . . , uk−1,−1)

2/
√
n

(4)

Now observe thatXk−1(u1, . . . , uk−1) = Eλn [Xk|u1, . . . , uk−1] =
Xk(u1,...,uk−1,1)+Xk(u1,...,uk−1,−1)

2 .

Therefore Xk(u1, . . . , uk)−Xk−1(u1, . . . , uk−1) = ukpk(ω)√
n

.

Summing up those equalities for k = 1 to n, we get:

Xn(u1, . . . , un) =

∑n
k=1 ukpk(ω)√

n
+X0

But Xn(u1, . . . , un) = X and X0 = Eλ(X) = 0. We get thus:

X =

∑n
k=1 ukpk(ω)√

n
= Xn,p,

for the strategy p defined in 4.

Let us make more precise the relation between X and the strategy p such that X = Xn,p.

Proposition 12. Let X ∈ Xn. There exists a unique pure reduced strategy p such that
X = Xn,p. Moreover we have the explicit formula:

pq(u1, . . . , uq−1) =
√
nEλn [uqX | u1, . . . , uq−1] (5)

Proof. Let pj be (u1, . . . , uj−1)-measurable. Then observe that if j < q:

Eλn [pjuquj |u1, . . . , uq−1] = pjujEλn [uq|u1, . . . , uq−1] = 0

On the other hand, if j > q,

Eλn [pjuquj |u1, . . . , uq−1] =Eλn [Eλn [pjuquj |u1, . . . , uj−1]|u1, . . . , uq−1]

=Eλn [pjuqEλn [uj |u1, . . . , uj−1]|u1, . . . , uq−1]

=0

We get thus Eλn [pjuquj |u1, . . . , uq−1] = pq if j = q and 0 otherwise. Let now X be in Xn.
According to the previous lemma, X = Xn,p for some p. We can therefore write Eλn [uqX |
u1, . . . , uq−1] = Eλn [uq

∑n
i=1 piui√

n
| u1, . . . , uq−1] = 1√

n

∑n
i=1Eλn [piuqui | u1, . . . , uq−1] =

pq√
n

as announced.

We can now reformulate the completely reduced game Gn(µ) as follow: player 1 select
Πn ∈ ∆(Ωn × R) such that Πn|L = µ. Simultaneously player 2 chooses X ∈ Xn.

The payoff functions are now given by the formula:{
g1(Πn, X) = EΠn [LSn −X]

g2(Πn, X) = EΠn [H(LSn −X)]

where Sn(ω) = 1√
n

∑n
k=1 uq.

12
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5.2 Characterization of equilibrium strategies in Gn(µ)

In this section we provide necessary conditions for a pair (Π?
n, X

?) to be an equilibrium in
Gn(µ).

Our first result is Proposition 13 that claims that any history ω has a positive probability
at equilibrium. We next argue in Proposition 14 that if a strategy X of player 2 is such
that there exists a best response of player 1 which charges all history ω, then X has a very
particular form: X(ω) is a convex function of Sn(ω).

The next result is that if player 2 plays a strategy X = Ψn(Sn) for a convex function Ψ
then Πn is a best response to X if and only if Πn(L ∈ ∂Ψn(Sn)) = 1.

Finally we express the fact that the strategy Ψ(S) is a best reply to the probability Π
in Proposition 16.

We say that a strategy Π?
n of player 1 is completely mixed if for all ω ∈ Ωn : Π?

n(ω) > 0.

Proposition 13. If player 2 has a best reply to a strategy Π?
n of player 1 in Gn(µ) then Π?

n

is completely mixed.

Proof. Π?
n is a probability on (L, ω) where ω = (u1, . . . , un). It induces therefore a marginal

distribution on ωq = (u1, . . . , uq). Denote Γq the set of ωq such that Π?
n(ωq) > 0. We want

to prove that Γn = Ωn. Assume on the contrary that Γn 6= Ωn. We can then define q? as the
smallest q such that Γq 6= Ωq = {−1,+1}q. There is then a history (u1, . . . , uq?−1) ∈ Γq?−1

such that one of the histories (u1, . . . , uq?−1, 1) or (u1, . . . , uq?−1,−1) does not belong to Γ?q .
Whence, this history (u1, . . . , uq?−1) has a positive probability under Π?

n and is followed
by a deterministic move of player 1 at stage q?. But after observing this history, player 2
could increase his benefit by posting a higher or lower price according to the forecoming
deterministic move of player 1. This contradicts the hypothesis that there is a best reply
against Π?

n. Therefore, assuming Γn 6= Ωn leads to a contradiction.

Proposition 14. If player 1 has a completely mixed best reply Π?
n to a strategy X? of player

2 in Gn(µ), then X? = Ψn(Sn(ω)) where Ψn is a convex function such that Eλn [Ψn(Sn)] = 0

Proof. Suppose that player 2 is playing X? and player 1 wants to maximize his payoff
EΠn [LS −X?]. After observing L = `, he will select an history ω ∈ V` where V` is the set
of ω that solve the maximization problem A(`):

A(`) = max
ω′∈Ωn

`Sn(ω′)−X?(ω′). (6)

Therefore
Π?
n(ω ∈ VL) = 1. (7)

Since all history ω has a positive probability under Π?
n we conclude that the set of values

` such that ω ∈ V` can not be empty. Otherwise ω would never be selected by player 1 and
would have zero probability under Π?

n.
Now remark that it follows from the definition of A that for all ` and for all ω:

A(`) ≥ `Sn(ω)−X?(ω) (8)

Therefore, for all ω, for all `:

13

 
Documents de travail du Centre d'Economie de la Sorbonne - 2015.54



X?(ω) ≥ `Sn(ω)−A(`)

and thus for all ω:

X?(ω) ≥ sup
`∈R

`Sn(ω)−A(`).

As observed above for all ω, the set of ` such that ω ∈ V` is not empty.
For those `, equation (8) is an equality, and thus:

X?(ω) = sup
`∈R

`Sn(ω)−A(`).

We get therefore X?(ω) = Ψn(Sn(ω)) with Ψn : s ∈ R→ sup
`∈R

`s−A(`). Observe that

as supremum of affine functions of s, the map s→ Ψn(s) is convex.
Finally, since X ∈ Xn we get with Lemma 11 that Eλn [Ψn(Sn(ω))] = 0.

Note that the function A(`) was also defined as a maximum of a finite number of affine
functions of ` and is therefore also a piece-wise linear concave function of `. The Fenchel
transform A] of A is defined as:

A](s) = sup
`
`s−A(`)

The function Ψn introduced in previous proposition is just the Fenchel transform A] of
A. As it is well known from Fenchel lemma (see Rockafellar [1970]), A(`) = Ψ]

n(`) and we
have the equivalence between the following claims:

• (1) ` is optimal in A](s) = sup
`
`s−A(`)

• (2) s is optimal in Ψ]
n(`) = sup

s
`s−Ψn(s)

• (3) ` ∈ ∂Ψ(s) where ∂Ψn(s) is defined as the subgradient of the convex function Ψn

at s: ∂Ψn(s) = {`|∀zΨn(z) ≥ Ψn(s) + `(z − s)}.

• (4) s ∈ ∂A(`)

• (5) A(`) + Ψn(s) = s`

Now coming back to the definition of V` as the set of ω that are optimal in 6 with
X? = Ψn(Sn) , we claim that:

ω ∈ V` ⇔ ` ∈ ∂Ψn(Sn(ω)) (9)

Indeed ω ∈ V` if and only if A(`) = Sn(ω)` − X?(ω). On the other hand we also
have for all r, A(r) ≥ Sn(ω)r − X?(ω). Combining these two relations, we have that
A(r) ≥ S(ω)(r − `) +A(`) and thus S(ω) ∈ ∂A(`) or equivalently ` ∈ ∂Ψn(Sn(ω)).

Conversely assume that ` ∈ ∂Ψn(Sn(ω)). With condition (5) in Fenchel lemma above,
this means that A(`) = Sn(ω)`−Ψn(Sn(ω)) = Sn(ω)`−X?(ω). According to the definition

14
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of A` in (6) as max
ω′∈Ωn

`Sn(ω′)−X?(ω′), the last equality means that ω is an optimal ω′ and

thus belongs to V`.
We are now ready to prove the following proposition:

Proposition 15. Let X be a strategy of the form X(ω) = Ψn(Sn(ω)) where Ψn is a convex
function. Then a strategy Π?

n of player 1 is a best response to X if and only if:

Π?
n(L ∈ ∂Ψn(Sn)) = 1

Proof. We proved above in equation (7) that Π?
n is a best response to X if and only if

Π?
n(ω ∈ VL) = 1. With our claim (9), this is equivalent to Π?

n(L ∈ ∂Ψn(Sn)) = 1.

The next proposition expresses the first order conditions of player 2 optimization prob-
lem. Π?

n|ω just denotes the marginal distribution of ω under Π?
n.

Proposition 16. A strategy X? is a best reply to a strategy Π?
n of player 1, if and only if

λn has a density with respect to Π?
n|ω given by the formula:

dλn
dΠ?

n|ω
= αnEΠ?n [H ′(LSn −X?

n) | ω]

for a constant αn.

Proof. Suppose that X? is a best reply to a strategy Π?
n of player 1. Then X? is a solution

to the minimization problem of player 2:

min
X∈Xn

EΠ?n [H(LSn −X)].

Note that the map X → EΠ?n [H(LSn − X)] is convex in X and we are in front of
a convex minimization problem. In such a problem the first order conditions are both
necessary and sufficient. We get these first order conditions considering for fixed δ ∈ Xn
the map G : ε ∈ R → G(ε) := EΠ?n(H(LSn −X? + εδ)). This map must reach a minimum
at ε = 0.

Observe now that H is C1 and so is G. We get then G′(0) = EΠ?n [H ′(LSn −X?)δ], and
therefore, for all δ ∈ Xn:

EΠ?n [H ′(LSn −X?)δ] = 0

Since δ is just a function of ω, this equality can also be written as:

0 = EΠ?n [E[H ′(LSn −X?
n)δ|ω]] = EΠ?n [δYn]

where Yn(ω) := EΠ?n [H ′(LSn −Xn,?) | ω]. Yn(ω) > 0 because H ′ > ε > 0 according to
A2.

