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106-112, Bd de l’Hôpital, 75013 Paris, France

michel.grabisch@univ-paris1.fr

Abstract

The paper studies the vector space of set functions on a finite set X, which can
be alternatively seen as pseudo-Boolean functions, and including as a special cases
games. We present several bases (unanimity games, Walsh and parity functions)
and make an emphasis on the Fourier transform. Then we establish the basic dual-
ity between bases and invertible linear transform (e.g., the Möbius transform, the
Fourier transform and interaction transforms). We apply it to solve the well-known
inverse problem in cooperative game theory (find all games with same Shapley
value), and to find various equivalent expressions of the Choquet integral.

1 Introduction

Set functions on a finite set X are of fundamental usage in many areas of discrete math-
ematics, e.g., cooperative game theory (Peleg and Sudhölter, 2003), combinatorial opti-
mization (Fujishige, 2005), decision making (Grabisch and Labreuche, 2010), computer
sciences (de Wolf, 2008), and more generally operations research (Hammer and Rudeanu,
1968), where in the latter domain, they are more often encountered under the form of
pseudo-Boolean functions. Specific domains focus on specific subclasses of set functions,
e.g., game theory uses set functions vanishing on the empty set (these are characteristic
functions of transferable utility games, which are simply called “games”), decision the-
ory needs games which are monotone with respect to inclusion (called capacities), while
combinatorial optimization often deals with submodular games.

An interesting feature of set functions and games is that they form a vector space of
dimension 2|X| (2|X|−1 for games). Most often, this feature is ignored, although clearly
one can take advantage of the concepts and techniques of linear algebra when dealing
with set functions and games. In particular the notion of basis is of importance. The
best-known basis is perhaps the basis of unanimity games (this is the usual name given
in game theory; they are closely related to the incidence functions in combinatorics, see
Aigner (1979)), although each domain has its prefered bases. For example, in computer
sciences mostly the basis of parity functions is used, essentially because the encoding of
sets is done by −1,+1, rather than by 0, 1. The usage of a particular basis induces a
particular representation of set functions, viewed as a transform, which is by definition
linear and invertible. For example, the representation through the basis of unanimity
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games is the Möbius transform (or Möbius inverse), widely used in combinatorics and well
known in decision making and game theory (known under the name of Harsanyi dividends
(Harsanyi, 1963) in the latter domain), while the representation through parity functions
is the Fourier transform, which has many applications in computer sciences.

As far as the author can see from the literature, the duality between bases and trans-
forms (i.e., the representation of set functions into a given basis) has never been exploited
nor even remarked. A systematic exploitation of this fact can lead to the discovery of
new bases and transforms, as well as an easy solution to the so called inverse problem in
game theory: find all games having the same Shapley value (and similar ones). Also, it
permits to get several different expressions of linear operators on games or set functions,
like the Choquet integral.

The aim of this paper is to bring a survey on the above mentioned issues. Section 2
gives a brief account on set functions and pseudo-Boolean functions. Section 3 describes
the best-known bases (unanimity games, Walsh functions and parity functions). Section 4
is about the Fourier transform and its properties, while Section 5 explains the fundamen-
tal duality between bases and transforms, and gives many examples. Sections 6 and 7
are applications of this duality principle to the solution of the above mentioned inverse
problem and to the finding of equivalent expressions of the Choquet integral.

2 Set functions and pseudo-Boolean functions

In the whole paper, we consider a finite universe X , with |X| = n. Occasionally, we will
use the notation [n] = {1, . . . , n}.

A set function on X is a mapping ξ : 2X → R. A game is a set function v vanishing
on the empty set: v(∅) = 0.

Clearly, the set R2X of set functions on X is a 2n-dimensional vector space. We
introduce on R2X the following scalar product:

〈ξ, ξ′〉 =
1

2n

∑

S⊆X

ξ(S)ξ′(S).

