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Abstract

One of the key lessons of the crisis which began in 2007 has been the need to strengthen
the risk coverage of the capital framework. In response, the Basel Committee in July
2009 completed a number of critical reforms to the Basel II framework which will
raise capital requirements for the trading book and complex securitisation exposures,
a major source of losses for many international active banks. One of the reforms is
to introduce a stressed value-at-risk (VaR) capital requirement based on a continuous
12-month period of significant financial stress (Basel III (2011) [1]. However the Basel
framework does not specify a model to calculate the stressed VaR and leaves it up
to the banks to develop an appropriate internal model to capture material risks they
face. Consequently we propose a forward stress risk measure “spectral stress VaR"
(SSVaR) as an implementation model of stressed VaR, by exploiting the asymptotic
normality property of the distribution of estimator of V aRp

1. In particular to allow
SSVaR incorporating the tail structure information we perform the spectral analy-
sis to build it. Using a data set composed of operational risk factors we fit a panel
of distributions to construct the SSVaR in order to stress it. Additionally we show
how the SSVaR can be an indicator regarding the inner model robustness for the bank.

Keywords: Value at Risk, Asymptotic theory, Distribution, Spectral analysis, Stress,
Risk measure, Regulation.
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1The V aRp called Value at risk is the classical quantile risk measure computed from a probability

distribution for a given confidence level 0 < p < 1.
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1 Introduction
Efforts are underway by national and supra-national supervisors such as the EBA as
well as international organizations involved in financial stability - the International
Monetary Fund (IMF), the Basel Committee for Banking Supervision (BCBS) or the
European Central Bank (ECB) - to develop new risk-modelling techniques and stress
test methodologies to better identify and capture the risks that trigger economic and
financial instability. The Basel Committee’s reforms in Basel III (2011) [1] have the
objectives to strengthen global capital and liquidity rules with the goal of promoting
a more resilient banking industry. One of the reforms is to propose a stress risk mea-
sure as an internal model for the bank, that is a “stressed VaR" based on a continuous
12-month period of significant financial stress. Until now it seems that few articles
focus on the concept of the stressed VaR: Alexander and Ledermann (2012) [4] de-
fine the stressed VaR through the VaR computed on a stressed data sample from
historical data set tranformed using a stressed covariance matrix; Abdymomunov,
Blei and Ergashev (2014) [2] stress the loss distribution of a data set selecting a
stress scenario on the historical data set and compute the corresponding VaR. Gué-
gan and Hassani (2015) [3] integrate the stress by fitting a normal-inverse Gaussian
(NIG) distribution instead of a Gaussian distribution on the returns and then de-
rive the VaR for market risk. Alternative scenarii have been employed: Hoggarth,
Sorensen and Zicchino (2005) [12] stress the coefficients of a vector autoregression
model (VAR) using specific shocks; Fong and Wong (2008) [7] combine two Gaussian
VAR models capturing the information in the tails, introducing also a form of stress.

In this paper, we are interested in investigating the probabilistic and statistical prop-
erties of the r.v. V̂ aRp 2, computed from the estimated distribution associated to
the risk factor, and in building the associated confidence interval around the true
VaR in order to propose a stress risk measure. In the following this stress risk mea-
sure is referred to the Spectral Stress Value at Risk (SSVaR). We show that this
SSVaR provides a robust prudential risk measure which takes into account a stress
environment which allows to take the information in the tails with different intensi-
ties thanks to the spectral analysis and which provides risk managers and regulators
with an alert indicator encompassing the randomness and the stress from the V aRp.

To achieve these objectives, we first recall the distribution of the r.v. V̂ aRp and
second we discuss the implementation of these assumptions on real data sets. Then
we illustrate how we can build the SSVaR with real data and how it can be used as
an alert indicator for risk management.

This article is structured as follows. In Section two the asymptotic normality prop-
erty of V̂ aRp is presented, from which we develop the associated confidence interval.

2It is defined in the Theorem 2.1 in section 2.
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We discuss the theoretical result provided by the Theorem 2.1 using simulations.
Then the SSVaR indicator is defined. In the third section we present the data set
we use to illustrate the building of our indicator. We analyse several aspects for risk
management based on the goodness-of-fit of different distributions, the prudential
risk measure requirement, the construction of the confidence interval of V aRp and
its convergence. We build the SSVaR indicator and show how it works. Section four
concludes. In some annexes we have postponed the proof of the Theorem and we
recall some of the techniques we use for the simulation and estimation strategies.

2 Methodology
In this section we present the theoretical foundations of our methodology.

2.1 Theoretical Foundation

Considering a set of i.i.d. r.v. characterized by a distribution law F , Rao (2001) [8]
provides the distribution law of the r.v. V̂ aRp computed from this set of r.v. for a
given p. We recall this theorem.