Since λn puts a positive weight on every history, Π?
n|ω is absolutely continuous with

respect to λn and has a density yn =
dΠ?

n|ω
dλn

.
We can rephrase previous conditions as: for all δ ∈ Xn,

15

 
Documents de travail du Centre d'Economie de la Sorbonne - 2015.54



Eλn [ynYnδ] = 0

This relation can interpreted as an orthogonality relation in L2(λn) with the scalar
product < A,B >:= Eλn [AB]. The space Xn must then be orthogonal to ynYn. But
Lemma 11 shows that Xn = {1}⊥. Therefore ynYn is co-linear with 1: it is equal to a
positive constant that we denote 1

αn
.

Since yn =
dΠ?

n|ω
dλn

> 0, λn is absolutely continuous with respect to Π?
n|ω and we get

dλn
dΠ?

n|ω
= 1

yn
= αnYn.

Propositions 13, 14, 15 and 16 clearly lead to a system of necessary and sufficient
conditions for equilibrium which is summurized by the following corollary:

Corollary 17. A pair of strategy (Π?
n, X

?
n) is an equilibrium in Gn(µ) if and only if X?

n =
Ψn(Sn) where Ψn is a convex function that jointly satisfy with Π?

n the following conditions
(C1),(C2),(C3),(C4).


(C1) Ψn is such that Eλn [Ψn(Sn(ω)] = 0

(C2) Π?
n|L = µ

(C3) ∂λn
∂Π?

n|ω
= αnEΠ?n [H ′(LSn −X?

n)|ω] where αn is a constant

(C4) Π?
n(L ∈ ∂Ψn(Sn)) = 1

5.3 The price process and the martingale equivalent measure

Before proving the existence of equilibrium in section 6, let us emphasize that the above
characterization of equilibrium implies that under an appropriate equivalent measure the
price process is a martingale.

Consider an equilibrium (Π?
n, X

?). We already know that X? = Ψn(Sn(ω)) for a convex
function Ψn. Since X? ∈ Xn there exists p such that X = Xn,p. The price process posted
by player 2 will then be p1, p2(u1), . . . , pn(u1, . . . , un−1). When (u1, . . . , un) are randomly
selected by player 1 with lottery Π?

n, the law of this process p is called the historical law.
We now prove that if (u1, . . . , un) are selected under λn, the process is a martingale.

Theorem 18. The price process (pnq )q=1,...,n is a martingale under the probability λn.

Proof. With equation (5) we have:

pnq (u1, . . . , uq−1) =
√
nEλn [uqX

? | u1, . . . , uq−1]

=
√
nEλn [uqΨn(Sn) | u1, . . . , uq−1]

=
√
nEλn [unΨn(Sn) | u1, . . . , uq−1] (10)

The last equality follows from the fact that, conditionally to u1, . . . , uq−1, the vector
(uq, Sn) and (un, Sn) have the same law under λn. The price process pn is written as a
conditional expectation of a terminal variable with respect to an increasing sequence of
σ-algebras. It is then a martingale under the probability λn.
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We further aim to prove that λn is the unique probability on Ωn that makes the price
process a martingale. To do so, we need the following lemma.

Lemma 19.
pnq (u1, . . . , uq−2, 1) > pnq (u1, . . . , uq−2,−1)

Proof. Since Ψn is convex, his derivative exists except on a countable number of points,
and the following definition is not ambiguous:

χ(x) =

√
n

2

∫ 1√
n

−1√
n

Ψ′n(x+ v)dv (11)

We also set Sq := 1√
n

∑q
k=1 uq. According to formula (10), we get:

pnq (u1, . . . , uq−1) =Eλn

[√
n

2

(
Ψn(Sn−1 +

1√
n

)−Ψn(Sn−1 −
1√
n

)

)
| u1, . . . , uq−1

]
=Eλn [χ(Sn−1)|u1, . . . , uq−1]

=Eλn [χ(Sn−1)|Sq−1]

=Eλn [χ(Sq−1 + V )|Sq−1]

where V =
uq+...,un−1√

n
. Since V is independent of Sq−1, we get therefore pnq (u1, . . . , uq−1) =

r(Sq−1) where r(x) := Eλn [χ(x+ V )]. To prove the lemma, we just have to show that χ is
strictly increasing on the support U = {−n+2k√

n
|k ∈ 0, . . . , n} of λn. Indeed, r will therefore

be strictly increasing, and the lemma will follow immediately.
Denote νn the marginal law of Sn under Π?

n. The condition (C3) indicates that νn
has the same support as λn. Condition (C4) implies that Π?

n(L ∈ [Ψ′n(S−n ),Ψ′n(S+
n )]) = 1

where Ψ′n(s−) and Ψ′n(s+) stands respectively for the left and the right limits at s of the
derivative Ψ′n. Indeed for all s, ∂Ψn(s) = [Ψ′n(s−),Ψ′n(s+)].

Note that any point of x ∈ U has a strictly positive probability under νn. Therefore
Ψ′n(x−) < Ψ′n(x+). Otherwise, on the event {Sn = x}, which has strictly positive probabil-
ity under Π?

n, we would have L = Ψ′n(x). This is impossible since µ, the marginal law of L
under Π?

n, has no atom.
We next argue that if x, y are two successive values in U , then Ψ′n(x+) = Ψ′n(y−).

Indeed, suppose on the contrary that Ψ′n(x+) < Ψ′n(y−). There would then exist `1, `2
such that Ψ′n(x+) < `1 < `2 < Ψ′n(y−). Define x̃ := inf{s|Ψ′n(s+) > `1}, and ỹ :=
sup{s|Ψ′n(s−) < `2}. Observe that Ψ′n(x̃) ≥ `1, as it follows from the definition of x̃.
Therefore Ψ′n(x̃) > Ψ′n(x+) which implies x < x̃. A similar argument leads to y > ỹ.
Let A denote the event {Ψ′n(S−n ) ≤ L ≤ Ψ′n(S+

n )}. We know that Π?
n(A) = 1. Consider

then the event B := {`1 < L < `2}. On A ∩ B we then clearly have Ψ′n(S−n ) < `2 and
`1 < Ψ′n(S+

n ). It results then from the definition of x̃ and ỹ that A ∩ B is included in the
event {x̃ ≤ Sn ≤ ỹ}. Therefore: Π?

n(`1 < L < `2) ≤ Π?
n(x̃ ≤ Sn ≤ ỹ) ≤ Π?

n(x < Sn < y).
But remember that x and y are two successive points in the support of νn, therefore
Π?
n(x < Sn < y) = 0 = Π?

n(`1 < L < `2) = µ(]`1, `2[). According to our hypothesis
A1 on µ, this implies that `1 = `2 which is in contradiction with our definition of `1, `2. It
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must therefore be the case, as announced, that Ψ′n(x+) = Ψ′n(y−).

If x ∈ U\{−n, n} then formula (11) joint with the fact that Ψ′n is constant on ]x, y[ im-

plies that χ(x) = Ψ′n(x+)+Ψ′n(x−)
2 . For x ∈ {n,−n}, one gets: χ(−n) ≤ Ψ′n((−n)+)+Ψ′n((−n)−)

2

and χ(n) ≥ Ψ′n(n+)+Ψ′n(n−)
2 . Therefore if x < y are two successive points in U , χ(x) ≤

Ψ′n(x+)+Ψ′n(x−)
2 < Ψ′n(x+) = Ψ′n(y−) < Ψ′n(y+)+Ψ′n(y−)

2 ≤ χ(y). χ is therefore strictly increas-
ing.

Theorem 20. λn is the unique probability on Ωn that makes the price process (pq)q=1,...,n

a martingale.

Proof. Indeed, let λ̃n be a probability on Ωn under which the price process is a martingale.
We find with the similar computation as that made to get equation (5) that:

pq(u1, . . . , uq−1) =
uq + 1

2
pq(u1, . . . , uq−2, 1) +

uq − 1

2
pq(u1, . . . , uq−2,−1)

Since p is a martingale under λn, we find
pq(u1,...,1)+pq(u1,...,−1)

2 = pq−1(u1, . . . , uq−2)
And thus

pq(u1, . . . , uq−1) = pq−1(u1, . . . , uq−2) + cq(u1, . . . , uq−2)uq−1

where cq =
pq(u1,...,1)−pq(u1,...,−1)

2 > 0.

So if p is a martingale under λ̃n we must have for all q: Eλ̃n [uq−1|u1, . . . , uq−2] = 0.

Therefore λ̃n = λn.

From Lemma 19 we remark that observing the price process, one can recover the whole
history u1, . . . , un. The natural filtration of the process (pq)q=1,...,n coincides with the nat-
ural filtration of (uq)q=1,...,n. There is therefore a one to one correspondence between the
laws of the price process (p)q=1,...,n and the law of the process (uq)q=1,...,n. The historical
law Pn corresponds to the law Π?

n, and the martingale equivalent measure Qn to λn. Our
last result claims that Qn is the unique martingale equivalent measure.

6 Existence of equilibrium

In this section we aim to prove the existence of equilibrium in Gn(µ). According to section
4 we can focus on the game Gn(µ). According to the last corollary we just have to prove
the existence of a pair (Πn,Ψn) such that conditions (C1) to (C4) are satisfied with
X = Ψn(Sn).

In the next subsection we prove that we can focus our analysis on the marginal Πn ∈
∆(R2) of Πn on (L, S).
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6.1 The marginal Πn

Πn is a probability on Ωn×R and it induces a marginal law Πn ∈ ∆(R2) for the pair (S,L).
(C1), (C2) and C4) are in fact conditions on (Πn,Ψn). (C3) is the unique condition that
involves the conditional law of L given ω. As proved with the first claim of Lemma 21, it
turns out that (C3) implies the following necessary condition on Πn and Ψn:

(C3’): There exists a constant αn such that
∂λn

∂Πn|S
= αnEΠn

[H ′(LSn −Ψn(Sn))|Sn]

An important part of this paper is devoted to the analysis of the pair (Πn,Ψn) satisfying
(C1), (C2), (C3’) and (C4). In particular, the asymptotics of these pairs is analyzed in
the following sections. In section 8, we will infer the convergence Πn from the convergence
of Πn.

It is useful to note that various equilibria (Πn,Ψn) could have the same marginal Πn.
On the other hand, we will prove in Corollary 37 the existence of pairs (Πn,Ψn) that satisfy
(C1), (C2), (C3’) and (C4). To prove the existence of reduced equilibrium in Gn(µ) we
therefore need the second claim of the next lemma:

Lemma 21.
1/ Any reduced equilibrium (Πn,Ψn) in Gn(µ) is such that (Πn,Ψn) satisfies (C1), (C2),
(C3’) and (C4), where Πn = Πn|(L,Sn).

