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Abstract

We propose a theory of strategic voting under “Commitee Approval”:
a fixed-sized commitee of M members is to be elected; each voter votes for
as many candidates as she wants, and the M candidates with the most
votes are elected. We assume that voter preferences are separable and
that there exists a tiny probability that any vote might be misrecorded.

We show that best responses involve voting by pairwise comparisons.
Two candidates play a critical role: the weakest expected winner and the
strongest expected loser. Expected winners are approved if and only if
they are preferred to the strongest expected loser and expected losers are
approved if and only if they are preferred to the weakest expected winner.

At equilibrium, if any, a candidate is elected if and only if he is ap-
proved by at least half of the voters. With single-peaked preferences, an
equilibrium always exists, in which the first M candidates according to
the majority tournament relation are elected.

1 Introduction

In many instances, societies choose, by voting, a group of representatives. Vot-
ing rules for these kinds of elections are more complex than rules designed to
elect one and only one candidate, and are much less studied in the theoreti-
cal literature. Cases of interest include Parliamentary elections and committee
selection.

Parliamentary elections often proceed by dividing the electorate in sub-
groups, usually on a geographical basis, and by electing one or several MEPs
in each such district (Blais and Massicotte 2002). The number of delegates is
usually fixed for each district, although it may be adjusted in view of the overall
results (such is the case in Germany). The set of candidates is usually structured
with party lists and, possibly, independent candidates.



Committee selection offers another kind of complexity because, contrary to
most Parliamentary elections, some structure is often imposed on the set of
elected candidates. For example the chosen committee must reflect some gender
or status balance.

The present paper will concentrate on the simplest case where the number of
seats to be filled is fixed and has no particular structure, and where the electorate
is not divided (and the voters are anonymous). Then a natural rule is that
each voter can vote for several candidates and the candidates with the largest
numbers of votes are elected. Under “Plain Committee Approval” each voter
can vote for as many candidates as she wishes, but can only give one vote to each
candidate (no “cumulative voting”). Under “Limited Committee Approval” a
voter cannot cast more than a fixed number of votes (usually set to the number
of candidates, but this needs not be). The contribution of this paper is twofold.
First, since there exists so far no complete and testable theory of strategic voting
under Committee Approval at the individual level (best-responses), we propose
such a theory, drawing on previous works for the standard case of Approval
voting for electing a single candidate (Laslier 2009, Nunez 2010a). Second, we
derive equilibrium predictions.

Related literature The literature on Committee Approval voting has
mainly focused on the different ways approval-type ballots can be counted for
electing a committee (of fixed size or not). Electing the candidates with the
largest approval scores is the simplest but not the only idea one can have (Fish-
burn 1981). Kilgour (2010) surveys the many proposals which have been made,
and Laffond and Lainé (2010) survey the representativeness issue under an as-
sumption of separable preferences. This issue of the representativeness of an
electorate by a committee is often tackled in the theoretical literature under the
assumption that the committee size is not fixed, which makes the problem sim-
ilar to a multiple referendum problem. In this vein, see Gehrlein (1985), Bock
et al. (1998), Brams et al. (1997, 1998), Brams et al. (2007). We here focus on
the case — often met in practice — of a fixed-size committee.

The issue of the voter’s behavior (which ballot to cast?) is not addressed by
the previously mentioned studies and one question left pending is to describe
“sincere” and “rational” behavior in these elections and to evaluate the level
of strategic voting induced by such a voting rule. One exception is Cox (1984)
who studies the special case of multi-member districts with two members to be
elected and three candidates, when the voter is allowed to cast up to two votes.
He shows that depending on the context (anticipations about other voters’ be-
havior and own preferences), strategic voting in such an election entails either
voting for one’s preferred candidate only, or voting for one’s two preferred can-
didates. In this paper, we will characterize best-responses for any configuration
about the number of seats, the number of candidates, and the maximal number
of votes a voter is allowed to cast. We will also consider equilibrium predictions.



Section 2 describes the model. We will assume that voter preferences over
committees are separable and that there exists a tiny probability that any vote
might be mis-recorded. This latter assumption will guarantee that the voter
is uncertain about the realized scores of the candidates, even when she knows
other voters’ strategies (as is standard in strategic voting models, see for example
Myerson and Weber 1993)). Section 3 provides some preliminary results on the
probability of some critical pivot events. Focusing first on the case of “Plain
Committee Approval”, Section 4 studies best responses and Section 5 studies
equilibria. Section 6 is devoted to the case where a limit is set on the number
of candidates a voter can approve (“Limited Committee Approval”). Section
7 concludes. Long proofs are relegated in an appendix. A companion paper
(Lachat et al. 2014) tests the theory on Swiss data.

2 A model of Committee Approval

In the first sections of the paper, we will focus on the case of “Plain Committee
Approval”, where each voter can vote for as many candidates as she wishes,
with no limit on the maximal number of votes she can cast. The case of “Limited
Committee Approval” will be tackled in Section 6.

(Plain) Committee Approval M seats have to be filled. The set of
candidates, of size K > M, is denoted by €. There are N voters, i =1, ..., N.

Voters vote by casting votes for candidates; they can give at most one vote
to a candidate (no "cumulative voting") but can vote for several candidates.
The M candidates with the highest numbers of votes are elected. Ties, if any,
are randomly broken.

Voter preferences Voters preferences over committees are supposed to be
separable across candidates in the following sense: Voter i has a utility function
u; for candidates, and the utility for the committee C'is the sum ) - u;(c),
where C' is any subset of size M of the set of candidates €. We assume for
simplicity that preferences over the set of candidates (as described by the utility
function w;) are strict.

Preferences are common knowledge and there is no uncertainty about the
size (N) of the electorate.

Voter strategies For i =1,..., N, a strategy for voter ¢ is a vector s; =
(Sic)pce € 10,1}, where for all ¢, s;. = 1 if voter i casts a vote in favor of
candidate ¢, and s; . = 0 if voter ¢ does not cast a vote for candidate ¢ (we will
also use the terminology “casts a vote against candidate ¢” or simply “votes
against ¢”).

Small mistakes As is standard in strategic voting models (see for exam-
ple Myerson and Weber 1993), we assume that the voter is uncertain about the



realized scores of the candidates, even when she knows other voters’ strategies.
Uncertainty is modelled as follows. As described above, preferences are common
knowledge and there is no uncertainty about the size (V) of the electorate. But,
for any vote which is actually cast for a candidate by a voter, there is a tiny
possibility of mistake, a mistake resulting in that vote not being recorded. Con-
versely, even if a voter has not voted for a candidate, there is a tiny probability
that this is wrongly recorded as a vote. We assume that the mistakes are made
independently across voters and across candidates.!

More formally: We suppose that there exists a number £ > 0 such that, for
each ballot cast by a voter, and for each candidate c:

e if ¢ votes for ¢, this vote is recorded with probability (1 — ¢), and with
probability € this vote is not recorded;

e if ¢ does not votes for ¢, this is correctly recorded with probability (1 —¢),
and with probability € a vote for candidate c¢ is instead recorded.