Theorem. Let X1, ..., Xn be a sequence of i.i.d r.v. whose continuous and strictly
monotonic distribution is F , f the associated continuous density, 0 < p < 1 a given
number and np is assumed not to be an integer, if we denote ξp the quantile associated
to F at level p, then the order statistic ξ̂pn has the following property: 3

ûpn =
ξ̂pn − ξp√

V

distribution−−−−−−−→ N(0, 1), as n −→∞ (2.1)

where
V = p(1− p)

f(ξp)2n
. (2.2)

For the proof we refer to Rao (2001) [8]. This theorem tells that the asymptotic
distribution of the r.v. V̂ aRp is Gaussian, and the convergence speed depends on
the parameter p, the density f and the sample size n. The following corollary
provides the speed of convergence:

Corollary. Under the same assumptions given in the previous theorem, assuming
that F has a bounded second derivative F ′′, then:

sup
t∈R
|P
(
ξ̂pn − ξp√

V
≤ t
)
− Φ(t)| = O(n−

1
2 ), as n −→∞ (2.3)

where V is given in (2.2), and Φ is the cdf of standard Gaussian distribution.
3The quantile ξp corresponds to the V aRp, thus the distribution of V̂ aRp based on the order

statistics of X1, ..., Xn is provided by this theorem. Note that ξ̂pn := X([np]+1).
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This corollary says that the distribution of the r.v. ξ̂pn converges to the Gaus-
sian distribution with the speed n−

1
2 . Then for any given 0 < q < 1 4, we have

P (|ûpn | ≤ z 1+q
2

) ≈ q for n large enough, and z 1+q
2

associated with 1+q
2 is provided

by the table of the standard Gaussian distribution.

In the following we are interested to use the result of Theorem 2.1 to build a con-
fidence interval around ξp. In order to verify the robustness of this building, we
analyse the influence of the parameters used to compute the variance V introduced
in (2.2).

2.2 Convergence of the distribution of V̂ aRp to the Gaussian dis-
tribution

To verify the influence of the parameters f , n and p in the asymptotic convergence
of V̂ aRp towards the true V aRp, we propose a plan of simulations making varying
these parameters which appear in the computation of the variance V in (2.2). Thus,
we carry out the following experiment. 5

1. Given a density f , 0 < p < 1 and n a sample size, we generate 1000n samples
from f and obtain a n× 1000 matrix.

2. We sort the elements of each column of this matrix in ascending order. We
consider the ([np] + 1)th row of this matrix composed by 1000 realizations of
V̂ aRp: we call this row Ψ =

(
V̂ aR

i

p

)
i=1,...,1000

.

3. We denote Ψ̄ = 1
1000

∑1000
i=1 V̂ aR

i

p, the mean of the row.

4. In equation (2.2), we replace ξp by Ψ̄ and we still note V the corresponding
variance.

5. We center and normalize each term of this row in the following way:
(
V̂ aR

i

p−Ψ̄√
V

)
i=1,...,1000

.

6. We use a QQ plot to compare these new 1000 quantiles with the 1000 quantiles
of a Gaussian law, mean 0, variance 1. We test the fit using the Kolmogorov-
Smirnov test.

4As we fix p, ξ̂pn is a r.v. with the asymptotic normality property. Thus we use this property to
build a confidence interval around ξp with a confidence level q, 0 < q < 1.

5Another approach would be the use of the ∆ method, Gao and Zhao (2011) [11] It will be the
purpose of another paper.
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We do these six steps for five densities f , for n varying from 501 to 1000001, and
for p = 0.95, 0.999. We use densities which are asymmetric, leptokurtic and fat-tail:
the lognormal distribution (µ = 7.9491 and σ = 1.2373), the Generalized hyper-
bolic distribution (GH) (α = 2.8367e − 5, β = 2.7881e − 5, δ = 1000, µ = 10000
and λ = −0.5), the Generalized Pareto distribution (GPD)(ξ = 1.0080e − 2, β =
3.2245e+ 5 and µ = 314391.3), the Extreme value distribution (GEV) (ξ = 0.9853,
β = 2635.2984 and µ = 2583.3371) and the α − stable distributions (α = 0.7720,
β = 0.95, γ = 908.5263 and δ = 1655.948). Results are provided in figure 1 6.

Figure 1: P-value of the K-S test run for different values of n 8, for five densities (lognormal,
GH, GPD, GEV and α− stable and for p = 0.95, 0.999.