2/ Conversely, to any (Πn,Ψn) satisfying (C1), (C2), (C3’) and (C4), there corresponds
at least one equilibrium (Πn,Ψn) such that Πn|(L,Sn) = Πn.

Proof. We start with the first claim. We just have to prove that (C3) implies (C3’). Let
Φ be a continuous and bounded function. According to (C3) we have:

Eλn [Φ(Sn(ω))] =EΠn|ω [Φ(Sn(ω))
dλn
dΠn|ω

]

=EΠn [Φ(Sn(ω))αnEΠn [H ′(LSn −Ψn(Sn))|ω]]

=EΠn [Φ(Sn(ω))αnH
′(LSn −Ψn(Sn))]

=EΠn [Φ(Sn(ω))αnEΠn [H ′(LSn −Ψn(Sn))|S]]

Therefore Eλn [Φ(Sn)] = Eλn [Φ(Sn(ω))] = EΠn|S
[Φ(Sn(ω))αnEΠn

[H ′(LSn − Ψn(Sn)|Sn]]

which is exactly our condition (C3’).
We now prove the second claim. Let (Πn,Ψn) satisfy (C1), (C2), (C3’) and (C4).

Consider then the probability Πn induced by the following lottery: select first L and Sn
according to Πn. If Sn = s, select an history ω with the uniform probability on the set
Ks = {ω|Sn(ω) = s}.

The marginal of Πn on (L, Sn) coincides with Πn and (Πn,Ψn) satisfies therefore (C1),
(C2) and (C4).

Observe then that under Πn, L is then independent of ω given Sn and therefore the
conditional law of (L, Sn) given ω coincides with the conditional law of (L, Sn) given Sn.
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So: EΠn [H ′(LSn − Ψn(Sn))|ω] = EΠn
[H ′(LSn − Ψn(Sn))|Sn], and (C3) then follows from

(C3’).

6.2 Reformulation of (C1), (C2) and (C4)

In this subsection we show that a pair (Πn,Ψn) satisfying (C1), (C2) and (C4) is com-
pletely determined by the marginal law ν := Πn|Sn of Sn.

It will be convenient to introduce the following notation: ∆(R2, µ, ν) is the set of prob-
ability distributions on (L, Sn) ∈ R2 with respective marginal laws µ and ν.

Definition 22. For ν ∈ ∆(R), we define φν(`) := F−1
ν (Fµ(`)) and γν(s) := F−1

µ (Fν(s))
where Fµ and Fν are the cumulative distribution functions of µ and ν, and F−1

µ and F−1
ν

are their right inverses i.e. F−1
ν (y) = inf{x | Fν(x) > y}.

We further define:

Γν(s) :=

∫ s

0
γν(t)dt (12)

Φν(`) :=

∫ `

0
φν(t)dt (13)

We denote Πν the law of the pair (L, φν(L)) when L is µ-distributed.
Finally we set:

Ψν,λn := Γν(Sn)− Eλn(Γν) (14)

Lemma 23. Let (Π,Ψ) be a pair such that Π ∈ ∆(R2, µ, ν) and Ψ is a convex function.
Then (Π,Ψ) satisfies C1, (C2) and (C4) if and only if (Π,Ψ) = (Πν ,Ψν,λn)

Proof. First observe that Πν ∈ ∆(R2, µ, ν). Indeed, according to the definition of Πν the
marginal law of L is µ. On the other hand since µ has no atom U := Fµ(L) is uniformly
distributed and as well known F−1

ν (U) is ν-distributed. Therefore the marginal law of Πν

on Sn is just ν.
Ψν,λ is a convex function since γν is increasing and thus Γν is convex. It further satisfies

(C1) since, due to equation (22), Eλn [Ψν,λ] = 0.
Πν satisfies (C2) since it belongs to ∆(R2, µ, ν).
γν is right continuous and therefore it follows from the definition of Γν that ∂Ψν,λ(s) =

[γν(s−), γν(s)] where γν(s−) is the left limit of γν at s. Under Πν , Sn = φν(L). Therefore,
condition (C4) is equivalent to:

Πν

[
γν((φν(L))−) ≤ L ≤ γν(φν(L))

]
= 1 (15)

We first prove that for all x:

Fν((F−1
ν (x))−) ≤ x ≤ Fν(F−1

ν (x)) (16)

Let A := {s|Fν(s) > x} and α := F−1
ν (x). It results from the definition of F−1

ν that
α is the infimum of A. Furthermore, since Fν is increasing, ]α,∞[⊂ A ⊂ [α,∞[. Since
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Fν is right continuous, we get Fν(α) = inf
s∈A

Fν(s). But if s ∈ A, Fν(s) > x, and therefore

inf
s∈A

Fν(s) ≥ x and the right hand inequality in (16) is proved.

On the other hand, Fν(α−) = limu→α,u<α Fν(u). But if u < α, u ∈ Ac and thus
Fν(u) ≤ x. Therefore Fν(α−) ≤ x which is the second inequality.

Replace x by Fµ(L) in (16) to obtain: Fν((φν(L))−) ≤ Fµ(L) ≤ Fν(φν(L)). Since Fµ
is increasing and one to one, we get therefore F−1

µ (Fν((φν(L))−)) ≤ L ≤ F−1
µ (Fν(φν(L)))

which is exactly (15) according to the definition of γν , and (Πν ,Ψν,λ) satisfies thus (C4).
Let now Πn belong to ∆(R2, µ, ν) and Ψn be a convex function such that (Πn,Ψn)

satisfies (C1), (C2) and (C4).
The derivative ρ(s) of Ψn(s) exists for every s except possibly on a countable set.
The function ρ can always be taken right continuous and we have then for all s,
∂Ψn(s) = [ρ(s−), ρ(s)]. Since ` ∈ ∂Ψn(s) ⇔ s ∈ ∂Ψ]

n(`) according to Fenchel lemma,

we get ∂Ψ]
n(`) = [ρ−1(`−), ρ−1(`)] where ρ−1(`) := inf{s|ρ(s) > `}.

Condition (C4) implies therefore Πn(ρ−1(L−) ≤ Sn ≤ ρ−1(L)) = 1. Observing that ρ−1

is an increasing function, there are at most countably many points in A := {`|ρ−1(`−) 6=
ρ−1(`)}. Since µ is non atomic, µ(A) = 0 and thus Πn[Sn = ρ−1(L)] = 1. It follows that,
under Πn, (L, Sn) has the same law as (L, ρ−1(L)). Since Πn ∈ ∆(R2, µ, ν), we conclude
that ρ−1(L) is ν-distributed when L is µ-distributed. As observed in the beginning of this
proof φν(L) ∼ ν when L ∼ µ. It turns out that φν is the unique right continuous increasing
function having that property3, and we may therefore conclude that ρ−1 = φν .

It follows on one hand that Πn = Πν . On the other hand, ρ = φ−1
ν = γν . Therefore,

∂Ψn(s) = ∂Γν(s) for all s. As a consequence Ψn = Γν + c where c is a constant. Since Ψn

satisfies C1, we conclude that c = −Eλn [Γν ] and thus Ψn = Ψν,λn
as announced.

As explained in the introduction of this section, we are seeking for pairs (Πn,Ψn) sat-
isfying (C1), (C2), (C3’) and (C4). According to lemma 23, this is equivalent to find ν
such that (Πν ,Ψν) satisfies (C3’).

(C3’) is a condition on the density of λn with respect to the marginal of Πν|Sn = ν.

Namely it express that this density ∂λn
∂ν is proportional to Yν,λ defined as:

Yν,λ := EΠν
[H ′(LSn −Ψν,λ(Sn)) | Sn] (17)

Since H ′ is strictly positive, so is Yν,λ. There exists a unique constant αν,λ such that
ρ := αν,λYν,λν is a probability measure, namely αν,λ = 1

Eν [Yν,λ] .

Definition 24. For λ ∈ ∆(R), Tλ is defined as the map from ν ∈ ∆(R) to Tλ(ν) :=
αν,λ.Yν,λ.ν ∈ ∆(R).

3Let indeed f1, f2 be two right continuous increasing functions such that fi(L) ∼ ν when L ∼ µ. Then
for all a ∈ R, Ai := {`|fi(`) ≥ a} is a closed set. Since f is increasing, Ai must be an half line and we must
have therefore Ai = [αi,∞[. Since fi(L) ∼ ν and Fµ is continuous, we get:

ν([a,∞[) = µ(fi(L) ≥ a) = µ(L ≥ αi) = 1− Fµ(αi)

Therefore Fµ(α1) = Fµ(α2) and thus α1 = α2, since Fµ is strictly increasing according to the hypothesis A1
on µ. As a result, A1 = A2, or in other words: for all ` and for all a, f1(`) ≥ a if and only if f2(`) ≥ a. We
conclude therefore that f1 = f2.
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With this definition, we get:

Lemma 25. For all ν, the pair (Πν ,Ψν) satisfies (C3’) if and only if Tλn(ν) = λn.

Proof. Obvious from the definition of Tλ and condition (C3’).

The aim of this section is to prove the existence of such a ν. We first prove in the
following subsection that Tλ is a continuous operator for the Wasserstein distance W2. This
result will also be useful for our asymptotic analysis.

6.3 Continuity of Tλ

Tλ is thus a map from ∆(R) to ∆(R) and we now analyse its continuity with respect to the
Wasserstein metric of order 2. We remind the definition of this concept:

Definition 26. For p ∈ [1,+∞[ we define Pp the Wasserstein space of order p as:

Pp(R) := {ν ∈ ∆(R), such that

∫
R
| x |p ν(dx) <∞}

For ν1, ν2 ∈ Pp(R) we define:

Definition 27.

Wp(ν1, ν2) =

[
inf

π∈∆(R2,ν1,ν2)

∫
R
| x− y |p dπ(x, y)

] 1
p

Wp is finite on Pp. Moreover (Pp(R),Wp) is a metric space. This metric is usefull to
deal with weak convergences (see Proposition 30).

Definition 28. The weak convergence on Pp(R) is defined by: νk → ν (weakly in Pp(R)) if
for any continuous functions Φ such that there exists C ∈ R such that | Φ(x) |≤ C(1 + x)2,
we have Eνk [φ]→ Eν [φ] as k →∞.

Definition 29. The weak convergence on ∆(R) is defined by: νk → ν (weakly in ∆(R)) if
and only if for any bounded continuous function φ : R → R, we have Eνk [φ] → Eν [φ] as
k →∞.