For example, with K = 3 candidates, assume that a voter has cast the ballot
(1,1,0). Given our assumptions about the small mistakes made while recording
the votes, this ballot is correctly recorded as such with a probability (1 —¢)3, it
is recorded as (0, 1,0) with probability (1—¢)?-¢ (one mistake), ..., and recorded
as (0,0,1) with probability €3 (three mistakes).

These assumptions guarantee that, for any profile of ballots cast by the
voters, all electoral outcomes (realized scores of candidates) have a positive
probability.

Voters’ beliefs Preferences and the structure of the game, including the
possibilities of mistakes described above, are common knowledge among the
voters.

We will assume that the voters in their computation of best responses neglect
the possibility of three-way ties; a cognitive assumption which seems realistic
for an individual taking part to a large election.

When needed we also assume that the expected scores of any two candidates
differ by at least three votes. These assumptions are well suited for large elec-
tions (typically, political ones) but would not be reasonable if one wanted to
study small electorates.

3 Pivotal events with minimal requirements

In order to determine her best response against the other voters’ strategies, the
voter will have to estimate the probability of the different events where her vote
might be pivotal (that is, change the outcome of the election). Before turning
to the study of best responses (Section 4) and equilibria (Section 5), we start
by computing the order of magnitude of some critical pivot events. We will first

IThere is no independence across candidates in Nuiiez (2010b).



introduce the notion of minimal requirement, then use it to estimate the order
of magnitude of some critical events involving ties between candidates (Lemma
1 and Lemma 2).

Distribution of realized scores For a profile of ballots s = (s;),_; n
and for a candidate ¢, denote by 5(c) = ). s; . the number of voters who Vote
for ¢, and by S(c) the random variable describing the realized score of candidate
¢ (taking into account the possibility of mistakes) obtained from these ballots.

For any two candidates ¢ and ¢/, S(c) and S(¢) are independent random
variables, with expectations §(c) and §(c’) respectively. Note that the random
variable S(c) can be written as:

S(c) = Z [Si,c(1—wie) + (1= sic)wic], (1)
K3
where the w; ¢, for i =1,..., N and ¢ € €, are N - K independent random draws
which take value 0 with probability (1 — ¢) and 1 with probability e. Here,
w; . = 1 means that a mistake is made when recording voter i’s vote about
candidate c.
Write |w| = 3,  wi,c the number of mistakes corresponding to the elemen-
tary event w. The probability of any elementary event w is:

k=NK-—|w

(R DG (e EELC

k=0

Notice that this is a polynomial in & whose first term of lowest degree is &/l
when the probability of mistake £ goes to zero, the probability of the elementary
event w is asymptotically equivalent to &/l

Definition of the “requirement of an event" Any event E can be
expressed with the help of the elementary events w and thus has a probability
which is a polynomial in . For any event F, let us denote by A(E)a’”(E) the
term of lowest degree of this polynomial, where m(FE) is the smallest number
of mistakes required to realize E, and A(FE) is the number of ways to realize
E with m(FE) mistakes. The exponent m(E) will be called the requirement
of event F. Note that, from (2), for any elementary event, m(w) = |w| and
Alw) =1.

The requirement of an event is an indicator of how unlikely this event is
to happen. Indeed, between two events E and E’ of requirements m and m/
with m < m/, the probability of E’ is “vanishingly small” compared to the
probability of F, meaning that when ¢ tends to 0, the ratio Pr[E’]/ Pr[E] tends
to 0. This concept of requirement will play an important role when deriving
best responses.

Computation of the requirement of critical events The following
two lemmas will give some insights about the requirement of some critical events
involving ties between candidates.



Lemma 1 Given a profile of strategies (ballots) s = (s;),_; - for any two
candidates ¢ and ¢, the requirement of the event “S(c) = S(')"is [5(c) —35(c')].

Lemma 1 states that given the ballots cast by the voters, the probability of
candidates ¢ and ¢’ obtaining the exact same realized scores is asymptotically
equivalent to e/¥(©) =5l where [§(¢)—35(¢’)] is the absolute value of the difference
in expected scores between candidate ¢ and candidate ¢’. The proof of the lemma
is provided in the appendix (section 8.1).

Consider now any candidate c. We will say that realized scores are such that
candidate c is caught in an exact tie for election if whether c is elected or not
has to be determined by a random draw (at least two candidates, including c,
tie for the M-th position). The following lemma provides the requirement of
such an event, for all candidates.

Lemma 2 Given a profile of strategies s = (Si)izl,...,N’ assume that candidates
are labelled in such a way that:

S(e1) > S(c2) > ... >S(em) > S(em+1) > ... > S(ex).

(i) If k < M, the requirement of the event “Candidate cy, is caught in an exact
tie for election” is S(c) — S(car41). Besides, any event of minimal requirement
where cy, is caught in an exact tie for election involves a tie with candidate cpryq.

(ii) If k > M + 1, the requirement of the event “Candidate cy is caught
in an ezxact tie for election" is S(cpr) — S(ck). Besides, any event of minimal
requirement where ci is caught in an exact tie for election involves a tie with
candidate cpy.

Note the crucial role played by two candidates: c¢j; and cpr41. The former
is the candidate whose expected score is the M-th largest — we will call this
candidate the weakest expected winner and the latter the candidate whose ex-
pected score is the (M + 1)-th largest — we will call this candidate the strongest
expected loser. The proof of the lemma is provided in the appendix (section 8.2).

4 Best responses

4.1 Characterization

We first describe a voter’s, say voter i’s, best response against a profile of strate-
gies s_; = (sj)j# by the other N — 1 voters. Given this profile s_;, for all c,
denote by s_;(c) = 3_,_; Sj,c the number of voters (other than voter i) who vote
for ¢. Given our model of uncertainty, $_;(c) is the expected score of candidate
¢, not taking into account the vote of voter ¢. Proposition 3 describes the voter’s
best response in the case where the expected vote difference between any two
candidates is at least 3.



Proposition 3 Let 5_; denote the vector of expected scores obtained by the
candidates from the votes of all the voters except voter i. Let the candidates be
labelled in such a way that:

S_i(c1) > s-i(c2) > ... > 5 i(epr) > s—ilem1) > oo > S—i(ek)- (3)

Assume that the expected vote difference between any two candidates is at least
3, that is, S_;(ck) —5_i(ckgy1) =3 forallk=1,,.., K —1.
For ¢ small enough, the best response of voter i is the following:

e For1 <k < M: Voteri votes for ¢y if and only if u; (cx) > u; (epr41),
o for M+ 1<k<K: Voter i votes for ci if and only if u; (ci) > w; (cpr)-

With assumption (3) regarding the ranking of candidates, the first M can-
didates are the expected winners, and the other candidates are the expected
losers.?

Proposition 3 states that the voter should vote for an expected winner if and
only if she prefers that candidate to the candidate ranked M + 1, that is, the
strongest expected loser. Symmetrically, the voter should vote for an expected
loser if and only if she prefers that candidate to the candidate ranked M, that
is, the weakest expected winner. Best responses are thus quite easy to describe:
they entail voting by pairwise comparison with those two critical candidates:
the strongest expected loser and the weakest expected winner.