We observe that, as soon as, n > 30001, whatever the densities, and whatever p,
the convergence to the Gaussian distribution works. For 5001 < n < 30001 there
is no convergence for the GEV, GH and α − stable distributions when p = 0.999.
For 1001 < n < 5001, there is no convergence for the GEV, GH, lognormal and
GPD distributions when p = 0.999. For 501 < n < 1001, we have only convergence
for the lognormal and the GPD distributions when p = 0.95. We observe that, for
finite samples (less that 1001) the convergence is never attained for p > 0.95. When
the convergence works it is only for the lognormal distribution and the GPD (which
is known to be very unstable) when p ≤ 0.95. Now as soon as we use a fat-tail
distribution with asymmetry behaviour the convergence is attained only for a large
n.

These results show that the Theorem 2.1 can fail as soon as we work with data sets
characterised by distribution with fat-tail and also when we are interested to anal-
yse the behaviour of the quantiles in the tail (p large). Nevertheless, in this paper

6Other figures can be provided under request.
8n=501,1001,5001, 10001,30001,50001,80001,100001,200001,300001,400001,500001,600001,700001,

800001,900001,1000001.
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we will use the result of the Theorem 2.1 to propose an alert indicator based on a
confidence interval built around V̂ aRp. This is the purpose of the next paragraph.

2.3 An alert indicator called SSVaR

From the Theorem 2.1, we can build a confidence interval CIq with 0 < q < 1 around
the true unknown V aRp:

ξp ∈
[
ξ̂pn − z1+q

2

√
V , ξ̂pn + z1+q

2

√
V
]

(2.4)

We are going to use this confidence interval to define an alert indicator permitting to
the managers to know when a sequence of events are “anormal" in the sense that the
measure associated to the corresponding risk factor is outside a “certain" confidence
level.

For a sequence of p, p1 < p2 < ... < pk, we get a sequence of V aRpi , i = 1, ..., k. For
each V aRpi , we can build around this value a confidence interval CIqi,pi , for a given
qi, i = 1, ..., k. The parameters qi and pi can be equal or different. Now, we consider
the area between each V aRpi and the upper bound of its corresponding CIqi,pi : we
illustrate this area in Figure 2.

Figure 2: We provide the area corresponding to the SSVaR, the lower bound corresponds
to V aRpi

and the upper bound to the upper bound of CIqi,pi
, i = 1, ..., k.

This area - delimitated between V aRpi and the upper bound of CIqi - corresponds
to the Spectral Stress VaR measure we propose to use as an alert indicator. In-
deed, having the VaR for different p provides us with the spectral VaR (SVaR). The
construction of a set of confidence intervals around the SVaR provides us with an
acceptable range of variation for the V aRp-s. Only considering the upper bounds
on the confidence intervals gives the spectral stress VaR or (SSV aRp,q). The upper
envelop allows us to use multiple values at a particular percentile level.
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3 Application
In this section, the methodology presented earlier is applied to real data. The first
step is to fit various distributions to the data. In a second step, the Confidence
intervals around the VaRs are built. Finally, in a last step, the SSVaR is created.

3.1 Data sets and fit

In order to build the confidence interval around the VaRs, two data sets Ω1 and
Ω2 based on a sample of operational risk losses 9 whose lengths are respectively
n = 3109 (01/01/2013−29/11/2013) and n = 32727 (24/01/2007−31/12/2013) are
used as common basis in this exercise. Table 1 provides the descriptive statistics of
these two samples.

mean std skewness kurtosis
Ω1 9.5006e+3 4.4428e+4 12.5054 179.5641
Ω2 8.6227e+3 4.2775e+4 21.3599 754.5112

Table 1: First four empirical moments for Ω1 and Ω2.

From table 1 we observe that both Ω1 and Ω2 are characterised by a positive skew-
ness and a large kurtosis (larger than 150). It means that the data are asymmetric
and leptokurtic and therefore the distributions used to characterise them should be
selected such that they are consistent with these properties. We will use six distri-
butions including the lognormal fitting (as it is widely used by practitioners) and
the non-parametric adjustment (as it is the most representative of the data).

The non parametric adjustment is obtained using a cross validation strategy ([10],
[5] and [9]) considering a Gaussian Kernel (Appendix B and C). Regarding the para-
metric fittings, five distributions are considered: the lognormal, the GH, the GPD,
the GEV and the α − stable distributions. The parameters of the lognormal, GH,
GPD (except the location) and GEV distribution are estimated by maximum likeli-
hood. The location parameter of the GPD is estimated using a Hill plot, while for
the parameters of the α − stable distribution the McCulloch method [6] has been
implemented.

The standard deviation of the estimated parameters for the lognormal and the GEV
distributions are computed using the inverse of the Hessian matrix. For GH, GPD
and α−stable distributions, the standard deviations are computed by bootstrapping.
The estimated parameters of these distributions are presented in table 3 (for Ω1)

9Provided by an Eastern European financial institution
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and table 4 (for Ω2) 10. According to the K-S tests, no distribution has been found
acceptable at the 5% level.