The following proposition is well known (see for instance theorem 6.9 in Villani [2008],
or Mallows [1972] for a proof). It makes the link between weak convergence in ∆(R) and
W2 convergence.

Proposition 30. The three following statements are equivalent:
1/ W2(νn, ν)→ 0
2/ νn → ν (weakly in P2(R))
3/ νn → ν (weakly in ∆(R)) and Eνn(s2)→ Eν(s2).

The next representation formula for W2 is well known and proved in Dall’Aglio [1956]4.

4Actually we just used the fact that minimizing
∫
R | x−y |

2 dπ(x, y) is equivalent to maximizing Eπ(xy),
then to maximizing cov(XY ) with X ∼ ν1 and Y ∼ ν2. This maximum is reached when X and Y can be
written as increasing functions of the same uniform random variable, here Fµ(L) with L ∼ µ.
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Lemma 31.

W2(ν1, ν2) =

√∫ 1

0

(
F−1
ν1 (x)− F−1

ν2 (x)
)2
dx

We will prove the continuity of the operator step by step. The following lemma are
useful in the proof of the continuity.

Lemma 32. The mappings ν → Φν and ν → Γν are continuous from (P2(R),W2) to the set
of convex functions on respectively ]0, 1[ and R with the topology of uniform convergence.

Proof. Let ν1, ν2 be two measures in P2(R) and x ∈]0, 1[.

‖Φν1(x)− Φν2(x)‖∞ ≤
∣∣∣∣∫ x

0
F−1
ν1

(Fµ(`))− F−1
ν2

(Fµ(`))d`

∣∣∣∣
≤
∫ x

0

∣∣F−1
ν1

(Fµ(`))− F−1
ν2

(Fµ(`))
∣∣ d`

≤
∫ x

0

∣∣F−1
ν1

(Fµ(`))− F−1
ν2

(Fµ(`))
∣∣ fµ(`)

fµ(`)
d`

≤ Eµ[

∣∣F−1
ν1

(Fµ(L))− F−1
ν2

(Fµ(L))
∣∣

fµ(L)
]

≤
√
Eµ[(F−1

ν1 (Fµ(L))− F−1
ν2 (Fµ(L)))2]

√
Eµ[

1

fµ(L)2
]

the last inequality follows from Cauchy Scwharz theorem. Next observe with Lemma
31 and the fact that Fµ(L) is uniformly distributed on [0, 1] when L is µ-distributed (µ has
a density with respect to the Lebesgue measure) that the first factor in the right hand side
is equal to the Wasserstein distance between ν1 and ν2. Since fµ is bounded from below by
ε > 0 ( assumption A1) we get:

‖Φν1(x)− Φν2(x)‖∞ ≤W2(ν1, ν2)

√
Eµ[

1

fµ(L)2
] ≤W2(ν1, ν2)

√
1

ε2

Then we proved that the mapping ν → Φν is
√

1
ε2

-Lipschitz continuous for the uniform
norm.

We now prove that ν → Γν is also Lipschitz continuous.
Observe that Γν(s) = Φ]

ν(s) − Φ]
ν(0). Indeed from the definition of Γν and Φν we get

that the ∂Φν(`) = [φν(`−), φν(`)] and thus by Fenchel lemma :

∂Φ]
ν(s) = [φ−1

ν (s−), φ−1
ν (s)] = [γν(s−), γν(s)] = ∂Γν(s)

The two functions Φ]
ν and Γν just differ by a constant, and since Γν(0) = 0 we find

Γν(x) = Φ]
ν(x) − Φ]

ν(0). As well known Fenchel transform in an isometry for the uniform
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norm5. We conclude that the mapping ν → Γν is also Lipschitz continuous for the uniform
norm.

Lemma 33. If W2(νk, ν)→ 0 then W2(Πνk ,Πν)→ 0.

Proof. Let L be a random variable with law µ. Let X1 = (L, φνk(L)) and X2 = (L, φν(L)).
Then X1 ∼ Πνk and X2 ∼ Πν .

W2(Πνk ,Πν)2 ≤ ‖X1 −X2‖2L2 = ‖L− L‖2L2 + ‖φνk(L)− φν(L)‖2L2 = W2(νk, ν)2

where the last equality follows from equation (31).

Lemma 34. If W2(λk, λ)→ 0 and W2(νk, ν)→ 0 then:
1/ ‖Ψνk,λk −Ψν,λ‖∞ → 0

2/ For all continuous function Θ such that Θ(x)
1+x2 is bounded, we have:

EΠνn [Θ(Sn)H ′(SnL−Ψνk,λk(Sn))]→ EΠν [Θ(Sn)H ′(SnL−Ψν,λ(Sn))]

Proof. 1/

‖Ψνk,λk −Ψν,λ‖∞ =‖(Γνk − Eλk [Γνk ])− (Γν − Eλ[Γν ])‖∞
≤‖Γνk − Γν‖∞ + ‖Eλk [Γνk ]− Eλk [Γν ]‖∞ + |Eλk [Γν ]− Eλ[Γν ]|
≤2‖Γνk − Γν‖∞ + |Eλk [Γν ]− Eλ[Γν ]|

The first term of the right hand side goes to zero by Lemma 32. Next observe that
∂Γν = [γ(s−), γ(s)] ∈ [0, 1] and Γν(0) = 0 therefore, |Γν(x)| ≤ |x| ≤ C(1 + x2) for a
constant C. Since Γ is further continuous as claimed in Proposition 30, the last term goes
also to zero.

2/

|EΠνk
[Θ(Sn)H ′(SnL−Ψνk,λk(Sn))]− EΠν [Θ(Sn)H ′(SnL−Ψν,λ(Sn))]| ≤ Ik + Jk

where Ik := |EΠνk
[Θ(Sn)H ′(SnL−Ψνk,λk(Sn))]− EΠνk

[Θ(S)H ′(SnL−Ψν,λ(Sn))]| and
Jk := |EΠνk

[Θ(Sn)H ′(SnL−Ψν,λ(Sn))]− EΠν [Θ(Sn)H ′(SnL−Ψν,λ(Sn))]|.
According to A1, H ′ is Lipschitz continuous. Let K̂ denote the Lipschitz constant, then:

Ik ≤ EΠνk
[|Θ(Sn)|K̂‖Ψνk,λk −Ψν,λ‖∞] = K̂‖Ψνk,λk −Ψν,λ‖∞Eνk [|Θ(Sn)|]

Since |Θ(Sn)| ≤ C(1+S2) andW2(νk, ν)→ 0 we get with Proposition 30 that Eνk [|Θ(Sn)|]→
Eν [|Θ(Sn)|] <∞. On the other hand ‖Ψνk,λk −Ψν,λ‖∞ → 0 according to the first claim of
this lemma. Ik converges therefore to 0.

The map (L, Sn) → Θ(Sn)H ′(SnL − Ψν,λ(Sn)) is continuous and is also bounded by
C(1 + ‖(L, Sn)‖2) since H ′ is itself bounded. Since Πνk converges to Πν in W2, it follows
from Proposition 30 that Jk goes to zero.

5Let indeed f and g be two lower semi continuous convex functions Rn → R, then || f ]−g] ||∞=|| f−g ||∞.
Indeed, for all x ∈ R: f ](x) = supt x.t−f(t) ≤ supt x.t−g(t) +‖f −g‖∞ = g](x) +‖f −g‖∞. Interchanging
f and g we get therefore for all x: |f ](x)− g](x)| ≤ ‖f − g‖∞. Since the right hand side doesn’t depend on
x, we get: ‖f ]− g]‖∞ ≤ ‖f − g‖∞. The reverse inequality follows from Fenchel lemma: f ]] = f and g]] = g.
Therefore: ‖f − g‖∞ = ‖f ]] − g]]‖∞ ≤ ‖f ] − g]‖∞ as announced.
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Corollary 35. If

{
W2(νk, ν)→ 0

W2(λk, λ)→ 0
then W2(Tλk(νk), Tλ(ν))→ 0

Proof. We have to prove that if Φ continuous and satisfies | Φ(s) |≤ C(1 + s2), then:

ETλk (νk)(Φ)→ ETλ(ν)(Φ)

According to the definition of Tλk(νk) this amounts to show that:

Eνk(Φ(Sn).ανk,λk .Yνk,λk(Sn))→ Eν(Φ(Sn).αν,λ.Yν,λ(Sn)) (18)

We start by proving that:

Eνk [Φ(Sn).Yνk,λk(Sn)]→ Eν [Φ(Sn).Yν,λ(Sn)] (19)

But due to the definition of Yνk,λk we get:

Eνk [Φ(Sn).Yνk,λk(Sn)] =Eνk [Φ(Sn).EΠνk
[H ′(LSn −Ψνk,λk(Sn))|Sn]]

=EΠνk
[Φ(Sn).EΠνk

[H ′(LSn −Ψνk,λk(Sn))|Sn]]

=EΠνk
[Φ(Sn).H ′(LSn −Ψνk,λk(Sn))]

and we have a similar formula for Eν [Φ(Sn).Yν,λ(Sn)]. We thus have to prove that

EΠνk
[Φ(Sn).H ′(LSn −Ψνk,λk(S))]→ EΠν [Φ(Sn).H ′(LSn −Ψν,λ(Sn))]

But this is exactly our claim 2 in previous lemma and formula (19) follows.
According to the Definition 17 we get ανk,λk = 1

Eνk [Yνk,λk ] , but with formula (19) for

the particular Θ ≡ 1, we get that Eνk [Yνk,λk ] → Eν [Yν,λ]. Since Yν,λ is the lower bounded
by ε > 0 (assumption A2 on H), we conclude then that ανk,λk → αν,λ. Finally combining
this result with formula (19), we get the convergence announced in formula (18) and the
corollary is proved.

According to Lemma 21 and 25, to prove the existence of an equilibrium in Gn(µ),
we have to show that there exists νn ∈ ∆(R) such that Tλn(νn) = λn. Remember that

λn ∈ ∆f (R) where ∆f (R) is the set of probability measures on R with finite support.
Observe next that Tλ(ν) is defined by a density function with respect to ν. In particular
Tλ(ν)� ν and therefore Tλ(ν) ∈ ∆f (R) if ν ∈ ∆f (R).

The next theorem can then be applied to Tλn to conclude the existence of equilibrium.

Theorem 36. A map T : ∆f (R) → ∆f (R) that is continuous for the W2 metric and
satisfies T (ν)� ν for all ν is necessarily onto.

