M. Aigner, Combinatorial Theory, 1979.

J. Banzhaf, Weighted voting doesn't work: A mathematical analysis, Rutgers Law Review, vol.19, pp.317-343, 1965.

C. Berge, Principles of Combinatorics, 1971.

A. Chateauneuf and J. Jaffray, Some characterizations of lower probabilities and other monotone capacities through the use of M??bius inversion, Mathematical Social Sciences, vol.17, issue.3, pp.263-283, 1989.
DOI : 10.1016/0165-4896(89)90056-5

G. Choquet, Theory of capacities Annales de l'Institut Fourier, pp.131-295, 1953.

R. De-wolf, A brief introduction to Fourier analysis on the Boolean cube. Theory of Computing Library Graduate Surveys, pp.1-20, 2008.

A. P. Dempster, Upper and Lower Probabilities Induced by a Multivalued Mapping, The Annals of Mathematical Statistics, vol.38, issue.2, pp.325-339, 1967.
DOI : 10.1214/aoms/1177698950

I. Dragan, The potential basis and the weighted Shapley value, Libertas Mathematica, vol.11, pp.139-150, 1991.

I. Dragan, The least square values and the shapley value for cooperative TU games, Top, vol.28, issue.1, pp.61-73, 2006.
DOI : 10.1007/BF02579002

U. Faigle and M. Grabisch, Bases and linear transforms of cooperation systems. Working paper, 2014.
URL : https://hal.archives-ouvertes.fr/halshs-00971393

S. Fujishige, Submodular functions and optimization, Annals of Discrete Mathematics, vol.58, p.14, 2005.

M. Grabisch, k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, pp.167-189, 1997.

M. Grabisch, . Ch, and . Labreuche, The symmetric and asymmetric Choquet integrals on finite spaces for decision making, Statistical Papers, vol.29, issue.3, pp.37-52, 2002.
DOI : 10.1007/s00362-001-0085-4

URL : https://hal.archives-ouvertes.fr/halshs-00273184

M. Grabisch, . Ch, and . Labreuche, A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid, Annals of Operations Research, vol.18, issue.2, pp.247-286, 2010.
DOI : 10.1007/s10479-009-0655-8

URL : https://hal.archives-ouvertes.fr/halshs-00267932

M. Grabisch, J. Marichal, and M. Roubens, Equivalent Representations of Set Functions, Mathematics of Operations Research, vol.25, issue.2, pp.157-178, 2000.
DOI : 10.1287/moor.

URL : https://hal.archives-ouvertes.fr/hal-01194919

P. L. Hammer and S. Rudeanu, Boolean Methods in Operations Research and Related Areas, 1968.
DOI : 10.1007/978-3-642-85823-9

J. C. Harsanyi, A Simplified Bargaining Model for the n-Person Cooperative Game, International Economic Review, vol.4, issue.2, pp.194-220, 1963.
DOI : 10.2307/2525487

N. L. Kleinberg and J. H. Weiss, -Person Games and the Null Space of the Shapley Value, Mathematics of Operations Research, vol.10, issue.2, pp.233-243, 1985.
DOI : 10.1287/moor.10.2.233

URL : https://hal.archives-ouvertes.fr/hal-00017712

R. O. Donnell, Analysis of Boolean functions, draft 2.0, ch. 1-3, 2007.

B. Peleg and P. Sudhölter, Introduction to the theory of cooperative games, 2003.
DOI : 10.1007/978-1-4615-0308-8

G. C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, pp.340-368, 1964.

M. Roubens, Interaction between criteria and definition of weights in MCDA problems, 44th Meeting of the European Working Group " Multicriteria Aid for Decisions, 1996.

G. Shafer, A Mathematical Theory of Evidence, 1976.

L. S. Shapley, A value for n-person games, Contributions to the Theory of Games II, number 28 in Annals of Mathematics Studies, pp.307-317, 1953.
DOI : 10.1017/cbo9780511528446.003

P. Walley, Coherent lower (and upper) probabilities, 1981.

J. Walsh, A Closed Set of Normal Orthogonal Functions, American Journal of Mathematics, vol.45, issue.1, pp.5-24, 1923.
DOI : 10.2307/2387224

K. Yokote, Weak addition invariance and axiomatization of the weighted Shapley value, International Journal of Game Theory, vol.14, issue.2, pp.275-293, 2015.
DOI : 10.1007/s00182-014-0429-7

K. Yokote, Y. Funaki, and Y. Kamijo, Linear basis to the Shapley value, Waseda Economic Working Paper Series, 2013.