The proof of the proposition is presented in the appendix (section 8.3); but
the intuition is quite simple. It mostly derives from Lemma 2. Lemma 2 states
that the requirement of the event “Candidate cj is caught in an exact tie for
election" is 8(cy) — 8(carq1) if K < M and S(cps) — 8(cg) if k> M +1.3

e Therefore, the most likely tie for election occurs between candidates cps
(the weakest expected winner) and cpr41 (the strongest expected loser),
since the requirement of this event is S(cpr) —S(epr41). If voter i is pivotal,
it will most likely be in deciding who between candidate cj; and candidate
car+1 will be elected.* Therefore, if she prefers candidate cjs to candidate
eyvi+1 (ui(ear) > wi(epra1)), she should vote for candidate c¢p; and not
vote for candidate cps41. Similarly, if w;(cpr) < wi(cp41), she should

2The additional assumption that the expected vote difference between any two candidates
in §_; is at least 3 guarantees that the expected winners and losers in the election remain the
same whatever the ballot chosen by voter .

3Lemma 2 takes into account the votes of all voters, including voter i. To derive the
best response of voter ¢, the argument should be adjusted to take into account that voter ¢
considers only the votes of other voters as given. These adjustments are made in the proof
in the appendix, but the intuition about the orders of magnitude of the differet pivot events
remains similar.

4Lemma 2 deals with exact ties for election. A voter can also be pivotal in case of a near tie
(one vote margin) for election between two candidates. Noting that a requirement of a near
tie is no larger than the requirement of an exact tie plus one, the arguments carry through
when explicitly taking into account the possibility of near ties (which is done in the proof).



vote for candidate cpry1 and not vote for candidate cp;. Her decision
about candidates cjs and ¢ps41 is thus decided by this pairwise comparison
between the two candidates.

e Consider now candidate ¢, k < m, an expected winner. If candidate k is
caught in a tie, it will most likely be against candidate cpr41 (Lemma 2).
Therefore the voter should vote for candidate ¢ if and only if u;(cg) >
u;(cpr41): the vote for candidate ¢y, if decided by a pairwise comparison
with the strongest expected loser cpry1.

e Similarly, if candidate ¢, k > M + 1, is caught in a tie, it will most likely
be against candidate cjs, and therefore the voter should vote for candidate
¢k if and only if u;(cx) > w;(car): the vote for candidate ¢, if decided by
a pairwise comparison with the weakest expected winner cp,.

4.2 Properties of best responses: Sincere and non-sincere
voting

According to the usual definition in the Approval Voting literature (Brams
1982), a ballot is “sincere” for a voter if, when the voter approves a candi-
date c, she also approves all the candidates she strictly prefers to ¢. Proposition
4 characterizes the parameters of the electoral context such that a best response
always entails casting a sincere ballot, whatever the voter’s preferences and the
other voters’ strategies.

Proposition 4 Consider the best response function described in Proposition 3,
fore — 0.

o IfM =1 or M= K-—1, the best response always entails casting a sincere
ballot, whatever the voter’s preferences and the other voters’ strategies.

o Otherwise, there exists voter’s preferences and other wvoters’ strategies,
such that the best response entails casting a non-sincere ballot.

Laslier (2009) noticed that a best response always entails sincere voting
when there is one single candidate to elect (M = 1). Cox (1984) noticed that
a best response always entails sincere voting when there are two candidates to
be elected from a set of three candidates (M = 2 and K = 3).> Proposition 4
generalizes the result by Cox (1989) by showing that this holds true whenever
the number of running candidates exceeds only by one the number of candidates
to be elected (M = K —1).

5To be precise, the voting rule studied by Cox was slightly different from the one considered
here, since voters are only allowed to cast up to two votes ("Limited Committee Approval").
Yet, it is straightforward to check that strategic voting implies never voting for one’s least
prefer candidate, therefore, when there are only three candidates, a best response entails
casting at most two votes. The two rules are therefore equivalent from a strategic point of
view, for three candidates.



But it also shows that these two cases (M =1 and M = K — 1) are rather
specific in the sense that in any other configuration about the number of seats
and the number of candidates, there will be situations (preferences and antici-
pations about other voters’ behavior) such that strategic voting is non-sincere.
The intuition for the existence of non-sincere ballots is that the strategic recom-
mendation entails voting by pairwise comparisons, but that expected winners
and expected losers are compared to two different candidates (the strongest ex-
pected loser and the weakest winner respectively). Note that is all candidates
where compared to the same benchmark, sincere voting would result (as is ba-
sically the case when M = 1: all candidates -but himself- are compared to the
expected winner).

The proof of the proposition is in the appendix (section 8.4).

5 Equilibrium

5.1 Characterization

Let us now study the nature of equilibria consistent with the strategic behavior
described in Proposition 3. For simplicity, we assume that N is odd .

Denote by N(c, ) the number of voters who prefer® candidate ¢ to candidate
c. Fori=1,.., N, denote by N_;(c,c’) the number of voters, other than voter
1, who prefer candidate ¢ to candidate ¢’. We assume that for all 7 and for
all (¢,c), (¢",c"), with (¢,c') # (¢”,"), the following condition is satisfied:
IN_i(c,c’) — N_;(¢",d")| > 3. Clearly, this is not totally general. But this
simplification is reasonable when the number of voters is large. The following
characterization of an equilibrium will be useful in the sequel.

Proposition 5 A profile of strategies (s;);_; 5 s a pure equilibrium if and
only if, up to a permutation in the candidates; there erists a partition of the set
of candidates into two candidates (cpr et cppi1) and two subsets of candidates,
{c1,..yem—1} and {cpr42, ..., cx } such that:

1. N(cem,em+1) > N(em+, em),

2. k<M —= N(Ck,CM_H) > N(CM,CM_H),
S k>M+1— N(Ck,CM) < N(CM+1,CM),
4

. Fori=1,...,N, s; is the best response described in Proposition 8 against
expected scores (from the N — 1 other voters)

si(ck) = N-oilek,emr) if k< M,
55 (Ck) = N—i(ckj7CM) if k> M+ 1.

Then the (expected) winners are the members of the set {ci,...,car}. The
expected scores are $(ck) = N(cg,cm+1) if K < M and 5(cx) = N(ck,cm) if
k>M+1.

6Remember we assume strict preferences over the set of candidates.




This characterization makes clear a strong link between approval voting for
a committee and a notion of “majority rule”, as noted in the following remark,
whose transparent proof is provided.

Remark 6 In a pure equilibrium (if any), a candidate is an expected winner if
and only if he is approved by at least half of the voters.

Proof. Consider an equilibrium, where the (expected) scores of the candi-
dates are:

/5\(61) > §(CQ) > > /S\(C]w) > /S\(C]erl) > > /S\(CK).

From the characterization above, the expected scores are 5(ci) = N(ck, car41) >
N(CM,CM+1) if k< M and §(C[€) = N(Ck,CM) < N(CM+1,C]\{) ifk>M+1.

From condition (1) in the characterization of a pure equilibrium: N(cas, car4+1) >
N(eprg1,enr). Since N(epr, enrv1)+N(epr+1, ear) = N, this implies that S(cps) =
N(epr,epm1) > NJ/2 and S(epr41) = N(ear, emr) < NJ2.