Proof. Let λ be a measure in ∆f (R) and denote K its support. If T (ν)� ν, then necessarily
the support of T (ν) is included in the support of ν. Therefore T maps ∆(K) to ∆(K). ∆(K)
can be identify with the |K|-dimensional simplex hereafter denoted ∆ and the restriction
of T to ∆ is a continuous map. It further preserves the faces Fi := {x ∈ ∆|xi = 0}. It
follows for an argument used in a proof in Gale [1984] that T is onto. Indeed, let λ ∈ ∆ and
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define Ci := {x ∈ ∆|T (x)i ≤ λi}. Since T is continuous, Ci is clearly a closed subset of ∆.
Furthermore, if x ∈ Fi then xi = 0 and thus Ti(xi) = 0 ≤ λi. We conclude therefore that
for all i, Fi ⊂ Ci. We next argue that ∆ ⊂ ∪iCi. Indeed, for all x ∈ ∆, T (x) ∈ ∆. There
must exists i such that T (x)i ≤ λi. Indeed otherwise we would have for all i, T (x)i > λi,
and summing all those inequalities we would get 1 > 1. Therefore there exists i such that
x ∈ Ci. According to KKM theorem (see Mertens et al. [1994]) there exists x ∈ ∩iCi: for all
i, T (x)i ≤ λi. Since the sum over i of both sides equal to 1, we infer that these inequalities
are in fact equalities, and thus T (x) = λ.

Corollary 37. For all n, there exists νn such that Tλn(νn) = λn. The corresponding pair
(Πνn ,Ψνn,λn

) satisfies (C1), (C2), (C3’) and (C4). There exists therefore a reduced
equilibrium in Gn(µ).

7 Convergence of νn

In this section we analyze the asymptotics of any sequence (νn) that satisfies for all n:
Tλn(νn) = λn. From now on, νn denotes any such sequence.

First observe that λn is the law of Sn =
∑n
i=1 ui√
n

when (u1, . . . , un) are independent and

centred. It follows from the central limit theorem that λn converges in law to λ∞ := N (0, 1).
Observing that the second order moments Eλn [S2

n] = 1 for all n, this weak convergence in

∆(R) implies (see 30) the W2-convergence of λn to λ∞.
In the first subsection we use a compactness argument to prove that any subsequence

of (νn) admits an accumulation point ν which further satifies Tλ∞(ν) = λ∞.
In the second subsection we prove that if ν is a solution of that equation, the pair

(Ψν,λ,
1

αν,λ
) is a smooth solution of a differential problem D .

The third subsection is devoted to the proof of the uniqueness of the solution to this
differential problem which in turn will imply the uniqueness of the solution Tλ∞(ν) = λ∞.

In the last subsection, we infer from these results that νn converges to this unique
solution.

7.1 The accumulation point of (νn).

Lemma 38. The sequence (νn) is relatively compact: any subsequence of (νn) has an ac-
cumulation point in P2(R).

Proof. We just have to prove that Eνn [s2] is bounded by some constant M . Indeed, if this

is the case, the sequence νn is tight, as it follow from Markov inequality that: [−
√

M
η ,
√

M
η ]

is a compact set such that νn([−
√

M
η ,
√

M
η ]) ≥ 1 − η for all n. It admits therefore a

subsequence that converges weakly in ∆(R). This subsequence having bounded moment
of order 2, one can select a sub-subsequence νn(k) with converging moment of order 2.
According to Proposition 30, νnk converges weakly in P2(R), and thus also in the sense of
W2 metric.

We now prove that Eνn [s2] is bounded. It follows immediately from the assumptions
A2 on H as well as the definition of Yν,λ and αν,λ (see equation (17)), that ε < Yν,λ < K,
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and 1
K < αν,λ <

1
ε . Therefore: ε

K < αν,λ.Yν,λ <
K
ε . According to the definition of λn, we

have Eλn(S2
n) = 1. And thus:

1 = Eλn(s2) = ETλn (νn)[s
2] = Eνn [ανn,λnYνn,λns

2] ≥ ε

K
Eνn [s2]

Which leads to Eνn(s2) ≤ K
ε .

Corollary 39. Any accumulation point ν of the sequence (νn) satisfies Tλ∞(ν) = λ∞ where

λ∞ = N (0, 1).

Proof. Take a subsequence νn(k) converging to ν in W2. Since we also have λn(k) → λ∞
in W2, we may apply our continuity result on T (see Corollary 35) to conclude Tλ∞(ν) =

λ∞.

7.2 Equivalence between equation Tλ∞(ν) = λ∞ and a differential problem.

Proposition 40. Suppose that ν is a probability measure such that Tλ∞(ν) = λ∞ with

λ∞ = N (0, 1), then:
1/ The function Ψν,λ∞

(see Definition 13) is C2.

2/ The pair (ψ, c) := (Ψν,λ∞
, 1
αν,λ∞

) is a solution of the following differential system D :

(D)


(1) ∀s ∈ R, fµ(ψ′(s))ψ′′(s)H ′(sψ′(s)− ψ(s)) = cN (s)
(2) lims→−∞ψ

′(s) = 0
(3) lims→+∞ψ

′(s) = 1

(4)
∫ +∞
−∞ ψ(z)N (z)dz = 0

where N (z) := e−
z2

2√
2π

Proof. Let ν satisfy the equation Tλ∞(ν) = λ∞. This implies that λ∞ has a strictly positive

density with respect to ν, and therefore ν has a density with respect to λ∞. In turn this
implies that it has also a density fν with respect to the Lebesgue measure.

We first deal with the smoothness of Ψν,λ∞
. Remember that Ψν,λ∞

differs from Γν just

by a constant. Γν was defined as an integral of γν(s) = F−1
µ (Fν(s)). Since Fµ is a strictly

increasing and continuous map from [0, 1] to [0, 1], its inverse is itself continuous. Since Fν
is also continuous, it follows that Γν and Ψν,λ∞

are C1 and Ψ′
ν,λ∞

= γν .

We next prove that γν is absolutely continuous6. This will imply on one hand (see
theorem 7.18 in Rudin [1987]) the existence of a function g integrable with respect to the
Lebesgue measure such that γν(s) =

∫ s
−∞ g(t)dt and on the other hand (by the Lebesgue

differentiation theorem) that γν is almost surely differentiable and for almost every s:
γ′ν(s) = g(s). The first claim of the proposition will then be proved by establishing that g,
which is only defined up to negligeable set, admits a continuous version.

6A function f : R→ R is absolutely continuous (see definition 7.17 in Rudin [1987]) if for all ε > 0, and
for all sequences of disjoint real intervals [an, bn], there exists δ such that:∑

n≥0

|bn − an| < δ ⇒
∑
n≥0

|f(an)− f(bn)| < ε
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ν is absolutely continuous:
Since ν is absolutely continuous with respect to the Lebesgue measure, its cumulative
distribution function Fν is an absolutely continuous function 7.

We next observe that F−1
µ is Lipschitz continuous. According to A1, fν is C1 on [0, 1]

and strictly positive. Let then κ > 0 be such that κ < fµ. For s̃ < s, we set b = F−1
µ (s)

and b̃ = F−1
µ (s̃) then:

|s− s̃| = s− s̃ = Fµ(b)− Fµ(b̃) =

∫ b

b̃
fµ(x)dx ≥ κ(b− b̃)

Therefore, we have:

|F−1
µ (s)− F−1

µ (s̃)| ≤ 1

κ
|s− s̃|.

The function γν introduced in Definition 13 is therefore absolutely continuous. Indeed,
since Fν is absolutely continuous, for ε > 0, and [an, bn] disjoint real intervals there exists δ
such that: ∑

n≥0

|bn − an| < δ ⇒
∑
n≥0

|(Fν(an)− Fν(bn)| < κε

γν(s) = F−1
µ (Fν(s)).

Suppose that
∑

n≥0 |bn − an| < δ. Then:∑
n≥0

|F−1
µ (Fν(an))− F−1

µ (Fν(bn))| ≤
∑
n≥0

1

κ
|(Fν(an)− Fν(bn)| ≤ ε.

Since fµ is C1 (see conditions A1) and positive, F−1
µ is itself C1 and F−1′

µ (u) =
1

fµ(F−1(u))
. Since Fν is absolutely continuous, it is almost surely differentiable and F ′ν(s) =

fν(s). Therefore, by the composition rule:

g(s) = γ′ν(s) =
fν(s)

fµ(F−1
µ (Fν(s)))

=
fν(s)

fµ(γν(s))
(20)

Since Ψν,λ∞
is C1, and Πν satisfies (C4): Πν(L ∈ ∂Ψν,λ∞

(S)) = 1, we conclude that L

is almost surely equals to Ψ′
ν,λ∞

(S) under Πν and thus:

EΠν
[H ′(LS −Ψν,λ∞

(S))|S] = H ′(Ψ′
ν,λ∞

(S)S −Ψν,λ∞
(S))

Our equation Tλ∞(ν) = λ∞ becomes then:

∂λ∞
∂ν

= αν,λ∞EΠν
[H ′(LS −Ψν,λ∞

(S))|S] = αν,λ∞ .H
′(Ψ′

ν,λ∞
(S)S −Ψν,λ∞

(S))

Finally ∂λ∞
∂ν is also the quotient N

fν
of the densities with respect to the Lebesgue measure.

We get therefore almost surely:

7If ν is absolutely continuous with respect to the Lebesgue measure, we have Fν(x)−Fν(a) =
∫ x
a
fν(t)dt.

Theorem 7.18 in Rudin [1987] implies that Fν is absolutely continuous.
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N (s) = αν,λ∞ .H
′(Ψ′

ν,λ∞
(s)s−Ψν,λ∞

(s))fν(s)

Combining this equation with equation (20), we get almost surely:

N (s) = αν,λ∞ .H
′(Ψ′

ν,λ∞
(s)s−Ψν,λ∞

(s))fµ(γν(s))g(s)

From this equation we get g(s) =
αν,λ∞ .H

′(Ψ′
ν,λ∞

(s)s−Ψν,λ∞ (s))fµ(γν(s))

N (s) almost surely.
Since the right hand side of this equality is continuous, it is the continuous version of g

we were seeking. Ψν,λ∞
is thus C2 which is the first claim of our proposition and for every

s:

Ψ′′
ν,λ∞

(s) =
αν,λ∞ .H

′(Ψ′
ν,λ∞

(s)s−Ψν,λ∞
(s))fµ(Ψ′

ν,λ∞
(s))

N (s)

The pair (ψ, c) := (Ψν,λ∞
, 1
αν,λ∞

) is then a solution of the first equation of the system

D .
It also satisfies the following ones. Indeed, since [0, 1] is the support of µ we get:{

lims→−∞Ψ′
ν,λ∞

(s) = lims→−∞F
−1
µ (Fν(s)) = 0

lims→+∞Ψ′
ν,λ∞

(s) = lims→+∞F
−1
ν (Fµ(s)) = 1.