Remark 3.1. Operational Risk Data are usually multimodal and consequently it is
generally quite difficult to properly fit an unimodal distribution to them, nevertheless
in the following we will work with the distributions aforementioned as this does not
affect the construction of the SSVaR later on, and the results can be extrapolated to
any other kinds of distributions.

As we see in Section 2.2 that the theorem 2.1 we use to build the confidence interval
around V aRp is not always true depending mainly on the distribution we use, we
verify with our data set when this convergence exists using the six previous distribu-
tions and making n varying from 501 to 1000001. We consider also different values
for p and q from 0.95 to 0.999.

Our computations show that the convergence is observed as soon as n = 30001. This
confirms the results obtained by simulations in the previous section. It is the reason
for which we use two data sets in this exercise, one with finite distance (n = 3109)
and another one with n = 32727, which is close to the asymptotic setting.

3.2 Confidence interval around VaRp

Given the six previous fitted distributions fi, i = 1, ..., 6, we build for each distri-
bution a sequence of confidence interval CIq around V aRp using equation (2.4), for
the two data sets Ω1 and Ω2. This means that we make varying n, taking n = 3109
for Ω1 and n = 32727 for Ω2.

In practice, to build CIq we proceed in the following way: for each fi, i = 1, ..., 6,

using the algorithm 2.2, steps 1 to 4, we build the sequence
(
V̂ aR

i

p

)
i=1,...,1000

. For

fix p, we build the confidence interval CIq, around V aRp, given by (2.4) replacing
ξ̂pn by Ψ̄ and using V computed in steps 3 and 4. Then, we get a confidence interval
at level q around V̂ aRp.

We can compute, using the sequence
(
V̂ aR

i

p

)
i=1,...,1000

how many times V̂ aR
i

p are

outside this confidence interval: we denote this number m. In Table 5 (n = 3109)
and Table 6 (n = 32727) we provide for each distribution and different values of
p on each line - the value of Ψ̄, the CIq and in bracket m

1000 = q̂. This value of q̂
corresponds to the percentage of events outside the confidence interval that we have

10Fit results for the other subsets of Ω2 are available upon request.
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to compare with 1− q.

For instance in table 5 (n = 3109), using the lognormal, for p = q = 0.95, we get
q̂ = 0.041. In practice we expect to have less than 1 − q = 5% of losses outside
the confidence interval. In that case no alert arrives. For this distribution the re-
sult is the same when n = 32727 (Table 6). Now if we fit a GH distribution, for
p = q = 0.95, q̂ = 0.087 in Table 5 and q̂ = 0.055 in Table 6. Thus, with this fitting
we will have an alert whatever the value of n.

Remark 3.2. Another way of analysing the behaviour of the confidence interval ap-
plied to real data is to rely on the number of data points used to fit the distributions
(nΩ) and not anymore on the number of points randomly generated (n). Indeed,
the reliability of the VaR evaluated for a risk factor would not be biased by a large
random generation and would therefore integrate the robustness of the distributions
fitted to these data - the lower the number of data point, the less reliable the VaR.

We provide now some comments concerning the result obtained for the confidence
interval around V aRp for each distribution fitted. Indeed, in Tables 5 and 6 we
observe that:

1. the lognormal fit tends to underestimate the VaR compared to empirical quan-
tiles, while Kernel smoothing and GPD tend to provide a much higher VaR.
Though the rank of the VaR - with respect to the distributions used to com-
pute it - is quite unstable. The presence of extreme incidents in Ω2 explains
the large computed VaR.

2. The length of CIq depends on the distribution. Fat tailed distribution such as
the GPD tends to lead to larger confidence interval but as exhibited in table
6, this is not always the case as with the 99.9th percentile; in another hand
the α− stable distribution induces a larger interval.

3. Concerning the convergence of q̂ to 1− q:

(a) From table 5 (set Ω1) we observe that the q̂ does not converge at all for
the GH fit, while it only converges for the GPD, GEV and α− stable fits
when p = q = 0.999.

(b) From table 6 (set Ω2) we observe that the q̂ always converge to 1− q.

3.3 The SSVaR alert indicator in practice

In Figure 3 we illustrate how we can build the SSVaR indicator.

9
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First, we illustrate some findings we already discuss: in the top, left part of Figure
3 we represent for each distribution fitted in Ω2 (non-parametric, lognormal, GPD,
GH and α − stable), the evolution of the ˆV aRp quantile for 0.95 ≤ p ≤ 0.999 11.
Definitely the V aRp is always larger with GPD, and the smallest with the lognormal
distribution. Nevertheless, we observe that when p = 0.999 the largest VaR is ob-
tained with the α− stable distribution. For the other values of p (0.95 < p < 0.999)
the ranking of the distributions providing the smallest V aRp to the largest V aRp
is: the lognormal, then the empirical, then the GH, then the α − stable, then the
Kernel and then the GPD.