Thus that s(ck) > N/2 for all k < M and §(c) < N/2forallk > M+1. m

An alternative interpretation: Trembling hand perfection There
is a strong link between a pure equilibrium with the model of small mistakes
introduced in section 2 and the concept of trembling hand perfect equilibrium.
Trembling hand perfect equilibrium is a refinement of Nash equilibrium due
to Selten (1975). A trembling hand perfect equilibrium is an equilibrium that
takes the possibility of off-the-equilibrium play into account by assuming that
the players, through a “slip of the hand" or tremble, may choose unintended
strategies, albeit with small probability. One may check that a pure equilibrium
in our game with recording mistakes is a trembling hand perfect equilibrium in
the game with no recording mistakes (with trembles occurring with probabilities
consistent with the model of small mistakes described here).

5.2 Existence and uniqueness

The following two remarks provide the theoretical answers to the questions of
existence and uniqueness of equilibrium.

Remark 7 Non existence of equilibrium. Whenever M > 1 and K >
M + 2, there may exist no pure equilibrium.

Proof. Take M = 1. It is easy to check that a pure equilibrium exists if
and only if there exists a Condorcet winner. Indeed, from the characterization
of equilibrium above (Proposition 5), there must exist some candidates cy, ¢y
such that conditions 1 and 3 are satisfied (condition (2) is empty). Condition
(1) yields N (e1,¢2) > &. Condition (3) yields k > 3 = N(cx,c1) < N(cz,c1)
Since N(cz,¢1) < %, one sees that ¢ is a Condorcet winner. Since a Condorcet
winner may not exist, there will be profiles of preferences for which there is no
pure equilibrium as soon as there are at least three candidates.

10



For M > 2, counter-examples are easily found by considering a preference
profile with M — 1 candidates who Pareto-dominates all the others, and no
Condorcet winner among the remaining candidates, which is possible as soon
as there are at least M + 2 candidates. m

Remark 8 Multiplicity of equilibria. For M = 1, if there is an equilibrium,
it 1s unique. For M > 2, there may exist several pure equilibria.

Proof. Take M = 2 and K = 4. Let a,b,c and d denote the candidates.
Consider the following matrix g.

gl a b c |d
al|l O 4 5 11
b|—-4] 0 2 |6
c|=5-2] 0|3
dl-1]-6]-3]0

We know from Debord (1987) that there exists a preference profile for which
the majorities N(z,y) are positive affine transformations of g(x,y). Since our
characterization of equilibrium only involves comparisons between the numbers
N(z,y), we do not need to know exactly the preference profile and we can simply
use the matrix g.

One can check that the following three situations are equilibria:

a (5) b (6) c(3)
b(2) a (1) a (1)
c—2) 'l a0l aED
d (—6) ¢ (=5) b(—4)

In the first case, a and b are expected winners with respectively 5 and 2 (relative)
votes, and ¢ and d are rejected with respectively —2 and —6 votes. These
numbers are precisely the pairwise scores of a and b compared to ¢, and of ¢ and
d compared to b. This situation is thus an equilibrium. The reader can check
that the other situations, in which the elected candidates are again a and b, or
are ¢ and a are also equilibria.

The same example can easily be extended to larger values of M by adding
Pareto-dominant candidates.

For M =1, it was proven in the proof of Remark 7 that a pure equilibrium
exists if and only if there exists a Condorcet winner. Without indifferences or
ties in the vote matrix, there cannot be two Condorcet winners. Denote by ¢*
the unique Condorcet winner. At equilibrium, the expected score of ¢ # ¢* is
N(c,c*). Denoting by ¢ the candidate such that co = argmax..+ N(c, ¢*), the
expected score of ¢* is N(c*, ¢a). So that uniqueness of pure equilibrium holds.
|

11



5.3 Majority-transitive and single-peaked preference pro-
files

If the majority tournament is transitive, a pure equilibrium exists for any com-
mittee size. More exactly the following result holds.

Proposition 9 Suppose that there exists a set of M candidates such that any
candidate in this set beats, according to pairwise-majority voting, any candidate
not in this set. Then there exist an equilibrium in which these M candidates are
elected.

Proof. Let C be the set of candidates that beat the others, and let D = €\C.
Let ¢ € C and d € D be two candidates such that

Nle,d) = amin N(z,y)
We will check that the expected scores vector defined by §(z) = N(z,d) for all
x € C and 5(y) = N(y,c¢) for all y € D is an equilibrium. By definition of C,
for all x € C, s(x) > s(c) = N(c,d). Likewise, for all y € D, s(y) = N(y,c) =
N—N(¢,y) < N—=N(c,d) = N(d,c). Moreover, N(c,d) > N/2 > N(d, c) hence
5 correctly ranks all the candidates. m

So existence of equilibrium is guaranteed in that case, but there can be many
equilibria. When the majority tournament associated with the preference profile
is transitive, the proposition applies to the M first candidates according to the
majority tournament order, and thus an equilibrium exists for any M. The
example we used previously (Remark 8) to demonstrate the possible multiple
equilibria is in fact a transitive tournament, as can be easily seen on the matrix
g. Notice that the example shows that different equilibria may not only results
in different (expected) scores vectors but also in different elected committees.

A nice application is the case of single-peaked preferences. This point is
stated in a separate proposition. It can be derived from the previous one, but in
the appendix we provide a direct proof, which provides a more detailed result:
there can be at most two equilibria, and the elected committee is unique.

Proposition 10 Assume that the candidates can be ordered (in a one-dimensional
space) in such a way that voters have single-peaked preferences over the set of
candidates. In that case, there exists one or two pure equilibria, and the expected
winners are always the first M candidates according to the majority tournament.

Proposition 10 highlights again the strong relationship between equilibrium
under strategic committee approval and the majority rule. Remark 6 stated
that in a pure equilibrium, all expected winners are approved by a majority of
voters. Proposition 10 states than when preferences are single-peaked, the first
M candidates according to the majority tournament are expected winners at
equilibrium. This makes committee approval a normatively appealing rule to
elect a committee, in the single-peaked case.
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6 Limited Approval

This section briefly tackles the rule called “V-limited Approval” where a voter
can only approve up to V' candidates. The case V =1 is thus simple Plurality
rule. Plain Committee Approval corresponds to any V larger than K, the
number of candidates. The case V' = M (the number of votes equals the number
of seats) seems natural but does not seems to have any specific theoretical
property, as will be seen.

We keep the same model as in Section 2, with a slight change in the de-
finition of the strategies. For i = 1,..., N, a strategy for voter i is a vector
S; = (Sivc)cec € {O,l}K, such that ) ., 8ic <V, where for all ¢, s; . = 1 if
voter ¢ casts a vote in favor of candidate c, and s; . = 0 if voter ¢ does not cast a
vote for candidate c. We keep the description of mistakes made when recording
the votes for candidates exactly the same as in Section 2 (in particular, we keep
the assumption that mistakes are independent across candidates, meaning that
we do not rule out the possibility that strictly more than V' (positive) votes are
recorded).

6.1 Best responses

Proposition 11 Let 5_; denote the vector of expected scores obtained by the
candidates from the votes of all the voters except voter i. Let the candidates be
labelled in such a way that:

§_i(61) > /S\_i(Cg) > > /S\_i(CM) > /S\—i(CM—&-l) > > g_i(CK).