There is another vision of set functions, namely the pseudo-Boolean functions (Ham-
mer and Rudeanu, 1968), noting that any subset A of X can be encoded by its charac-
teristic function 1A. Formally, a pseudo-Boolean function is a mapping f : {0, 1}n → R.
The equivalence between pseudo-Boolean functions and set functions can be seen through
the coding function 1 : 2X → {0, 1}n defined by A 7→ 1A, with 1A(i) = 1 if and only if
i ∈ A. Then

ξf = f ◦ 1, fξ = ξ ◦ 1−1

where ξf denotes the set function associated to f , and fξ is the pseudo-Boolean function
associated to ξ. If follows that the set of pseudo-Boolean functions of n variables is a
2n-dimensional vector space, with scalar product

〈f, f ′〉 =
1

2n

∑

x∈{0,1}n

f(x)f ′(x).
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Pseudo-Boolean functions were obtained from set functions by coding subsets by 1
and 0. It is noteworhty that other encodings are possible, for example using −1, 1 instead
of 0, 1. We will come back to this encoding later and shows that it is quite useful.

3 Bases of set functions and pseudo-Boolean func-

tions

3.1 Unanimity games

Perhaps the best known basis of R2X is the basis of the so-called unanimity games. For
any nonempty subset S ⊆ X , the unanimity game centered on S is the game defined by

uS(T ) =

{
1, if T ⊇ S

0, otherwise
.

Defining the set function u∅(S) = 1 for every S ⊆ X , it is well known that {uS}S∈2X is a
basis for R2X . It is also well known that the coordinates of ξ in this basis are the Möbius

transform coefficients:

ξ =
∑

S∈2X

mξ(S)uS

with
mξ(S) =

∑

T⊆S

(−1)|S\T |ξ(T ).

The Möbius transform (or Möbius inverse) is a well-known tool in combinatorics since
the work of Rota (1964) (see also Berge (1971), Aigner (1979), etc.).

A drawback of the basis of unanimity games is that it is not orthogonal w.r.t. the
above scalar product, as it is easy to see even with n = 2:

〈u{1}, u{2}〉 =
1

4
(u{1}({1})u{2}({1}) + u{1}({2})u{2}({2}) + u{1}({1, 2})u{2}({1, 2})

=
1

4
6= 0.

In the formalism of pseudo-Boolean functions, unanimity games uT correspond to
monomials

∏
i∈T xi. Hence we have

f =
∑

T⊆[n]

mf(T )
∏

i∈T

xi

where mf is the Möbius transform of ξf (this slight abuse of notation should not be
confusing).

3.2 Walsh functions

Another basis of pseudo-Boolean functions is the basis of Walsh functions, which are
monomials defined by

wT (x) =
∏

i∈T

(2xi − 1) (T ⊆ [n], x ∈ {0, 1}n)
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or, in set function notation:

wT (S) = (−1)|T\S| (S, T ∈ 2X). (1)

It can be shown that the Walsh functions {wT}T⊆[n] form an orthornomal basis of the
pseudo-Boolean functions:

〈wS, wT 〉 = 1 iff S = T, and 0 otherwise.

It is important to note that letting zi = 2xi−1 ∈ {−1,+1}, the Walsh functions reduce to
the monomials

∏
i∈T zi: hence the Walsh functions are obtained when subsets are encoded

by −1, 1 instead of 0, 1. We see that this simple change makes the basis orthonormal. It
can be shown that the coordinates of a pseudo-Boolean function into this basis are given
by

f(x) =
∑

T⊆[n]

(∑

S⊇T

mf(S)

2|S|

)
wT (x) =

∑

T⊆[n]

1

2|T |
IfB(T )wT (x) (2)

where IfB is the Banzhaf interaction transform defined in terms of the Möbius transform
by

IfB(T ) =
∑

S⊇T

(1
2

)|S\T |

mf (S) (T ∈ 2X)

(this transform will be properly introduced later).
As a historical remark, we note that the original Walsh functions (Walsh, 1923) are

rather different in their definition:

Wk(x) = (−1)
∑∞

j=0 kjxj+1 (k ∈ N0, x ∈ [0, 1]), (3)

with k = k0+k12+k22
2+· · · km2

m, ki ∈ {0, 1} for all i, and x = x12
−1+x22

−2+x32
−3+· · · ,

xi ∈ {0, 1} for all i, the binary representations of k and x. They form an orthonormal
basis of the set of square integrable functions on [0, 1]. The connection with our Walsh
functions is that the latter have a discretized domain

0,
1

2n
,
2

2n
,
3

2n
, . . . ,

2n − 1

2n

of 2n points, corresponding to the 2n subsets of [n]. More precisely, wS(x) corresponds
to Wk(x

′) such that S and k have same binary coding, and

x′
1 = 1− x1, . . . , x

′
n = 1− xn, and x′

j = 0 for j > n.