Now concerning the SSVaR indicator, from Figure 3 we obtain several kinds of
information.

1. On the bottom part, left part, we have built the envelop obtained when we
fit the lognormal distribution using the Ω2 set: thus for 0.95 ≤ p ≤ 0.999,
we represent as the lower V aRp, and the upper bound is the upper bound of
the CIq (built with q = p each time). The envelop corresponds to the black
picture.

2. On the bottom part, right part, we have built the envelop using the GPD
distribution fitted with the Ω2 set. The building is the same as in 1).

3. Looking at these two graphs we observe several behaviours: Using the GPD
distribution the upper bound is higher than using the lognormal distribution
(be careful of the scale), and the width of the envelop is larger with the GPD
than with the lognormal distribution, whatever p.

4. In Figure 3, on the top right part, we provide in more details the evolution of
the width of the envelop for each distribution making varying p. The largest
width is obtained with GPD, the smallest with lognormal. We observe also
that for the other distributions we have no uniform behaviour. For instance
using the Kernel the width is nearly constant. The width of the envelop with
α− stable distribution is always larger than the width obtained with the GH
distribution.

These different remarks show the great influence of the choice of the distributions
used to characterise the features of the risk factor in order to build a correct strategy
for risk management.

Now, we propose a way to use the SSVaR to provide risk managers and regulators
an alert indicator which encompasses the randomness and stress from the V aRp.

11For p varies, we compute the V̂ aRp by definition using directly Ω2. It’s empirical benchmark.

10
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The idea is to use the SSVaR to capture the probability of the VaR to be inaccurate
and to provide an acceptable range of values to stress it.

Considering the data set Ω (length nΩ), we begin with a specific subset of Ω which
will be our basic information set to create the original envelop SSVaR. We call it Ω0.
From Ω0, we fit a distribution F with density f . Then, for a given sequence of p and
q, we build the envelop delimitated by V aRp and the upper bound of each CIp,q.
Then, we increase the data set Ω0 of 3 months for instance, and obtain a new data
set Ω1. We do exactly the same job as before and we verify if the new envelop is in-
side the previous one. If it is inside, no alert. If it is outside, we have alert and so on.

We provide now an example built with sub-samples coming from the set Ω2, on
which we fit α − stable distributions. The first set we use is Ω0 corresponding to
data from January 4th, 2011 to December 31th, 2011 (n = 2572). Using this set we
compute the SSVaR for p = 0.95, 0.975, 0.99, 0.995 (here p = q).

Then, we add to this set 9 months and get the set Ω1. We use data from January
4, 2011 to September 30, 2012 (n = 6195). Using this data set we build the SSVaR
for the same p and q as before. We do the same job for a new set Ω2 corresponding
to the period January 4th, 2011 to December 12th, 2012 (n = 7189).

The results are provided in Table 2 lines 1 to 3 and illustrated in Figure 4. Consid-
ering the values obtained to delimitate the bounds of SSVaR and comparing these
values to the benchmark provided by Ω0, we observe that all the SSVaR computed
from Ω1 and Ω2, whatever p, are always smallest than the values which define the
SSVaR computed with Ω0. So with these data sets, we do not trigger an alert.

Now we propose a stress approach, building a data set Ωstress
0 such that we add to

the set Ω0 the sequence of points corresponding to the period January 24th, 2007
to September 30th, 2007 (n = 4851). we compute the SSVaR for this set and we
observe that as soon as p > 0.95, the bounds of these SSVaR are outside the bounds
of the SSVaR computed using Ω0.

We do again the same job, building another stress set Ω′stress0 , using still Ω0 and
adding the period January 24th, 2007 to December 31th, 2007 (n = 5451). We
compute the SSVaR and again, the bounds of these SSVaR are bigger than these
computed using Ω0. The results are provided in Table 2 lines 4 and 5, and illustrated
in Figure 4.

Thus, for these two data sets Ωstress
0 and Ω′stress0 , we will have an alert corresponding

to the arrival of extreme events, when we fit an α − stable distributions on these
data sets.