Assume that for any pair of candidates (c,c), [$—;(c) —5_;(c1)| > 3.
For € small enough, the best response of voter i, when he has at most V wvotes,
can be characterized as follows:

1. The voter identifies the set of expected winners (c1 to cyr) and that of
expected losers (cpr41 to ci ).

2. If1 < k < M, define candidate c’s “main contender” as cprr1 and if
M+1<k<K, define c’s “main contender” as cy;.

3. The voter ranks the candidates according to (the inverse of ) their distance,
in terms of expected votes, to their main contender.

4. The voter considers all the candidates in turn, according to the priority
order defined at the previous step. As long as she does not hit the vote-
budget constraint (V wvotes), she votes for a candidate if and only if her
utility for this candidate is larger than her utility for its main contender.

This Proposition is a generalization of Proposition 3, the only difference
being, the appearance, in Step 4, of the vote constraint. The proof of Proposition
11 follows the same reasoning as the proof of Proposition 3 (see Section 8.3,
Remark 12).
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As noticed above, the only difference between "Plain Approval" ans "Limited
Approval" is the appearance, in Step 4, of the vote constraint. Given the limited
number of votes, the voter has to consider the candidates lexicographically, in
the order defined in Step 3. In this order, candidates are ranked according to
their distance to their most likely contender (in numbers of expected votes).
This is equivalent to ranking them by decreasing probability of them being
caught in a tie for election. Indeed, as noticed when describing the intuitive
content, of Proposition 3, the most likely pivot-event is a tie between the two
candidates who are expected to rank M-th and M+1-th (here candidates cps
to car+1). What is the next most likely pivot-event? Note that all the other
pivot events imply some order reversals among candidates, compared to the
expected order. Which is the next pair of candidates between which the voter is
most likely to be pivotal? Our assumptions imply that it will be either the pair
{err,ceps2} or the pair {car—1,cp41}, depending on whether the difference in
expected scores between cp; and cpy42 is larger or smaller than the difference in
expected scores between cp;_1 and cpr41. Indeed, they are the two pairs which
require the less order reversals compared to the expected outcome. Similarly,
other pivot-events can be ranked by decreasing probability of occurrence.

Note that in that case, there is no reason to expect that the strategic recom-
mendation will entail sincere voting. Indeed, there are now two potential causes
as to why the strategic recommendation might not be sincere:

(1) The expected winners are compared to the strongest expected loser,
whereas the expected losers are compared to the weakest expected winner (note
that is all candidates where compared to the same benchmark, sincere voting
would result — neglecting the constraint on the number of votes). this fact was
exploited to construct counter-examples in the proof of Proposition 4.

(2) The constraint on the number of votes is binding. The voter, if given
the opportunity to cast more votes, would vote for candidates higher in her
preferences. But she has used all her votes on candidates with higher probability
to be caught in a tie for election. One extreme case is M = V = 1 (simple
plurality to elect one candidate), where the voter should vote for her preferred
candidate among the two candidates who are expected to receive the most votes:
she should desert her preferred candidate whenever he is not one of the two main
candidates.

6.2 Equilibrium

Consider the following example with M = 2, K = 4 candidates and 65 voters.
Denote the candidates by a, b, ¢, d. The next Table indicates that, for instance,
35 voters prefer a to b, b to ¢, and ¢ to d.

14



(45) | (10) | (20) | (10)

a* bx c* Cx*
b Cc* d* b
c a b a

d d a d

This preference profile is single-peaked with respect to the order a < b <
¢ < d. Assume that the voters vote for the starred alternatives. In that case,
the resulting expected scores are:

3(b) = 45+ 10 = 55,
3a) = 45,
3(c) = 10420+ 10 = 40,
(d) 20.

The reader can check that the described ballots (voters vote for the starred
alternatives) are in equilibrium if the number of allowed votes is at least two
per voter (V > 2). For example, consider a voter ¢ with the first ranking. If
she expects other voters to vote for the starred alternatives, her anticipations
about expected scores are as follows:

w)
L
>

) w)
L

~ o~ T~
o

) = 44+10 =54,
(a) = 44,

)

)

V)
! )

= 10+ 20+ 10 = 40,
20.

w
!

The weakest expected winner is candidate a and the strongest expected loser c.
According to Step 3 in Proposition 11, the resulting order of priority for consid-
ering the candidates is the following: first, consider the two critical candidates
(a and ¢), second, consider candidate b (whose distance to his main challenger
¢ is 54 — 40 = 14), third, consider candidate d (whose distance to his main chal-
lenger a is 44 — 20 = 24). If V' > 2, the strategic recommendation is to vote for
a and b (preferred to ¢). One can similarly check that if V' > 2, the described
ballots are in equilibrium.

Now suppose that another candidate shows up but that the number of al-
lowed votes is set to two (V' = 2). If the voters stick to the previous strategies,
the new candidate obtains no vote at all, and this is an equilibrium for the con-
strained V' = 2 voting rule. This remark holds true whatever the preferences of
the voters for the new candidate are. For instance this candidate could be the
top choice of all the voters and still not be elected at this equilibrium.

It is not difficult to build such counter examples for any number V' so that one
can conclude that, at least in theory, the Limited Approval voting rule suffers
pathologies similar to that of the Plurality rule (severe coordination problems).
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7 Conclusion

We proposed a model of strategic voting under Committee Approval. This
model requires that the voters know their own preferences and evaluate the
relative likelihoods of the possible electoral outcomes. It rests on a number
of cognitive hypothesis: voters are only interested in the result of the election
(no expressive motives), their have separable preferences, they are essentially
rational, and they neglect three-way ties. All these hypothesis are questionable
but they together have the virtue of producing definite predictions.

Equipped with these predictions, one can tackle positive and normative ques-
tions: Do people really behave like the model suggests? If yes, is it a good
thing? Leaving the positive question to empirical research (see a companion
paper Lachat et al. 2014 for a first test of the theory), this paper provides some
element for a normative discussion.

We noticed that under "Plain Approval" (with no limit on the number of
votes), the equilibrium properties of the model were very much in the spirit of
an implementation of a generalization of the Condorcet principle to the case
of a committee. We find that whatever M > 1, a candidate is elected if and
only if it is supported by more than half of the electorate. Besides, when the
majority tournament is transitive, there exists an equilibrium where the first M
candidates according to the tournament are elected. This extends the finding
by Laslier 2009, which showed that simple Approval Voting, the case M =
1, implements the Condorcet principle in that it elects the Condorcet winner
whenever it exists.

But it should also be highlighted that an important property of Approval
Voting (and of the idea of a Condorcet winner) is lost when we go from M =1
to M > 1.

Suppose that the same political party proposes, in a single-member district
(M = 1), two candidates instead of one, and suppose that the preferences of the
voters are such that the voters are chiefly interested in the parties, so that these
two fellow candidates are ranked next to each other in every voter’s preference.
This manipulation” does not alter the fact that this party has a majority or
not against an other party. In the very same manner, Approval Voting, by
definition, lets the voter vote for several candidates if she wishes to and is thus
immune to vote splitting or candidate duplication.