3.3 Parity functions

Another family of functions related to the Walsh functions are the parity functions. The
parity function associated to S ⊆ [n] is the function

χS(x) = (−1)1S ·x = (−1)
∑

i∈S xi (x ∈ {0, 1}n). (4)

Its name comes from the fact that it takes only values −1 and +1, depending on whether
there is an odd or even number of elements of coordinates of x equal to 1 in S. It
expression as a set function is

χS(T ) = (−1)|S∩T | (S, T ∈ 2X). (5)
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Up to a recoding by ε(1) = 0 and ε(−1) = 1, the parity functions are the Walsh functions:

wS(z) =
∏

i∈S

zi = (−1)
∑

i∈S ε(zi) = χS(ε(z)) (z ∈ {−1, 1}n).

Consequently, they form another orthonormal basis of the vector space of pseudo-Boolean
functions. The interest of parity functions is that they lead to the well-known Fourier
transform, to which the next section is devoted.

4 The Fourier transform

In the basis of parity functions, it can be shown that any pseudo-Boolean function f is
expressed by

f =
∑

S⊆[n]

f̂(S)χS

where the coordinates of f in this basis, denoted by f̂(S), are given by

f̂(S) = 〈f, χS〉 =
1

2n

∑

x∈{0,1}n

(−1)1S ·xf(x) (S ⊆ [n])

or, in terms of set functions,

ξ̂(S) =
1

2n

∑

T⊆[n]

(−1)|S∩T |ξ(T ) (S ⊆ [n]). (6)

The set of coefficients f̂(S), S ⊆ [n], is called the Fourier transform of f , and is widely
used in computer sciences (see, e.g., a survey in de Wolf (2008), as well as O’Donnell
(2007)).

We show now some properties of the Fourier transform, and to this end, we introduce
some additional notions and notation. We may consider x ∈ {0, 1}n as a random variable
with uniform distribution. Then, the expected value and the variance of a pseudo-Boolean
function f are

E[f ] =
1

2n

∑

x∈{0,1}n

f(x)

Var[f ] = E
[
(f − E[f ])2

]
= E[f 2]− E

2[f ].

The convolution product of two pseudo-Boolean functions f, g is defined by

(f ∗ g)(x) =
1

2n

∑

y∈{0,1}n

f(x⊕ y)g(y) (x ∈ {0, 1}n)

where ⊕ denotes the coordinatewise binary addition:

1⊕ 1 = 0 = 0⊕ 0, 1⊕ 0 = 0⊕ 1 = 1.
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In terms of set functions, we obtain the following expression:

(f ∗ g)(S) =
1

2n

∑

T⊆[n]

f(S∆T )g(T ) (S ∈ 2X).

The properties of the Fourier transform are gathered in the next theorem.

Theorem 1. Let f, g be two pseudo-Boolean functions. The following holds.

(i) f(0) =
∑

S⊆[n]

f̂(S);

(ii) f̂(∅) = E[f ];

(iii) (Parseval’s identity) ‖f‖2 =
∑

S⊆[n] f̂
2(S);

(iv)
∑

S∈2[n]\{∅}

f̂ 2(S) = Var[f ];

(v) f is constant if and only if f̂(S) = 0 for all S 6= ∅;

(vi) (̂f ∗ g)(S) = f̂(S)ĝ(S) for all S ∈ 2[n].

The name “Fourier transform” comes from the work of Fourier on the representation
of integrable functions. The Fourier transform of a function, viewed as a function of
time, gives its frequency representation. Exactly the same results as those in Theorem 1
hold for the original Fourier transform, which explains its name in computer sciences.
However, it must be noted that all the properties, except the last one on convolution, are
direct consequences of the orthonormality of the basis. To the opinion of the author, this
transform should be rather called the Walsh transform, since the definition of the Walsh
function is an infinite version of the parity function used here, as a comparison of (3) and
(4) reveals.