Furthermore we have Ψν,λ∞
= Γν − Eλ∞ [Γν ] and thus:∫ +∞

−∞
Ψν,λ∞

(z)N (z)dz = Eλ∞ [Ψν,λ∞
] = 0

7.3 The unique solution of the differential system D .

Theorem 41. There exists at most one pair (ψ, c) solution to the system D .

The proof of this theorem is made of several lemma that are presented in the remaining
part of this section.

Let (ψ1, c1) and (ψ2, c2) be two solutions of the problem D . Without loss of generality
we may assume that c1 ≥ c2 > 0.

Indeed D-2 and D-3 imply that ψ′′i must be strictly positive at some point s, and from
D-1 that ci > 0. Define then θ := ψ1 − ψ2. θ is a C2 function.

By D-4:
∫ +∞
−∞ θ(z)N (z)dz = 0. Since θ is a continuous function and N (z) > 0 for all

z, there exists s0 such that θ(s0) = 0.

Let Γ+ := {s > s0 | θ′(s) = 0} and Γ− := {s < s0 | θ′(s) = 0}. We also define
s+ := inf Γ+ and s− := sup Γ−

We denote
Λ(s) := sψ′i(s)− ψi(s) (21)
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Observe that θ′(s) can not vanish on ]s0, s
+[ nor on =]s−, s0[. θ′ has thus a constant sign

on each interval.

Lemma 42. Suppose that s0 < s+. Then θ′ < 0 on ]s0, s
+[.

Proof.

Assume on the contrary that s0 < s+ and θ′ > 0 on ]s0, s
+[.

First case: suppose that s+ < +∞.
Since θ is increasing on ]s0, s

+[:

θ(s+) > θ(s0) = 0 (22)

and also, by definition of s+,

θ′(s+) = 0, so α := ψ′1(s+) = ψ′2(s+) (23)

From D-1 we get:

θ′′(s+) =
N (s+)

fµ(α)
(

c1

H ′(s+α− ψ1(s+))
− c2

H ′(s+α− ψ2(s+))
)

≥N (s+)c2

fµ(α)
(

1

H ′(s+α− ψ1(s+))
− 1

H ′(s+α− ψ2(s+))
) > 0

since ψ1(s+) > ψ2(s+), as indicates equation (22) and since H ′ is strictly increasing and
c2 > 0. But this is not possible since θ′(s+) = 0 and θ′ > 0 on ]s0, s

+[ (which implies that
θ′′(s+) ≤ 0).

Second case: suppose now that s+ = +∞. It is convenient in this case to introduce the
function R on [0, 1]: R(u) = θ′(F−1

N (u)) where FN is the cumulative function of the normal
law N (0, 1). We first prove that limu→1R

′(u) > 0. Indeed:

limu→1R
′(u) = lims→+∞

θ′′(s)

N (s)

= lims→+∞
c1

fν(1)H ′(Λ1(s))
− c2

fν(1)H ′(Λ2(s))

≥ lims→+∞
c2

fν(1)
(

1

H ′(Λ1(s))
− 1

H ′(Λ2(s))
)

(24)

where Λ was defined in 21.
We now claim that lim+∞Λ1(s) < lim+∞Λ2(s). Indeed, since lims→+∞θ

′(s) = 0 ac-
cording to D-2, we get θ′(s) = −

∫∞
s θ′′(u)du.
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By assumptions A1 and A2, there exists k1 be such that for all s: 0 < k1 < H ′(s) and
k2 be such that for all s: 0 < k2 < fµ(s).

|sθ′(s)| = |s
∫ ∞
s

θ′′(u)du| ≤ c1 − c2

k1k2
|s|
∫ ∞
s

N (u)du→ 0

lim+∞Λ1(s)− Λ2(s) = lim+∞sθ
′(s)− θ(s) = 0− lim+∞θ(s).

But lim+∞θ(s) > 0. Indeed: θ(s0) = 0 and ∀s ∈ [s0,+∞], we have θ′(s) > 0.
And thus as announced lim+∞Λ1(s) < lim+∞Λ2(s), this implies with equation (24)

that:

limu→1R
′(u) > 0 (25)

Note that according to the definition of R and the fact that θ′ > 0 on ]s0,+∞[ we get:

R(x) > 0 for x ∈]FN (s0), 1[ (26)

Finally,
limu→1R(u) = limu→1θ

′(F−1
N (u)) = limu→+∞θ

′(u) = 0 (27)

but relations (26) and (27) are in contradiction with (25). This conclude the proof of the
lemma.

A similar argument leads to a dual result on the left side of s0:

Lemma 43. Suppose that s− < s0. Then θ′ > 0 on ]s−, s0[.

Lemma 44. θ(s0) = θ′(s0) = θ′′(s0) = 0.

Proof. Suppose θ′(s0) > 0. There must exist δ > 0 such that θ′(s) > 0 for s ∈]s0, s0+δ[. The
definition of s+ implies therefore s+ ≥ s0 + δ > s0. Furthermore, θ′ is strictly positive on
]s0, s

+[. But this is in contradiction with Lemma 42. Similarly, the assumption θ′(s0) < 0
is in contradiction with the dual result Lemma 43. And we must therefore have θ′(s0) = 0.

Suppose now that θ′′(s0) > 0. Then there exists ε > 0 such that θ′ > 0 on ]s0, s0 + ε[ in
contradiction with Lemma 42. With the same arguments, it is impossible that θ′′(s0) < 0
and the lemma is proved.

Lemma 45. c1 = c2.

Proof. Indeed, equation D-1 gives, for i = 1, 2:

ci =
fν(ψ′i(s0))ψ′′i (s0)H ′(s0ψ

′
i(s0)− ψi(s0))

N (s0)

But, according to Lemma 44 the right hand side does not depend on i.
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Proof of Theorem 41.

Let c denote the common value c := c1 = c2. Our two functions ψ1 and ψ2 are now
solutions to the same differential equation:

ψ′′(s) = F (s, ψ(s), ψ′(s))

where

F (s, x, y) :=
cN (s)

H ′(sy − x)fµ(y)

Due to our assumptions A1, A2 on fµ and H, F is C1 with respect to (s, x, y). There-
fore, according to Cauchy-Lipschitz theorem, ψ1 and ψ2 must coincide since they are both
solution of the same differential equation and have the same initial conditions ψ(s0), ψ′(s0)
at s = s0.

7.4 Convergence of νn.

We are now ready to prove that Tλ∞(ν) = λ∞ has a unique solution and that νn must
converge.

Corollary 46. There exists a unique measure ν such that Tλ∞(ν) = λ∞ where λ∞ =
N (0, 1)

Proof. If ν1 and ν2 are two solutions of Tλ∞(ν) = λ∞, then the pairs (Ψνi,λ∞
, 1
ανi,λ∞

) for

i = 1, 2 would be solutions of the system D according to Proposition 40. As a result
of Theorem 41: Ψν1,λ∞

= Ψν2,λ∞
. Thus the derivatives of these functions also coincide:

γν1 = γν2 where γνi are defined in Definition 12. Since Fµ is one-to-one, this implies that
Fν1 = Fν2 and thus ν1 = ν2.

Corollary 47. The sequence (νn) is convergent to the unique solution ν of of Tλ∞(ν) = λ∞.

Proof. Otherwise there would exists a subsequence (νn(k)) that does not admit ν has accu-
mulation point. This is impossible since this sequence has an accumulation ν̃ according to
Lemma 38 which is solution to the equation Tλ∞(ν̃) = λ∞. But it follows from Lemma 46
that ν̃ = ν.

8 Convergence of the price process to a CMMV

Our analysis in this section applies to any sequence (Πn, Xn) of reduced equilibria in Gn(µ).
We will focus on the price process (pnq )q=1,...,n posted by player 2 in these equilibria. In a
reduced equilibrium, the strategy p̄n of player 2 is pure (non random) but his moves depend
on the past actions ω = (u1, . . . , un) of player 1 which are random. The process (pnq )q=1,...,n

is then a stochastic process. Its law when ω is Πn|ω-distributed is called the historical
law and is denoted Pn. When Ω is endowed with the probability λn the law of the price
process is denoted Qn. We have seen in section 5.3 that under Qn, the process (pnq )q=1,...,n

is a martingale. Furthermore Qn is the unique martingale equivalent measure as stated in
Theorem 20. Our purpose on this section is to analyze the asymptotics of (Qn) in subsection
8.1 and (Pn) is subsection 8.2.
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8.1 Convergence under the martingale equivalent probability

Let (Πn, Xn) be a sequence of reduced equilibria in Gn(µ). We already know that Xn =
Ψνn,λn(Sn) and that Πn = Πνn for a measure νn satisfying Tλn(νn) = λn. According to
formula (10), the price posted a period q is:

pnq =
√
nEλn [unΨνn,λn(Sn) | u1, . . . , uq−1] (28)

It is convenient to analyze this discrete time process through the continuous time process
Zn : t ∈ [0, 1]→ Znt := pnbntc where bxc is the largest integer less or equal to x.

We analyze in this section the asymptotics of the law Qn of Zn when (u1, . . . , un) are
endowed with the probability λn.

Let us introduce the notation Snq =
∑q
i=1 ui√
n

. The formula (28) can be written as:

pnq =
√
nEλn [unΨνn,λn(Snn−1 +

un√
n

) | u1, . . . , uq−1]

=

√
n

2
Eλn [Ψνn,λn(Snn−1 +

1√
n

)−Ψνn,λn(Snn−1 −
1√
n

) | u1, . . . , uq−1] (29)

=

√
n

2
Eλn [Ψνn,λn(Snn−1 +

1√
n

)−Ψνn,λn(Snn−1 −
1√
n

) | Snq−1]

Heuristically we have that pnq ≈ Eλn [Ψ′νn,λn(Snn−1) | Snq−1]. From corollary 47, we have
that νn converges to ν. Furthermore, according to Donkster theorem, Snbtnc converges in
law to Bt where B is a standard Brownian motion. We can heuristically expect therefore
that Znt converges in law to Zt := E[Ψ′ν,λ(B1)|Bt]. Since Ψ′ν,λ is an increasing function, it
results from Remark 4 that this asymptotic process Z is a CMMV. This is the result we
will establish formally in this section.