Now suppose that, in a district with M > 1 seats, all parties send M can-
didates, instead of only one. Then the Condorcet-winning party on its own
will gather all the seats. In other words, candidate duplication is ineffective for
simple Approval Voting but is effective for Committee Approval.

Let us now comment on the differences between "Plain Approval Committee"
and "Limited Approval Committee". We have seen that when the majority

"This kinds of variation in the preference profile has a long history in Choice Theory; see
the “Axiom 2.6" in Milnor (1951), the “Independence of Clones" of Tideman (1987), the
“Composition-Consistency" of Laffond et al. (1996).
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tournament is transitive (in particular, when preferences are single-peaked), the
first M candidates according to the majority tournament are expected winners
at equilibrium. This makes committee approval a normatively appealing rule to
elect a committee in that case. This property in lost whenever there is a limit
on the number of votes a voter is allowed to cast. The example in section 6.2
highlights that, at least in theory, the Limited Approval voting rule suffers from
pathologies similar to that of the Plurality rule, in particular, from potential
severe coordination problems. For instance, there can be situations where a
candidate is the top choice of all the voters, and still is not elected at this
equilibrium. From a normative point of view, "Plain Approval Committee"
seems more attractive than "Limited Approval Committee".

8 Appendix

8.1 Proof of Lemma 1

Take as given the profile of strategies (ballots) of the voters s = (s;),_;
For any two candidates c and ¢/,

N

ERREE)

t=N
Pr[S(e) = S(¢)] = 3 Pr[S(e) = S(¢) = 1],
t=0
and, by independence:
N
Pr(S(c) = S(c)] =Y (Pr[S(c) =t]-Pr[S(c) =1]).
t=0

Without loss of generality, assume that 5(c) > 5(¢).
Consider first the case where t > 3§(c). The first order probability of the

event S(c) =t is
N =35(c) \ _i-5()
( £ 3(c) ) e (4)

Indeed, as one can easily check, the event S(c) = ¢ requires at least ¢t — 5(c)
mistakes, and can indeed result from that precise number of mistakes. One can
and must pick ¢ — $(c) individuals who voted against ¢, among the N —35(c) who
voted against ¢, and change their votes to a YES vote in favor of candidate c.
Thus the probability (4). A similar argument holds for the probability that ¢’
get ¢ votes, therefore, thee first order probability of the event S(c) = S(¢') =t

is:
N —3(c) N =5(¢) ) L2t-3(e)-5(c))
t —35(c) t—3s(d) '

Similarly, when ¢ < §(c’), the first order probability of the event S(c) =t is

( ,S\(igcz ¢ > %)=t (pick 5(c) — t individuals who voted for ¢ among the 3(c)
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who voted for ¢, and change their votes to a NO vote for candidate c), and
therefore the first order probability of the event S(c) = S(¢/) =t is:

(0 ) (1 Yo

)
Last, when 5(¢’) <t < 5(c), the first order probability of the event S(c) =

S(d)=tis: - o
(a2 ) (V28] ).
(

When t > 5(c), 2t — 5(c) — 5(¢’) > 5(c) — 5(¢’) and when ¢t < 5(c), $(c) +
5(c') — 2t > 5(c) — s(c'). Therefore, one can see that the event S(c) = S(¢’) has
first order probability

(80, ) (o)) e

t=5(c’)

)

so that the requirement of the event S(c) = S(¢’) is here 5(c) — 5(¢/). Q.E.D.

8.2 Proof of Lemma 2

Given a profile of strategies (s;),_; . denote by Sy the random variable
describing the M-th largest score obtained from the realized votes of all voters.
Formally: for any vector of realized scores (S(c))cee, let Sy be the unique
number which satisfies the following two conditions:

1. {ece€:S(c) > Sm}| <M -1,
2. {ce€:5(c)>Su}| > M.

Candidates with scores strictly larger than Sy, are elected, candidates with
scores strictly smaller are not elected, and a candidate with score Sy, is elected
either for sure (if he is the only candidate with realized score Sjs) or with some
probability (in case of a tie with other candidates).

The event “Candidate ¢ is caught in an exact tie for election" is the event
“S(c) = Sy and there exists at least one other ¢’ # ¢ such that S(c) = S(¢) =
S

Consider first the case where k£ < M. Let us show that the require-
ment of the event “S(cx) = Sy and there exists at least another k¥’ # k such
that S(ck) = S(ew) = Sy" is S(ek) — S(epr41)-

Note that s(cr) — S(car+1) mistakes (from reference scores §) are sufficient
to reach this outcome. Indeed, if out of the §(c;) voters who did vote for ¢y,
one picks $(cx) — S(epr+1) of them and change their votes (no other mistake
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being made), the resulting scores are S(c) = $(c) for all ¢ # ¢ and S(cx) =
S(epm+1) = S(ear41). Note that this situation involves a two-way tie between
candidate c; and candidate cps41.

One can check that any other vector of mistakes inducing that candidate cj
is caught in an exact tie for election implies at least as many mistakes, therefore
the requirement of the event

“S(cx) = Sy and there exists at least one other k' # k such that
S(Ck) = S(Ck/) = SM"

is exactly s(cx) — S(car41). Besides, one may check that the event

“S(cx) = Sy and there exists at least one other k' # k and k' #
M + 1 such that S(cx) = S(cp) = Su"

(that is, not having candidate cp;41 part of the tie for the Mth position)
involves strictly more mistakes.®

Consider now the case £ > M + 1. Let us show that the requirement
of the event “S(c) = Sn and there exists at least another k' # k such that
S(cx) = S(crr) = Snm" is S(emr) — s(8k).

Note that $(cpr) — S(cx) mistakes (from reference scores §) are sufficient to
reach the outcome S(ci) = S(car) = Sy. Indeed, if out of the N —5(cy) voters
who did not vote for ¢, one picks $(cpr) — $(cx) and change their votes (no
other mistakes being made), the resulting scores are S(c) = s(c) for all ¢ # ¢,
and S(cx) = s(ear) = S(em).

One can check that any other vector of mistakes inducing this outcome
implies at least as many mistakes, therefore the requirement of the event

“S(cx) = Sy and there exists at least one other k' # k such that
S(Ck) = S(Ck/) = SM"

is exactly S(cpr) — S(ck). Besides, one may check that the event

“S(cr) = Snpr and there exists at least one other k&’ # k and k' # M
such that S(c) = S(cx) = Sm"

involves strictly more mistakes.’ Q.E.D.

8Note nevertheless that there are events with requirement 3(cg) —3(car+1) where candidate
¢y, is caught in a tie for election with candidate cpr41 but also with another candidate. Indeed,
consider an event where 5(ci)—S(cpr) votes for ¢, are not recorded, and where §(cps)—5(ear+1)
NO votes for cpr41 are wrongly recorderd as YES votes for cps41, no other mistake being
made. The requirement of this event is S(cy) — S(car+1) and it involves a three-way tie for
election between cps, car41 and cg. As mentionned in the description of the model (Section
2), we assume that the voter neglects this type of events involving three-way ties.