5 Bases and linear transforms on set functions

The previous sections have introduced various bases on set functions and pseudo-Boolean
functions: the unanimity games, the Walsh functions and the parity functions. As a by-
product, two fundamental notions in combinatorics and computer sciences have appeared,
namely the Möbius transform and the Fourier transform. The name “transform” intu-
itively means (in particular by reference to well-known transforms used in mathematics
for the analysis of real-valued functions: the (original) Fourier transform and the Laplace
transform, mainly) a representation in another domain, but equivalent to the original
one, i.e., the main desirable characteristic of the transform is that it should be invertible.

Although it comes as an evidence from elementary considerations in linear algebra,
there is a duality between bases and linear invertible transforms, which to the knowledge
of the author, has never been exploited nor remarked. The aim of this section is to
explain this duality and to apply it, first to the known bases and transforms so as to
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obtain new bases and transforms, and second to some well-known inverse problem and
representation of integrals w.r.t. games.

We define a transform on the set of set functions on X as a linear invertible mapping
Ψ : R2X → R2X , with ξ 7→ Ψξ. The following discussion is made easier if one consider
set functions ξ as row vectors and use matrix notation. To a basis (bS)S∈2X , we make
correspond the matrix B = [bS] of row vectors bS. Hence ξ =

∑
S∈2X wSbS = wB is the

expression of ξ in this basis. The following lemma gives the exact equivalence between
bases and transforms.

Lemma 1. (Faigle and Grabisch, 2014) For every basis B, there is a (unique) transform
Ψ such that for any ξ ∈ R2X ,

ξ =
∑

S∈2X

Ψξ(S)bS, (7)

whose inverse Ψ−1 is given by ξ 7→ (Ψ−1)ξ =
∑

S∈2X ξ(S)bS = ξB.
Conversely, to any transform Ψ corresponds a unique basis B such that (7) holds,

given by bS = (Ψ−1)δS .

In the above lemma, δS denotes the Dirac set function defined by

δS(T ) =

{
1, if S = T

0, otherwise
(S ∈ 2X).

We apply this result on a number of commonly used bases and transforms.

(i) The Möbius transform is, as we have already noticed, related to the basis of
unanimity games:

ξ(S) =
∑

T∈2X

mξ(T )uT (S) =
∑

T⊆S

mξ(T ), (S ⊆ X),

with
mξ(S) =

∑

T⊆S

(−1)|S\T |ξ(T ).

(ii) The co-Möbius transform (Grabisch et al. (2000), a.k.a. commonality function

(Shafer, 1976)) is defined by:

m̌ξ(S) =
∑

T⊇X\S

(−1)n−|T |ξ(T ) =
∑

T⊆S

(−1)|T |ξ(X \ T ) (S ∈ 2X).

Its inverse relation is
ξ(S) =

∑

T⊆X\S

(−1)|T |m̌ξ(T ).

By Lemma 1, the associated basis is

ǔT (S) =
∑

B⊆X\S

(−1)|B|δT (B) =

{
(−1)|T | if S ∩ T = ∅

0 otherwise.
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(iii) The (Shapley) interaction transform (Grabisch, 1997) is defined by

Iξ(S) =
∑

T⊆X\S

(n− t− s)!t!

(n− s+ 1)!

∑

L⊆S

(−1)|S\L|ξ(T ∪ L),

and the inverse relation is given by

ξ(S) =
∑

K⊆X

β
|K|
|S∩K|I

ξ(K),

where

βl
k =

k∑

j=0

(
k

j

)
Bl−j (k ≤ l),

and B0, B1, . . . are the Bernoulli numbers. The first values of βl
k are given in Table 1.

k \ l 0 1 2 3 4

0 1 −1
2

1
6

0 − 1
30

1 1
2

−1
3

1
6

− 1
30

2 1
6

−1
6

2
15

3 0 − 1
30

4 − 1
30

Table 1: The coefficients βl
k

The associated basis {bIT }T∈2X is

bIT (S) = β
|T |
|T∩S| (S ∈ 2X).

(iv) The Banzhaf interaction transform (Roubens, 1996) is defined by

IξB(S) =
(1
2

)n−s ∑

K⊆X

(−1)|S\K|ξ(K),

with inverse relation

(I−1
B )ξ(S) =

∑

K⊆X

(1
2

)k
(−1)|K\S|ξ(K). (8)

The associated basis {bIBT }T∈2X is

bIBT (S) =
∑

K⊆X

(1
2

)k
(−1)|K\S|δT (K) =

(1
2

)|T |

(−1)|T\S|.
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(v) The Fourier interaction transform: as it was already explained in Section 4,
the Fourier transform, as given by (6), corresponds to the basis of parity functions,
given by (5).