11

 
Documents de travail du Centre d'Economie de la Sorbonne - 2015.52



We have done the same job using a lognormal distribution with the same stress sets
and we have observed that we never get an alert.

p=0.95 p=0.975 p=0.99 p=0.995
Ω0 [3.8, 4.0] [8.9, 9.8] [29.4, 34.9] [73.5, 95.0]
Ω1 [3.5, 3.7] [8.0, 8.8] [25.8, 30.6] [65.1, 84.2]
Ω2 [3.4, 3.6] [7.7, 8.5] [25.0, 29.6] [62.1, 80.1]

Ωstress
0 [3.7, 3.9] [9.0, 9.9] [30.3, 36.1] [78.9, 102.9]

Ω′stress0 [3.7, 3.9] [9.0, 9.9] [31.0, 36.9] [80.6, 105.2]

Table 2: SSVaR for 5 subsets of Ω2 on which the α − stable has been fitted and for 4 different values
of p. Ω0 corresponds to the period January 4th, 2011 to December 31th, 2011 (n = 2572); Ω1 corresponds
to the period January 4, 2011 to September 30, 2012 (n = 6195); Ω2 corresponds to the period January
4th, 2011 to December 12th, 2012 (n = 7189); Ωstress

0 corresponds to the period Ω0 ∪ {January 24th, 2007
to September 30th, 2007 (n = 4851)}; Ω′stress

0 corresponds to the period Ω0 ∪ { January 24th, 2007 to
December 31th, 2007 (n = 5451)}.

4 Conclusion
In this paper, we have studied the asymptotic Gaussian property given by the Theo-
rem 2.1 for the distribution of the estimator V̂ aRp of V aRp, which allows to build a
confidence interval CIq around V aRp. Since the convergence speed of this property
depends on the unknown distribution f , the sample size n of the data set and the
confidence level p of V aRp we have provided a comprehensive analysis of the feasi-
bility of the Theorem 2.1 for finite samples with a panel of distributions on a data
set of operational risks. This first work shows the limit of the theoretical results as
soon as n is small (less than 1000) and the distributions characterised by fat-tail.

In a second part, we use Theorem 2.1 to build a confidence interval CIq around
V aRp and we use this confidence interval to determine an area whose lower bound
is V aRp and upper bound the upper bound of the confidence interval: this area cor-
responds to a new alert indicator SSVaR that we can use to detect anormal events
in a very quick way using a dynamical procedure as described in section 3 (using a
data set composed by operational risks).

We have observed that the choice of the distributions which characterise the risk
factors were crucial in the building of the SSVaR, and also when we use it in a dy-
namical way. This last approach permits to introduce a new methodology for stress
testing.
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Figure 3: Top left corresponds to the V aRp for six distributions where p varies from 0.95 to 0.999. For
lognormal we use black; for GH we use green; for GPD we use blue; for α− stable we use purple; for Kernel
we use brown; for empirical we use red. Top right corresponds to the width of the SSVaR for the same
distributions. Bottom left corresponds to the SSVaR when we fit on Ω2 a lognormal distribution. Bottom
right corresponds to the SSVaR when we fit on Ω2 a GPD distribution.

Figure 4: Top: we represent the SSVaR; dot lines correspond to the SSVaR built with Ω0 on which an
α−stable distribution is fitted, and solid lines correspond to the SSVaR built with Ω1 still using an α−stable
distribution. Bottom: we represent SSVaR, dot lines using Ω0 and solid lines using Ωstress

0 , still fitting an
α− stable distribution.
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µ σ

Lognormal 7.7853
(0.0289)

1.6100
(0.0204)

α β δ µ λ

GH 8.7572e-4
(1.2794e-4)

8.7426e-4
(1.2814e-4)

1.1066e+3
(1.7980e+2)

9.6355e+2
(1.4645e+2)

-7.1308e-1
(7.7093e-2)

ξ β µ

GPD 8.9810e-1
(1.2786e-1)

3.7905e+4
(4.8380e+3) 44000

ξ β µ block length

GEV 8.8767e-1
(3.8743e-2)

2.2458e+3
(1.1887e+1)

2.0498e+3
(8.8251e+1) 4

α β γ δ

α− stable 0.800
(0.0223)

0.792
(0.0252)

1085.317
(30.8179)

1677.545
(99.3442)

Table 3: Values of the estimated parameters for Ω1. We use maximum likelihood estimation to estimate
the Lognormal, GH, GPD (except the location) and GEV parameters. The location of the GPD is estimated
using Hill plot. For estimating the parameters of the α − stable distribution, we use McCulloch method.
The standard deviation of the Lognormal and GEV parameter estimates are computed through the inverse
of the Hessian matrix. For GH, GPD and α− stable, they are computed using Bootstrap algorithm.