Let us remind here the definition of the weak convergence in finite distributions of a
sequence of stochastic processes:

Definition 48. A sequence (Zn) of processes converges in finite dimensional distribution
to a process Z if and only if for all finite family J of times (t1 < · · · < tk), the random
vectors (Znt )t∈J converge in law to the random vector (Zt)t∈J .

Our main theorem is then:

Theorem 49. Under the equivalent martingale measure, (Zn) converges in finite dimen-
sional distribution to the CMMV Z where Zt := E[Ψ′ν,λ(B1)|Bt]

Proof. We will prove this convergence by proving that the W2(ρn, ρ) → 0 when ρn and ρ
are respectively the laws of the vectors (Znt )t∈J and (Zt)t∈J . We use ”Skorokhod represen-
tation” technics to get that result. Let (Ω̃,A , P̃ ) be a probability space on which B is a
Brownian motion. In this section, unless otherwise stated, all expectations on Ω̃ are taken
with respect to P̃ . Zt = E[Ψ′ν,λ(B1)|Bt] can be considered as a process on that space.
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We will introduce hereafter a sequence of processes Z̃n defined on Ω̃ such that:

1/ Z̃n and Zn have the same laws.

2/ sup
t
‖Z̃nt − Zt‖L2 → 0. (30)

Theorem will then be proved. Indeed, (Z̃n, Z) is a pair of processes on the same prob-
ability space (Ω̃,A , P̃ ). The joint joint law of (Z̃nt , Zt)t∈J is a probability distribution on
R2|J | with respective marginals ρn and ρ. Therefore:

W2(ρn, ρ) ≤ E[

√∑
t∈J
|Z̃nt − Zt|2] ≤

√
|J | sup

t
‖Z̃nt − Zt‖L2 → 0

In order to construct those random variables Z̃n, it is convenient to apply the embedding
techniques already used in De Meyer [2010]. Let Ft denote the natural filtration of the
Brownian motion B. Define τn0 = 0 and, recursively, τnq+1 as the first time t > τnq such

that |Bt − Bτnq | = 1√
n

. Since the one-dimensional Brownian motion is a recurrent process

τnq < ∞ almost surely and clearly ũq :=
√
n(Bτnq − Bτnq−1

) has the same distribution as uq
under λn. Indeed ũq ∈ {−1,+1} and E[ũq] = 0. They are furthermore independent since
the increments Bτnq −Bτnq−1

are independent of Fτnq−1
.

Therefore, Bτnq =
∑q

j=1(Bτnj − Bτnj−1
) = 1√

n

∑q
j=1 ũj has the same distribution as Snq

under λn. We set:

z̃nn :=

√
n

2

(
Ψn(Bτnn−1

+
1√
n

)−Ψn(Bτnn−1
− 1√

n
)

)
(31)

z̃n has then the same distribution as pnn. Furthermore, if we define:

z̃nq := E[z̃n|ũ1, . . . , ũq−1] = E[z̃n|Fτnq−1
]

the process (z̃nq )q=1,...,n has the same distribution as the process (pnq )q=1,...,n under λn, as it
follows from equations (29) and (31). We next define:

Z̃nt := z̃nbntc

It is then clear that Z̃n and Zn have the same laws which claim 1 in (30). We next
prove claim 2:

‖Z̃nt − Zt‖L2 =‖E[z̃nn |Fτnbntc−1
]− Zt‖L2

≤‖E[z̃nn |Fτnbntc−1
]− Zτnbntc−1

‖L2 + ‖Zτnbntc−1
− Zt‖L2

=‖E[z̃nn − Z1|Fτnbntc−1
]‖L2 + ‖Zτnbntc−1

− Zt‖L2

≤‖z̃nn − Z1]‖L2 + ‖Zτnbntc−1
− Zt‖L2

We next argue that both terms of the right hand side go to zero as n goes to ∞.
Let us start with the second one. First observe that all the martingales on the Brownian

filtration are continuous (see Revuz and Yor [1999], theorem V.3.5), and Zt = E[Z1|Ft] in
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particular. If ‖Zτnbntc−1
−Zt‖L2 was not converging to zero, there would exists a subsequence

n(k) such that (Z
τ
n(k)
bn(k)tc−1

) does not admit Zt as accumulation point in L2. We prove in

Lemma 50 that τnbntc−1 → t in L2. The sequence n(k) can thus be selected such that

τ
n(k)
bn(k)tc−1 → t almost surely. By continuity we get then that (Z

τ
n(k)
bn(k)tc−1

) converges almost

surely to Z1 and the convergence also holds in L2 since (Zt) is uniformly integrable (Z1 is
bounded). This contradicts the definition of the subsequence n(k).

Assume now that the first term does not converge to zero. There would exist a subse-

quence n(k) such that z̃
n(k)
n(k) does not have Z1 as accumulation point in L2.

Setting a := B
τ
n(k)
n(k)−1

− 1√
n(k)

and b := B
τ
n(k)
n(k)−1

+ 1√
n(k)

, equation 31 becomes z̃
n(k)
n(k) =

Ψn(k)(b)−Ψn(k)(a)

b−a . With the mean value theorem, we conclude that there exists xn(k) ∈ [a, b]

such that z̃
n(k)
n(k) ∈ ∂Ψn(k)(xn(k)).

But it follows from Lemma 50 here below that B
τ
n(k)
n(k)−1

converges in L2 to B1. The

subsequence n(k) can thus be selected in such a way that B
τ
n(k)
n(k)−1

converges to B1 almost

surely and so does does xn(k). Since Ψn = Ψνn,λn|S uniformly converges to Ψν,λ which is

C2, we may apply the forecoming Lemma 51 to conclude that z̃nn converges almost surely
to Ψ′n(B1) = Z1. Since z̃nn belongs to ∂Ψn(k)(xn(k)) ⊂ [0, 1], it follows from the Lebesgue

dominated convergence theorem that z̃
n(k)
n(k) converges to Z1 in L2, in contradiction with the

definition of the subsequence n(k). Hence, as announced both terms go to zero. Therefore
both claims in (30) are satisfied by the process Z̃n and the Theorem is thus proved.

We next prove the announced lemma.

Lemma 50.
Claim 1: τnbntc −→

L2
t

Claim 2: Bτnn−1
−→
L2

B1

Proof. As well known:

E(τnq ) = E(B2
τnq

) = Eλn((Snq )2) =
q

n

On the other hand, τnq+1− τnq is independent of Fτnq . Therefore, τnq =
∑q−1

i=0 τ
n
i+1− τni is

a sum of independent random variables with expectation 1
n .

Moreover we have V ar(τnbntc)→ 0 when n→∞.
Indeed:

V ar(τnq+1 − τnq ) ≤ E((τnq+1 − τnq )2) ≤ CE[|Bτnq+1
−Bτnq |

4] = C(
1√
n

)4 =
C

n2

where C is the Burkholder’s constant for p = 4 (see Theorem IV.4.1 in Revuz and Yor
[1999]).

Therefore:

V ar(τnq ) =

q−1∑
i=0

V ar(τni+1 − τni ) ≤ qC

n2
≤ C

n
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And:

‖τnq −
q

n
‖2L2 = ‖τnq − E[τnq ]‖2L2 = V ar(τnq ) ≤ C

n
(32)

Replacing q by bntc, we get claim 1 as announced.
It is also well known that E[(Bτnn−1

−B1)2] = E[|τnn−1− 1|]. With equation (32) we get:

‖Bτnn−1
−B1‖2L2 = ‖τnn−1− 1‖L1 ≤ ‖τnn−1− n−1

n ‖L2 + 1
n ≤

C+1
n → 0. Claim 2 is thus also

proved.

Lemma 51. Let (Ψn) be a sequence of convex functions that converges uniformly to a C1

function Ψ. Let (xn) and (zn) be two real sequences such that:
(1) xn converges to x.
(2) for all n: zn ∈ ∂Ψn(xn).
Then zn converges to Ψ′(x).

Proof. Since zn ∈ ∂Ψn(xn), we get with u ∈ {−1,+1} that:

Ψ(xn + u) + ‖Ψ−Ψn‖∞ ≥ Ψn(xn + u) ≥ Ψn(xn) + uzn ≥ Ψ(xn)− ‖Ψn −Ψ‖∞ + uzn

Therefore uzn ≤ Ψ(xn + u)−Ψ(xn) + 2‖Ψn −Ψ‖∞ and thus:

|zn| ≤ max
u∈{−1,+1}

Ψ(xn + u)−Ψ(xn) + 2‖Ψn −Ψ‖∞

Since the right hand side is bounded, any subsequence of (zn) has an accumulation point.
All these accumulation points must be in ∂Ψ(x). Indeed, if a subsequence (zn(k)) converges
to z, we have for all y: Ψn(k)(y) ≥ Ψn(k)(xn(k)) + zn(k)(y − xn(k)). Letting k go to infinity,
we get then for all y: Ψ(y) ≥ Ψ(x) + z(y − x) and therefore z ∈ ∂Ψ(x) = {Ψ′(x)} since Ψ
is C1. All subsequence of (zn) has Ψ′(x) as accumulation point, this is only possible if zn
converges to Ψ′(x).

8.2 Convergence under the historical probability

Let (Πn, Xn) be a sequence of reduced equilibria in Gn(µ). We already know that Xn =
Ψνn,λn

(Snn) and that the marginal Πn of Πn on (L, Snn) coincides with Πνn for a measure

νn satisfying Tλn(νn) = λn. We further know that νn converges to the unique solution ν

of Tλ∞(ν) = λ∞. Therefore, Πn converges to Πν . Our aim in this section is to analyze the
asymptotics of the law Πn of (u1, . . . , un, L).

Let yn(ω) denote the density of
∂Πn|ω
∂λn

. So yn is a function of ω = (u1, . . . , un). In the

previous subsection, we created sequences S̃nq = Bτnq and ũ of random variables on (Ω̃,A , P̃ )

a probability space on which B is a Brownian motion in such a way that S̃nq and ũ have the
same distribution as Sn and u under λn.

Setting ỹn := yn(ũ1, . . . , ũn), we infer that ỹn is a probability density on (Ω̃,A , P̃ ), and
under the probability P̃n := ỹn.P̃ , the process (ũ1, . . . , ũn) is Πn|ω-distributed.