The relations between the Fourier transform and the Möbius and Banzhaf trans-
forms are given as follows:

ξ̂(S) = (−1)|S|
∑

K⊇S

1

2k
mξ(K). (9)

ξ̂(S) =
(−1

2

)s
IξB(S). (10)

(vi) The Walsh basis: This basis is defined by (1). Let us recover the corresponding
transform ξ 7→ W ξ by using Lemma 1, which we already gave in (2). By Lemma 1,
the inverse transform is immediate:

(W−1)ξ(S) =
∑

T⊆X

ξ(T )(−1)|T\S|.

The direct transform is obtained by solving the linear system

ξ(S) =
∑

T⊆X

W ξ(T )(−1)|T\S| (S ∈ 2X),

or by simply noticing that wT (S) = 2|T |bIBT (S), which from

ξ(S) =
∑

T⊆X

IξB(T )b
IB
T (S) =

∑

T⊆X

W ξ(T )wT (S)

yields the components of W ξ as

W ξ(T ) =
(1
2

)|T |

IξB(T ) (T ∈ 2X).

We recover Formula (2). Note that the Fourier and Walsh bases are related as
follows:

χT (S) = χS(T ) = (−1)|S∩T | = (−1)|S\(X\T )| = wS(X \ T ).

Also, from (10), we find

F ξ(S) = (−1)sW ξ(S) (S ∈ 2X). (11)

(vii) The Yokote basis: (see Yokote et al. (2013); Yokote (2015)) it is a basis of the
set of games, which is defined by

bYT (S) =

{
1, if |S ∩ T | = 1

0, otherwise
(S ∈ 2X \∅). (12)

Any game v reads in this basis

v =
∑

T∈2X\∅

Y v(T )bYT (13)

9
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where the coordinates Y v(S) define the Yokote transform Y . We give now Y v in
terms of mv and v, as well as the inverse relations:

mv(S) = |S|(−1)|S|+1
∑

K⊇S

Y v(K) (∅ 6= S ⊆ X). (14)

Y v(S) = (−1)|S|+1
∑

K⊇S

1

|K|
mv(K) (∅ 6= S ⊆ X). (15)

Y v(S) =
∑

L⊆X

(−1)|S∩L|+1 (n− s− l)!(s + l − 1)!

n!
v(L). (16)

Table 5 summarizes the correspondence between bases and transforms.

Transform Basis

Möbius mξ(S) =
∑

T⊆S

(−1)|S\T |ξ(T ) uT (S) =

{
1, if S ⊇ T

0, otherwise

co-
Möbius

m̌ξ(S) =
∑

T⊇X\S

(−1)n−|T |ξ(T ) ǔT (S) =

{
(−1)|T |, if S ∩ T = ∅

0, otherwise

conjugate
unanim-
ity
games

U
ξ
(S) = (−1)|S|+1

∑

T⊇X\S

(−1)n−|T |ξ(T ) uT (S) =

{
1, if S ∩ T 6= ∅

0, otherwise

Shapley
interac-
tion

Iξ(S) =
∑

K⊆X

|X \ (S ∪K)|!|K \ S|!

(n− s+ 1)!
(−1)|S\K|ξ(K) bIT (S) = β

|T |
|T∩S|

Banzhaf
interac-
tion

I
ξ
B(S) =

(1
2

)n−s ∑

K⊆X

(−1)|S\K|ξ(K) b
IB
T (S) =

(1
2

)|T |
(−1)|T\S|

Fourier ξ̂(S) =
1

2n

∑

K⊆X

(−1)|S∩K|ξ(K) χT (S) = (−1)|S∩T |

Walsh W ξ(S) =
1

2n

∑

K⊆X

(−1)|S\K|ξ(K) wT (S) = (−1)|T\S|

Yokote
(S 6= ∅)

Y v(S) =
∑

L⊆X

(−1)|S∩L|+1 (n− s− l)!(s + l − 1)!