9Here again, note that there exists an event with requirement 3(cas) — 5(cx) involving a
three-way tie for election between cps, cpr41 and c. We will assume that the voter neglects
this type of events involving three-way ties.
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8.3 Proof of Proposition 3

Consider a profile of strategies (ballots) from voters other than voter i: s_; =
(85) ;- Let 5—; denote the vector of expected scores obtained by the candidates
from the votes of all the voters except voter i. Let the candidates be labelled in
such a way that:

/S\_i(Cl) > /S\_i(CQ) > > /S\_i(CM) > /S\—i(cM—&-l) > > /S\_i(CK).

Assume that the expected vote difference between any two candidates are at
least 3, that is, 5;(cx) — Si(cgy1) >3 forall k=1,,..., K — 1.

To start the proof, consider a voter who contemplates any ballot s; she could
cast. Given the strategies s_; of the other voters, the ex post utility that voter
1 derives from ballot s; depends on the realization of the random variable w
describing the mistakes made when recording the ballots (remember w;. = 1
means that a mistake is made when recording voter j’s vote about candidate c,
see section 3). Denote this ex post utility by U;(s;, s—i,w). The expected utility
derived from strategy s; is Y Ui(s;, s—i,w) Prw].

Consider two ballots, s; and s;,the voter prefers s; to s} if and only if

A= ZUi(si, s_i,w) Prjw] — Z U;(s;, s—i,w) Prjw] > 0.

Obviously all the elementary events w such that U;(s;, s_i,w) = U;(s}, s_i,w)
cancel in this inequality so that the sum can run over elementary events such that
Ui(si, 8—i,w) # Ui(s}, s—i,w). This remark, with the fact that the probabilities
Pr[w] are polynomials in & (the requirement of event w being |w|), provides the
technique for finding best responses to an expected score vector 5_; when ¢ is
small. Let m be the requirement of the event U;(s;, s_;,w) # Ui(s}, s—i,w).
Then:

A = Z [Ui(si,s—i,w) — Ui(s}, s—i,w)] Pr(w]
w:Ui(si,s,i,w)7éUi(sg,s,i,w)
|w|=m
+ Z [Ui(si, 8—iyw) — Ui(8}, 5—4, w)] Prlw]
w:Ui(84,5—4,w) 72U (8],5-4,w)
|w|>m

The first part, where the sum runs over elementary events w with requirement
m, is a polynomial in ¢ of leading term Ge™, where

G: Z [Ui($i7$—i7w)7Ui($;7s—i7w)]
w:U; (84,5 4,w)#U;(sh,5—3,w)

|w|=m

does not depend on . The leading term of the second part has a strictly higher
exponent, hence G = lim._,g Ae~"™. It follows that, for £ small enough, the sign
of A is the sign of G. This implies that,in order to know whether s; yields
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larger expected utility than s}, one can restrict attention to those events which
realize U;(s;, s—;,w)—U;(s}, s—;,w) with the smallest number of mistakes. Those
events will involve ties (or near ties, with a one vote margin) for election of some
candidates.

Given s_;, what are the ballots s; and s; and the events w which realize
Ui(si,$—iyw) — Ui(8h, 85—, w)?

A necessary condition is that the ballots s; and s} differ on a candidate which
is caught in a tie (or a near tie) for election. Under our assumption that the
voters in their computation of best responses neglect the possibility of three-way
ties, we will focus on ties and near ties involve two candidates. Two candidates
are said to be caught in an exact tie for election if realized scores given the votes
of all the voters other than ¢, are such that the candidates both receive the Mth
highest scores; they are said to be caught in a near tie for election if realized
scores given the votes of all the voters other than ¢, are such that one of the
candidate get the M-th highest score and the other one less vote. In both types
of events, by voting for one of these candidate but not the other can change the
outcome of the election. Note that the difference between requirement of a tie
and requirement of a near tie, for any given two candidate, is at most two.

Now, what are the events and ballots which realize U; (s;, s, w)—U; (s}, s, w)
with the smallest number of mistakes?

Lemma 2 provides the answer. A straightforward adaptation of Lemma
2 states that, given the strategies s_; of all voters but ¢, the requirement of
the event “Candidate ¢y is caught in an exact tie for election (not taking into
account the vote of voter " is 5_;(ck) — S(epr41) if & < M and 5_;(car) — S(ck)
if kK > M + 1. Therefore, the most likely exact tie for election occurs between
candidates cjs (the weakest expected winner) and cps41 (the strongest expected
loser), since the requirement of this event is $_;(cas) — $—;(car+1). Given our
assumption that the expected vote difference between any two candidates are
at least 3, the most likely near tie (that is, with a one vote margin) for election
occurs between candidates cp; and cps41. Therefore, if voter ¢ is pivotal, it will
most likely be in deciding who between candidate cp; and candidate cp;y1 will
be elected. Therefore, if she prefers candidate cps to candidate casi1 (u;(cpr) >
u;(capr+1)), she should vote for candidate cps and not vote for candidate cps41.
Similarly, if w;(cps) < ui(car+1), she should vote for candidate cpr41 and not
vote for candidate cp;. Her decision about candidates cp; and cpry1 is thus
decided by this pairwise comparison between the two candidates.

What is the next most likely pivot-type event, involving at least one candi-
date other than candidate cj; and candidate cpry17

Again, lemma 2 provides the answer. It will be either a tie (or near tie) for
election between cp;—1 and cpri1, or a tie (or near tie) for election between cpy
and cps42, depending on whether S_;(cpr—1) — S—;i(cpr41) is smaller or larger
than S_;(car) — S—i(cp42). More generally, the results in lemma 2 allow us
to rank the different two-way ties for election involving candidates other than
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candidates cpr and cpr41. Most specifically, if 1 < k < M, define candidate ci’s
“main contender” as cpr41 and if M +1 < k < K, define ¢;’s “main contender"
as ¢p. Then, rank the candidates according to (the inverse of) their distance,
in terms of expected votes, to their main contender. As seen above, candidates
¢y and cprqq share the first rank in this ordering.

Consider now the candidate with the second position (either cp;_1 or epry2),
call this candidate ¢(2). The next most likely pivot-type event involves a tie (or
a near tie) between ¢(2) and its main contender. Therefore, the voter should
vote for ¢(2) if and only if she prefers ¢(2) to its main contender. Remember
that the vote for or against ¢(2)’s main contender (cps or cpry1) has already
previously been decided by the pairwise comparison candidates cy; and cpryq.
Indeed the event “c(2)’s main contender is caught in a tie for election with
candidate ¢(2)" is much less likely than a tie for election between cjs and cpry1.

What is the next most likely pivot-type event, involving at least one candi-
date other than candidates ¢(2), cps and cpr417 Denoting by ¢(k), for 2 < k <
K —1 the candidate with the k’s position in the ordering defined in the previous
paragraph, one may check that the next most likely pivot-type event, involving
at least one candidate other than candidates ¢(2), ¢y and cpryq is a tie (or a
near tie) between ¢(3) and its main contender. Therefore, the voter should vote
for ¢(3) if and only if she prefers ¢(2) to its main contender.

The same reasoning can be generalized by considering all the candidates in
turn. Thus the strategic recommendation described in Proposition 3.