µ σ

Lognormal 7.9491
0.0068

1.2373
0.0048

α β δ µ λ

GH 2.8367e-5
(1.3616e-6)

2.7881e-5
(6.0339e-8)

1000
(59.2976)

1000
(0)

-0.5
(0.0756)

ξ β µ

GPD -1.0080e-2
(0.0093)

3.2245e+5
(2.8423e+4) 314391.3

ξ β µ block length

GEV 0.9853
(0.0166)

2635,2984
(64.3526)

2583.3371
(46.4861) 9

α β γ δ

α− stable 0.7720
(0.0056)

0.95
(0)

908.5263
(9.1110)

1655.948
(18.5196)

Table 4: Values of the estimated parameters for Ω2. We use maximum likelihood estimation to estimate
the Lognormal, GH, GPD (except the location) and GEV parameters. The location of the GPD is estimated
using Hill plot. For estimating the parameters of the α − stable distribution, we use McCulloch method.
The standard deviation of the Lognormal and GEV parameter estimates are computed through the inverse
of the Hessian matrix. For GH, GPD and α− stable, they are computed using Bootstrap algorithm.
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Appendices
.A Proof of Theorem 1
It is based on part of the works of Rao (2001) [8]. Here we provide a new version proof with
more details. Consider the r.v. ξ̂pn ,

P (ξ̂pn
≤ x) = P (x[np]+1 ≤ x) (.1)

And by the definition of the order statistics, x[np]+1 ≤ x⇐⇒ ](observations ≤ x) ≥ [np]+1

P (](observations ≤ x) ≥ [np] + 1) =
n∑

r=m
Crn(F (x))r(1− F (x))n−r (.2)

where m = [np] + 1, since the proof focusing on the case n → ∞, for simplify without loss
of generality, we assume that m = np. Then, using the beta function and incomplete beta
function:

Fξ̂pn
(x) =P (ξ̂pn ≤ x) =

n∑
r=m

Crn(F (x))r(1− F (x))n−r

=IF (x)(m,n−m+ 1) =
BF (x)(m,n−m+ 1)
B(m,n−m+ 1)

= n!
(m− 1)!(n−m)!

∫ F (x)

0
tm−1(1− t)n−mdt

(.3)

To get the density function of ξ̂pn
, differentiate Fξ̂pn

(x) w.r.t x,

fξ̂pn
(x) = n!

(m− 1)!(n−m)!F (x)m−1(1− F (x))n−mf(x) (.4)

Let H = ξ̂pn
, Y = FX(ξ̂pn

) = FX(H):

FY (y) = P (Y ≤ y) = P (FX(ξ̂pn) ≤ y) = P (ξ̂pn ≤ F−1
X (y)) = FH(F−1

X (y)) (.5)

It’s equivalent to:
FY (y) = FH(F−1

X (y)) (.6)

So the density function of Y is:

dFY (y)
dy

= dFH(F−1
X (y))
dy

= dFH(F−1
X (y))

dF−1
X (y)

�
dF−1

X (y)
dy

(.7)

and dF−1
X

(y)
dy = 1

f(F−1
X

(y)) , also from equation (.7),

fY (y) = dFY (y)
dy

= fH(F−1
X (y)) � 1

f(F−1
X (y))

= fξ̂pn
(F−1
X (y)) � 1

f(F−1
X (y))

= n!
(m− 1)!(n−m)!y

m−1(1− y)n−m
(.8)
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Now, introduce a new r.v. Z =
√
n(Y−p)√
pq , then the density function of Z is:

A×B (.9)

where

A = 1√
n

n!
(m− 1)!(n−m)!p

m−1
2 q

n−m+1
2

B = (1 +
z
√
q

√
np

)m−1(1−
z
√
p

√
nq

)n−m
(.10)

Take the logarithm of (.9),

• The term ln(A) which is not involving z is:

ln(A) n→∞−−−−→ Constant (.11)

• The term ln(B), using Taylor expansion of ln function:

ln(B) = (m− 1)ln(1 +
z
√
q

√
np

) + (n−m)ln(1−
z
√
p

√
nq

)

= (np− 1)ln(1 +
z
√
q

√
np

) + (nq)ln(1−
z
√
p

√
nq

)

= (np− 1)(
z
√
q

√
np
− z2q

2np ) + (nq)(−
z
√
p

√
nq
− z2p

2nq )

= z
√
npq −

z
√
q

√
np
− 1

2z
2q + z2q

2np − z
√
npq − 1

2z
2p

= −1
2z

2 −
z
√
q

√
np

+ z2q

2np
n→∞−−−−→ −1

2z
2

(.12)

So the density function of Z tends to Constant × e−
1
2 z

2 as n → ∞. Here, remind that
the characteristic function of N (0, 1) is e− t2

2 , which dose NOT depend on the constant 1√
2π .

Hence by Scheffe’s theorem(Rao (2001) [8], (xv) 2c.4), the asymptotic distribution is N (0, 1).
Remind that y = p(1 + z

√
q
np ). Hence the a.d. of

√
n(y − p) is N (0, pq).