n!
v(L) bYT (S) =

{
1, if |S ∩ T | = 1

0, otherwise

Table 2: Correspondence between bases and transforms

6 The inverse problem for linear values

In cooperative game theory, a linear value is a linear mapping Φ : R2X → RX assigning
to any game v a n-dim vector Φ(v), representing a sharing of v(X) among all players
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(elements of X). For this reason a value most often satisfies efficiency, in the sense that∑
i∈X Φi(v) = v(X). The best-known values are the Shapley value Shapley (1953) and

the Banzhaf value Banzhaf (1965). They are both linear and their definition amounts to
considering the respective interaction transforms for singletons, i.e.:

ΦSh
i (v) = Iv({i}), ΦB

i (v) = IvB({i}), (i ∈ X). (17)

Hence, the interaction and Banzhaf interaction transforms can be seen as extensions of
these values.

The duality between transforms and bases permits to easily solve the so-called “inverse
problem”, well-known in game theory (see, e.g., Kleinberg and Weiss (1985), Dragan
(1991, 2006) and Yokote et al. (2013)): given a game v on X , find all games v′ having the
same Shapley value (or any other linear value: Banzhaf, egalitarian, etc.), i.e., ΦSh(v) =
ΦSh(v′).

Considering a linear value Φ and a game v, finding all games v′ such that Φ(v) = Φ(v′)
amounts by linearity to solving Φ(v− v′) = 0, i.e., v− v′ ∈ ker(Φ). Hence the solution of
the inverse problem reduces to finding the kernel of the linear operator Φ.

The kernel is easily found if there exists a transform Ψ extending the linear value Φ,
exactly as the interaction transform extends the Shapley value (see (17)). Indeed, the
kernel is just the space spanned by the vectors fS of the corresponding basis with |S| > 1.
We illustrate this method with the Shapley value. For any game v, its epxression in the
basis induced by the interaction transform is:

v =
∑

S∈2X

Iv(S)bIS =
∑

i∈X

ΦSh
i (v)bI{i} +

∑

|S|>1

Iv(S)bIS,

which implies

v ∈ ker(ΦSh) ⇐⇒ v =
∑

|S|>1

Iv(S)bIS

i.e.,

ker(ΦSh) =
{ ∑

|S|>1

λSb
I
S | λS ∈ R

}
.

In the case where |X| = 3, we obtain, using Table 1:

v(∅) = λ∅ +
1

6
(λ12 + λ13 + λ23)

v(1) = λ∅ −
1

3
λ12 −

1

3
λ13 +

1

6
λ23 +

1

6
λ123

v(2) = λ∅ −
1

3
λ12 +

1

6
λ13 −

1

3
λ23 +

1

6
λ123

v(3) = λ∅ +
1

6
λ12 −

1

3
λ13 −

1

3
λ23 +

1

6
λ123

v(12) = λ∅ +
1

6
λ12 −

1

3
λ13 −

1

3
λ23 −

1

6
λ123

v(13) = λ∅ −
1

3
λ12 +

1

6
λ13 −

1

3
λ23 −

1

6
λ123

v(23) = λ∅ −
1

3
λ12 −

1

3
λ13 +

1

6
λ23 −

1

6
λ123

v(123) = λ∅ +
1

6
(λ12 + λ13 + λ23),
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where λS ∈ R for every S ⊆ {1, 2, 3}.
Let us give a second illustrative example with the Banzhaf value. Consider the fol-

lowing problem: Given a n-dim vector y, find all games v s.t. ΦB(v) = y. The set of
solutions is simply the set of games of the form

v = vy + w, with w ∈ ker(ΦB),

and vy is any game s.t. ΦB(vy) = y. Since the Banzhaf interaction transform generalizes
the Banzhaf index, we have

ker(ΦB) = Sp{bIBT , |T | > 1}

with bIBT (S) = (1/2)|T |(−1)|T\S|, and Sp denotes the space spanned by the vectors. Now,
vy can be obtained as the inverse transform of the game w defined by w({i}) = yi for all
i ∈ X , and w(S) = 0 otherwise. This yields by (8):

vy(S) =
1

2

(∑

i∈S

yi −
∑

i6∈S

yi

)
.

In the case where there is no known transform which extends the linear value under
consideration, a general method is given by Faigle and Grabisch (2014), consisting in the
following steps:

(i) Select a basis E = {e1, . . . , ek} of the range Φ(R2X ).