Remark 12 In Section 6, we tackle the rule called “V -limited Approval”, whereby
a voter can only approve up to V candidates. Note that the proof above also
characterizes the best response in that case. Indeed, in that case, the voter
considers all the candidates in turn, according to the priority order defined
in the proof. Note that the assumption that for any pair of candidates (c,c’),
[s_i(c) — s—i(¢t)| > 3 in Proposition 10 guarantees that there is no ambiguity
when defining this priority order. As long as she does not hit the vote-budget
constraint (V wotes), she votes for a candidate if and only if her utility for this
candidate is larger than her utility for its main contender.

Q.E.D.

8.4 Proof of Proposition 4

Consider a profile of strategies (ballots) from voters other than voter i : (s;

Let 5_; denote the vector of expected scores obtained by the candidates f{"
the votes of all the voters except voter i. Let the candidates be labelled in such
a way that:

S_i(c1) > s-i(c2) > ... >5_i(epmr) > s—ilems1) > oo > S—i(ek)-
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e For M = 1 (one person to be elected), the best response described in
Proposition 3 prescribes (i) to identify the critical candidates (¢; and ¢3),
(ii) for k > 2, to approve ¢ if and only if u;(ck) > w;(cy), (iii) to approve ¢;
if and only if w;(c1) > w;(c2). This recommendation prescribes voting for
all candidates strictly preferred to ¢ if u;(c1) < u;(c2), and voting for all
candidates weakly preferred to ¢y if u;(c1) > w;(c). This always produces
a sincere ballot, whatever the voter’s preferences over the candidates. This
property for M = 1 was already noticed in Laslier (2009).

e For M = K — 1, this rule always produces a sincere ballot. Indeed, if
wi(ear) > ui(ear+1) = ui(ck): for any candidate ¢, she should vote for ¢
if and only if she strictly prefers ¢ to cx. This always produces a sincere
ballot. If u;(car) < ui(car+1): the voter should vote for a candidate c if
and only if she weakly prefers ¢ to cx. This always produces a sincere
ballot.

e Whenever M > 2 and K > M + 2, there exist preferences for voter ¢ such
that strategic voting entails casting a non-sincere ballot. Suppose that
voter ¢ has preferences over the candidates such that:

”LLZ(CM) > ui(cK) > ui(cl) > ui(cMH),

which is possible whenever M > 2 and K > M + 2. The voter should
approve the expected winners (cy,ca,...,cpr) if and only if she prefers
them to the strongest expected loser cpry1: given her preferences, this
implies in particular voting for ¢;. She should approve the expected losers
(crr+15 Cr42, -+, € ) if and only if she prefers them to the weakest expected
winner ¢, this implies in particular not voting for cx. One concludes that
such a voter should approve ¢; but not ¢k, although she prefers cx to ¢;.
This results in a non-sincere ballot.

Q.E.D.

8.5 Proof of Proposition 10

In the single-peaked case, the majority tournament is transitive and the M top
candidates according to the majority tournament form a set that we denote
by X. The set X forms a segment (in the set of ordered candidates); the
Condorcet winner is in this set, then the alternative which beats all the others
but the Condorcet winner is located next to the Condorcet winner, either left
or right, etc. Let z; and xr be the left-most and right-most positions in X,
then
X = [SUL, SUR]

Let Y7, be the set of candidates (strictly) at the left of X and let Y be the
set of candidates (strictly) at the right of X, so that Y, U X U Yy is the whole
set of candidates (Y7, or Yg might be empty). Let yr be the right-most position
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in Y7, and yr be the left most position in Yg, and consider the following two
outcomes:

Outcome A: The set of expected winners is X, the weakest expected winner
is xr, the strongest expected loser is yg.

Outcome B: The set of expected winners is X, the weakest expected winner
is x g, the strongest expected loser is ¥, .

First part of the proof. Let us show that one of these two outcomes is
supported by a pure equilibrium.

Consider first outcome A. From the characterization in Proposition 5 (sec-
tion 5.1), outcome A is supported by a pure equilibrium if and only if:

L. N(vayR) > N/27
2. ce X\{zr} = N(c,yr) > N(zL,yr),
3. ceYLUYr\{yr} = N(c,z1) < N(yr,zL).

Since xy, is ranked higher than ygr according to the majority tournament
relation, condition (1) is satisfied.

Since preferences are single-peaked, the majority scores of the candidates in
X against ygr are decreasing from right (zg) to left (x), therefore condition
(2) is satisfied.

Since preferences are single-peaked, the majority scores of the candidates
in Yr\{yr} against x; are decreasing from left (ygr) to right, therefore ¢ €
YR\{yR} - N(C, SUL) < N(yR, SUL).

Since preferences are single-peaked, the majority scores of the candidates
in Y7, against xzy are decreasing from right (yz) to left, therefore property
(ceYr, = N(c,zr) < N(yr,zr)) is true if and only if N(yr,zr) < N(ygr,zr).
In words, the latter condition states that y; is weaker than yr against xy,.

One therefore concludes that outcome A is an equilibrium outcome if and
only if:

N(yr,zr) < N(yr, L) (5)

Similarly, one might show that outcome B is a pure equilibrium outcome if

and only if:
N(yr,zr) < N(yL,zr). (6)

We will now check that one of these inequalities must be true.

Indeed, assume that inequality (5) is not true, that is, N(yg, 1) < N(yr,zr)
preferences are single-peaked with z; < zp < ygr, N(zr,yr) < N(xgr,yr),
which is equivalent to

N(yr,xr) < N(yr,zL). (7)

Since preferences are single-peaked with y;, < x5 < xgr, N(zp,yL) >
N(xg,yr), which is equivalent to

N(yr,zr) < N(yL,Zr)- (8)
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Combining N(yr,zr) < N(yr,zr) with inequalities (7) and (8), one gets
that N(yr,zr) < N(yr,zr) < N(yr,zr) < N(yr,xzr) and inequality (6) is
true.

Similarly, assume that inequality (6) is not true, that is, N(yr,zr) <
N(yr, zgr). Combining with inequalities (7) and (8), this implies that N (yr,zr) <
N(yr,zr) < N(yr,zr) < N(yg,zr) and inequality (5) is true.

This concludes the proof that A or B is an equilibrium.

Second part of the proof. We will now see that there can be no other
equilibrium.

Denote by wy, and wg the two elected candidates at the left-most and right-
most positions. By single-peakedness, any candidate y such that wy <y < wg
must beat, under majority rule wy, or wg. But wy and wg, being winners, are
both compared to the strongest loser, and beat that candidate; hence, no such
candidate y can be the strongest loser. It follows that cas41, the strongest loser,
is outside the segment [wy,, wg].

By symmetry, we can suppose that the strongest loser is at the left of
[wr, wgr]: ep+1 < wr. Then, the candidates in X have scores that rank them
from right to left, like we have seen in the first part of the proof. In this case
the weakest winner is ¢)s = ..

By single-peakedness, cpr41 being beaten by wg implies that cpryq is also
beaten by any alternative z such that cp;41 < x < wpg, that is at least M
alternatives. But, by transitivity of the tournament, cys41 is beaten by precisely
the M alternatives of the set X. Therefore the set of elected candidates must be
exactly X. We are thus in the situation A of the first part of the proof. Q.E.D.
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