Remind that:

Y = FX(ξ̂pn
) =⇒ ξ̂pn

= F−1
X (Y )

ξp = F−1
X (p)

(.13)

then apply Rao (2001) [8] (i) 6a.2, we have:
√
n(ξ̂pn

− ξp)
distribution−−−−−−−−→ N

(
0, pq((F−1

X (p))′)2) (.14)

since (F−1
X (p))′ = 1

f(F−1
X

(p)) = 1
f(ξp)

Finally,

ξ̂pn

distribution−−−−−−−−→ N
(
ξp,

p(1− p)
f(ξp)2n

)
� (.15)
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.B Methodology for non parametric fitting
Given Ωi = {Xi

1, ..., X
i
n}, i = 1, 2 sequences of i.i.d r.v. from f . Now we describe the

methodology of non-parametric fit as following:
1. The Kernel density estimate of f at the point x0 is given by:

f̂h(x0) = 1
nh

n∑
i=1

K

(
x0 −Xi

h

)
(.16)

where K is the Kernel function and h is the bandwidth. Sheather S. J. (2004) argues
that the value of the bandwidth is of critical importance, while the shape of the Kernel
function has little practical impact. But we observe that in practice when we analyse
the data set with “extreme points", the choice of Kernel function is also crucial. Since
the original idea of Kernel function is from the definition of a general weight function
which is symmetric w.r.t. 0 ,

∫
support

K
(
x−x0
h

)
dx = 1 and

∫
support

xK
(
x−x0
h

)
dx = 0,

to make sure that most of the weight of the density estimation at point x0 falls near
x0 (Silverman B. W. (1986)). Before defining a new Kernel function to make the
f̂h adapt to the extreme points area, we discuss about the bias of f̂h first. Define∫
t2K(t)dt = k2, where K(.) is the Kernel function. Thus k2 could be explained as

the variance regarding K(.). Then the bias in the estimation of f at x0 is:

bias(x0) =
∣∣∣E(f̂h)− f(x)

∣∣∣ =
∣∣∣∣∫ 1

h
K

(
x0 − x
h

)
f(x)dx− f(x0)

∣∣∣∣ (.17)

let x = x0 − ht, then:

bias(x0) =
∣∣∣∣−∫ K(t)f(x0 − ht)dt− f(x0)

∣∣∣∣ (.18)

From Taylor expansion we have f(x0−ht) = f(x0)−htf ′(x) + 1
2h

2t2f ′′(x) + ..., then:

bias(x0) ≈
∣∣∣∣−f(x0)

∫
K(t)dt+ hf ′(x0)

∫
tK(t)dt− 1

2h
2f ′′(x0)

∫
t2K(t)dt− f(x0)

∣∣∣∣
=
∣∣∣∣−2f(x0)− 1

2h
2f ′′(x0)k2

∣∣∣∣
(.19)

Thus the bias is positively related to h2 and k2 which could be a trade off. Since h is
with power 2, we may give the priority to have a low h even if this decision leads to
a relatively high k2. Thus we define the so called “scaled Gaussian Kernel" (Gaussian
density with location 0 and scaled by the sample standard deviation.) to estimate the
Kernel density at the extreme points.

2. Based on the minimization of the asymptotic mean integrated squared error (AMISE)
and the rules of thumb, we get the bandwidth h0 = 0.9An−0.2, where

A = min(S, (sample interquantile range) /1.34) (.20)

under the assumption that f is Gaussian (Silverman (1986) [10]). It could be a
benchmark (or initial value) for h.
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3. To adapt the bandwidth to a specific data set, we use the cross validation rule given
by Loader (1999) [5] and take the log:

log(CV (h)) =
n∑
i=1

log
(
f̂h,−i(Xi)

)
(.21)

where f̂h,−i(Xi) denotes the Kernel density estimate with data point Xi deleted.
Beginning with h0, by finding the local log maximal of CV, we get the local optimal
bandwidth hopt. We only consider the local maximal since the bandwidth can neither
too large (leads to large bias) nor too small (leads to large variance).

4. After choosing the Kernel function and the bin, by equation (5), we have the Kernel
estimator of f at x0.

.C Bootstrapped methodology for random generation from Gaus-
sian Kernel fit

For Gaussian Kernel, the random generation is replaced by a bootstrapped methodology in
given by Silverman (1986) [10] as following: given p, n and a data set Ω with i.i.d sample,

1. choose Xi (i = 1, ..., n ∗ 1000) uniformly with replacement from Ω.

2. generate εi (i = 1, ..., n ∗ 1000) from Gaussian Kernel.

3. define X̄ = mean(Ω), then the new sample set with size n*1000 is given below:

X̄ +
(
Xi − X̄ + hεi

)
/
(
1 + h2) 1

2 , i = 1, ..., n ∗ 1000 (.22)

4. we put this new sample set into a n*1000 matrix and sort it in ascending order.
According to the definition of V̂ aRp, we have its 1000 i.i.d realizations which is the
[np] + 1 row of this matrix.
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