(ii) Find set functions b1, . . . , bk ∈ R2X such that Φ(bi) = ei, i = 1, . . . , k.

(iii) Complete the independent set {b1, . . . , bk} to form a basis B = {b1, . . . , b2n} of R2X .

(iv) Compute the coordinates ǫ
(j)
1 , . . . , ǫ

(j)
k of Φ(bj) in E for j = k + 1, . . . , 2n.

(v) Compute bΦj = bj −
∑k

i=1 ǫ
(j)
i bi for j = k + 1, . . . , 2n.

Finally, the basis of the kernel is {bΦk+1, . . . , b
Φ
2n}.

7 Alternative expressions of the Choquet integral

A second application of Lemma 1 is to obtain various equivalent expressions of the Cho-
quet integral. Let v be a game onX , and f : X → R+ a real-valued nonnegative mapping.
The Choquet integral (Choquet, 1953) of f w.r.t. v is defined by

∫
f dv =

∫ ∞

0

v({x ∈ X | f(x) ≥ α}) dα (18)

which yields in the discrete case (|X| = n):

∫
f dv =

n∑

i=1

(fσ(i) − fσ(i−1))v({σ(i), . . . σ(n)})

where σ is a permutation on [n] such that fσ(1) ≤ fσ(2) ≤ · · · ≤ fσ(n), and fσ(0) = 0.

12
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Remark 1. Usually, the Choquet integral is defined w.r.t. a capacity, that is, a game
which is monotone with respect to set inclusion. However, it is not possible to extend
the definition to arbitrary set functions ξ, i.e., such that ξ(∅) 6= 0. Indeed, if ξ(∅) 6= 0,
it is easily seen from (18) that the integral becomes unbounded.

The Choquet integral is positively homogeneous but not additive in general, i.e.,∫
(f + g) dv 6=

∫
f dv +

∫
g dv. However, an interesting feature of this integral is that it

is linear w.r.t. the game:

∫
f d(v + αv′) =

∫
f dv + α

∫
f dv′.

Expressing v in some basis, it is then possible to get the expression of the Choquet integral
w.r.t. the corresponding transform.

Let Ψ be a linear invertible transform, and {bΨA}A∈2X be the corresponding basis of
set functions. Due to Remark 1, one has to be careful because many bases are composed
of set functions which are not games. Therefore, some adaptation is necessary. From a
basis {bΨA}A∈2X , we build a basis of games {b′ΨA }A∈2X\{∅} as follows:

b′ΨS (T ) =

{
bΨS (T ), if T 6= ∅

0, otherwise
(S ∈ 2X \ {∅}).

Then, from the linearity of the integral, for every f ∈ RX and every game v,

∫
f dv =

∫
f d

(
∑

∅ 6=A⊆X

Ψv(A)b′ΨA

)
=

∑

∅ 6=A⊆X

Ψv(A)

∫
f db′ΨA .

It is therefore sufficient to compute
∫
f db′ΨA for every A ⊆ X , A 6= ∅. One obtains the

following expressions, for the main bases:

• For the Möbius transform: ∫
f duA =

∧

i∈A

fi (19)

• For the co-Möbius transform:
∫

f dǔ′
A = (−1)|A|+1

∨

i∈A

fi.

• For the Fourier transform:

∫
f dχ′

A = fσ(n) + 2

|A|∑

j=1

(−1)jfij

with A = {i1, . . . , i|A|} and fi1 > · · · > fi|A|
.

13
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Equation (19) is well-known and was first proved by Chateauneuf and Jaffray (1989) (also
by Walley (1981)), extending a result of Dempster (1967)).

There is no simple expression for the case of the interaction transform, although such
an expression exists and has been obtained through a different method (Grabisch and
Labreuche, 2002):

∫
f dv =

∑

A⊆X

(
∑

K⊆X\A

B|K|I
v+(A ∪K)

)
∧

i∈A

fi

+
∑

∅ 6=A∈2X

(−1)|A|+1

(
∑

K⊆X\A

B|K|I
v−(A ∪K)

)
∨

i∈A

fi (20)

where

Iv
+

(A) =

{
Iv(A), if Iv(A) > 0

0, otherwise
, Iv

−

(A) =

{
Iv(A), if Iv(A) < 0

0, otherwise
(A ∈ 2X).
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