We first prove the following lemma:

Lemma 52. ỹn converges in L1(P̃ ) to ỹ := β

Ỹ
where Ỹ := H ′(Ψ′ν(B1)B1 − Ψν(B1)) and

β = 1
EP̃ [ 1

Ỹ
]
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Proof. Our first task will be to define a variable L̃n on the space (Ω̃,A , P̃ ) such that the
process (ũ1, . . . , ũn, L̃n) is Πn-distributed under P̃n.

This can be done as follow: ω̃ := (ũ1, . . . , ũn) is Fτnn measurable. Let Vn := Bτnn+1−Bτnn .

Under P̃ , Vn ∼ N (0, 1) and is independent of Fτnn . Since ỹn = yn(ω̃), Vn will have the same

law N (0, 1) and will still be independent of Fτnn under P̃n. Let Fω denote the cumulative
distribution function of the conditional law of L conditionally on ω under Πn. We then set
L̃n := F−1

ω̃ (FN (0,1)(Vn)). L̃n has the same conditional law given ω̃ as L given ω under Πn.

Therefore (ω̃, L̃n) under P̃n has the same law as (ω,L) under Πn.
We now prove that, under P̃ , L̃n converges to Ψ′ν(B1) almost surely. Indeed, since

Ln belongs Πn-almost surely to ∂Ψn(Snn), we infer that L̃n belongs P̃n-almost surely to
∂Ψn(S̃nn). Since P̃n is equivalent to P̃ , we conclude that L̃n ∈ ∂Ψn(S̃nn) P̃ -almost surely.

Since Ψn converges uniformly to Ψν ∈ C2, and since S̃nn converges almost surely to B1,
we apply Lemma 51 to conclude that L̃n converges P̃ almost surely to Ψ′ν(B1).

We define Yn := EΠn [H ′(LSnn−Ψn(Snn))|ω]. Yn is then a function Yn(ω). It follows from
Corollary 17 that ∂λn

∂Πn|ω
= Yn

EΠn [Yn] .

We set Ỹn := Yn(ω̃). We clearly have P̃n-, and thus P̃ -almost surely that Ỹn =
EP̃n [H ′(L̃nS̃

n
n − Ψn(S̃nn))|ω̃]. Note that S̃nn is ω̃-measurable, and the law of L̃n condi-

tionally to ω̃ is the same under P̃n and P̃ . Therefore, Ỹn = EP̃ [H ′(L̃nS̃
n
n − Ψn(S̃nn))|ω̃] =

EP̃ [H ′(L̃nS̃
n
n − Ψn(S̃nn))|Fτnn ]. We claim that Ỹn converge in L1 to Ỹ = H ′(Ψ′ν(B1)B1 −

Ψν(B1)). Indeed:

‖Ỹn − Ỹ ‖L1 =‖EP̃ [H ′(L̃nS̃
n
n −Ψn(S̃nn))|Fτnn ]− Ỹ ‖L1

≤‖EP̃ [H ′(L̃nS̃
n
n −Ψn(S̃nn))− Ỹ |Fτnn ]‖L1 + ‖EP̃ [Ỹ |Fτnn ]− Ỹ ‖L1

We clearly have that H ′(L̃nS̃
n
n−Ψn(S̃nn)) converges almost surely to Ỹ . Indeed (L̃n, S̃

n
n)

converges almost surely to (Ψν(B1), B1), and Ψn converges uniformly to Ψν (remember that
H ′ is continuous). Since H ′ is bounded, this convergence holds also in L1 and thus:

‖EP̃ [H ′(L̃nS̃
n
n −Ψn(S̃nn))− Ỹ |Fτnn ]‖L1 ≤ ‖H ′(L̃nS̃nn −Ψn(S̃nn))− Ỹ ‖L1 → 0

We next claim that EP̃ [Ỹ |Fτnn ] converges to Ỹ in L1. On the contrary one would have

a subsequence n(k) such that EP̃ [Ỹ |F
τ
n(k)
n(k)

] does not admit Ỹ as accumulation point in L1.

Since Ft is the natural filtration of a Brownian motion, it results from theorem V.3.5
in Revuz and Yor [1999] that the martingale rt := E[Ỹ |Ft] is continuous and uniformly
integrable. Therefore, due to the optional stopping theorem, we have EP̃ [Ỹ |F

τ
n(k)
n(k)

] = r
τ
n(k)
n(k)

.

Since τnn converges in L2 to 1, there is no loss of generality to assume, possibly after

selection of a smaller subsequence, that n(k) further satisfies that τ
n(k)
n(k) converges almost

surely to 1. But then r
τ
n(k)
n(k)

converges almost surely to r1 = EP̃ [Ỹ |F1] = Ỹ . But due to

the uniform integrability of the martingale rt, this convergence also holds in L1, in contra-
diction with the definition of the subsequence n(k). Therefore, as announced, EP̃ [Ỹ |Fτnn ]

converges to Ỹ in L1.
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According to Corollary 17, ∂λn
∂Πn|ω

= αn.Yn, and thus
∂Πn|ω
∂λn

= βn
Yn

for a constant βn.

Therefore for all ω, yn(ω) = βn
Yn(ω) and ỹn = βn

Ỹn
. Since Ỹn is a probability density under P̃

we get βn = 1
EP̃ [ 1

Ỹn
]
.

Since 0 < ε < Ỹ < K (assumptions A2 on H), 1
Ỹn

converges in L1 to 1
Ỹ

and it results

as announced that ỹn converges in L1 to ỹ = β

Ỹ
where β = 1

EP̃ [ 1
Ỹ

]
.

Theorem 20 claims that the martingale equivalent distribution Qn converges to a limit
distribution Q. The next theorem is the counterpart of this result for the historical distri-
bution. It claims that Pn converges to a limit distribution P which is the law of the process
Z when Ω̃ is endowed with the probability measure ỹP̃ . Therefore the limit distributions
P and Q are equivalent.

This result is the main result of this paper. It claims that the asymptotics of the
historical price process is a CMMV under an appropriate martingale equivalent measure Q.

Theorem 53. The price process Znt under the historical probability Πn converges in finite
dimensional distribution to the process Z when ω̃ is endowed with the probability ỹP̃ where
ỹ = 1

EP̃ (Ỹ )Ỹ
> 0.

Proof. Let J a finite family of times. Let φ be a continuous and bounded function: R|J | → R.
It is convenient to introduce the notations Z̃nJ := (Z̃nt )t∈J and ZnJ := (Znt )t∈J . Then
observe that EΠn [φ(ZnJ )] = EP̃n [φ(Z̃nJ )] = EP̃ [ỹnφ(Z̃nJ )]. We next claim that EP̃ [ỹnφ(Z̃nJ )]
converges to EP̃ [ỹφ(ZJ)]. Indeed, on the contrary there would exist a subsequence n(k)

that EP̃ [ỹn(k)φ(Z̃
n(k)
J )] does not admit EP̃ [ỹφ(ZJ)] as accumulation point. However, as it

results from equation (30) and Lemma 52, we have that Z̃
n(k)
t → Zt in L2 for all t and that

ỹn(k) → ỹ in L1. Possibly after selection of a smaller subsequence, we may assume without

loss of generality that the sequence n(k) is further such that Z̃
n(k)
J → ZJ and that ỹn(k) → ỹ

almost surely. Due to the continuity of φ, we get that ỹn(k)φ(Z̃
n(k)
J ) converges almost surely

to ỹφ(ZJ). Since both φ and ỹn are bounded, we have with Lebesgue dominated convergence

theorem that EP̃ [ỹn(k)φ(
˜

Z
n(k)
J )] converges to EP̃ [ỹφ(ZJ)], which is in contradiction with the

definition of n(k). Therefore, as announced, EΠn [φ(ZnJ )]→ EP̃ [ỹφ(ZJ)] for all J : the law of

ZnJ converges weakly in ∆(R|J |) to the law of ZJ under ỹP̃ and the theorem is proved.

9 Conclusion

To conclude this paper we would like to make some remarks on the obtained results.

The first one is about the dual game. In a previous unpublished version of the paper,
we were using duality techniques to analyze the game. The dual game G?n(φ) is in fact the
reduced game where player 1 is allowed to select privately the value of L but his payoff is
reduced by a penalty φ(L). Strategies and payoffs are the same for player 2. A strategy Π
for the player 1 is a joint probability on (ω,L) but there is no constraint on the marginal
Π|L. It can be easily proved that if (Π?, p) is an equilibrium in G?n(φ) and if µ = Π?

|L then
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(Π?, p) is an equilibrium in Gn(µ). It can then be proved that there exists a function φn and
an equilibrium (Π?

n, pn) in G?n(φn) such that Π?
|L = µ. Therefore (Π?

n, pn) is a sequence of

equilibria in Gn(µ). One of the reason for introducing the dual game was that the asymp-
totics of the reduced equilibria in G?n(φ) was quiet easy to analyze (with φ independent of
n). However, to analyze the asymptotics of the equilibria in Gn(µ) using the dual game,
we would have to analyze a sequence of equilibria in G?n(φn) for an appropriate sequence of
φn. This makes the analysis more involved and explains why we decided to limit our paper
to the game Gn(µ).

The second remark we want to make is about the generality of our results. The results
obtained in [De Meyer, 2010] were somehow more general than those obtained in the present
paper: in the risk neutral case, if the mechanism satisfies the hypothesis (H), then the price
process at equilibrium converge to a CMMV for all sequences of equilibria in Gn(µ). The
current paper is only concerned with one particular price based mechanism satisfying (H).
For this mechanism we do not analyze the asymptotic of any sequence of equilibria, but only
of reduced equilibria: we prove that the price processes at a reduced equilibrium converges
to a CMMV under the risk neutral probability. This naturally raises two questions: do we
have the same asymptotic for any sequence of equilibria in our game? and will this dynamic
appear for more general price based mechanism? We conjecture a positive answer to both
questions but are presently unable to prove it.

Finally, we just want to mention an alternative approach to our results. It would
indeed be possible to introduce continuous time games quite similar to the Brownian games
introduced in De Meyer [1999] : a strategy Πn in the reduced game can be viewed as a

pair (yn, ρn) where ρn is a conditional law of L given ω and yn is the density
∂Πn|ω
∂λn

. Player
1’s payoff is given by Eλn [yn(LSn −

∑n
q=1 pq(Sq − Sq−1)]. Heuristically this converges to

E[y(LB1 −
∫ 1

0 ptdBt)]. Similarly player 2 payoff would be E[yH(LB1 −
∫ 1

0 ptdBt)].
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